KR102172188B1 - Nozzle with core for 3d printer for ejecting mrf, and 3d printer including the same - Google Patents

Nozzle with core for 3d printer for ejecting mrf, and 3d printer including the same Download PDF

Info

Publication number
KR102172188B1
KR102172188B1 KR1020190078096A KR20190078096A KR102172188B1 KR 102172188 B1 KR102172188 B1 KR 102172188B1 KR 1020190078096 A KR1020190078096 A KR 1020190078096A KR 20190078096 A KR20190078096 A KR 20190078096A KR 102172188 B1 KR102172188 B1 KR 102172188B1
Authority
KR
South Korea
Prior art keywords
mrf
magnetic field
printer
nozzle
core member
Prior art date
Application number
KR1020190078096A
Other languages
Korean (ko)
Inventor
최승복
박유진
이태훈
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020190078096A priority Critical patent/KR102172188B1/en
Application granted granted Critical
Publication of KR102172188B1 publication Critical patent/KR102172188B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/16Arrangements for supplying liquids or other fluent material
    • B05B5/1683Arrangements for supplying liquids or other fluent material specially adapted for particulate materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/3001Extrusion nozzles or dies characterised by the material or their manufacturing process
    • B29C48/3003Materials, coating or lining therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/302Extrusion nozzles or dies being adjustable, i.e. having adjustable exit sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/321Feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

The present invention relates to a nozzle unit for supplying an MRF having an electromagnetic core member for generating a magnetic field at a lower end of a cylinder of a 3D printer. More specifically, provided is a core-included nozzle structure for a 3D printer, which is provided in a form that a plurality of coils are wound around an iron core so as to be connected to an external power source so that an electromagnetic core member can generate a magnetic field around at least a part of an injection nozzle located at the lower end of a cylinder. In addition, the present invention is provided in a tapered form to surround the surface of the injection nozzle so as to concentrate the magnetic field to a discharge port of the injection nozzle.

Description

MR유체의 토출을 위한 3D 프린터용 코어 내장 노즐과 이를 포함하는 3D 프린터{NOZZLE WITH CORE FOR 3D PRINTER FOR EJECTING MRF, AND 3D PRINTER INCLUDING THE SAME}3D printer core built-in nozzle for discharging MR fluid and 3D printer including the same {NOZZLE WITH CORE FOR 3D PRINTER FOR EJECTING MRF, AND 3D PRINTER INCLUDING THE SAME}

본 발명은 3D 프린터에 관한 것으로, 보다 상세하게는 자기유변유체(Magnetorheological Fluid, 이하 'MRF' 또는 'MR유체'라 함)를 토출할 수 있도록 코어가 내장된 3D 프린터용 노즐과 이를 포함하는 3D 프린터에 관한 것이다.The present invention relates to a 3D printer, and more particularly, a nozzle for a 3D printer having a core built-in to discharge magnetorheological fluid (hereinafter referred to as'MRF' or'MR fluid') and a 3D printer including the same. It's about the printer.

최근 본 출원인에 의해 제안된 한 가지 예로, 촉각 구현 구조체를 구현하기 위한 도 1과 같은 작동원리를 갖는 3D 프린터(1)가 제안된 바 있다. 여기서 촉각 구현 구조체란, 예를 들어 폴리우레탄과 같은 플렉시블한 재질의 구조재를 이용한 다층 적층의 밀폐형 구조를 갖는 것으로, 3D 프린터(1)를 통해 플렉시블한 재질의 소재를 분사하여 각 층별 다수의 칸들로 구획된 다층 적층 구조체(10)를 구성하고, 구조체의 각 구획(11)들을 통해서는 MR유체(MRF;12)가 분산 주입되어 채워진 형태를 말한다. As an example recently proposed by the present applicant, a 3D printer 1 having an operating principle as shown in FIG. 1 for implementing a tactile sensation implementation structure has been proposed. Here, the tactile structure is, for example, having a multi-layered, sealed structure using a structure material made of a flexible material such as polyurethane, and sprays a material made of a flexible material through a 3D printer (1) to a plurality of compartments for each layer. The divided multilayered structure 10 is configured, and MR fluid (MRF) 12 is dispersed and filled through each of the compartments 11 of the structure.

최근에는 재료의 다양성으로 인해 기존의 FDM 방식 3D 프린터의 노즐을 통한 단순 출력방식으로는 재료의 출력이 불가능한 경우가 많은데, 예를 들어 MR유체와 같은 반 고체 또는 액체 타입의 재료의 경우가 그러하다. In recent years, due to the diversity of materials, it is often impossible to print materials with a simple printing method through the nozzle of the conventional FDM type 3D printer, for example, semi-solid or liquid type materials such as MR fluids. .

이를 해결하기 위해 최근 공압을 이용한 재료 출력 방식이 제안되기도 하였으나, 공압을 조절하기 위한 별도의 장비가 필요하므로 전체 장치 규모가 커지는 것은 물론 고압으로 인한 위험성이 제기되고, 또한 장치가 복잡해짐에 따라 제조 단가가 상승하게 되는 비효율성을 초래하게 된다. In order to solve this problem, a material output method using pneumatic has recently been proposed, but since a separate equipment for controlling the pneumatic pressure is required, the overall size of the device increases, as well as the risk of high pressure is raised, and as the device becomes complicated, manufacturing This leads to inefficiency that increases the unit price.

따라서, MR유체를 출력하기 위해 도 1과 같이 적어도 2 종류의 공급 노즐을 보유한 3D 프린터를 사용하는 것이 본 출원인에 의해 제안되었는데, 2 이상의 공급 노즐 중 하나는 구조체의 외관을 형성하기 위한 구조재 공급용 노즐부(2)로 구성하고, 다른 하나는 구조체 내부에 채워질 MRF 공급용 노즐부(3)로 구성한다. 이러한 구성으로부터 먼저 구조재 공급용 노즐부(2)를 통해 플렉시블 재질의 소재를 분사하여 다수의 칸으로 구획된 다층 적층의 밀폐형 구조체인 본 발명의 촉각 구현 구조체의 각 층별 외관을 형성하고, 다음으로 각 층별 외관 완성시마다 MRF 공급용 노즐부(3)를 통해 구조체 내부의 각 층별 구획(11)들에 MRF(12)를 분산 주입하게 된다. Therefore, it was proposed by the applicant to use a 3D printer having at least two types of supply nozzles as shown in Fig. 1 to output the MR fluid, but one of the two or more supply nozzles is for supplying structural materials to form the appearance of the structure. It is composed of a nozzle unit 2, and the other is composed of a nozzle unit 3 for supplying MRF to be filled in the structure. From this configuration, first, a flexible material is sprayed through the nozzle unit 2 for supplying structural materials to form the appearance of each layer of the tactile realization structure of the present invention, which is a multilayered laminated sealed structure divided into a plurality of compartments, and then each Whenever the appearance of each layer is completed, the MRF 12 is dispersed and injected into the compartments 11 for each layer inside the structure through the nozzle unit 3 for supplying the MRF.

그러나, 위와 같은 설계안은 단지 이론상의 구상일 뿐, 실제로 MR유체(MRF)와 같은 특정한 재료의 특성에 맞춘 새로운 타입의 노즐에 대한 구체적인 설계안이 제시될 필요가 있다. However, the above design is only a theoretical concept, and in fact, it is necessary to present a specific design for a new type of nozzle tailored to the characteristics of a specific material such as MR fluid (MRF).

본 발명은 상기와 같은 기술적 요구에 따라 개발된 것으로, MR유체와 같은 특정한 재료의 출력을 위한 3D 프린터용 코어 내장 노즐과 이를 포함하는 3D 프린터를 제공하는데 그 목적이 있다. The present invention was developed in accordance with the technical requirements as described above, and an object thereof is to provide a 3D printer core built-in nozzle for printing a specific material such as MR fluid and a 3D printer including the same.

위와 같은 목적을 달성하기 위한 본 발명의 한 형태에 따르면, 3D 프린터의 실린더 하단에 자기장 생성을 위한 전자기 코어부재를 구비한 MRF 공급용 노즐부로서, 상기 전자기 코어부재는 상기 실린더의 하단에 위치된 분사노즐 주변의 적어도 일부에 자기장을 생성할 수 있도록 철심에 다수의 코일이 감겨 외부 전원과 연결된 형태로 제공되며, 자기장을 분사노즐의 토출구로 집중시키도록 상기 분사노즐의 표면을 둘러싸도록 테이퍼진 형태로 제공되는 것을 특징으로 하는 3D 프린터용 코어 내장 노즐 구조가 제공된다. According to one aspect of the present invention for achieving the above object, as an MRF supply nozzle unit having an electromagnetic core member for generating a magnetic field at the bottom of the cylinder of the 3D printer, the electromagnetic core member is located at the bottom of the cylinder. A plurality of coils are wound around an iron core so as to generate a magnetic field around at least a portion of the spray nozzle, and are provided in a form connected to an external power source, and a tapered shape surrounds the surface of the spray nozzle to concentrate the magnetic field to the discharge port of the spray nozzle. There is provided a nozzle structure with a built-in core for a 3D printer, characterized in that provided as.

본 발명에 따르면, 전자기 코어부재는 외부 전원으로부터 전류 세기에 따른 자기장의 크기 조절이 가능하며, 또한 상기 자기장 크기 조절을 통해 MR유체를 유체 또는 반고체 상태로 출력과 토출량 조정이 가능하다. According to the present invention, the electromagnetic core member can adjust the magnitude of the magnetic field according to the intensity of current from an external power source, and output and discharge the MR fluid in a fluid or semi-solid state through the adjustment of the magnetic field magnitude.

상술된 특징들로부터 본 발명의 3D 프린터의 MRF 공급용 노즐부 구성은 종래 3D 프린터의 노즐부에서 적용된 공압 방식을 이용하지 않으므로 전체 장치 규모를 대폭 감소시킬 수 있을 뿐만 아니라, MR유체의 출력을 제어하거나 토출량의 조절이 매우 간편하고 용이한 장점이 있다. From the above-described features, the configuration of the nozzle part for supplying MRF of the 3D printer of the present invention does not use the pneumatic method applied in the nozzle part of the conventional 3D printer, so not only can the overall size of the device be significantly reduced, but also the output of MR fluid is controlled. Or, it has the advantage of being very simple and easy to control the discharge amount.

도 1은 종래 기술의 3D 프린터의 노즐부 구성과 사용 원리를 나타낸 개념도,
도 2는 본 발명에 따른 3D 프린터의 MRF 공급용 노즐부를 도시한 개념도,
도 3은 도 2에 따른 MRF 공급용 노즐부의 부분 확대도,
도 4는 도 2에 따른 MRF 공급용 노즐부의 자기장 해석 결과를 나타낸 시뮬레이션 선도.
1 is a conceptual diagram showing the configuration and principle of use of a nozzle part of a conventional 3D printer.
2 is a conceptual diagram showing a nozzle for supplying MRF of the 3D printer according to the present invention,
3 is a partial enlarged view of the nozzle unit for supplying MRF according to FIG. 2,
Figure 4 is a simulation diagram showing the magnetic field analysis result of the MRF supply nozzle unit according to Figure 2;

본 발명의 추가의 세부 사항 및 이점은 첨부된 도면에 도시된 본 발명의 실시예를 사용하여 설명된다. Further details and advantages of the invention will be explained using the embodiments of the invention shown in the accompanying drawings.

아래의 실시예에서는 발명을 설명함에 있어서 필연적인 부분들을 제외하고 그 도시와 설명을 생략하였으며, 명세서 전체를 걸쳐 동일 유사한 요소에 대하여는 동일한 부호를 부여하고 그에 대한 상세한 설명은 반복하지 않고 생략하기로 한다. In the following embodiments, the illustration and description are omitted except for inevitable parts in the description of the invention, and the same reference numerals are assigned to the same and similar elements throughout the specification, and detailed descriptions thereof will be omitted without repetition. .

도 2는 본 발명에 따른 3D 프린터의 MRF 공급용 노즐부를 도시한 개념도, 도 3은 도 2에 따른 MRF 공급용 노즐부의 부분 확대도, 도 4는 도 2에 따른 MRF 공급용 노즐부의 자기장 해석 결과를 나타낸 시뮬레이션 선도로서, 본 발명은 MR유체와 같은 특정한 재료의 출력을 위한 3D 프린터용 코어 내장 노즐 구조를 제공한다. 2 is a conceptual diagram showing a nozzle unit for MRF supply of a 3D printer according to the present invention, FIG. 3 is a partial enlarged view of the nozzle unit for supplying MRF according to FIG. 2, and FIG. 4 is a magnetic field analysis result of the nozzle unit for supplying MRF according to FIG. As a simulation diagram showing, the present invention provides a core-embedded nozzle structure for a 3D printer for outputting a specific material such as MR fluid.

본 발명에 따른 3D 프린터의 MRF 공급용 노즐부는, 실린더 표면에 히팅블록(2a)을 갖고 가열 방식에 의해 필라멘트를 녹여서 출력하게 되는 도 1의 구조재 공급용 노즐부(2)와는 달리 실린더(5) 하단의 분사노즐(6) 주위에 자기장을 생성하기 위한 전자기 코어부재(7)를 구비한 새로운 형태의 노즐 구성이다. The MRF supply nozzle unit of the 3D printer according to the present invention has a heating block (2a) on the cylinder surface, unlike the nozzle unit (2) for structural material supply of Fig. 1, which melts and outputs the filament by a heating method. It is a new type of nozzle configuration provided with an electromagnetic core member 7 for generating a magnetic field around the injection nozzle 6 at the bottom.

전자기 코어부재(7)는 외부의 전원(미도시)으로부터 인가된 전류에 의해 자기장을 생성할 수 있는 것으로, MR유체가 일반적으로 철가루(CIP)를 함유하고 있으므로 MR유체에 자기장을 인가할 경우 자기장에 의해 MR유체의 철가루들 사이에 사슬이 형성되면서 MR유체가 반 고체 타입으로 변하여 유체가 흐르지 않게 되는 원리를 이용한다. The electromagnetic core member 7 is capable of generating a magnetic field by a current applied from an external power source (not shown). Since the MR fluid generally contains iron powder (CIP), when applying a magnetic field to the MR fluid As a chain is formed between the iron powders of the MR fluid by the magnetic field, the MR fluid changes to a semi-solid type and the fluid does not flow.

도 2에 따르면, 본 발명의 3D 프린터의 MRF 공급용 노즐부(3')는 실린더(5)의 하단에 위치된 분사노즐(6) 주변의 적어도 일부에 자기장을 생성할 수 있도록 철심에 다수의 코일이 감겨져 외부 전원과 연결된 전자기 코어부재(7)를 구비한다. According to FIG. 2, the nozzle unit 3 ′ for supplying MRF of the 3D printer of the present invention has a plurality of iron cores to generate a magnetic field around at least a portion of the injection nozzle 6 located at the bottom of the cylinder 5. The coil is wound and includes an electromagnetic core member 7 connected to an external power source.

이러한 전자기 코어부재(7)는 자기장을 분사노즐(6)의 토출구(6a)로 집중시키기 위해 대체로 깔떼기 형상을 갖는 분사노즐(6)의 표면을 둘러싸도록 테이퍼진 형태로 제공될 수 있다. The electromagnetic core member 7 may be provided in a tapered form to surround the surface of the spray nozzle 6 having a generally funnel shape in order to concentrate the magnetic field to the discharge port 6a of the spray nozzle 6.

이와 같은 구성에 의해 실린더(5) 내부에 수용된 MR유체(MRF)는 분사노즐(6)을 통해 외부로 토출할 수 있으며, 또한 MRF 토출을 중단시켜야 할 경우에는 전자기 코어부재(7)에 의해 자기장을 인가하여 MR유체가 반고체 상태로 변하도록 함으로써 MRF 토출을 멈출 수 있다. With this configuration, the MR fluid (MRF) accommodated in the cylinder 5 can be discharged to the outside through the injection nozzle 6, and in the case of stopping the MRF discharge, the magnetic field is generated by the electromagnetic core member 7 MRF discharge can be stopped by applying MR fluid to change to a semi-solid state.

또한, 전자기 코어부재(7)는 외부 전원으로부터 전류 세기에 따라 자기장의 크기를 조절할 수 있으며, 따라서 기존의 공압 방식을 이용하지 않고 자기장 세기 조절을 통해 유체 상태인 MRF의 출력을 제어할 수 있다. 예를 들어, MRF의 토출량을 조절하여야 할 경우, 전자기 코어부재(7)에 의해 생성되는 자기장 세기를 조절함으로써 MRF 토출량을 적절하게 조정할 수 있는 것이다. In addition, the electromagnetic core member 7 may adjust the size of the magnetic field according to the current intensity from an external power source, and thus, it is possible to control the output of the MRF, which is a fluid state, by adjusting the magnetic field intensity without using a conventional pneumatic method. For example, when it is necessary to adjust the discharge amount of the MRF, it is possible to appropriately adjust the discharge amount of the MRF by adjusting the strength of the magnetic field generated by the electromagnetic core member 7.

도 3에 따르면, 본 발명의 MRF 공급용 노즐부의 실린더 내에 MRF가 수용된 상태에서 자기장 해석을 수행한 시뮬레이션의 결과는 분사노즐의 토출구 부분에 자기장이 집중적으로 형성되어 있음을 보여주고 있다. 따라서, 본 발명은 MRF 토출을 중단시키거나 토출량을 조정할 필요가 있는 할 경우, 전자기 코어부재에 의해 자기장 생성을 조절하여 MR유체를 유체 또는 반고체 상태로 변하도록 함으로써 MRF 토출을 조정할 수 있다. Referring to FIG. 3, a simulation result of performing a magnetic field analysis in a state in which the MRF is contained in the cylinder of the MRF supply nozzle unit of the present invention shows that the magnetic field is concentrated in the discharge port of the injection nozzle. Accordingly, in the present invention, when it is necessary to stop the MRF discharge or adjust the amount of discharge, the MRF discharge can be adjusted by controlling the magnetic field generation by the electromagnetic core member to change the MR fluid into a fluid or semi-solid state.

이와 같은 MRF 공급용 노즐부는 종래 3D 프린터의 노즐부에서 적용된 공압 방식을 이용하지 않으므로 장치 규모를 대폭 감소시킬 수 있을 뿐 아니라, MR유체의 출력을 제어하거나 토출량의 조절이 간편하고 용이한 장점이 있다. Since the nozzle unit for MRF supply does not use the pneumatic method applied in the conventional 3D printer nozzle unit, the scale of the device can be greatly reduced, and it is easy and convenient to control the output of MR fluid or control the discharge amount. .

이상 본 발명의 다양한 실시예들에 대하여 설명하였으나, 지금까지 설명한 내용들은 본 발명의 바람직한 실시예들 중 그 일부를 예시한 정도에 불과하며, 아래에 첨부된 청구범위에 나타날 수 있는 것을 제외하고는 상술한 내용에 의해 제한되지 않는다. 따라서, 본 발명은 이와 동일한 기술분야에서 통상의 지식을 가진 자라면 이하의 청구범위에 기재된 범위 내에서 발명의 기술적 사상과 요지를 벗어나지 않으면서 균등물의 많은 변화, 수정 및 대체가 이루어질 수 있음을 이해하여야 할 것이다. Although various embodiments of the present invention have been described above, the contents described so far are only to the extent that some of the preferred embodiments of the present invention are illustrated, except for those that may appear in the appended claims below. It is not limited by the above contents. Therefore, the present invention understands that many changes, modifications, and substitutions of equivalents can be made without departing from the spirit and spirit of the invention within the scope of the following claims, provided those of ordinary skill in the same technical field. You will have to do it.

3' : MRF 공급용 노즐부
5 : 실린더
6 : 분사노즐
6a : 토출구
7 : 전자기 코어부재
3': MRF supply nozzle part
5: cylinder
6: spray nozzle
6a: discharge port
7: electromagnetic core member

Claims (2)

다수의 칸으로 구획된 다층 적층의 촉각 구현 구조체를 구현하기 위한 것으로서, 상기 구조체의 각 층별 외관을 형성하기 위하여 폴리우레탄을 포함하는 플렉시블한 재질의 구조재들 중 적어도 하나를 공급하는 구조재 공급용 노즐부와, 상기 구조체 내부의 각 층별 구획들에 MRF를 주입하기 위한 MRF 공급용 노즐부를 포함하고, 상기 MRF 공급용 노즐부는 실린더 하단에 자기장 생성을 위한 전자기 코어부재를 구비하고, 상기 전자기 코어부재는 상기 실린더의 하단에 위치된 분사노즐 주변의 적어도 일부에 자기장을 생성할 수 있도록 철심에 다수의 코일이 감겨 외부 전원과 연결된 형태로 제공되고, 상기 분사노즐은 깔때기 형상으로 이루어지며, 상기 전자기 코어부재는 자기장을 상기 깔때기 형상의 분사노즐의 토출구로 집중시키기 위해 상기 분사노즐의 표면을 둘러싸도록 테이퍼진 형태로 제공되되, 상기 전자기 코어부재는, 외부 전원으로부터의 전류 세기에 따라 자기장 크기 조절이 가능하고, 상기 자기장 크기 조절을 통해 MRF의 유체 또는 반고체 상태의 출력 및 토출량 조정이 가능한 것을 특징으로 하는 3D 프린터. A nozzle part for supplying a structure material for supplying at least one of structure materials made of a flexible material including polyurethane to form the appearance of each layer of the structure as a structure for implementing a tactile structure divided into a plurality of cells. And, an MRF supply nozzle part for injecting MRF into each layer of the structure, and the MRF supply nozzle part has an electromagnetic core member for generating a magnetic field at the bottom of the cylinder, and the electromagnetic core member comprises the A plurality of coils are wound around an iron core to generate a magnetic field around at least a portion of the injection nozzle located at the lower end of the cylinder, and the injection nozzle is formed in a funnel shape, and the electromagnetic core member Provided in a tapered form to surround the surface of the injection nozzle in order to concentrate the magnetic field to the discharge port of the funnel-shaped injection nozzle, the electromagnetic core member can adjust the size of the magnetic field according to the current intensity from an external power source, 3D printer, characterized in that it is possible to adjust the output and discharge amount of the fluid or semi-solid state of the MRF through the magnetic field size control. 삭제delete
KR1020190078096A 2019-06-28 2019-06-28 Nozzle with core for 3d printer for ejecting mrf, and 3d printer including the same KR102172188B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190078096A KR102172188B1 (en) 2019-06-28 2019-06-28 Nozzle with core for 3d printer for ejecting mrf, and 3d printer including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190078096A KR102172188B1 (en) 2019-06-28 2019-06-28 Nozzle with core for 3d printer for ejecting mrf, and 3d printer including the same

Publications (1)

Publication Number Publication Date
KR102172188B1 true KR102172188B1 (en) 2020-10-30

Family

ID=73048338

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190078096A KR102172188B1 (en) 2019-06-28 2019-06-28 Nozzle with core for 3d printer for ejecting mrf, and 3d printer including the same

Country Status (1)

Country Link
KR (1) KR102172188B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113878874A (en) * 2021-10-26 2022-01-04 武汉亿特尼缇信息科技有限公司 Magnetic core structure of 3D printer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030039890A (en) * 2001-11-16 2003-05-22 주식회사 만도 Solenoid valve for magneto-rheological fluid
WO2019034990A1 (en) * 2017-08-17 2019-02-21 Kendurkar Chinmay Three-dimensional printing in a non-gravitational field

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030039890A (en) * 2001-11-16 2003-05-22 주식회사 만도 Solenoid valve for magneto-rheological fluid
WO2019034990A1 (en) * 2017-08-17 2019-02-21 Kendurkar Chinmay Three-dimensional printing in a non-gravitational field

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113878874A (en) * 2021-10-26 2022-01-04 武汉亿特尼缇信息科技有限公司 Magnetic core structure of 3D printer
CN113878874B (en) * 2021-10-26 2024-03-01 湖北青影文化产业有限公司 Magnetic core structure of 3D printer

Similar Documents

Publication Publication Date Title
KR102172188B1 (en) Nozzle with core for 3d printer for ejecting mrf, and 3d printer including the same
US20190001563A1 (en) Print head for additive manufacturing system
CN105050731B (en) metering valve and metering method
JP2019504620A (en) Bioprinter spray head assembly and bioprinter
JP6554740B2 (en) 3D printer
CN108367487A (en) Method for the silicone elastomer product for producing print quality raising
JP2019503681A (en) Bioprinter spray head assembly and bioprinter
JP2009503378A (en) Pressurized magnetorheological fluid damper
IT9067954A1 (en) HIGH SPEED THREE-WAY SOLENOID VALVE FOR A PRESSURIZED FLUID, FOR EXAMPLE FOR COMPRESSED AIR CIRCUITS
US20180015666A1 (en) Three-dimensional laminating and shaping apparatus, control method of three-dimensional laminating and shaping apparatus, and control program of three-dimensional laminating and shaping apparatus
CN105003589A (en) Magnetorheological damper with built-in magnetorheological valve for damping performance control
CN107848304A (en) A kind of drive device, particularly for ink jet-print head, there is electromagnetic isolation
US20210206085A1 (en) Build material dispenser refill control for additive manufacturing
JP2008193016A (en) Method and apparatus for filling liquid material, and program
JPH0771402A (en) Device supplying hydraulic actuator with working fluid
JP2015535734A (en) Dosing system, dosing method, and manufacturing method
US3039696A (en) Guns for atomization and electrostatic projection of particles
WO2010058661A1 (en) Seamless capsule-manufacturing device
TWM481136U (en) Wire dying device for use in three-dimensional printing machine
JP3273650B2 (en) Magnetic resonance imaging equipment
KR101748808B1 (en) Variable focal lens array using electro-magnetic field and making method thereof
KR102132796B1 (en) Dispenser and micro frequency valve therefor
KR20160150144A (en) The nozzle device for 3d printer
CN206201501U (en) 3D printer and its printing drawing mechanism
Calmet et al. Kaluza-Klein theories and the anomalous magnetic moment of the muon

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant