KR102170359B1 - Fine-aggregate Modified-asphalt composition and construction method using the same - Google Patents

Fine-aggregate Modified-asphalt composition and construction method using the same Download PDF

Info

Publication number
KR102170359B1
KR102170359B1 KR1020200078659A KR20200078659A KR102170359B1 KR 102170359 B1 KR102170359 B1 KR 102170359B1 KR 1020200078659 A KR1020200078659 A KR 1020200078659A KR 20200078659 A KR20200078659 A KR 20200078659A KR 102170359 B1 KR102170359 B1 KR 102170359B1
Authority
KR
South Korea
Prior art keywords
asphalt
fine
astm
modified asphalt
asphalt concrete
Prior art date
Application number
KR1020200078659A
Other languages
Korean (ko)
Inventor
최창정
김광우
Original Assignee
(주)씨제이건설기술
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)씨제이건설기술 filed Critical (주)씨제이건설기술
Priority to KR1020200078659A priority Critical patent/KR102170359B1/en
Application granted granted Critical
Publication of KR102170359B1 publication Critical patent/KR102170359B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/26Bituminous materials, e.g. tar, pitch
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0076Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials characterised by the grain distribution
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/04Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/04Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B26/045Polyalkenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0853Vinylacetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L95/00Compositions of bituminous materials, e.g. asphalt, tar, pitch
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Civil Engineering (AREA)
  • Road Paving Structures (AREA)

Abstract

The present invention a fine-grained modified asphalt mixture which includes a modified asphalt binder and fine aggregate. The modified asphalt binder comprises: 0.5-3.5 wt% of ethylene vinyl acetate-adhesive resin (EVA-AR); 0.5-2.5 wt% of styrene-butadiene-styrene (SBS); 1.5-4.5 wt% of low-density polyethylene (LDPE); and a remainder consisting of asphalt. The fine-grained modified asphalt mixture is applied to pedestrian-friendly impact relief asphalt concrete paving for pedestrian safety and preparation for an aging society by being paved on a sidewalk and a bicycle road.

Description

세립 완충 칼라 아스팔트 콘크리트 조성물 및 이를 이용한 시공방법{Fine-aggregate Modified-asphalt composition and construction method using the same} Fine-aggregate Modified-asphalt composition and construction method using the same}

본 발명은 개질아스팔트 혼합물에 관한 것으로서, 더욱 상세하게는 인도나 자전거 도로에 시공되기 적합한 세립 개질아스팔트 혼합물 및 이를 이용한 고운 표면을 갖는 완충 아스팔트 콘크리트의 시공방법에 관한 것이다.The present invention relates to a modified asphalt mixture, and more particularly, to a fine-grained modified asphalt mixture suitable for construction on a sidewalk or bicycle road, and a construction method of a buffer asphalt concrete having a fine surface using the same.

여기서는, 본 개시에 관한 배경기술이 제공되며, 이들이 반드시 공지기술을 의미하는 것은 아니다.Herein, background art related to the present disclosure is provided, and these do not necessarily mean known art.

개질 아스팔트는 내구성 향상을 위해 아스팔트의 성질을 개선한 것으로 개질방식 또는 생산방식에 따라 분류할 수 있다. 개질 방식에 따른 분류로는 고분자 개질아스팔트, 첨가성 개질 아스팔트 및 화학촉매제 아스팔트 등으로 구분될 수 있고, 생산 방식에 따른 분류로는 사전배합(Pre-Mix), 현장배합(Plant-Mix) 등으로 구분될 수 있다. Modified asphalt is an improvement in the properties of asphalt to improve durability, and can be classified according to the modification method or production method. The classification according to the modification method can be classified into polymer modified asphalt, additive modified asphalt, and chemical catalyst asphalt, and the classification according to the production method includes pre-mixing and plant-mixing. Can be distinguished.

아스팔트 콘크리트 포장은 시멘트 콘크리트 포장에 비하여 탄성계수가 10% 수준으로 유연성을 가지며 우수한 승차감, 우수한 제빙성능, 보수의 용이성 등의 특성으로 세계적으로 90% 이상의 도로에 사용되는 포장공법이다.Asphalt concrete pavement is a paving method used for more than 90% of roads worldwide due to its characteristics such as excellent riding comfort, excellent ice making performance, and ease of repair, and has flexibility with an elastic modulus of 10% compared to cement concrete pavement.

하지만, 상기 포장공법은 주로 차도용 포장에 사용되고 있고, 보도용 포장은 대부분이 콘크리트, 고압블록, 보도블록 등(공식용어: 보도용 콘크리트 판)을 사용하여 단차로 인한 평탄성 불량, 물고임, 파손에 따른 결함 및 탈리 등이 발생하여 보행에 문제가 많다.However, the above pavement method is mainly used for roadway pavement, and most of the pavement for sidewalks uses concrete, high-pressure blocks, sidewalk blocks, etc. (official term: concrete plates for sidewalks). There are many problems with walking due to the occurrence of defects and truncation.

또한 일반적으로 아스팔트 혼합물의 굵은골재 최대치수와 잔골재율은 아스팔트 혼합물의 시공성 및 성능과 밀접한 관련이 있다.In addition, in general, the maximum coarse aggregate dimension and fine aggregate ratio of the asphalt mixture are closely related to the workability and performance of the asphalt mixture.

굵은골재 최대치수가 크거나 잔골재율이 작을수록 내유동성이 증가되어 소성변형에 대한 저항성이 높아지며, 강성이 커지고, 최적 아스팔트 함량이 작아져서 경제적인 장점이 있으나, 균열 저항성이 낮아지고, 생산과 포설 시에 아스팔트 혼합물의 재료분리 가능성이 높아지는 단점이 있다. The larger the maximum size of the coarse aggregate or the smaller the fine aggregate ratio, the higher the fluid resistance, which increases the resistance to plastic deformation, increases the stiffness, and has an economic advantage because the optimal asphalt content decreases, but the crack resistance decreases, and during production and installation. There is a disadvantage of increasing the possibility of material separation of the asphalt mixture.

반대로 굵은골재 최대치수가 작거나 잔골재율이 높을수록 시공시 아스팔트 혼합물의 재료분리가 적어지고, 균열저항성이 증가되지만, 소성변형에 대한 저항성이 낮아지고, 최적 아스팔트 함량이 높아지는 단점이 있다. On the contrary, the smaller the maximum size of the coarse aggregate or the higher the fine aggregate ratio, the less material separation of the asphalt mixture during construction and the increase in crack resistance, but there are disadvantages that the resistance to plastic deformation decreases and the optimum asphalt content increases.

본 발명은 일반 아스팔트에 개질 성분들을 첨가하고 골재의 입도 및 최대 치수 등을 조정하여 우수한 평탄성과 고운 표면, 보행 충격에너지를 크게 완화할 수 있는 세립 개질아스팔트(Fine-aggregate Modified-asphalt: FAMA) 혼합물 및 이를 이용하여 포장된 완충 아스팔트 콘크리트를 제공하여 인도, 자전거도로 등 차량 운행이 제한된 소도로(Low-volume road) 포장에 적용하는데 목적이 있다. The present invention is a fine-aggregate modified-asphalt (FAMA) mixture that can greatly alleviate excellent flatness and fine surface and walking impact energy by adding modifying components to general asphalt and adjusting the particle size and maximum dimensions of aggregate And it is intended to provide a buffered asphalt concrete paved using the same to apply to the pavement (low-volume road) limited vehicle operation such as sidewalks and bicycle roads.

특히 이 포장은 관절 충격 완화뿐만 아니라 낙상 시 충격 흡수로 골절위험을 줄여주며, 고운 표면은 기존 아스팔트 포장이나 보도용 콘크리트 판보다 부드럽고 연하여 넘어질 때 찰과상도 크게 줄여줄 수 있는 보행자 친화적 포장을 제공하는 것이다. In particular, this pavement not only relieves joint shock, but also reduces the risk of fracture by absorbing shock in the event of a fall, and provides a pedestrian-friendly pavement that can greatly reduce abrasion when falling because the fine surface is softer and softer than conventional asphalt pavement or concrete board for sidewalks. Is to do.

그러나 본 발명의 목적들은 상기에 언급된 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the objects of the present invention are not limited to the above-mentioned objects, and other objects that are not mentioned will be clearly understood by those skilled in the art from the following description.

본 발명은 개질아스팔트 바인더 및 세립 골재를 포함하며, 상기 개질아스팔트 바인더는 EVA 계열 접착성 수지 0.5 내지 2.5 wt%, SBS(styrene- butadiene-styrene) 0.5 내지 2.5 wt%, LDPE (low-density polyethylene) 1.5 내지 4.5 wt% 및 잔부의 아스팔트를 포함하는 것을 특징으로 하는 세립 개질아스팔트 혼합물을 제공한다.The present invention includes a modified asphalt binder and a fine aggregate, wherein the modified asphalt binder is 0.5 to 2.5 wt% of an EVA-based adhesive resin, 0.5 to 2.5 wt% of styrene-butadiene-styrene (SBS), and low-density polyethylene (LDPE) It provides a finely modified asphalt mixture, characterized in that it comprises 1.5 to 4.5 wt% and the balance asphalt.

또한 상기 세립 골재는 최대 치수 5mm 이하의 고운 골재를 포함하는 것을 특징으로 한다.In addition, the fine aggregate is characterized in that it comprises a fine aggregate with a maximum dimension of 5 mm or less.

또한 상기 세립 골재는 상기 세립 개질아스팔트 혼합물 전체 중량에 대하여 90 내지 95wt% 포함되는 것을 특징으로 한다.In addition, the fine aggregate is characterized in that it contains 90 to 95wt% based on the total weight of the fine-modified asphalt mixture.

또한 본 발명은 상기 세립 개질아스팔트 혼합물을 가열 혼합하고 다짐하여 제조된 아스팔트 콘크리트를 제공한다.In addition, the present invention provides an asphalt concrete prepared by heating and mixing and compacting the finely modified asphalt mixture.

또한 상기 아스팔트 콘크리트는 PG70-22 등급, 변형강도(Deformation strength: SD) 2.7 MPa 이상, 간접인장강도(Indirect tensile strength: ITS) 0.6MPa 이상인 것을 특징으로 한다. In addition, the asphalt concrete is characterized by having a PG70-22 grade, a deformation strength (S D ) of 2.7 MPa or more, and an indirect tensile strength (ITS) of 0.6 MPa or more.

본 발명에 따른 세립 개질아스팔트 혼합물은 변형강도, 간접인장강도 등 강도 면에서 충분한 값과 우수한 수분 저항성을 보이며, 특히 충격 흡수성에 있어서 보도용 콘크리트판과 비교하여 30% 이상 큰 충격흡수율을 보여 인도, 산책로, 단지 내 도로, 교통량이 적은 소도로 (뒷골목 포함), 이면도로, 자전거도로 및 농어촌도로 등에 포설하여 보행자 안전과 고령화 사회에 대비한 보행자 친화적 충격완화 아스팔트 콘크리트 포장에 적용되기 적합한 효과를 제공한다. The fine-grained modified asphalt mixture according to the present invention exhibits a sufficient value in terms of strength such as deformation strength and indirect tensile strength and excellent moisture resistance.In particular, in terms of shock absorption, it shows a shock absorption rate greater than 30% compared to a concrete plate for sidewalks. Promenades, roads within the complex, small roads with low traffic (including back alleys), back roads, bicycle roads, and rural roads, etc., provide a suitable effect to be applied to asphalt concrete pavement for pedestrian safety and pedestrian-friendly impact relief in preparation for an aging society. .

도 1에 본 발명에 따른 세립 개질 아스팔트 혼합물을 이용하여 고운 표면의 완충 아스팔트 콘크리트 시공장면 및 블록포장과의 표면상태를 비교한 이미지를 나타내었다.
도 2는 본 발명의 일실시예에 따라 제조된 완충 아스팔트 콘크리트의 변형강도 측정장비 및 방법을 나타낸 것이다.
도 3은 본 발명의 일실시예에 따라 제조된 완충 아스팔트 콘크리트의 간접인장강도 측정장비를 나타낸 것이다.
도 4는 본 발명의 일실시예에 따라 제조된 완충 아스팔트 콘크리트의 충격흡수특성 측정방법을 나타낸 것이다.
FIG. 1 shows an image comparing the surface condition of the buffer asphalt concrete trial plant surface and the block pavement of a fine surface using the fine-modified asphalt mixture according to the present invention.
Figure 2 shows an equipment and method for measuring the deformation strength of the buffered asphalt concrete manufactured according to an embodiment of the present invention.
Figure 3 shows the indirect tensile strength measuring equipment of the buffer asphalt concrete manufactured according to an embodiment of the present invention.
Figure 4 shows a method of measuring the impact absorption characteristics of the buffer asphalt concrete manufactured according to an embodiment of the present invention.

본 명세서에 사용되는 모든 기술용어 및 과학용어는 다른 언급이 없는 한은 기술적으로 통상의 기술을 가진 자에게 일반적으로 이해되는 것과 동일한 의미를 가진다. 또한 본 명세서 및 청구범위의 전반에 걸쳐, 다른 언급이 없는 한 포함(comprise, comprises, comprising)이라는 용어는 언급된 물건, 단계 또는 일군의 물건, 및 단계를 포함하는 것을 의미하고, 임의의 어떤 다른 물건, 단계 또는 일군의 물건 또는 일군의 단계를 배제하는 의미로 사용된 것은 아니다.All technical and scientific terms used in the present specification have the same meaning as commonly understood by those of ordinary skill in the art unless otherwise stated. Also throughout the specification and claims, unless otherwise stated, the term "comprise, comprises, comprising" means to include the recited object, step or group of objects, and steps, and any other It is not used to exclude objects, steps, or groups of objects or steps.

이하에 본 발명을 상세하게 설명하기에 앞서, 본 명세서에 사용된 용어는 특정의 실시예를 기술하기 위한 것일 뿐 첨부하는 특허청구의 범위에 의해서만 한정되는 본 발명의 범위를 한정하려는 것은 아님을 이해하여야 한다.Before describing the present invention in detail below, it is understood that the terms used in the present specification are for describing specific embodiments and are not intended to limit the scope of the present invention, which is limited only by the scope of the appended claims. shall.

한편, 본 발명의 여러 가지 실시예들은 명확한 반대의 지적이 없는 한 그 외의 어떤 다른 실시예들과 결합될 수 있다. 특히 바람직하거나 유리하다고 지시하는 어떤 특징도 바람직하거나 유리하다고 지시한 그 외의 어떤 특징 및 특징들과 결합될 수 있다. 이하, 첨부된 도면을 참조하여 본 발명의 실시예 및 이에 따른 효과를 설명하기로 한다.Meanwhile, various embodiments of the present invention may be combined with any other embodiments unless there is a clear opposite point. Any feature indicated to be particularly preferred or advantageous may be combined with any other feature and features indicated to be preferred or advantageous. Hereinafter, embodiments of the present invention and effects thereof will be described with reference to the accompanying drawings.

본 발명의 일실시예에 따른 세립 개질아스팔트 혼합물은 개질아스팔트 바인더 및 세립 골재를 포함하여, 시공 시 PG70-22 등급, 변형강도(SD) 2.7MPa 이상(도로 기층용 기준), 간접인장강도(ITS) 0.6MPa 이상(도로 기층용 기준)으로 인도 및 자전거 도로 등에 적합하게 사용될 수 있는 아스팔트 콘크리트를 제공한다. The fine-grained modified asphalt mixture according to an embodiment of the present invention includes a modified asphalt binder and a fine-grained aggregate, at the time of construction PG70-22 grade, deformation strength (S D ) 2.7 MPa or more (based on road base), indirect tensile strength ( ITS) Provides asphalt concrete that can be suitably used for sidewalks and bicycle lanes with more than 0.6 MPa (based on road base).

아스팔트의 등급은 PG XX-YY로 표현되며, XX는 고온등급으로 아스팔트 포장의 최고온도, -YY는 저온등급으로 아스팔트 포장의 최저온도 개념이다. 따라서, XX는 고온에서의 소성변형에 대한 저항성을 나타내며, -YY는 저온에서의 균열에 대한 저항성을 나타낸다.The grade of asphalt is expressed as PG XX-YY, where XX is the high temperature grade and the highest temperature of the asphalt pavement, -YY is the low temperature grade and the lowest temperature of the asphalt pavement. Therefore, XX represents the resistance to plastic deformation at high temperatures, and -YY represents the resistance to cracking at low temperatures.

상기 개질아스팔트 바인더는 Ethylene Vinyl Acetate 계열 접착성 수지(이하, EVA-AR 이라 한다.) 0.5 내지 2.5 wt%, SBS (styrene-butadiene-styrene) 0.5 내지 2.5 wt%, LDPE (low-density polyethylene) 1.5 내지 4.5 wt% 및 잔부의 아스팔트를 포함한다. 여기에서 상기 아스팔트는 PG64-22 등급의 일반 아스팔트를 사용하며, 인조고무와 에틸렌 재료의 결합향상을 위해서 SBS와 함께 일반 LDPE 외에 변성 PE인 EVA-AR을 사용한다. The modified asphalt binder is an Ethylene Vinyl Acetate-based adhesive resin (hereinafter referred to as EVA-AR) 0.5 to 2.5 wt%, SBS (styrene-butadiene-styrene) 0.5 to 2.5 wt%, LDPE (low-density polyethylene) 1.5 To 4.5 wt% and the balance of asphalt. Here, as the asphalt, general asphalt of PG64-22 grade is used, and EVA-AR, which is a modified PE, is used in addition to general LDPE along with SBS to improve the bonding between artificial rubber and ethylene material.

상기 EVA-AR은 하기와 같은 물성 및 특성을 갖는 것을 사용한다. The EVA-AR is used having the following physical properties and properties.

Figure 112020107505925-pat00012
Figure 112020107505925-pat00012

각 성분의 함량에 따른 성능을 비교하여 성능과 경제성을 고려할 때, 바람직하게는 EVA-AR 0.5 내지 2.5 wt%, SBS 0.5 내지 1.5 wt%, LDPE 1.5 내지 3.5 wt%를 포함하는 것이 좋고, 더욱 바람직하게는 EVA-AR 1.5 내지 2.5 wt%, SBS 0.5 내지 1.5 wt%, LDPE 1.5 내지 2.5 wt%를 포함하는 것이 좋다.When comparing the performance according to the content of each component in consideration of performance and economy, it is preferable to include 0.5 to 2.5 wt% of EVA-AR, 0.5 to 1.5 wt% of SBS, and 1.5 to 3.5 wt% of LDPE, more preferably Preferably, it is preferable to include 1.5 to 2.5 wt% of EVA-AR, 0.5 to 1.5 wt% of SBS, and 1.5 to 2.5 wt% of LDPE.

상기 세립 골재는 최대 치수 5mm 이하의 고운 골재를 사용한다. 세립 골재는 상기 개질아스팔트 혼합물 전체 중량에 대하여 90 내지 95wt% 포함하여 혼합된다. For the fine aggregate, a fine aggregate having a maximum dimension of 5 mm or less is used. The fine aggregate is mixed including 90 to 95 wt% based on the total weight of the modified asphalt mixture.

일반적으로 아스팔트 혼합물의 굵은골재 최대치수와 잔골재율은 아스팔트 혼합물의 시공성 및 성능과 밀접한 관련이 있다.In general, the maximum coarse aggregate dimension and fine aggregate ratio of an asphalt mixture are closely related to the workability and performance of the asphalt mixture.

굵은골재 최대치수가 크거나 잔골재율이 작을수록 내유동성이 증가되어 소성변형에 대한 저항성이 높아지며, 최적 아스팔트 함량이 작아져서 경제적인 장점이 있으나, 균열 저항성이 낮아지고, 생산과 포설 시에 아스팔트 혼합물의 재료분리 가능성이 높아지는 단점이 있다.The larger the maximum size of the coarse aggregate or the smaller the fine aggregate ratio is, the higher the fluid resistance is, the higher the resistance to plastic deformation, and the lower the optimal asphalt content has an economic advantage, but the crack resistance is lowered and the asphalt mixture is There is a disadvantage that the possibility of material separation increases.

반대로 굵은골재 최대치수가 작거나 잔골재율이 높을수록 시공시 아스팔트 혼합물의 재료분리가 적어지고, 균열저항성이 증가되지만, 소성변형에 대한 저항성이 낮아지고, 최적 아스팔트 함량이 높아진다. 본 발명은 세립 골재만으로 아스팔트 혼합물을 구성하였음에도 불구하고 소성변형에 대한 저항성(변형강도)이 높고, 최적 아스팔트 함량(OAC) 또한 8.0% 이하로 높지 않다.On the contrary, the smaller the maximum size of the coarse aggregate or the higher the fine aggregate ratio, the less material separation of the asphalt mixture during construction and the increase in crack resistance, but the resistance to plastic deformation decreases and the optimal asphalt content increases. The present invention has high resistance to plastic deformation (deformation strength), even though the asphalt mixture is composed of fine aggregates only, and the optimum asphalt content (OAC) is not as high as 8.0% or less.

또한 본 발명에 따른 세립 개질 아스팔트 혼합물은 전체 혼합물 중량의 0.5 내지 1.5 wt%의 석회석분, 소석회(Hydrated lime: HL), 회수더스트 등의 채움재를 더 포함할 수 있다. 바람직하게는 수분에 대한 민감성을 감소시켜 아스팔트와 골재의 박리를 저감시키고, 아스팔트의 산화를 감소시켜 노화를 낮추며, 아스팔트의 강성을 다소 증가시켜 소성변형을 낮추고, 미세균열의 진전속도를 감소시켜 균열 저항성을 증가시키는 측면에서 소석회를 사용하는 것이 좋다. In addition, the fine-modified asphalt mixture according to the present invention may further include a filling material such as 0.5 to 1.5 wt% of limestone powder, hydrated lime (HL), and recovered dust of the total mixture weight. Preferably, it reduces the sensitivity to moisture to reduce the peeling of asphalt and aggregate, reduces the oxidation of asphalt to lower aging, slightly increases the stiffness of asphalt to lower plastic deformation, and reduces the growth rate of microcracks to crack It is recommended to use slaked lime in terms of increasing resistance.

또한 칼라 안료를 세립 개질 아스팔트 혼합물 전체 중량에 대하여 3 내지 5 wt% 첨가함으로써 여러 가지 색상의 아스팔트 콘크리트 포장을 제공할 수 있다. In addition, by adding 3 to 5 wt% of the color pigment based on the total weight of the fine-modified asphalt mixture, it is possible to provide asphalt concrete pavement of various colors.

본 발명에 따른 세립 개질 아스팔트 혼합물은 상기 개질 아스팔트 바인더와 세립 골재를 160 내지 180℃로 가열 혼합(Hot-mix)하여 160 내지 170℃에서 50 내지 70분 단기노화(Short-term aging: STA) 후 선회다짐기(Gyratory compactor)로 75회 다짐하여 아스팔트 콘크리트로 제조된다.The fine-modified asphalt mixture according to the present invention is hot-mixed at 160 to 180°C of the modified asphalt binder and fine aggregate, and after short-term aging (STA) for 50 to 70 minutes at 160 to 170°C. It is made of asphalt concrete by compacting 75 times with a gyratory compactor.

제조된 아스팔트 콘크리트는 PG70-22 등급, 변형강도 (SD) 2.7 MPa 이상, 간접인장강도(ITS) 0.6MPa 이상을 만족하며, 수분저항성 및 충격흡수성이 우수하여 인도, 산책로, 단지 내 도로, 교통량이 적은 소도로 (뒷골목 포함), 이면도로, 자전거도로 및 농어촌도로 등에 포설하여 보행자 안전과 노령화 사회에 대비한 보행자 친화적 충격완화 (완충) 아스팔트 콘크리트 포장에 적용되기 적합하다. The manufactured asphalt concrete satisfies PG70-22 grade, deformation strength (S D ) 2.7 MPa or more, indirect tensile strength (ITS) 0.6 MPa or more, and is excellent in moisture resistance and shock absorption, so it is a sidewalk, promenade, road in the complex, and traffic volume. This small road (including back alleys), back roads, bicycle roads, and rural roads, etc., are suitable for pedestrian safety and pedestrian-friendly impact relief (buffering) asphalt concrete pavement.

상기 세립 개질 아스팔트 혼합물을 이용하여 시공하는 구체적인 방법은 시공하고자 하는 대상면을 정리하는 정리단계, 상기 세립 개질 아스팔트 혼합물을 혼합하는 혼합단계, 상기 혼합된 세립 개질 아스팔트 혼합물을 160 내지 180℃로 가열 혼합(Hot-mix)하여 서로 완전히 혼합하는 가열혼합단계, 상기 가열혼합단계가 종료된 조성물을 상기 정리된 대상면에 포설하는 포설단계, 선회다짐기(Gyratory compactor)로 75회 다짐하는 다짐단계 및 상기 다짐단계가 종료된 후 양생하는 양생단계를 포함한다. The specific method of construction using the fine-modified asphalt mixture is a tidying step of arranging the target surface to be constructed, a mixing step of mixing the fine-modified asphalt mixture, and heating and mixing the mixed fine-modified asphalt mixture at 160 to 180°C. (Hot-mix) a heating mixing step of completely mixing each other, a laying step of laying the composition on the cleaned target surface, a compaction step of compacting 75 times with a gyratory compactor, and the compaction It includes a curing step of curing after the step is completed.

도 1에 본 발명에 따른 세립 개질 아스팔트 혼합물을 이용하여 고운 표면의 완충 아스팔트 콘크리트 시공장면 및 블록포장과의 표면상태를 비교한 이미지를 나타내었고, 보도블록포장과 비교하여 눈이 더 빠르게 녹는 것을 확인할 수 있다. Fig. 1 shows an image comparing the surface condition of the buffer asphalt concrete trial plant surface and the block pavement of a fine surface using the fine-modified asphalt mixture according to the present invention, and it is confirmed that snow melts more rapidly compared to the sidewalk block pavement. I can.

실시예Example

일반 아스팔트(PG64-22)를 사용하여 하기 표 1에 나타낸 것과 같은 배합으로 개질 아스팔트 바인더를 제조하였고, 제조된 개질 아스팔트 바인더와 최대치수 5mm 이하(#4체 통과 분)의 세립 골재를 170℃로 가열 혼합(Hot-mix)하여 165℃에서 1시간 단기노화(Short-term aging: STA) 후 선회다짐기 (Gyratory compactor)로 75회 다짐하여 아스팔트 콘크리트 공시체를 제조하였다. 단, 혼합물 제조 시에는 1톤 당 10kg의 소석회 (Hydrated lime: HL)를 filler를 제외하고 넣었으며 이는 전제 혼합물 중량의 1%이다.Using general asphalt (PG64-22), a modified asphalt binder was prepared in the formulation as shown in Table 1 below, and the prepared modified asphalt binder and fine aggregate with a maximum dimension of 5 mm or less (#4 sieve pass) were at 170°C. The asphalt concrete specimen was prepared by hot-mixing, short-term aging (STA) at 165° C. for 1 hour, and then compacting 75 times with a gyratory compactor. However, when preparing the mixture, 10 kg of hydrated lime (HL) per ton was added excluding the filler, which is 1% of the total weight of the mixture.

제조된 시료의 성능등급 측정결과를 하기 표 1에 나타내었다. 해당 등급(PG70-22)과 상위 등급(PG76-28)의 중간 값(HT:73℃/LT:-15℃)에 대한 편차의 합이 가장 적은 순서로 최적 함량 순위를 결정하였다. The measurement results of the performance grade of the prepared samples are shown in Table 1 below. The optimal content ranking was determined in the order in which the sum of the deviations for the intermediate value (HT:73°C/LT:-15°C) of the corresponding grade (PG70-22) and the upper grade (PG76-28) was the least.

Binder
designation
Binder
designation
Polymer (wt %)Polymer (wt %) Performance grade (℃)Performance grade (℃) PriorityPriority
SBSSBS EVA-AREVA-AR LDPELDPE High Temp.High Temp. Low Temp.Low Temp. F112F112 1One 1One 22 71.071.0 -14.1-14.1 44 F113F113 1One 1One 33 73.973.9 -14.4-14.4 22 F114F114 1One 1One 44 76.576.5 -14.5-14.5 55 F122F122 1One 22 22 74.874.8 -15.2-15.2 1One F123F123 1One 22 33 76.776.7 -15.4-15.4 66 F212F212 22 1One 22 75.275.2 -14.7-14.7 33 F213F213 22 1One 33 77.077.0 -15.3-15.3 77

상기 표 1에 나타낸 것과 같이 EVA-AR 0.5 내지 2.5 wt%, SBS 0.5 내지 1.5 wt%, LDPE 1.5 내지 3.5 wt%를 포함하는 F113, F122 시료가 PG 등급을 안정적으로 만족하면서도 경제성도 만족시키는 것을 확인할 수 있으며, 특히 SBS 0.5 내지 1.5 wt%, EVA-AR 1.5 내지 2.5 wt%, LDPE 1.5 내지 2.5 wt%를 포함하는 F122 시료가 가장 최적의 함량인 것을 확인하였다. As shown in Table 1, it was confirmed that F113 and F122 samples containing 0.5 to 2.5 wt% of EVA-AR, 0.5 to 1.5 wt% of SBS, and 1.5 to 3.5 wt% of LDPE satisfies the PG grade stably and also satisfies the economy. In particular, it was confirmed that the F122 sample containing 0.5 to 1.5 wt% of SBS, 1.5 to 2.5 wt% of EVA-AR, and 1.5 to 2.5 wt% of LDPE was the most optimal content.

실험예Experimental example

(1) 변형강도(deformation strength: SD) 측정(1) Deformation strength (S D ) measurement

변형강도(deformation strength: SD)는 아스팔트 콘크리트에 발생하는 소성변형에 대한 저항성을 간단하게 측정할 수 있도록 개발된 시험방법이다. SD 시험은 배합설계를 통해 결정된 최적아스팔트 함량으로 제조된 공극률 3±0.5%의 시험용 공시체를 60℃물에 30분간 수침하여 내부까지 60℃가 되게 한 후 시험하며 이 시험법을 Kim Test라 한다. 이 시험방법은 수년간의 연구를 통하여 공용중인 도로포장에서 발생하는 소성변형 특성과 상관성이 매우 높음이 검증되었으며, 국토교통부 아스팔트 혼합물 배합설계 기준으로 포함되었다(국토교통부 2017). Deformation strength (S D ) is a test method developed to simply measure the resistance to plastic deformation occurring in asphalt concrete. In the S D test, a test specimen with a porosity of 3±0.5% prepared with the optimum asphalt content determined through the formulation design is immersed in water at 60°C for 30 minutes to reach 60°C to the inside, and this test method is called Kim Test. . Through years of research, this test method was verified to have a very high correlation with the characteristics of plastic deformation occurring in common road pavements, and was included as a standard for mixing asphalt mixtures by the Ministry of Land, Infrastructure and Transport (Ministry of Land, Infrastructure and Transport 2017).

SD는 하절기 한낮의 아스팔트 포장체 온도와 유사한 60℃로 가열된 공시체에 수직으로 하중을 30㎜/min로 가하여 얻은 하중-변형 곡선에서 최대 하중 (P)과 이때 표면으로부터 눌려 들어간 수직변형 (

Figure 112020066348902-pat00002
)을 읽어 [식 1]에 대입하여 계산한다. 도 2에 나타낸 것과 같이 장비를 이용하여 수직 정 하중을 가하여(도 2, (a)) 최대하중과 이때의 수직변위를 곡선으로부터 얻으며(도 2, (b)), 한 종류의 혼합물 당 3개 평균값을 강도 치로 사용하였다. 본 발명에 따른 공시체의 변형강도 시험세팅 이미지를 도 2, (c)에 나타내었다. S D is the maximum load (P) in the load-deformation curve obtained by applying a load at 30㎜/min vertically to a specimen heated to 60℃ similar to the asphalt pavement temperature in the summer midday and the vertical deformation pressed from the surface at this time (
Figure 112020066348902-pat00002
) And substitute it into [Equation 1] to calculate. As shown in Fig. 2, by applying a vertical static load using equipment (Fig. 2, (a)), the maximum load and the vertical displacement at this time are obtained from the curve (Fig. 2, (b)), and three per type of mixture The average value was used as the intensity value. The image of the deformation strength test setting of the specimen according to the present invention is shown in Figs.

[식 1][Equation 1]

Figure 112020066348902-pat00003
Figure 112020066348902-pat00003

(여기서, SD= 변형강도 (MPa), P= 최대하중(N),

Figure 112020066348902-pat00004
= 최대하중에서 수직 변형 값(㎜)이다.)(Where, S D = deformation strength (MPa), P = maximum load (N),
Figure 112020066348902-pat00004
= Vertical deformation value (mm) at maximum load.)

(2) 간접인장강도 (indirect tensile strength: ITS) 측정(2) Indirect tensile strength (ITS) measurement

인장강도는 아스팔트 포장의 균열발생을 예측하기 위해 널리 사용되는 특성치이다. 파괴 전 높은 인장응력에 견딜 수 있는 혼합물은 그렇지 못한 혼합물보다 균열에 대한 저항성이 우수할 것이다. Tensile strength is a widely used characteristic value to predict the occurrence of cracks in asphalt pavement. Mixtures that can withstand high tensile stress before failure will have better resistance to cracking than mixtures that do not.

여기서는 직경 100㎜ 공시체로 간접인장강도 측정을 위해 공극률 3±0.5% 공시체를 표준시험온도인 25℃ 항온조에 4시간 넣었다가 꺼내어 도 3에 나타난 것과 같은 방식으로 50㎜/min 속도로 하중을 가하여 얻어진 최대 하중(P)을 [식 2]에 대입하여 구했다. Here, for measuring indirect tensile strength with a specimen with a diameter of 100 mm, a specimen with a porosity of 3±0.5% was placed in a thermostat at 25°C for 4 hours and then taken out, and a load was applied at a rate of 50 mm/min in the same manner as shown in FIG. The maximum load (P) was obtained by substituting in [Equation 2].

[식 2][Equation 2]

Figure 112020066348902-pat00005
Figure 112020066348902-pat00005

(여기서, ITS= 간접인장강도(MPa), P=최대하중(N), D=공시체직경(㎜), t=공시체 두께(㎜)이다.)(Here, ITS = indirect tensile strength (MPa), P = maximum load (N), D = specimen diameter (mm), t = specimen thickness (mm).)

(3) 변형강도 및 간점인장강도 측정 결과(3) Deformation strength and thin point tensile strength measurement result

상기 시료 중 우선 순위 1 및 2인 F122, F113 시료의 함량으로 적색(Red) 안료를 첨가하여 제조한 적색 시료(F122R, F113R)와 안료를 첨가하지 않은 흑색(Black) 시료(F122B, F113B)에 대하여 상기 방법으로 측정한 변형강도 및 간점인장강도 측정 결과를 하기 표 2에 나타내었다. 공극률(Air void ratio) 2-5%, 변형강도 (SD) 2.35MPa 이상을 만족하는 최적 아스팔트함량(OAC)을 결정하였다. Among the above samples, the contents of the F122 and F113 samples of priority 1 and 2 were added to the red samples (F122R, F113R) and the black samples (F122B, F113B) prepared by adding a red pigment. For the deformation strength and tensile strength measured by the above method are shown in Table 2 below. The optimum asphalt content (OAC) that satisfies the air void ratio of 2-5% and the strain strength (S D ) of 2.35 MPa or more was determined.

ColorColor DesignationDesignation OAC
(%)
OAC
(%)
Air Void
(%)
Air Void
(%)
SD
(MPa)
S D
(MPa)
ITS
(MPa)
ITS
(MPa)
BlackBlack Control (PG64-22)Control (PG64-22) 7.57.5 2.52.5 3.063.06 0.720.72 F113BF113B 7.77.7 2.52.5 3.413.41 0.810.81 F122BF122B 7.87.8 3.03.0 3.503.50 0.880.88 RedRed F113RF113R 8.08.0 2.42.4 3.523.52 0.840.84 F122RF122R 8.08.0 2.92.9 3.573.57 0.840.84

FAMA 혼합물의 변형강도 시험결과 상기 표 2에서 나타난 것과 같이 3.4 MPa 이상으로 일반 아스팔트를 사용한 Control 혼합물의 변형강도보다 현저히 높고, 국토부 도로(기층용) 기준인 2.7 MPa보다도 높아 소성변형에 대한 저항성이 개선된 것을 확인할 수 있다.Deformation strength test result of FAMA mixture As shown in Table 2 above, it is 3.4 MPa or more, which is significantly higher than the deformation strength of Control mixture using general asphalt, and is higher than 2.7 MPa, which is the standard for roads in the Ministry of Land, and You can see that it is improved.

FAMA 혼합물의 간접인장강도 시험결과 상기 표 2에서 보듯이 0.8MPa 이상으로 국토부 도로(기층용) 기준인 0.6 MPa보다 현저히 높고, 일반 아스팔트를 사용한 Control 혼합물의 간접인장강도보다 10~20 이상 높아 균열저항성이 개선되었음을 알 수 있다. As shown in Table 2 above, the results of the indirect tensile strength test of the FAMA mixture are significantly higher than 0.6 MPa, which is the standard for roads (bases) of the Ministry of Land, Infrastructure and Transport as shown in Table 2. It can be seen that the resistance is improved.

(4) 수분저항성 측정 및 결과(4) Moisture resistance measurement and result

아스팔트 혼합물은 물에 의해서 박리가 발생하기 쉽다. 특히, 국내 경우 친수성 (hydrophilic) 골재인 화강암이 도로포장용 골재로 많이 사용되어 장마철과 동절기 융해 시 박리(stripping)와 부분적인 파손(porthole 등)이 우려된다(김광우 2015). 따라서 개발된 FAMA 혼합물에 대하여 수분에 대한 저항성을 측정하였다. Asphalt mixture is prone to peeling by water. In particular, in Korea, granite, which is a hydrophilic aggregate, is widely used as aggregate for road pavement, and there is concern about stripping and partial damage (porthole, etc.) during melting during the rainy season and winter (Kwangwoo Kim 2015). Therefore, resistance to moisture was measured for the developed FAMA mixture.

일반적으로 널리 사용되는 수분저항성 평가방법으로 인장강도비 (tensile strength ratio: TSR) 측정방법이 있다 (KS F 2398). 이 방법은 시험용 공시체의 공극률을 조정하여 목표공극률 5±0.5%이 되도록 다짐하고 수분저항 특성치를 측정하였다. As a commonly used method for evaluating moisture resistance, there is a method of measuring tensile strength ratio (TSR) (KS F 2398). In this method, the porosity of the test specimen was adjusted, the target porosity was determined to be 5±0.5%, and the moisture resistance characteristics were measured.

FAMA 혼합물의 공극률 5±0.5%인 원형 공시체를 2조 (6개 공시체)를 제조하였다. 제조한 두 조의 공시체 중 한 조는 25℃에서 건조(Dry) 처리하고, 다른 한 조는 60℃ 수조에서 24시간 수침(Wet) 처리한 후, 시험 전 25℃에서 최소 2시간 처리한 후 간접인장강도 시험을 수행하였다. 건조 및 습윤 상태의 간접인장강도를 측정하고, [식 3]에 적용하여 인장강도 비를 구하였다. 그 결과를 표 3에 나타내었다. Two sets (6 specimens) of circular specimens having a porosity of 5±0.5% of the FAMA mixture were prepared. One of the two prepared specimens was dried at 25℃, the other was wet in a 60℃ water bath for 24 hours, and then treated at 25℃ for at least 2 hours before the test. Was performed. Indirect tensile strength in dry and wet conditions was measured, and the tensile strength ratio was calculated by applying to [Equation 3]. The results are shown in Table 3.

[식 3][Equation 3]

Figure 112020066348902-pat00006
Figure 112020066348902-pat00006

(여기서, TSR =인장강도 비, ITSwet = 24시간 60℃ 수침처리 후 간접인장강도 (MPa), ITSDry = 건조 (무처리) 공시체 간접인장강도 (MPa)이다.)(Here, TSR = tensile strength ratio, ITS wet = indirect tensile strength (MPa) after immersion treatment at 60℃ for 24 hours, ITS Dry = dry (no treatment) indirect tensile strength (MPa) of the specimen.)

ColorColor DesignationDesignation OAC
(%)
OAC
(%)
Air Void
(%)
Air Void
(%)
ITS
(MPa)
ITS
(MPa)
TSRTSR
BlackBlack Control (PG64-22)Control (PG64-22) 7.57.5 5.45.4 DryDry 0.620.62 0.7260.726 5.55.5 WetWet 0.450.45 F113BF113B 7.77.7 5.45.4 DryDry 0.670.67 0.8960.896 5.25.2 WetWet 0.600.60 F122BF122B 7.87.8 5.65.6 DryDry 0.720.72 0.9030.903 5.25.2 WetWet 0.650.65 RedRed F113RF113R 8.08.0 5.65.6 DryDry 0.710.71 0.9150.915 5.25.2 WetWet 0.650.65 F122RF122R 8.08.0 5.65.6 DryDry 0.700.70 0.9140.914 5.25.2 WetWet 0.640.64

상기 표 3에 나타난 것과 같이 일반 혼합물(Control)의 수침처리 전·후 인장강도 비(TSR)가 국토부 일반 아스팔트 콘크리트 기준인 0.8이하인데 비하여 본 발명에 따른 FAMA 혼합물의 TSR은 평균 0.9 이상으로 우수하게 나타났다. 이로써 본 발명에 따른 FAMA 혼합물을 사용할 경우 하절기 우기나 해빙기에도 수분침투로 인한 손상이 크게 저감될 것으로 판단된다. 두 가지 혼합물 시료 중에서는 F122가 바인더 시험치에서와 혼합물 특성평가에서도 다소 더 우수한 것으로 나타나, F122에 대하여 충격흡수특성을 측정하였다.As shown in Table 3 above, the tensile strength ratio (TSR) of the general mixture (Control) before and after water immersion treatment is 0.8 or less, which is the standard for general asphalt concrete of the Ministry of Land, Infrastructure and Transport, whereas the TSR of the FAMA mixture according to the present invention is excellent at an average of 0.9 or more Appeared. Accordingly, when the FAMA mixture according to the present invention is used, it is determined that damage due to moisture penetration will be greatly reduced even in the summer rainy season or the sea ice season. Among the two mixture samples, F122 was found to be somewhat better in the binder test value and in the mixture property evaluation, and the impact absorption characteristics were measured for F122.

(5) 충격흡수특성 측정 및 결과(5) Measurement and result of impact absorption characteristics

충격 흡수 에너지란 물체에 충격을 가했을 때 물체가 그 충격을 흡수하는 에너지 총량 말하며, 일반적으로 충격시험은 시험체에 충격을 가하고 물체가 흡수하는 에너지 량을 측정한다. 충격에너지는 온도, 습도 등에 영향을 받으며, 물체에 충격이 가해지면 충격 면에서 받는 에너지의 90%는 대상 물체의 표면에 몰려있게 된다. Shock absorbed energy refers to the total amount of energy absorbed by an object when an object is subjected to an impact. In general, the impact test measures the amount of energy absorbed by an object after applying an impact to a test object. Impact energy is affected by temperature and humidity, and when an impact is applied to an object, 90% of the energy received from the impact surface is concentrated on the surface of the object.

최근 한국건설기술연구원에서는 초고령 사회에 대비하여 도시부의 보행시설물 설계를 위한 표준 보행모델을 개발하려는 연구가 시도되었다(노창균 외, 2018). 조사에 의하면 과거보다 기준에 적합한 시설이 공급되고 있음에도 상대적으로 보행환경에 대한 만족도가 낮은 것으로 조사되었고, 이는 현재의 보도포장이 고령자 등 보행약자의 보행행태와 맞지 않음에서 원인을 찾고 있다. 따라서 보도포장 설계 및 시공 시 보도의 평탄성 및 충격완화도가 고려되어야 함을 의미한다. Recently, the Korea Institute of Construction Technology has attempted to develop a standard pedestrian model for the design of pedestrian facilities in urban areas in preparation for an ultra-aged society (No Chang-gyun et al., 2018). According to the survey, even though facilities that meet the standards are provided, the satisfaction level of the pedestrian environment is relatively lower than in the past. This is because the current sidewalk pavement does not match the pedestrian behavior of the elderly and the poor. Therefore, it means that sidewalk flatness and impact mitigation should be considered when designing and constructing sidewalk pavement.

이에 본 발명에서는 낙구(Drop ball) 시험으로 도 4와 같이 포장재료 별(ⓐ 차도용 일반 아스팔트 포장, ⓑ 일반 콘크리트 포장, ⓒ 보도용 콘크리트 판 (보도 블록) ⓓ 경계석 (차도/인도 구분용) 충격흡수 시험을 수행 했으며 그 값은 [식 4]로 구하였다. 초기 공의 위치는 Ho = 1m (1,000mm)이며 자유낙하 후 1차 튀어 올라온 높이 H1을 측정하여 초기높이 1,000mm와의 차이를 흡수에너지

Figure 112020066348902-pat00007
PE로 환산하였다. Therefore, in the present invention, as shown in Fig. 4, as shown in Fig. 4, a drop ball test is performed. (ⓐ general asphalt pavement for roadways, ⓑ general concrete pavement, ⓒ concrete plates for sidewalks (sidewalk blocks)) Absorption test was performed and the value was obtained by [Equation 4.] The initial position of the ball was H o = 1m (1,000mm), and the difference from the initial height of 1,000mm was measured by measuring the height H 1 that bounced first after free fall. Absorbed energy
Figure 112020066348902-pat00007
Converted to PE.

[식 4][Equation 4]

ΔPE = WH0-WH1 ΔPE = WH 0 -WH 1

(여기서, W: 공 무게 (2.423N), ΔPE: 충격에너지 흡수량 (N-mm), H0, H1: 공의 초기위치와 1차 반발 높이 (mm)이다.)(Where, W: ball weight (2.423N), ΔPE: impact energy absorption amount (N-mm), H 0 , H 1 : initial position of the ball and the first repulsion height (mm).)

표 4에 여러 가지 도로포장 재료 및 경계석의 충격에너지 흡수율을 비교하여 나타내었다. Table 4 shows by comparing the impact energy absorption rates of various road pavement materials and curb stones.

DesignationDesignation 1st Rebound height (mm)
(5회 평균)
1 st Rebound height (mm)
(Average of 5 times)
Potential energy after drop
(ΔPE: N.mm)
Potential energy after drop
(ΔPE: N.mm)
Energy absorption
(N.m)
Energy absorption
(Nm)
보도용 콘크리트판 대비 충격 흡수율 (%) Impact absorption rate compared to sidewalk concrete plate (%)
F122BF122B 377377 913 913 1,510 1,510 128%128% F122RF122R 360360 872 872 1,551 1,551 132%132% 아스팔트 포장 Asphalt pavement 479479 1,161 1,161 1,262 1,262 107%107% 콘크리트 포장Concrete pavement 518518 1,255 1,255 1,168 1,168 99%99% 보도용 콘크리트 판 Sidewalk concrete plate 514514 1,245 1,245 1,178 1,178 100%100% 경계석boundary stone 728728 1,764 1,764 659 659 56% 56% 초기위치에너지= 2.3226N*1,000mm=2,423 N.mm
(mg=1kg=9.8N, m=237g=2.3226N, h=1000mm)
Initial potential energy= 2.3226N*1,000mm=2,423 N.mm
(mg=1kg=9.8N, m=237g=2.3226N, h=1000mm)

본 발명에 따른 FAMA 혼합물은 인도포장에 적합하게 설계된 혼합물이므로 보도용 콘크리트 판을 기준(100%)으로 놓고 각 재료의 충격흡수율을 비교하였다. 결과를 보면 보도용 콘크리트 판에 비하여 본 발명에 따른 FAMA 혼합물 포장은 평균 30%의 높은 흡수율을 보였다. 이는 일반 차도용 아스팔트 포장보다도 23% 포인트 높은 것으로 보행시 낙상 충격을 크게 흡수할 것으로 기대되며, 표면이 매우 고와 찰과상 등의 손상도 크게 줄여줄 것으로 기대된다.Since the FAMA mixture according to the present invention is a mixture designed suitable for delivery pavement, a concrete plate for sidewalks was used as a standard (100%), and the shock absorption rates of each material were compared. Looking at the results, the FAMA mixture pavement according to the present invention showed a higher absorption rate of 30% on average compared to the concrete plate for sidewalks. This is 23% higher than that of general roadway asphalt pavement, and is expected to greatly absorb the impact of falls when walking, and it is expected to greatly reduce damage such as stiffness and scratches.

전술한 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의하여 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.Features, structures, effects, and the like illustrated in each of the above-described embodiments can be combined or modified for other embodiments by a person having ordinary knowledge in the field to which the embodiments belong. Therefore, contents related to such combinations and modifications should be construed as being included in the scope of the present invention.

Claims (5)

개질아스팔트 바인더 및 세립 골재를 포함하는 세립 개질아스팔트 혼합물로 형성되는 아스팔트 콘크리트이며,
상기 개질아스팔트 바인더는 EVA 계열 접착성 수지(Ethylene Vinyl Acetate-Adhesive Resin) 1.5 내지 2.5 wt%, SBS (styrene-butadiene-styrene) 0.5 내지 1.5 wt%, LDPE (low-density polyethylene) 1.5 내지 2.5 wt% 및 잔부의 아스팔트를 포함하고,
상기 EVA 계열 접착성 수지는 190℃에서 용융지수(ASTM D1238)가 2~3 g/10min 이고, 밀도(ASTM D1505)가 0.94 g/cm3 이며, 항복점 응력(ASTM D638)이 96 kgf/cm2 이고, 연신율(ASTM D638)이 500% 이상이며, 굴곡 탄성율(ASTM D790)이 3200 kgf/cm2 이고, 23℃에서 Izod 충격강도(ASTM D256)가 57 kgf·cm/cm 이며, 경도(ASTM D2240)가 41 Shore D 이고, Vicat 연화점(ASTM D1525)이 75 ℃ 이며, 접착강도(ASTM D903)이 6 kgf/cm2 인 것을 사용하며,
상기 아스팔트 콘크리트는 상기 개질 아스팔트 바인더와 세립 골재를 160 내지 180℃로 가열 혼합(Hot-mix)하여 160 내지 170℃에서 50 내지 70분 단기노화(Short-term aging: STA) 후 선회다짐기(Gyratory compactor)로 75회 다짐하여 얻어지고,
상기 아스팔트 콘크리트는 수침처리 전·후 인장강도비(tensile strength ratio: TSR)가 0.9 이상인 것을 특징으로 하는 아스팔트 콘크리트.
Asphalt concrete formed of a fine-modified asphalt mixture containing a modified asphalt binder and a fine aggregate,
The modified asphalt binder is an EVA-based adhesive resin (Ethylene Vinyl Acetate-Adhesive Resin) 1.5 to 2.5 wt%, SBS (styrene-butadiene-styrene) 0.5 to 1.5 wt%, LDPE (low-density polyethylene) 1.5 to 2.5 wt% And the remainder of asphalt,
The EVA-based adhesive resin has a melt index (ASTM D1238) of 2 to 3 g/10min at 190°C, a density (ASTM D1505) of 0.94 g/cm 3 , and a yield point stress (ASTM D638) of 96 kgf/cm 2 , The elongation (ASTM D638) is 500% or more, the flexural modulus (ASTM D790) is 3200 kgf/cm 2 , the Izod impact strength (ASTM D256) at 23°C is 57 kgf·cm/cm, and the hardness (ASTM D2240 ) Is 41 Shore D, Vicat softening point (ASTM D1525) is 75 ℃, and adhesive strength (ASTM D903) is 6 kgf/cm 2
In the asphalt concrete, the modified asphalt binder and the fine aggregate are hot-mixed at 160 to 180°C, and short-term aging (STA) for 50 to 70 minutes at 160 to 170°C, followed by a gyratory compactor. ), obtained by committing 75 times,
The asphalt concrete, characterized in that the tensile strength ratio (TSR) before and after water immersion treatment is 0.9 or more.
제1항에 있어서,
상기 세립 골재는 최대 치수 5mm 이하의 고운 골재를 포함하는 것을 특징으로 하는 아스팔트 콘크리트.
The method of claim 1,
Asphalt concrete, characterized in that the fine aggregate comprises a fine aggregate having a maximum dimension of 5 mm or less.
제1항에 있어서,
상기 세립 골재는 상기 세립 개질아스팔트 혼합물 전체 중량에 대하여 90 내지 95wt% 포함되는 것을 특징으로 하는 아스팔트 콘크리트.
The method of claim 1,
Asphalt concrete, characterized in that the fine aggregate is contained 90 to 95wt% based on the total weight of the fine modified asphalt mixture.
삭제delete 제1항에 있어서,
상기 아스팔트 콘크리트는 PG70-22 등급, 변형강도(Deformation strength: SD) 2.7 MPa 이상, 간접인장강도(Indirect tensile strength: ITS) 0.6MPa 이상인 것을 특징으로 하는 아스팔트 콘크리트.
The method of claim 1,
The asphalt concrete is PG70-22 grade, deformation strength (Deformation strength: S D ) 2.7 MPa or more, indirect tensile strength (ITS) Asphalt concrete, characterized in that at least 0.6 MPa.
KR1020200078659A 2020-06-26 2020-06-26 Fine-aggregate Modified-asphalt composition and construction method using the same KR102170359B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200078659A KR102170359B1 (en) 2020-06-26 2020-06-26 Fine-aggregate Modified-asphalt composition and construction method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200078659A KR102170359B1 (en) 2020-06-26 2020-06-26 Fine-aggregate Modified-asphalt composition and construction method using the same

Publications (1)

Publication Number Publication Date
KR102170359B1 true KR102170359B1 (en) 2020-10-27

Family

ID=73136243

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200078659A KR102170359B1 (en) 2020-06-26 2020-06-26 Fine-aggregate Modified-asphalt composition and construction method using the same

Country Status (1)

Country Link
KR (1) KR102170359B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100974858B1 (en) * 2009-07-03 2010-08-10 황익현 Additive to be applied in hot liquid phase for reforming asphalt concrete and asphalt concrete using the additive
KR101545882B1 (en) * 2013-12-13 2015-08-20 황익현 Asphalt-concrete manufacturing method using low temperature agents for asphalt
KR101637192B1 (en) * 2016-01-15 2016-07-07 주식회사 한수도로산업 High strength and high durable asphalt binder and asphalt concrete composition
KR102000193B1 (en) * 2019-04-22 2019-07-16 주식회사 지이테크 Modified asphalt binder and its asphalt mixture to realize internal lubricant and low noise characteristics
KR102069031B1 (en) * 2015-07-16 2020-01-22 아사히 가세이 가부시키가이샤 Partially hydrogenated block copolymers, adhesive compositions, adhesive tapes, labels, modified asphalt compositions, modified asphalt mixtures and paving binder compositions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100974858B1 (en) * 2009-07-03 2010-08-10 황익현 Additive to be applied in hot liquid phase for reforming asphalt concrete and asphalt concrete using the additive
KR101545882B1 (en) * 2013-12-13 2015-08-20 황익현 Asphalt-concrete manufacturing method using low temperature agents for asphalt
KR102069031B1 (en) * 2015-07-16 2020-01-22 아사히 가세이 가부시키가이샤 Partially hydrogenated block copolymers, adhesive compositions, adhesive tapes, labels, modified asphalt compositions, modified asphalt mixtures and paving binder compositions
KR101637192B1 (en) * 2016-01-15 2016-07-07 주식회사 한수도로산업 High strength and high durable asphalt binder and asphalt concrete composition
KR102000193B1 (en) * 2019-04-22 2019-07-16 주식회사 지이테크 Modified asphalt binder and its asphalt mixture to realize internal lubricant and low noise characteristics

Similar Documents

Publication Publication Date Title
KR101784950B1 (en) Guss asphalt composition and Paving method of the road using the same
KR101964047B1 (en) Asphalt Flexible Sand Color Asphalt Concrete Composition for Pavement and Construction Methods Using Thereof
CN109944124B (en) Combined base asphalt pavement paving method
CN104058638B (en) A kind of asphalt
KR102331986B1 (en) A Water Permeability Color Asphalt Concrete Composition Comprising Stylene Isoprene Stylene and Petroleum Resin Added Hydrogen and Constructing Methods Using Thereof
CN104072023A (en) Pavement made from asphalt mixture
KR102478619B1 (en) Sand mastic asphalt concrete composition for thin overlay coating comprising high grade asphalt binder, and constructing method of thin overlay water-inpermeable pavement using the same
CN104986992A (en) Asphalt mixture pavement
KR101065037B1 (en) Latex modified concrete composition comprising fibrous reinforcement
CN104072024A (en) Preparation process of asphalt mixture
KR102170361B1 (en) super elasto-plasticity asphalt concrete composition and construction method of using the same
KR102279266B1 (en) Asphalt concrete composition for impermeable barrier layer and drainage asphalt concrete paving method using the same
US20240043329A1 (en) Permeable pavement system including a permeable pavement composition and a related method
KR102170359B1 (en) Fine-aggregate Modified-asphalt composition and construction method using the same
CN107916601A (en) A kind of high resistance to deformation asphalt pavement structure
CN1580408A (en) Reflective crack relief pavement interlayer with improved load bearing capacity and method for designing interlayer
KR102007726B1 (en) Water-Impermeable Waterproof Asphalt Concrete Composition Comprising SIS And SBS And Constructing Methods Using Mixing System Device
KR100704723B1 (en) Paving-material having elasticity and water permeability and constructing method of paving-material having elasticity and water permeability
KR102331985B1 (en) A Particle Color Asphalt Concrete Composition Comprising Stylene Isoprene Stylene and Petroleum Resin Added Hydrogen and Constructing Methods Using Thereof
CN210151500U (en) Combined base asphalt pavement structure
KR102284624B1 (en) Modified- asphalt binder and modified-asphalt mixture using the same
KR102127999B1 (en) Asphalt concrete compound containing of high strength asphalt modifier composition and a method using the same
JP2002121388A (en) Asphalt mixture
CN114182595A (en) Construction method of long-life asphalt road
Lodhi et al. Effect of gradation of aggregates on Marshall Properties of DBM Mix Design

Legal Events

Date Code Title Description
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant