KR102170175B1 - Method for manufacturing temporarily bonded carrier glass-metal foil assembly for fabricating flexible display device - Google Patents

Method for manufacturing temporarily bonded carrier glass-metal foil assembly for fabricating flexible display device Download PDF

Info

Publication number
KR102170175B1
KR102170175B1 KR1020190076217A KR20190076217A KR102170175B1 KR 102170175 B1 KR102170175 B1 KR 102170175B1 KR 1020190076217 A KR1020190076217 A KR 1020190076217A KR 20190076217 A KR20190076217 A KR 20190076217A KR 102170175 B1 KR102170175 B1 KR 102170175B1
Authority
KR
South Korea
Prior art keywords
glass
metal foil
manufacturing
carrier glass
carrier
Prior art date
Application number
KR1020190076217A
Other languages
Korean (ko)
Inventor
김경보
Original Assignee
인하공업전문대학산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하공업전문대학산학협력단 filed Critical 인하공업전문대학산학협력단
Priority to KR1020190076217A priority Critical patent/KR102170175B1/en
Application granted granted Critical
Publication of KR102170175B1 publication Critical patent/KR102170175B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/16Layered products comprising a layer of metal next to a particulate layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0008Electrical discharge treatment, e.g. corona, plasma treatment; wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B43/00Operations specially adapted for layered products and not otherwise provided for, e.g. repairing; Apparatus therefor
    • B32B43/006Delaminating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/16Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • H01L51/0097
    • H01L51/56
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/101Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2310/00Treatment by energy or chemical effects
    • B32B2310/08Treatment by energy or chemical effects by wave energy or particle radiation
    • B32B2310/0875Treatment by energy or chemical effects by wave energy or particle radiation using particle radiation
    • B32B2310/0887Treatment by energy or chemical effects by wave energy or particle radiation using particle radiation using electron radiation, e.g. beta-rays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

The present invention relates to a method of manufacturing a temporarily bonded carrier glass-metal foil assembly, including: (a) forming a coating layer containing glass powder on a carrier glass; (b) preparing a carrier glass-metal foil assembly by contacting the glass powder-containing coating layer with one surface of the metal foil; and (c) applying an electron beam to the carrier glass-metal foil assembly to temporarily bond the carrier glass and the metal foil. According to the present invention, a glass powder layer is interposed between a carrier glass and a metal foil, and an electron beam is irradiated to prepare a temporary bonded glass-metal bonded body, so that glass and metal are rapidly and effectively bonded without requiring a heat treatment process that consumes a relatively large amount of time and energy for the bonding process as in the related art.

Description

플렉시블 디스플레이 장치 제조를 위한 가접합 캐리어 글래스-금속 호일 접합체의 제조방법{METHOD FOR MANUFACTURING TEMPORARILY BONDED CARRIER GLASS-METAL FOIL ASSEMBLY FOR FABRICATING FLEXIBLE DISPLAY DEVICE} Manufacturing method of a temporary bonding carrier glass-metal foil bonded body for manufacturing a flexible display device {METHOD FOR MANUFACTURING TEMPORARILY BONDED CARRIER GLASS-METAL FOIL ASSEMBLY FOR FABRICATING FLEXIBLE DISPLAY DEVICE}

플렉시블 디스플레이 장치의 제조에 사용될 수 있는 가접합된 캐리어 글래스-금속 호일 접합체의 제조방법에 대한 것이다.It relates to a method of manufacturing a temporary bonded carrier glass-metal foil bonded body that can be used in the manufacture of a flexible display device.

1896년 Charles Eduouard Guillaume가 매우 낮은 열팽창 계수(coefficient of thermal expansion, CTE)를 지닌 독특한 철과 니켈의 합금인 인바(invar)를 발견한 이후로 인바는 많은 주목을 받아 왔다. 인바는 높은 치수 안정성과 유연성을 가지며, 스테인리스강과 동등한 수준의 기계적 물성을 나타낸다. 이러한 특별한 특성으로 인해 인바 호일(foil)은 디스플레이 산업에서 유연한 디스플레이 장치 제작을 위한 기판으로서 매우 매력적이다. Since 1896 Charles Eduouard Guillaume discovered invar, a unique iron-nickel alloy with a very low coefficient of thermal expansion (CTE), Invar has received much attention. Invar has high dimensional stability and flexibility, and exhibits mechanical properties equivalent to stainless steel. Due to these special properties, invar foil is very attractive as a substrate for manufacturing flexible display devices in the display industry.

한편, 디스플레이 장치 제조 라인에서 유연한 기판을 사용할 수 있으려면 제조 공정 중에 유연한 기판의 굽힘을 억제하는 리지드(rigid) 캐리어에 유연성 기판을 일시적으로 도킹(docking)해야 하는데, 이와 관련한 기존 연구의 주류는 얇은 유리를 캐리어 글래스에, 플라시틱을 유리 기판에 접합 및 분리하는 방법에 관한 것이다. 반면, 금속 호일을 리지드 글래스에 도킹하는 것과 관련된 연구는 매우 드물다.Meanwhile, in order to be able to use a flexible substrate in a display device manufacturing line, it is necessary to temporarily dock a flexible substrate to a rigid carrier that suppresses bending of the flexible substrate during the manufacturing process. It relates to a method of bonding and separating glass to a carrier glass and platic to a glass substrate. On the other hand, studies related to docking metal foils to rigid glass are very rare.

한국공개특허 제10-2013-0024385호 (공개일: 2013.03.08)Korean Patent Publication No. 10-2013-0024385 (Publication date: 2013.03.08)

Hoehla, S., Garner, S., Hohmann, M., Kuhls, O., Li, X., Schindler, A., and Fruehauf, N.: 'Active Matrix Color-LCD on 75 μm Thick Flexible Glass Substrates', J. Disp. Technol., 2012, 8, (6), pp.309-316 Hoehla, S., Garner, S., Hohmann, M., Kuhls, O., Li, X., Schindler, A., and Fruehauf, N.:'Active Matrix Color-LCD on 75 μm Thick Flexible Glass Substrates' , J. Disp. Technol., 2012, 8, (6), pp.309-316 , J.,, S., , G.B., , B.D., and , D.: 'Temporary bond-debond process for manufacture of flexible electronics: Impact of adhesive and carrier properties on performance', J. App. Phy., 2010, 108, (11), 114917 , J.,, S.,, G.B.,, B.D., and, D.:'Temporary bond-debond process for manufacture of flexible electronics: Impact of adhesive and carrier properties on performance', J. App. Phy., 2010, 108, (11), 114917 Haq, J., Vogt, B.D., Howard, E., and Loy, D.: 'Temporary bond-debond technology for high-performance transistors on flexible substrates', J. Soc. Inf. Disp., 2010, 18, (11), pp. 884-891 Haq, J., Vogt, B.D., Howard, E., and Loy, D.:'Temporary bond-debond technology for high-performance transistors on flexible substrates', J. Soc. Inf. Disp., 2010, 18, (11), pp. 884-891 Choi, Y.S., , J.U., , S.E.: 'Flat panel display glass: Current status and future', , 2016, 431, pp. 2-7 Choi, Y.S.,, J.U.,, S.E.:'Flat panel display glass: Current status and future',, 2016, 431, pp. 2-7 Lee, C.C., Chang Y.Y., Cheng, H.C., Ho, J.C.: '' J. Soc. Inf. Disp., 2010, 41, (1), pp. 810-813 Lee, C.C., Chang Y.Y., Cheng, H.C., Ho, J.C.:'' J. Soc. Inf. Disp., 2010, 41, (1), pp. 810-813 O'Rourke, S.M., Venugopal, S.M., Raupp, G.B., Allee, D.R., Ageno, S., Bawolek, E.J., Loy, D.E., Kaminski, J.P., Moyer, C., O'Brien, B., Long, K., Marrs, M., Bottesch, D., Dailey, J., Trujillo, J., Cordova, R., Richards, M., Toy, D., Colaneri, N.: 'Active Matrix Electrophoretic Displays on Temporary Bonded Stainless Steel Substrates with 180 ㅀC a-Si:H TFTs', J. Soc. Inf. Disp., 2008, 39, (1), pp. 422-424 O'Rourke, SM, Venugopal, SM, Raupp, GB, Allee, DR, Ageno, S., Bawolek, EJ, Loy, DE, Kaminski, JP, Moyer, C., O'Brien, B., Long, K ., Marrs, M., Bottesch, D., Dailey, J., Trujillo, J., Cordova, R., Richards, M., Toy, D., Colaneri, N.:'Active Matrix Electrophoretic Displays on Temporary Bonded Stainless Steel Substrates with 180 ㅀC a-Si:H TFTs', J. Soc. Inf. Disp., 2008, 39, (1), pp. 422-424 Kern, W.: 'The Evolution of Silicon Wafer Cleaning Technology', J. Electrochem. Soc., 1990, 137, (6), pp. 1887-1892 Kern, W.:'The Evolution of Silicon Wafer Cleaning Technology', J. Electrochem. Soc., 1990, 137, (6), pp. 1887-1892

본 발명이 해결하고자 하는 기술적 과제는 유연한 금속 호일을 리지드 글래스 시트에 도킹하여 가접합된 캐리어 글래스-금속 호일 접합체의 제조방법을 제공하는 것이다. The technical problem to be solved by the present invention is to provide a method of manufacturing a carrier glass-metal foil bonded body temporarily bonded by docking a flexible metal foil to a rigid glass sheet.

상기 기술적 과제를 달성하기 위해, 본 발명은 도 1에 도시한 바와 같이 (a) 캐리어 글래스 상에 유리 분말 함유 코팅층을 형성하는 단계; (b) 상기 유리 분말 함유 코팅층과 금속 호일의 일면을 접촉시켜 캐리어 글래스-금속 호일 어셈블리를 제조하는 단계; 및 (c) 상기 캐리어 글래스-금속 호일 어셈블리에 전자빔(electron beam)을 조사해 캐리어 글래스와 금속 호일을 가접합하는 단계;를 포함하는 가접합 캐리어 글래스-금속 호일 접합체의 제조방법을 제안한다.In order to achieve the above technical problem, the present invention, as shown in Figure 1 (a) forming a glass powder-containing coating layer on a carrier glass; (b) manufacturing a carrier glass-metal foil assembly by contacting the glass powder-containing coating layer with one surface of the metal foil; And (c) temporarily bonding the carrier glass and the metal foil by irradiating an electron beam onto the carrier glass-metal foil assembly.It proposes a method of manufacturing a temporary bonding carrier glass-metal foil assembly.

또한, 상기 단계 (a)에서 스핀 코팅에 의해 유리 분말 함유 코팅층을 형성하는 것을 특징으로 하는 가접합 캐리어 글래스-금속 호일 접합체의 제조방법을 제안한다.In addition, a method of manufacturing a temporary bonding carrier glass-metal foil bonded body, characterized in that the coating layer containing glass powder is formed by spin coating in the step (a).

또한,상기 단계 (b)에서 상기 유리 분말은 알칼리토 보로-알루미노 실리케이트(alkaline earth boro-aluminosilicate) 유리로 이루어진 것을 특징으로 하는 가접합 캐리어 글래스-금속 호일 접합체의 제조방법을 제안한다.In addition, in the step (b), the glass powder is an alkaline earth boro-aluminosilicate (alkaline earth boro-aluminosilicate) glass, characterized in that it is made of a temporary bonding carrier glass-proposes a method of manufacturing a metal foil bonded body.

또한, 상기 금속 호일은 인바(invar)로 이루어진 포일(foil)인 것을 특징으로 하는 가접합 캐리어 글래스-금속 호일 접합체의 제조방법을 제안한다.In addition, it is proposed a method of manufacturing a temporary bonding carrier glass-metal foil bonded body, characterized in that the metal foil is a foil made of invar.

그리고, 본 발명은 발명의 다른 측면에서 상기 방법에 따라 가접합 캐리어 글래스-금속 호일 접합체를 제조한 후, (d) 상기 금속 호일의 타면 상에 소자를 형성한 후, 상기 캐리어 글래스를 박리하는 단계를 추가로 수행해 유연성 소자를 제조하는, 금속기판 포함 유연성 소자의 제조방법을 제안한다.In another aspect of the present invention, after preparing a temporary bonding carrier glass-metal foil bonded body according to the method, (d) forming an element on the other surface of the metal foil, and then peeling the carrier glass. A method of manufacturing a flexible device including a metal substrate is proposed in which a flexible device is manufactured by performing additionally.

이때, 상기 단계 (d)에서 레이저 조사 또는 기계적 응력 인가에 의해 캐리어 글래스를 박리하는 것을 특징으로 하는 금속기판 포함 유연성 소자의 제조방법을 제안한다.At this time, it is proposed a method of manufacturing a flexible device including a metal substrate, characterized in that the carrier glass is peeled off by laser irradiation or mechanical stress application in step (d).

그리고, 본 발명은 발명의 또 다른 측면에서 상기 금속기판 포함 유연성 소자의 제조방법에 의해 제조된 유연성 디스플레이 소자를 제안한다In another aspect of the invention, the present invention proposes a flexible display device manufactured by the method of manufacturing a flexible device including a metal substrate.

본 발명에 따른 플렉시블 디스플레이 장치 제조를 위한 가접합 캐리어 글래스-금속 호일 접합체의 제조방법에 의하면, 캐리어 글래스와 금속 호일 사이에 유리 분말층을 개재시킨 후 전자빔을 조사해 가접착된 유리-금속 접합체를 제조함으로써, 종래 기술과 같이 접합 공정을 위해서 상대적으로 많은 시간과 에너지를 소비하는 열처리 공정을 요하지 않고 유리와 금속을 빠르고 효과적으로 접합할 수 있다.According to the manufacturing method of a temporary bonded carrier glass-metal foil bonded body for manufacturing a flexible display device according to the present invention, a glass-metal bonded bonded body was prepared by interposing a glass powder layer between the carrier glass and a metal foil and then irradiating an electron beam. Thus, glass and metal can be quickly and effectively bonded without requiring a heat treatment process that consumes a relatively large amount of time and energy for the bonding process as in the prior art.

도 1은 본 발명에 따른 가접합 캐리어 글래스-금속 호일 접합체의 제조방법의 각 단계를 보여주는 공정 흐름도이다.
도 2(a) 내지 도 2(c)는 본원 실시예에서 각각 1분, 2분 및 3분 동안 전자빔에 노출된 캐리어 글래스-인바 호일 접합체의 사진이며, 도 2(d)는 전자빔 노출 공정 완료 후의 캐리어 글래스-인바 호일 접합체의 사진이다.
도 3은 2분 동안 전자빔에 노출된 캐리어 글래스-인바 호일 접합체의 단면 TEM 이미지이다(삽입도는 각 포인트의 EDS 스펙트럼).
도 4는 2분 동안 전자빔에 노출된 캐리어 글래스-인바 호일 접합체의 단면 TEM 이미지이다(삽입도는 각 포인트의 회절 패턴).
1 is a process flow diagram showing each step of a method of manufacturing a temporary bonding carrier glass-metal foil bonded body according to the present invention.
2(a) to 2(c) are photographs of the carrier glass-invar foil assembly exposed to the electron beam for 1 minute, 2 minutes, and 3 minutes, respectively, in the present embodiment, and FIG. 2(d) is the electron beam exposure process completed. It is a photograph of the later carrier glass-invar foil conjugate.
3 is a cross-sectional TEM image of a carrier glass-invar foil conjugate exposed to an electron beam for 2 minutes (inset is an EDS spectrum of each point).
4 is a cross-sectional TEM image of a carrier glass-invar foil conjugate exposed to an electron beam for 2 minutes (inset is a diffraction pattern of each point).

본 발명을 설명함에 있어서 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다.In describing the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, a detailed description thereof will be omitted.

본 발명의 개념에 따른 실시예는 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있으므로 특정 실시예들을 도면에 예시하고 본 명세서 또는 출원에 상세하게 설명하고자 한다. 그러나 이는 본 발명의 개념에 따른 실시 예를 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Since the embodiments according to the concept of the present invention can apply various changes and have various forms, specific embodiments will be illustrated in the drawings and described in detail in the present specification or application. However, this is not intended to limit the embodiments according to the concept of the present invention to a specific form of disclosure, and it should be understood that all changes, equivalents, and substitutes included in the spirit and scope of the present invention are included.

본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 설시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in the present specification are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In the present specification, terms such as "comprise" or "have" are intended to designate the presence of a set feature, number, step, action, component, part, or combination thereof, but one or more other features or numbers It is to be understood that the possibility of addition or presence of, steps, actions, components, parts, or combinations thereof is not preliminarily excluded.

이하, 실시예를 들어 본 발명에 대해 보다 상세하게 설명하기로 한다. Hereinafter, the present invention will be described in more detail with reference to examples.

본 명세서에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 명세서의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.The embodiments according to the present specification may be modified in various forms, and the scope of the present specification is not construed as being limited to the embodiments described below. The embodiments of the present specification are provided to more completely describe the present specification to those of ordinary skill in the art.

<실시예><Example>

각각 100㎛ 및 500㎛의 두께를 갖는 인바(FeNi36) 필름 및 상용 알칼리토 보로-알루미노 실리케이트(alkaline earth boro-aluminosilicate) 유리 (Corning 1737)를 사용하였다. 유리판의 열팽창 계수(CTE)는 37 × 10-7 K-120-300 (ISO7991))이었다. 제조 공정은 다음과 같이 수행되었다. 먼저, 그리스(grease)와 유기 오염물을 철저히 제거하여 인바와 유리 사이의 접착력을 좋게 하기 위해, 인바 호일과 유리판 시편 모두를 표준 RCA 세척 공정을 사용하여 세척했다. 접착력을 향상시키기 위해 금속 호일과 유리판 사이에 유리 분말을 사용했다. 이를 위해 스핀 코팅을 사용하여 유리 표면을 유리 분말로 코팅했다. 스핀 코팅에 사용한 현탁액은 10ml의 탈이온수 및 4mg의 유리 분말을 혼합하고 10분 동안 초음파 처리를 수행해 제조하였다. 스핀 코팅은 750rpm에서 15초 동안 수행되었다. 그 다음으로, 유리 기판과 인바 호일의 어셈블리(assembly)에 Infovion 시스템 (Infovion Inc., Korea)을 이용해 전자빔을 조사하여 상기 어셈블리를 가열시켰다. 이를 위해 시편을 챔버의 시편 홀더에 놓고 챔버의 진공도를 7 x 10-7 Torr까지 낮춘 후, 작동 압력을 약 1 × 10-5 Torr로 조절하고 가속 전압 4kV, 빔 소스와 기판 사이의 거리 20cm로 설정한 후 기판을 5rpm으로 회전하면서 전자빔을 조사하였다. 도 2(a) 내지 도 2(c)는 전자빔에 노출된 시편을 보여주는 사진이다. 해당 전자빔 에너지는 금속층을 가열하기에 충분하며 빠른 접착 공정을 보장한다. 유리 기판이 금속 호일과 조립되고 2분 동안 전자빔 노출을 받게되면 유리와 금속 사이에 접착이 발생하지만, 인바와 유리 사이의 접착력은 매우 약해 유리는 쉽게 인바로부터 분리되었다. 이러한 약한 접착력은 확산 공정에 관여하는 불충분한 표면과 관련된다고 예상할 수 있다. 이 문제를 해결하기 위해 유리 분말을 사용하여 표면적을 증가시켰다(도 2(d)). 현탁액 중의 유리 분말 농도를 변화시킴으로써 표면상의 유리 분말의 양을 조정하였다. 그에 따라, 인바와 유리 간의 접착력이 현저히 증가하고 유리 분말의 양에 따라 최대 42 N/m(ASTM D1876)에 달할 것으로 추정된다. Invar (FeNi36) film and commercial alkaline earth boro-aluminosilicate glass (Corning 1737) having a thickness of 100 μm and 500 μm, respectively, were used. The coefficient of thermal expansion (CTE) of the glass plate was 37 × 10 -7 K -120-300 ( ISO 7991)). The manufacturing process was carried out as follows. First, in order to thoroughly remove grease and organic contaminants to improve the adhesion between Invar and glass, both Invar foil and glass plate specimens were cleaned using a standard RCA cleaning process. Glass powder was used between the metal foil and the glass plate to improve adhesion. For this, spin coating was used to coat the glass surface with glass powder. The suspension used for spin coating was prepared by mixing 10 ml of deionized water and 4 mg of glass powder and performing ultrasonic treatment for 10 minutes. Spin coating was performed at 750 rpm for 15 seconds. Next, the assembly of the glass substrate and the Invar foil was irradiated with an electron beam using an Infovion system (Infovion Inc., Korea) to heat the assembly. To do this, place the specimen in the specimen holder of the chamber, lower the vacuum degree of the chamber to 7 x 10 -7 Torr, adjust the operating pressure to about 1 × 10 -5 Torr, and set the acceleration voltage to 4 kV and the distance between the beam source and the substrate to 20 cm After setting, an electron beam was irradiated while rotating the substrate at 5 rpm. 2(a) to 2(c) are photographs showing specimens exposed to an electron beam. The corresponding electron beam energy is sufficient to heat the metal layer and ensures a fast bonding process. When the glass substrate is assembled with the metal foil and exposed to the electron beam for 2 minutes, adhesion occurs between the glass and the metal, but the adhesion between the Invar and the glass is very weak, and the glass is easily separated from the Invar. This weak adhesion can be expected to be associated with insufficient surfaces involved in the diffusion process. To solve this problem, glass powder was used to increase the surface area (Fig. 2(d)). The amount of glass powder on the surface was adjusted by changing the concentration of the glass powder in the suspension. Accordingly, it is estimated that the adhesion between Invar and the glass increases significantly and reaches a maximum of 42 N/m (ASTM D1876) depending on the amount of glass powder.

접착 메커니즘을 파악하기 위해, 단면에 대해 에너지 분산 X선 분광법(EDS) 분석을 수행하였다. 도 3은 전자빔 노출 후 유리 위의 인바 단면 이미지를 보여준다. 아래 표 1에는 유리, 계면 및 금속 영역에 대한 EDS 결과가 요약되어 있다. 미량의 Fe와 Ni 원자(Fe : 0.04 at%, Ni : 0.01 at%)가 500nm 깊이까지 확산되었지만, 계면에 주로 집중되었다. 흥미롭게도, Si 및 O와 같은 유리로부터 유래하는 원자는 인바 호일에서 관찰되지 않았다. 이러한 원소들은 계면에서만 검출되었는데, 이는 해당 원소들은 짧은 시간 동안에는 확산될 수 없다는 것을 의미한다. 이것은 기존의 강한 공유 결합과도 관련이 있다. EDS 데이터를 근거로, 전자빔 노출은 금속으로부터 유리로의 원소의 확산으로 인해 금속과 유리를 접합시킬 수 있다는 결론을 내릴 수 있다. In order to understand the adhesion mechanism, energy dispersive X-ray spectroscopy (EDS) analysis was performed on the cross section. 3 shows a cross-sectional image of Invar on glass after exposure to an electron beam. Table 1 below summarizes the EDS results for the glass, interfacial and metal regions. Trace amounts of Fe and Ni atoms (Fe: 0.04 at%, Ni: 0.01 at%) diffused to a depth of 500 nm, but were mainly concentrated at the interface. Interestingly, atoms originating from glass such as Si and O were not observed in the Invar foil. These elements were only detected at the interface, meaning that they could not diffuse for a short time. This is also related to the existing strong covalent bonds. Based on the EDS data, it can be concluded that electron beam exposure can bond metal and glass due to the diffusion of elements from metal to glass.

도 4는 접합된 계면의 TEM 분석 결과로서, 이에 따르면 양호한 접착력을 보장하는 결함이 없는 계면이 형성되었음을 명확하게 관찰할 수 있다. 유리의 회절 패턴은, Fe와 Ni의 유리로의 확산에도 불구하고 유리의 구조는 변화 없이 비정질로 남아 있음을 보여준다(도 4의 내삽도 참조). 또한, 인바의 경우에도 구조 변화가 없었으며 회절 패턴으로부터 매우 잘 발달된 결정 구조를 가지고 있음을 확인했다. 즉, 전자빔 처리된 인바 호일은 처리 전과 동일한 특성을 가질 것이라고 결론 내릴 수 있다. 요컨대, 유리를 금속 호일과 조립하고 전자빔을 조사하면 금속과 유리가 성공적으로 접착되며, 이러한 성공적인 접착의 주된 원인은 금속에서 유리로의 원소의 확산으로 추정된다. 4 is a result of TEM analysis of the bonded interface, according to which it can be clearly observed that an interface without defects ensuring good adhesion was formed. The diffraction pattern of the glass shows that despite the diffusion of Fe and Ni into the glass, the structure of the glass remains amorphous without change (see the interpolation diagram in FIG. 4). In addition, in the case of Invar, there was no structural change, and it was confirmed that the crystal structure was very well developed from the diffraction pattern. That is, it can be concluded that the electron beam-treated invar foil will have the same characteristics as before the treatment. In short, when glass is assembled with metal foil and irradiated with an electron beam, metal and glass are successfully bonded, and the main cause of this successful bonding is presumed to be the diffusion of elements from metal to glass.

[표 1] 인바/유리 어셈블리의 전자빔 처리 후 유리, 금속 및 계면에서의 원소 농도[Table 1] Element concentration in glass, metal and interface after electron beam treatment of Invar/glass assembly

Figure 112019065371714-pat00001
Figure 112019065371714-pat00001

Claims (7)

(a) 캐리어 글래스 상에 유리 분말 함유 코팅층을 형성하는 단계;
(b) 상기 유리 분말 함유 코팅층과 금속 호일의 일면을 접촉시켜 캐리어 글래스-금속 호일 어셈블리를 제조하는 단계; 및
(c) 상기 캐리어 글래스-금속 호일 어셈블리에 전자빔(electron beam)을 조사해 캐리어 글래스와 금속 호일을 가접합하는 단계;를 포함하는 가접합 캐리어 글래스-금속 호일 접합체의 제조방법.
(a) forming a coating layer containing glass powder on a carrier glass;
(b) manufacturing a carrier glass-metal foil assembly by contacting the glass powder-containing coating layer with one surface of the metal foil; And
(c) Temporarily bonding the carrier glass and the metal foil by irradiating an electron beam to the carrier glass-metal foil assembly. A method of manufacturing a temporary bonded carrier glass-metal foil assembly comprising.
제1항에 있어서,
상기 단계 (a)에서 스핀 코팅에 의해 유리 분말 함유 코팅층을 형성하는 것을 특징으로 하는 가접합 캐리어 글래스-금속 호일 접합체의 제조방법.
The method of claim 1,
Method for producing a temporary bonding carrier glass-metal foil bonded body, characterized in that forming a glass powder-containing coating layer by spin coating in the step (a).
제1항에 있어서,
상기 단계 (b)에서 상기 유리 분말은 알칼리토 보로-알루미노 실리케이트(alkaline earth boro-aluminosilicate) 유리로 이루어진 것을 특징으로 하는 가접합 캐리어 글래스-금속 호일 접합체의 제조방법.
The method of claim 1,
In the step (b), the glass powder is a method of manufacturing a temporary bonded carrier glass-metal foil bonded body, characterized in that it is made of alkaline earth boro-aluminosilicate glass.
제1항에 있어서,
상기 금속 호일은 인바(invar)로 이루어진 포일(foil)인 것을 특징으로 하는 가접합 캐리어 글래스-금속 호일 접합체의 제조방법.
The method of claim 1,
The method of manufacturing a temporary bonding carrier glass-metal foil bonded body, characterized in that the metal foil is a foil made of invar.
제1항에 있어서,
(d) 상기 금속 호일의 타면 상에 소자를 형성한 후, 상기 캐리어 글래스를 박리하는 단계를 더 포함하는, 금속기판 포함 유연성 소자의 제조방법.
The method of claim 1,
(d) after forming the device on the other surface of the metal foil, the method of manufacturing a flexible device including a metal substrate further comprising the step of peeling the carrier glass.
제5항에 있어서,
상기 단계 (d)에서 레이저 조사 또는 기계적 응력 인가에 의해 캐리어 글래스를 박리하는 것을 특징으로 하는 금속기판 포함 유연성 소자의 제조방법.
The method of claim 5,
The method of manufacturing a flexible device including a metal substrate, characterized in that the carrier glass is peeled off by laser irradiation or mechanical stress application in step (d).
제6항에 기재된 방법에 의해 제조된 유연성 디스플레이 소자.A flexible display device manufactured by the method according to claim 6.
KR1020190076217A 2019-06-26 2019-06-26 Method for manufacturing temporarily bonded carrier glass-metal foil assembly for fabricating flexible display device KR102170175B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190076217A KR102170175B1 (en) 2019-06-26 2019-06-26 Method for manufacturing temporarily bonded carrier glass-metal foil assembly for fabricating flexible display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190076217A KR102170175B1 (en) 2019-06-26 2019-06-26 Method for manufacturing temporarily bonded carrier glass-metal foil assembly for fabricating flexible display device

Publications (1)

Publication Number Publication Date
KR102170175B1 true KR102170175B1 (en) 2020-10-27

Family

ID=73136345

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190076217A KR102170175B1 (en) 2019-06-26 2019-06-26 Method for manufacturing temporarily bonded carrier glass-metal foil assembly for fabricating flexible display device

Country Status (1)

Country Link
KR (1) KR102170175B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080041596A (en) * 2006-11-07 2008-05-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
KR20130024385A (en) 2011-08-31 2013-03-08 엘지디스플레이 주식회사 Manufacturing method for flexible display device
KR20140122207A (en) * 2013-04-09 2014-10-17 주식회사 엘지화학 A laminate structure and a device comprising a substrate manufactured by using same
KR20140139907A (en) * 2013-05-28 2014-12-08 삼성디스플레이 주식회사 Glass laminate, display panel on carrier glass substrate, display device, method of manufacturing glass laminate, and method for manufacturing display panel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080041596A (en) * 2006-11-07 2008-05-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
KR20130024385A (en) 2011-08-31 2013-03-08 엘지디스플레이 주식회사 Manufacturing method for flexible display device
KR20140122207A (en) * 2013-04-09 2014-10-17 주식회사 엘지화학 A laminate structure and a device comprising a substrate manufactured by using same
KR20140139907A (en) * 2013-05-28 2014-12-08 삼성디스플레이 주식회사 Glass laminate, display panel on carrier glass substrate, display device, method of manufacturing glass laminate, and method for manufacturing display panel

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
, J.,, S., , G.B., , B.D., and , D.: 'Temporary bond-debond process for manufacture of flexible electronics: Impact of adhesive and carrier properties on performance', J. App. Phy., 2010, 108, (11), 114917
Choi, Y.S., , J.U., , S.E.: 'Flat panel display glass: Current status and future', , 2016, 431, pp. 2-7
Haq, J., Vogt, B.D., Howard, E., and Loy, D.: 'Temporary bond-debond technology for high-performance transistors on flexible substrates', J. Soc. Inf. Disp., 2010, 18, (11), pp. 884-891
Hoehla, S., Garner, S., Hohmann, M., Kuhls, O., Li, X., Schindler, A., and Fruehauf, N.: 'Active Matrix Color-LCD on 75 μm Thick Flexible Glass Substrates', J. Disp. Technol., 2012, 8, (6), pp.309-316
Kern, W.: 'The Evolution of Silicon Wafer Cleaning Technology', J. Electrochem. Soc., 1990, 137, (6), pp. 1887-1892
Lee, C.C., Chang Y.Y., Cheng, H.C., Ho, J.C.: '' J. Soc. Inf. Disp., 2010, 41, (1), pp. 810-813
O'Rourke, S.M., Venugopal, S.M., Raupp, G.B., Allee, D.R., Ageno, S., Bawolek, E.J., Loy, D.E., Kaminski, J.P., Moyer, C., O'Brien, B., Long, K., Marrs, M., Bottesch, D., Dailey, J., Trujillo, J., Cordova, R., Richards, M., Toy, D., Colaneri, N.: 'Active Matrix Electrophoretic Displays on Temporary Bonded Stainless Steel Substrates with 180 ㅀC a-Si:H TFTs', J. Soc. Inf. Disp., 2008, 39, (1), pp. 422-424

Similar Documents

Publication Publication Date Title
JP5835214B2 (en) LAMINATE MANUFACTURING METHOD AND LAMINATE
CN102047410B (en) Nitrogen-plasma surface treatment in a direct bonding method
CN108290782B (en) Glass article and method of bonding glass sheet to carrier
TW201204563A (en) Screen-printing stencil having amorphous carbon films and manufacturing method therefor
TWI364059B (en)
JP4728030B2 (en) Manufacturing method of SOI wafer
TW201000309A (en) Glass laminate, display panel with support, method for producing glass laminate and method for manufacturing display panel with support
US6900113B2 (en) Method for producing bonded wafer and bonded wafer
JP2001503568A (en) Thin layer formed on substrate and method of manufacturing the same
JP2004179630A5 (en)
JP2009186916A (en) Method of manufacturing display device panel
KR20090024220A (en) Producing soi structure using high-purity ion shower
DE102008051494A1 (en) SOI substrates with a fine buried insulation layer
JP2007220782A (en) Soi substrate, and method of manufacturing soi substrate
US20180162115A1 (en) Method of releasing graphene from substrate
KR101855812B1 (en) Method of manufacturing bonded wafer
KR20080100160A (en) Method for manufacturing soi substrate
JP2008277552A (en) Manufacturing method of laminated substrate
CN111372903A (en) Temporary bonding of glass pairs using cationic surfactants and/or organic salts
US10854494B2 (en) Method for producing an interface intended to assemble temporarily a microelectronic support and a manipulation handle, and temporary assembly interface
TWI333258B (en) A method of treating a wafer surface
Wang et al. Direct homo/heterogeneous bonding of silicon and glass using vacuum ultraviolet irradiation in air
KR102170175B1 (en) Method for manufacturing temporarily bonded carrier glass-metal foil assembly for fabricating flexible display device
US20070155183A1 (en) Process for manufacturing wafers usable in the semiconductor industry
WO2013145610A1 (en) Method for producing chip having water-repellent front surface and hydrophilic back surface

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant