KR102162418B1 - Chalcogenide compound-based solar absorber and manufacturing method thereof - Google Patents

Chalcogenide compound-based solar absorber and manufacturing method thereof Download PDF

Info

Publication number
KR102162418B1
KR102162418B1 KR1020190075197A KR20190075197A KR102162418B1 KR 102162418 B1 KR102162418 B1 KR 102162418B1 KR 1020190075197 A KR1020190075197 A KR 1020190075197A KR 20190075197 A KR20190075197 A KR 20190075197A KR 102162418 B1 KR102162418 B1 KR 102162418B1
Authority
KR
South Korea
Prior art keywords
solar absorber
carbon nanotube
transition metal
chalcogen compound
powder
Prior art date
Application number
KR1020190075197A
Other languages
Korean (ko)
Inventor
최경진
강성범
Original Assignee
울산과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 울산과학기술원 filed Critical 울산과학기술원
Priority to KR1020190075197A priority Critical patent/KR102162418B1/en
Application granted granted Critical
Publication of KR102162418B1 publication Critical patent/KR102162418B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0324Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIVBVI or AIIBIVCVI chalcogenide compounds, e.g. Pb Sn Te
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof

Abstract

The present invention relates to a chalcogenide compound-based solar absorber which is excellent in light absorption and heat conversion efficiency, and a manufacturing method thereof. More particularly, the solar absorber comprises: carbon nanotube powder; and a transition metal chalcogen compound dispersed in the carbon nanotube powder.

Description

칼코게나이드 화합물 복합체 기반 태양광 흡수체 및 이의 제조방법 {CHALCOGENIDE COMPOUND-BASED SOLAR ABSORBER AND MANUFACTURING METHOD THEREOF}Solar absorber based on chalcogenide compound complex and its manufacturing method {CHALCOGENIDE COMPOUND-BASED SOLAR ABSORBER AND MANUFACTURING METHOD THEREOF}

본 발명은 칼코게나이드 화합물 복합체 기반 태양광 흡수체 및 이의 제조방법에 관한 것이다.The present invention relates to a chalcogenide compound complex-based solar absorber and a method of manufacturing the same.

태양전지는 태양에너지를 전기에너지로 변환하는 장치로서, 광기전 효과를 이용하여 전류-전압을 생성한다. 이러한 태양전지는 자원의 고갈 및 환경문제에 직면한 화석 에너지의 대체 에너지로 세계적인 관심을 받고 있는데, 고효율화를 위해 매우 순도가 높은 소재를 사용해야 하므로, 원소재의 정제에 많은 에너지가 소모된다. 또한, 단결정 혹은 박막화하는 과정에서 고가의 공정 장비가 사용되므로, 그 제조에 상당한 비용이 소요되어 태양전지의 활용에 장애가 되고 있다.A solar cell is a device that converts solar energy into electrical energy, and generates a current-voltage by using the photovoltaic effect. Such solar cells are attracting worldwide attention as alternative energy for fossil energy in the face of depletion of resources and environmental problems. Since very high purity materials must be used for high efficiency, a lot of energy is consumed for purification of raw materials. In addition, since expensive process equipment is used in the process of forming a single crystal or a thin film, a considerable cost is required for the manufacturing thereof, which is an obstacle to the utilization of solar cells.

태양전지의 효율을 높이기 위해 빛의 흡수를 돕는 빛 흡수물질을 적용하고 있다. 빛 흡수 물질은 여러 물질들 중에서 빛의 흡수를 돕는 특성을 가진 것으로, 태양광을 가능한 많이 해당 물질로 흡수하여 열로 전환하는 역할을 하며, 박막형이 대표적이며, Ti/MgF2 물질을 빛 흡수물질로서 사용하고 있다.In order to increase the efficiency of solar cells, light absorbing materials that help absorb light are applied. Light-absorbing material has the property of helping absorption of light among various materials. It absorbs sunlight as much as possible and converts it into heat. Thin film type is typical, and Ti/MgF 2 material is used as light absorbing material. I'm using it.

그러나 기존의 박막형의 빛 흡수물질은 제조공정 상에서 복잡한 진공공정이 필요하고, 두께 컨트롤이 어려운 문제점이 있다. However, the conventional thin film type light absorbing material requires a complicated vacuum process in the manufacturing process, and it is difficult to control thickness.

본 발명은 상술한 문제점을 해결하기 위한 것으로, 본 발명의 목적은, 기존의 박막형 빛 흡수물질이 아닌 파우더 형태이면서, 광 흡수와 열 변환 효율이 뛰어난 태양광 흡수체를 제공하는 것이다.The present invention is to solve the above-described problems, and an object of the present invention is to provide a solar absorber having excellent light absorption and heat conversion efficiency while being in the form of powder, not a conventional thin-film light absorbing material.

그러나, 본 발명이 해결하고자 하는 과제는 이상에서 언급한 것들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 해당 분야 통상의 기술자에게 명확하게 이해될 수 있을 것이다.However, the problems to be solved by the present invention are not limited to those mentioned above, and other problems that are not mentioned will be clearly understood by those skilled in the art from the following description.

본 발명의 일 실시예에 따른 태양광 흡수체는, 탄소나노튜브 분말; 및 상기 탄소나노튜브 분말에 분산되어 있는 전이금속 칼코겐 화합물;을 포함한다.Solar absorber according to an embodiment of the present invention, carbon nanotube powder; And a transition metal chalcogen compound dispersed in the carbon nanotube powder.

일 측면에 따르면, 상기 탄소나노튜브 분말은, 수산화기를 포함하는 기능화된 탄소나노튜브(hydroxyl group functionalized CNT)를 포함하는 것일 수 있다.According to one aspect, the carbon nanotube powder may include a functionalized carbon nanotube containing a hydroxyl group (hydroxyl group functionalized CNT).

일 측면에 따르면, 상기 전이금속 칼코겐 화합물은, MoS2, MoSe2, WS2, WSe2, TiS2, VS2, CrS2, MnS2, FeS2, NiS2, ZrS2, TiSe2, VSe2, CrSe2, MnSe2, FeSe2, NiSe2, ZrSe2, TiTe2, VTe2, CrTe2, MnTe2, FeTe2, NiTe2 및 ZrTe2 으로 이루어진 군으로부터 선택된 적어도 하나를 포함하는 것일 수 있다.According to one aspect, the transition metal chalcogen compound, MoS 2 , MoSe 2 , WS 2 , WSe 2 , TiS 2 , VS 2 , CrS 2 , MnS 2 , FeS 2 , NiS 2 , ZrS 2 , TiSe 2 , VSe 2 , CrSe 2 , MnSe 2 , FeSe 2 , NiSe 2 , ZrSe 2 , TiTe 2 , VTe 2 , CrTe 2 , MnTe 2 , FeTe 2 , NiTe 2 and ZrTe 2 It may include at least one selected from the group consisting of .

일 측면에 따르면, 5 nm 내지 15 nm 크기의 상기 전이금속 칼코겐 화합물이 20 nm 내지 30 nm 크기의 상기 탄소나노튜브에 분산되어 포함되어 있는 형태를 가지는 것일 수 있다.According to one aspect, the transition metal chalcogen compound having a size of 5 nm to 15 nm may be dispersed in and contained in the carbon nanotubes having a size of 20 nm to 30 nm.

일 측면에 따르면, 상기 전이금속 칼코겐 화합물은, 상기 탄소나노튜브 표면, 내부 또는 이 둘에 포함되어 있는 것일 수 있다.According to one aspect, the transition metal chalcogen compound may be included in the surface, the interior of the carbon nanotube, or both.

일 측면에 따르면, 상기 태양광 흡수체는, 상기 탄소나노튜브 분말의 결정구조 및 상기 전이금속 칼코겐 화합물의 결정구조를 모두 포함하는 것일 수 있다.According to one aspect, the solar absorber may include both a crystal structure of the carbon nanotube powder and a crystal structure of the transition metal chalcogen compound.

일 측면에 따르면, 상기 태양광 흡수체는, 400 nm 내지 2400 nm 영역의 파장의 빛을 94 % 이상 흡수하는 것일 수 있다.According to one aspect, the solar absorber may absorb 94% or more of light having a wavelength in a range of 400 nm to 2400 nm.

일 측면에 따르면, 상기 태양광 흡수체는, 1 sun (㎾/㎡)의 광량을 94 % 이상 흡수하는 것일 수 있다.According to one aspect, the solar absorber may absorb 94% or more of the amount of light of 1 sun (kW/m2).

일 측면에 따르면, 상기 태양광 흡수체는, 1 sun (㎾/㎡)의 광량을 흡수하여 60 ℃ 이상의 열로 변환시키는 것일 수 있다.According to one aspect, the solar absorber may absorb an amount of light of 1 sun (kW/m2) and convert it into heat of 60°C or higher.

본 발명의 일 실시예에 따른 태양광 흡수체의 제조방법은, 탄소나노튜브 분말을 준비하는 단계; 전이금속 칼코겐 화합물 분말을 준비하는 단계; 및 상기 탄소나노튜브 분말 및 상기 전이금속 칼코겐 화합물 분말을 볼밀 혼합하는 단계;를 포함한다.A method of manufacturing a solar absorber according to an embodiment of the present invention comprises: preparing a carbon nanotube powder; Preparing a transition metal chalcogen compound powder; And ball mill mixing the carbon nanotube powder and the transition metal chalcogen compound powder.

일 측면에 따르면, 상기 탄소나노튜브 분말과 상기 탄소나노튜브 분말은 1 : 0.5 내지 1 : 1.5의 중량비율로 혼합되는 것일 수 있다.According to one aspect, the carbon nanotube powder and the carbon nanotube powder may be mixed in a weight ratio of 1: 0.5 to 1: 1.5.

본 발명에 따르면, 볼밀 공정을 통해 파우더 형태로 태양광 흡수체를 제조할 수 있으며, 볼밀 이후에, 이황화 몰리브덴(MoS2)의 결정성이 유지되며, CNT가 고르게 분산된 혼합물을 형성할 수 있다. According to the present invention, a solar absorber can be manufactured in a powder form through a ball mill process, and after the ball mill, the crystallinity of molybdenum disulfide (MoS 2 ) is maintained, and a mixture in which CNTs are evenly dispersed can be formed.

또한, 본 발명에 따른 파우더 형태의 태양광 흡수체는 가시광선 영역의 빛 흡수가 뛰어난 이황화 몰리브덴(MoS2)과 IR 영역의 빛 흡수가 뛰어난 CNT를 포함함으로써, 400 nm 에서 2400 nm 에서 낮은 빛 반사도, 즉 높은 빛 흡수율을 구현할 수 있다.In addition, the solar absorber in the form of a powder according to the present invention includes molybdenum disulfide (MoS 2 ) excellent in light absorption in the visible region and CNTs excellent in light absorption in the IR region, so that low light reflectivity at 400 nm to 2400 nm, That is, a high light absorption rate can be implemented.

도 1은 본 발명의 실시예를 통해 제조된 태양광 흡수체의 형태를 확인하기 위한 이미지이다.
도 2는 본 발명의 실시예를 통해 제조된 태양광 흡수체의 구조적 특성을 확인하기 위한 이미지이다.
도 3은 본 발명의 실시예를 통해 제조된 태양광 흡수체의 광학적 특성을 나타낸 그래프이다.
도 4는 본 발명의 실시예를 통해 제조된 태양광 흡수체의 광흡수량을 나타낸 그래프이다.
도 5는 본 발명의 실시예를 통해 제조된 태양광 흡수체의 열변환 성능을 확인하기 위한 이미지 및 온도-시간 그래프이다.
1 is an image for confirming the shape of a solar absorber manufactured through an embodiment of the present invention.
2 is an image for confirming the structural characteristics of a solar absorber manufactured through an embodiment of the present invention.
3 is a graph showing the optical properties of the solar absorber manufactured through an embodiment of the present invention.
4 is a graph showing the amount of light absorption of the solar absorber manufactured according to an embodiment of the present invention.
5 is an image and a temperature-time graph for confirming the heat conversion performance of the solar absorber manufactured according to an embodiment of the present invention.

이하 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명한다. 본 발명을 설명함에 있어서, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 또한, 본 명세서에서 사용되는 용어들은 본 발명의 바람직한 실시예를 적절히 표현하기 위해 사용된 용어들로서, 이는 사용자, 운용자의 의도 또는 본 발명이 속하는 분야의 관례 등에 따라 달라질 수 있다. 따라서, 본 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 각 도면에 제시된 동일한 참조 부호는 동일한 부재를 나타낸다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. In describing the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, a detailed description thereof will be omitted. In addition, terms used in the present specification are terms used to properly express a preferred embodiment of the present invention, which may vary depending on the intention of users or operators, or customs in the field to which the present invention belongs. Accordingly, definitions of these terms should be made based on the contents throughout the present specification. The same reference numerals in each drawing indicate the same members.

명세서 전체에서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.Throughout the specification, when a member is said to be positioned "on" another member, this includes not only the case where a member is in contact with another member, but also the case where another member exists between the two members.

명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification, when a part "includes" a certain component, it means that other components may be further included rather than excluding other components.

이하, 본 발명의 칼코게나이드 화합물 복합체 기반 태양광 흡수체 및 이의 제조방법 에 대하여 실시예 및 도면을 참조하여 구체적으로 설명하도록 한다. 그러나, 본 발명이 이러한 실시예 및 도면에 제한되는 것은 아니다.Hereinafter, a solar absorber based on a chalcogenide compound complex and a method of manufacturing the same will be described in detail with reference to Examples and drawings. However, the present invention is not limited to these examples and drawings.

본 발명의 일 실시예에 따른 태양광 흡수체는, 탄소나노튜브 분말; 및 상기 탄소나노튜브 분말에 분산되어 있는 전이금속 칼코겐 화합물;을 포함한다. 본 발명에 따른 파우더 형태의 태양광 흡수체는 가시광선 영역의 빛 흡수가 뛰어난 전이금속 칼코겐 화합물과 IR 영역의 빛 흡수가 뛰어난 CNT를 포함함으로써, 가시광선 영역의 빛과 IR 영역의 빛을 모두 흡수할 수 있는 태양광 흡수체를 구현할 수 있다.Solar absorber according to an embodiment of the present invention, carbon nanotube powder; And a transition metal chalcogen compound dispersed in the carbon nanotube powder. The powder-type solar absorber according to the present invention contains a transition metal chalcogen compound having excellent light absorption in the visible light region and CNT having excellent light absorption in the IR region, thereby absorbing both visible light and IR light. A capable solar absorber can be implemented.

일 측면에 따르면, 상기 탄소나노튜브 분말은, 수산화기를 포함하는 기능화된 탄소나노튜브(hydroxyl group functionalized CNT)를 포함하는 것일 수 있다. 상기 탄소나노튜브는 전이금속 칼코겐 화합물 플레이크(flake) 사이사이를 붙여주는 역할을 하며, 수산화기로 기능화된 탄소나노튜브는 화학적 작용기에 의해 전이금속 칼코겐 화합물 플레이크 사이사이를 더욱 강하게 결합시킬 수 있는 효과가 있다..According to one aspect, the carbon nanotube powder may include a functionalized carbon nanotube containing a hydroxyl group (hydroxyl group functionalized CNT). The carbon nanotubes serve to attach between the transition metal chalcogen compound flakes, and the carbon nanotubes functionalized with a hydroxyl group can more strongly bond between the transition metal chalcogen compound flakes by a chemical functional group. It works..

일 측면에 따르면, 상기 전이금속 칼코겐 화합물은, MoS2, MoSe2, WS2, WSe2, TiS2, VS2, CrS2, MnS2, FeS2, NiS2, ZrS2, TiSe2, VSe2, CrSe2, MnSe2, FeSe2, NiSe2, ZrSe2, TiTe2, VTe2, CrTe2, MnTe2, FeTe2, NiTe2 및 ZrTe2 으로 이루어진 군으로부터 선택된 적어도 하나를 포함하는 것일 수 있다. 바람직하게는 가시광선 영역의 빛 흡수가 뛰어난 이황화 몰리브덴(MoS2)을 포함하는 것일 수 있다.According to one aspect, the transition metal chalcogen compound, MoS 2 , MoSe 2 , WS 2 , WSe 2 , TiS 2 , VS 2 , CrS 2 , MnS 2 , FeS 2 , NiS 2 , ZrS 2 , TiSe 2 , VSe 2 , CrSe 2 , MnSe 2 , FeSe 2 , NiSe 2 , ZrSe 2 , TiTe 2 , VTe 2 , CrTe 2 , MnTe 2 , FeTe 2 , NiTe 2 and ZrTe 2 It may include at least one selected from the group consisting of . Preferably, it may include molybdenum disulfide (MoS 2 ) having excellent light absorption in the visible light region.

본 발명의 일 실시예에 따른 태양광 흡수체의 제조방법은, 탄소나노튜브 분말을 준비하는 단계; 전이금속 칼코겐 화합물 분말을 준비하는 단계; 및 상기 탄소나노튜브 분말 및 상기 전이금속 칼코겐 화합물 분말을 볼밀 혼합하는 단계;를 포함한다.A method of manufacturing a solar absorber according to an embodiment of the present invention comprises: preparing a carbon nanotube powder; Preparing a transition metal chalcogen compound powder; And ball mill mixing the carbon nanotube powder and the transition metal chalcogen compound powder.

일 측면에 따르면, 상기 탄소나노튜브 분말과 상기 탄소나노튜브 분말은 1 : 0.5 내지 1 : 1.5의 중량비율로 혼합되는 것일 수 있다. 바람직하게는 1 : 1의 비율로 혼합하는 것일 수 있으며, 분말의 크기는 제한되지 않는다.According to one aspect, the carbon nanotube powder and the carbon nanotube powder may be mixed in a weight ratio of 1: 0.5 to 1: 1.5. Preferably, it may be mixed in a ratio of 1:1, and the size of the powder is not limited.

일 측면에 따르면, 상기 태양광 흡수체의 제조방법에 따라 제조된 태양광 흡수체는 5 nm 내지 15 nm 크기의 상기 전이금속 칼코겐 화합물이 20 nm 내지 30 nm 크기의 상기 탄소나노튜브에 분산되어 포함되어 있는 형태를 가지는 것일 수 있다.According to one aspect, the solar absorber manufactured according to the method of manufacturing the solar absorber contains the transition metal chalcogen compound having a size of 5 nm to 15 nm dispersed in the carbon nanotubes having a size of 20 nm to 30 nm. It may have a shape that is there.

일 측면에 따르면, 상기 전이금속 칼코겐 화합물은, 상기 탄소나노튜브 표면, 내부 또는 이 둘에 포함되어 있는 것일 수 있다.According to one aspect, the transition metal chalcogen compound may be included in the surface, the interior of the carbon nanotube, or both.

일 측면에 따르면, 상기 태양광 흡수체의 제조방법에 따라 제조된 태양광 흡수체는, 상기 탄소나노튜브 분말의 결정구조 및 상기 전이금속 칼코겐 화합물의 결정구조를 모두 포함하는 것일 수 있다.According to an aspect, the solar absorber manufactured according to the method of manufacturing the solar absorber may include both a crystal structure of the carbon nanotube powder and a crystal structure of the transition metal chalcogen compound.

볼밀 혼합 단계 이후에, 전이금속 칼코겐 화합물의 결정성이 유지되며, CNT와 고르게 합성물(composite)을 형성하여, 광흡수와 열변환 효율이 뛰어난 태양광 흡수체를 구현할 수 있다.After the ball mill mixing step, the crystallinity of the transition metal chalcogen compound is maintained, and a composite is formed evenly with CNT, so that a solar absorber having excellent light absorption and heat conversion efficiency can be realized.

일 측면에 따르면, 상기 태양광 흡수체의 제조방법에 따라 제조된 태양광 흡수체는, 400 nm 내지 2400 nm 영역의 파장의 빛을 94 % 이상 흡수하는 것일 수 있다.According to one aspect, the solar absorber manufactured according to the manufacturing method of the solar absorber may absorb 94% or more of light having a wavelength in a range of 400 nm to 2400 nm.

일 측면에 따르면, 상기 태양광 흡수체의 제조방법에 따라 제조된 태양광 흡수체는, 1 sun (㎾/㎡)의 광량을 94 % 이상 흡수하는 것일 수 있다.According to one aspect, the solar absorber manufactured according to the manufacturing method of the solar absorber may absorb 94% or more of the amount of light of 1 sun (kW/m2).

일 측면에 따르면, 상기 태양광 흡수체의 제조방법에 따라 제조된 태양광 흡수체는, 1 sun (㎾/㎡)의 광량을 흡수하여 60 ℃ 이상의 열로 변환시키는 것일 수 있다.According to one aspect, the solar absorber manufactured according to the manufacturing method of the solar absorber may absorb an amount of light of 1 sun (kW/m2) and convert it into heat of 60°C or higher.

이하, 실시예 및 비교예에 의하여 본 발명을 더욱 상세히 설명하고자 한다.Hereinafter, the present invention will be described in more detail by examples and comparative examples.

단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.However, the following examples are for illustrative purposes only, and the contents of the present invention are not limited to the following examples.

실시예Example

탄소나노튜브 분말 3 g과 이황화 몰리브덴(MoS2) 분말 3 g을 볼밀 혼합하여 태양광 흡수체를 제조하였다.A solar absorber was prepared by ball mill mixing 3 g of carbon nanotube powder and 3 g of molybdenum disulfide (MoS 2 ) powder.

도 1은 본 발명의 실시예를 통해 제조된 태양광 흡수체의 형태를 확인하기 위한 이미지이다.1 is an image for confirming the shape of a solar absorber manufactured through an embodiment of the present invention.

도 1을 참조하면, 본 발명에 따른 태양광 흡수체는 5 nm 내지 15 nm 크기의 상기 전이금속 칼코겐 화합물이 20 nm 내지 30 nm 크기의 상기 탄소나노튜브에 분산되어 포함되어 있는 형태를 가지는 것을 알 수 있으며, 상기 전이금속 칼코겐 화합물은, 상기 탄소나노튜브 표면, 내부 또는 이 둘에 포함되어 CNT와 고르게 합성물(composite)을 형성하는 것을 알 수 있다.Referring to FIG. 1, it was found that the solar absorber according to the present invention has a form in which the transition metal chalcogen compound having a size of 5 nm to 15 nm is dispersed in the carbon nanotubes having a size of 20 nm to 30 nm. It can be seen that the transition metal chalcogen compound is included on the surface, the interior of the carbon nanotube, or both to form a composite evenly with the CNT.

도 2는 본 발명의 실시예를 통해 제조된 태양광 흡수체의 구조적 특성을 확인하기 위한 이미지이다.2 is an image for confirming the structural characteristics of a solar absorber manufactured through an embodiment of the present invention.

도 2를 참조하면, 본 발명에 따른 태양광 흡수체는 볼밀 이후에, 이황화 몰리브덴(MoS2)의 결정성이 유지되는 것을 알 수 있다.Referring to FIG. 2, it can be seen that the crystallinity of molybdenum disulfide (MoS 2 ) is maintained after the ball mill in the solar absorber according to the present invention.

도 3은 본 발명의 실시예를 통해 제조된 태양광 흡수체의 광학적 특성을 나타낸 그래프이다.3 is a graph showing the optical properties of the solar absorber manufactured through an embodiment of the present invention.

도 3을 참조하면, 400 nm 내지 2400 nm 영역의 파장의 빛을 94 % 이상 흡수하는 것을 알 수 있으며, 본 발명에 따른 파우더 형태의 태양광 흡수체는 가시광선 영역의 빛 흡수가 뛰어난 이황화 몰리브덴(MoS2)과 IR 영역의 빛 흡수가 뛰어난 CNT를 포함함으로써, 400 nm 에서 2400 nm 에서 낮은 빛 반사도, 즉 높은 빛 흡수율을 구현할 수 있다.Referring to FIG. 3, it can be seen that more than 94% of light in the wavelength range of 400 nm to 2400 nm is absorbed, and the powder-shaped solar absorber according to the present invention has excellent light absorption in the visible range of molybdenum disulfide (MoS 2 ) By including CNTs with excellent light absorption in the IR region, low light reflectivity, that is, high light absorption at 400 nm to 2400 nm can be realized.

도 4는 본 발명의 실시예를 통해 제조된 태양광 흡수체의 광흡수량을 나타낸 그래프이다.4 is a graph showing the amount of light absorption of the solar absorber manufactured according to an embodiment of the present invention.

도 4를 참조하면, Solar light (1 sun)의 스펙트럼을 통해 계산한 결과 약 1 sun 의 94 % 가 흡수되는 것을 알 수 있다.Referring to FIG. 4, as a result of calculating through the spectrum of solar light (1 sun), it can be seen that 94% of about 1 sun is absorbed.

도 5는 본 발명의 실시예를 통해 제조된 태양광 흡수체의 열변환 성능을 확인하기 위한 이미지 및 온도-시간 그래프이다.5 is an image and a temperature-time graph for confirming the heat conversion performance of the solar absorber manufactured according to an embodiment of the present invention.

도 5를 참조하면, 1 sun의 태양빛(Solar light)을 조사하였을 경우(ON) 이를 흡수하여 60 ℃ 이상의 열로 변환시키는 것을 알 수 있다.Referring to FIG. 5, it can be seen that when 1 sun of solar light is irradiated (ON), it is absorbed and converted into heat of 60° C. or higher.

볼밀 공정을 통해 파우더 형태로 태양광 흡수체를 제조할 수 있으며, 볼밀 이후에, MoS2의 결정성이 유지되며, CNT가 고르게 분산된 혼합물을 형성할 수 있다. 또한, 본 발명에 따른 파우더 형태의 태양광 흡수체는 가시광선 영역의 빛 흡수가 뛰어난 이황화 몰리브덴(MoS2)과 IR 영역의 빛 흡수가 뛰어난 CNT를 포함함으로써, 400 nm 에서 2400 nm 에서 낮은 빛 반사도, 즉 높은 빛 흡수율을 구현할 수 있으며, 높은 열변환 효율을 구현할 수 있다.The solar absorber can be manufactured in powder form through a ball mill process, and after the ball mill, the crystallinity of MoS 2 is maintained, and a mixture in which CNTs are evenly dispersed can be formed. In addition, the solar absorber in the form of a powder according to the present invention includes molybdenum disulfide (MoS 2 ) excellent in light absorption in the visible region and CNTs excellent in light absorption in the IR region, so that low light reflectivity at 400 nm to 2400 nm, That is, a high light absorption rate can be implemented, and a high heat conversion efficiency can be realized.

이상과 같이 실시예들이 비록 한정된 실시예와 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다. 그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다.As described above, although the embodiments have been described by the limited embodiments and drawings, various modifications and variations are possible from the above description by those of ordinary skill in the art. For example, even if the described techniques are performed in a different order from the described method, and/or the described components are combined or combined in a form different from the described method, or are replaced or substituted by other components or equivalents. Appropriate results can be achieved. Therefore, other implementations, other embodiments, and claims and equivalents fall within the scope of the claims to be described later.

Claims (11)

탄소나노튜브 분말; 및
상기 탄소나노튜브 분말에 분산되어 있는 전이금속 칼코겐 화합물;을 포함하는,
태양광 흡수체.
Carbon nanotube powder; And
Containing; a transition metal chalcogen compound dispersed in the carbon nanotube powder
Solar absorber.
제1항에 있어서,
상기 탄소나노튜브 분말은,
수산화기를 포함하는 기능화된 탄소나노튜브(hydroxyl group functionalized CNT)를 포함하는 것인,
태양광 흡수체.
The method of claim 1,
The carbon nanotube powder,
It includes a functionalized carbon nanotube containing a hydroxyl group (hydroxyl group functionalized CNT),
Solar absorber.
제1항에 있어서,
상기 전이금속 칼코겐 화합물은,
MoS2, MoSe2, WS2, WSe2, TiS2, VS2, CrS2, MnS2, FeS2, NiS2, ZrS2, TiSe2, VSe2, CrSe2, MnSe2, FeSe2, NiSe2, ZrSe2, TiTe2, VTe2, CrTe2, MnTe2, FeTe2, NiTe2 및 ZrTe2 으로 이루어진 군으로부터 선택된 적어도 하나를 포함하는 것인,
태양광 흡수체.
The method of claim 1,
The transition metal chalcogen compound,
MoS 2 , MoSe 2 , WS 2 , WSe 2 , TiS 2 , VS 2 , CrS 2 , MnS 2 , FeS 2 , NiS 2 , ZrS 2 , TiSe 2 , VSe 2 , CrSe 2 , MnSe 2 , FeSe 2 , NiSe 2 , ZrSe 2 , TiTe 2 , VTe 2 , CrTe 2 , MnTe 2 , FeTe 2 , NiTe 2 and ZrTe 2 To include at least one selected from the group consisting of,
Solar absorber.
제1항에 있어서,
5 nm 내지 15 nm 크기의 상기 전이금속 칼코겐 화합물이 20 nm 내지 30 nm 크기의 상기 탄소나노튜브에 분산되어 포함되어 있는 형태를 가지는 것인,
태양광 흡수체.
The method of claim 1,
Having a form in which the transition metal chalcogen compound having a size of 5 nm to 15 nm is dispersed and contained in the carbon nanotubes having a size of 20 nm to 30 nm,
Solar absorber.
제4항에 있어서,
상기 전이금속 칼코겐 화합물은, 상기 탄소나노튜브 표면, 내부 또는 이 둘에 포함되어 있는 것인,
태양광 흡수체.
The method of claim 4,
The transition metal chalcogen compound is contained in the surface, the interior of the carbon nanotube, or both,
Solar absorber.
제1항에 있어서,
상기 태양관 흡수체는,
상기 탄소나노튜브 분말의 결정구조 및 상기 전이금속 칼코겐 화합물의 결정구조를 모두 포함하는 것인,
태양광 흡수체.
The method of claim 1,
The solar tube absorber,
It includes both the crystal structure of the carbon nanotube powder and the crystal structure of the transition metal chalcogen compound,
Solar absorber.
제1항에 있어서,
상기 태양광 흡수체는,
400 nm 내지 2400 nm 영역의 파장의 빛을 94 % 이상 흡수하는 것인,
태양광 흡수체.
The method of claim 1,
The solar absorber,
It absorbs 94% or more of light in the wavelength range of 400 nm to 2400 nm,
Solar absorber.
제1항에 있어서,
상기 태양광 흡수체는,
1 sun (㎾/㎡)의 광량을 94 % 이상 흡수하는 것인,
태양광 흡수체.
The method of claim 1,
The solar absorber,
It absorbs 94% or more of the amount of light of 1 sun (kW/㎡),
Solar absorber.
제1항에 있어서,
상기 태양광 흡수체는,
1 sun (㎾/㎡)의 광량을 흡수하여 60 ℃ 이상의 열로 변환시키는 것인,
태양광 흡수체.
The method of claim 1,
The solar absorber,
It absorbs the amount of light of 1 sun (kW/㎡) and converts it into heat of 60°C or higher.
Solar absorber.
탄소나노튜브 분말을 준비하는 단계;
전이금속 칼코겐 화합물 분말을 준비하는 단계; 및
상기 탄소나노튜브 분말 및 상기 전이금속 칼코겐 화합물 분말을 볼밀 혼합하는 단계;를 포함하는,
태양광 흡수체의 제조방법.
Preparing a carbon nanotube powder;
Preparing a transition metal chalcogen compound powder; And
Ball mill mixing the carbon nanotube powder and the transition metal chalcogen compound powder; Containing,
Method of manufacturing a solar absorber.
제10항에 있어서,
상기 탄소나노튜브 분말과 상기 탄소나노튜브 분말은 1 : 0.5 내지 1 : 1.5의 중량비율로 혼합되는 것인,
태양광 흡수체의 제조방법.
The method of claim 10,
The carbon nanotube powder and the carbon nanotube powder are mixed in a weight ratio of 1: 0.5 to 1: 1.5,
Method of manufacturing a solar absorber.
KR1020190075197A 2019-06-24 2019-06-24 Chalcogenide compound-based solar absorber and manufacturing method thereof KR102162418B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190075197A KR102162418B1 (en) 2019-06-24 2019-06-24 Chalcogenide compound-based solar absorber and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190075197A KR102162418B1 (en) 2019-06-24 2019-06-24 Chalcogenide compound-based solar absorber and manufacturing method thereof

Publications (1)

Publication Number Publication Date
KR102162418B1 true KR102162418B1 (en) 2020-10-06

Family

ID=72826348

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190075197A KR102162418B1 (en) 2019-06-24 2019-06-24 Chalcogenide compound-based solar absorber and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR102162418B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116646503A (en) * 2023-07-27 2023-08-25 河南师范大学 Preparation method of carbon-coated transition metal telluride and application of carbon-coated transition metal telluride in water-based zinc ion battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070080940A (en) * 2006-02-09 2007-08-14 삼성코닝 주식회사 Chalcogenide-cnt hybrid thin film and method for preparing the same
KR20110087226A (en) * 2010-01-25 2011-08-02 (주)루미나노 Solar cells showing improved light conversion efficiency by electric field enhancement effects
KR20160101799A (en) * 2015-02-17 2016-08-26 서울시립대학교 산학협력단 Electrode body including carbon-based nano-template, electronic device including the same, and method of manufacturing the same
KR20180046845A (en) * 2016-10-28 2018-05-09 연세대학교 산학협력단 Photoelectric element using valley-spin photoelectron

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070080940A (en) * 2006-02-09 2007-08-14 삼성코닝 주식회사 Chalcogenide-cnt hybrid thin film and method for preparing the same
KR20110087226A (en) * 2010-01-25 2011-08-02 (주)루미나노 Solar cells showing improved light conversion efficiency by electric field enhancement effects
KR20160101799A (en) * 2015-02-17 2016-08-26 서울시립대학교 산학협력단 Electrode body including carbon-based nano-template, electronic device including the same, and method of manufacturing the same
KR20180046845A (en) * 2016-10-28 2018-05-09 연세대학교 산학협력단 Photoelectric element using valley-spin photoelectron

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116646503A (en) * 2023-07-27 2023-08-25 河南师范大学 Preparation method of carbon-coated transition metal telluride and application of carbon-coated transition metal telluride in water-based zinc ion battery

Similar Documents

Publication Publication Date Title
Sun et al. Discovering lead-free perovskite solar materials with a split-anion approach
Beard et al. The promise and challenge of nanostructured solar cells
Polman et al. Photonic design principles for ultrahigh-efficiency photovoltaics
Jiménez et al. Sb2 (S1− xSex) 3 solar cells: the impact of radiative and non-radiative loss mechanisms
Hsueh et al. Hybrid Cd‐free CIGS solar cell/TEG device with ZnO nanowires
Zhang et al. Active terahertz device based on optically controlled organometal halide perovskite
ES2332962A1 (en) Cascade solar cell with amorphous silicon-based solar cell
Gour et al. Cd-free Zn (O, S) as alternative buffer layer for chalcogenide and kesterite based thin films solar cells: a review
KR101446165B1 (en) New compound semiconductors and their application
Kalthoum et al. CH3NH3CdCl3: A promising new lead‐free hybrid organic–inorganic perovskite for photovoltaic applications
Huang et al. Highly sensitive photodetectors based on hybrid 2D-0D SnS2-copper indium sulfide quantum dots
KR101612489B1 (en) New compound semiconductors and their application
KR102162418B1 (en) Chalcogenide compound-based solar absorber and manufacturing method thereof
Nematov et al. First Principles Analysis of Crystal Structure, Electronic and Optical Properties of CsSnI3–x Br x Perovskite for Photoelectric Applications
He et al. Study of CdTe/ZnTe composite absorbing layer deposited by pulsed laser deposition for CdS/CdTe solar cell
Prasanna et al. Bandgap graded perovskite solar cell for above 30% efficiency
Peng et al. ABX 3-type lead-free perovskites using superatom ions with tunable photovoltaic performances
Zhang et al. DFT screening of metallic single-replacements for lead-free perovskites with intrinsic photovoltaic functionalities
Bhamu et al. Improving the optical and thermoelectric properties of Cs 2 InAgCl 6 with heavy substitutional doping: a DFT insight
Liu et al. Cu 2− x Se Modification onto Monoclinic BiVO 4 for Enhanced Photocatalytic Activity Under Visible Light
Subramanyam et al. Enhanced stability of bulk heterojunction organic solar cells by application of few layers of electrochemically exfoliated graphene
Hinkey et al. Theoretical comparison of performance limits of single-and multiple-stage photovoltaic devices
Zhou et al. Survey of Tetragonal Transition Metal Chalcogenide Hetero‐Bilayers for Promising Photocatalysts
Tiwari et al. Advanced energy materials
Zarezadeh et al. Bipolar photoresponse ultraviolet photodetectors based on ZnO nanowires

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant