KR102152149B1 - Anode for energy storage devices having reduced graphene oxide based anode-active materials of columnar three-dimensional structure - Google Patents
Anode for energy storage devices having reduced graphene oxide based anode-active materials of columnar three-dimensional structure Download PDFInfo
- Publication number
- KR102152149B1 KR102152149B1 KR1020160046160A KR20160046160A KR102152149B1 KR 102152149 B1 KR102152149 B1 KR 102152149B1 KR 1020160046160 A KR1020160046160 A KR 1020160046160A KR 20160046160 A KR20160046160 A KR 20160046160A KR 102152149 B1 KR102152149 B1 KR 102152149B1
- Authority
- KR
- South Korea
- Prior art keywords
- graphene oxide
- negative electrode
- reduced product
- acid
- energy storage
- Prior art date
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 133
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 112
- 238000004146 energy storage Methods 0.000 title claims abstract description 25
- 239000006183 anode active material Substances 0.000 title claims 2
- 229920003169 water-soluble polymer Polymers 0.000 claims abstract description 27
- 235000008331 Pinus X rigitaeda Nutrition 0.000 claims abstract description 16
- 235000011613 Pinus brutia Nutrition 0.000 claims abstract description 16
- 241000018646 Pinus brutia Species 0.000 claims abstract description 16
- 239000007773 negative electrode material Substances 0.000 claims abstract description 13
- 239000002131 composite material Substances 0.000 claims description 25
- 239000006185 dispersion Substances 0.000 claims description 22
- 229910002804 graphite Inorganic materials 0.000 claims description 22
- 239000010439 graphite Substances 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 16
- 239000002253 acid Substances 0.000 claims description 13
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 12
- 239000002904 solvent Substances 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 9
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 8
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 claims description 8
- -1 polyamideamine Polymers 0.000 claims description 8
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 claims description 8
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 claims description 8
- 230000003993 interaction Effects 0.000 claims description 7
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 claims description 6
- IRQWEODKXLDORP-UHFFFAOYSA-N 4-ethenylbenzoic acid Chemical compound OC(=O)C1=CC=C(C=C)C=C1 IRQWEODKXLDORP-UHFFFAOYSA-N 0.000 claims description 5
- 229920001665 Poly-4-vinylphenol Polymers 0.000 claims description 5
- 229920002472 Starch Polymers 0.000 claims description 5
- 239000003638 chemical reducing agent Substances 0.000 claims description 5
- 150000004676 glycans Chemical class 0.000 claims description 5
- 229920001282 polysaccharide Polymers 0.000 claims description 5
- 239000005017 polysaccharide Substances 0.000 claims description 5
- 229920002689 polyvinyl acetate Polymers 0.000 claims description 5
- 239000011118 polyvinyl acetate Substances 0.000 claims description 5
- 239000008107 starch Substances 0.000 claims description 5
- 235000019698 starch Nutrition 0.000 claims description 5
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims description 4
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 claims description 4
- 239000002202 Polyethylene glycol Substances 0.000 claims description 4
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 4
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims description 4
- 239000008112 carboxymethyl-cellulose Substances 0.000 claims description 4
- 229940105329 carboxymethylcellulose Drugs 0.000 claims description 4
- 239000001863 hydroxypropyl cellulose Substances 0.000 claims description 4
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 claims description 4
- 229920001223 polyethylene glycol Polymers 0.000 claims description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 4
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 4
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 4
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 4
- 239000004354 Hydroxyethyl cellulose Substances 0.000 claims description 3
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 claims description 3
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 3
- 229920002873 Polyethylenimine Polymers 0.000 claims description 3
- 229920002125 Sokalan® Polymers 0.000 claims description 3
- 125000002091 cationic group Chemical group 0.000 claims description 3
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 claims description 3
- 229920000609 methyl cellulose Polymers 0.000 claims description 3
- 239000001923 methylcellulose Substances 0.000 claims description 3
- 235000010981 methylcellulose Nutrition 0.000 claims description 3
- 229920000371 poly(diallyldimethylammonium chloride) polymer Polymers 0.000 claims description 3
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 claims description 3
- 239000004584 polyacrylic acid Substances 0.000 claims description 3
- 229920001444 polymaleic acid Polymers 0.000 claims description 3
- 229920000137 polyphosphoric acid Polymers 0.000 claims description 3
- 229940005642 polystyrene sulfonic acid Drugs 0.000 claims description 3
- 229920002554 vinyl polymer Polymers 0.000 claims description 3
- 229920002401 polyacrylamide Polymers 0.000 claims description 2
- 239000011734 sodium Substances 0.000 claims description 2
- 229910052708 sodium Inorganic materials 0.000 claims description 2
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 claims 1
- 229940071826 hydroxyethyl cellulose Drugs 0.000 claims 1
- 229940071676 hydroxypropylcellulose Drugs 0.000 claims 1
- 229960002900 methylcellulose Drugs 0.000 claims 1
- 230000003647 oxidation Effects 0.000 claims 1
- 238000007254 oxidation reaction Methods 0.000 claims 1
- 229940083542 sodium Drugs 0.000 claims 1
- 235000015424 sodium Nutrition 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 2
- GBFLZEXEOZUWRN-VKHMYHEASA-N S-carboxymethyl-L-cysteine Chemical compound OC(=O)[C@@H](N)CSCC(O)=O GBFLZEXEOZUWRN-VKHMYHEASA-N 0.000 description 34
- 239000000243 solution Substances 0.000 description 13
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 229910021382 natural graphite Inorganic materials 0.000 description 10
- 238000007599 discharging Methods 0.000 description 9
- 239000006260 foam Substances 0.000 description 8
- 239000010410 layer Substances 0.000 description 8
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 238000009792 diffusion process Methods 0.000 description 7
- 239000003792 electrolyte Substances 0.000 description 7
- 238000004108 freeze drying Methods 0.000 description 7
- 150000002500 ions Chemical class 0.000 description 7
- 229910001416 lithium ion Inorganic materials 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000006722 reduction reaction Methods 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 3
- 238000001237 Raman spectrum Methods 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000003795 desorption Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 239000002086 nanomaterial Substances 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- FYGHSUNMUKGBRK-UHFFFAOYSA-N 1,2,3-trimethylbenzene Chemical compound CC1=CC=CC(C)=C1C FYGHSUNMUKGBRK-UHFFFAOYSA-N 0.000 description 2
- QPUYECUOLPXSFR-UHFFFAOYSA-N 1-methylnaphthalene Chemical compound C1=CC=C2C(C)=CC=CC2=C1 QPUYECUOLPXSFR-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical group [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000010306 acid treatment Methods 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000000908 ammonium hydroxide Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000000635 electron micrograph Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 238000007429 general method Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000002329 infrared spectrum Methods 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 description 1
- BZSXEZOLBIJVQK-UHFFFAOYSA-N 2-methylsulfonylbenzoic acid Chemical compound CS(=O)(=O)C1=CC=CC=C1C(O)=O BZSXEZOLBIJVQK-UHFFFAOYSA-N 0.000 description 1
- OQVYMXCRDHDTTH-UHFFFAOYSA-N 4-(diethoxyphosphorylmethyl)-2-[4-(diethoxyphosphorylmethyl)pyridin-2-yl]pyridine Chemical compound CCOP(=O)(OCC)CC1=CC=NC(C=2N=CC=C(CP(=O)(OCC)OCC)C=2)=C1 OQVYMXCRDHDTTH-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229940117389 dichlorobenzene Drugs 0.000 description 1
- 229940113088 dimethylacetamide Drugs 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- 238000004299 exfoliation Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000003446 memory effect Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002082 metal nanoparticle Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000002390 rotary evaporation Methods 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 238000002525 ultrasonication Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/04—Hybrid capacitors
- H01G11/06—Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
본 발명은, 가지를 가지는 주상 구조의 산화그래핀 환원물을 포함하는 에너지 저장소자용 음극 및 음극을 포함하는 에너지 저장소자에 있어서, 집전체와; 상기 집전체의 일면에 형성된 소나무형 가지를 가지는 주상구조의 산화그래핀 환원물을 갖는 음극활물질을 포함하는 것을 기술적 요지로 한다. 이에 의해 산화그래핀 환원물 및 수용성폴리머의 복합 페이스트를 동결건조시켜 고전도성 소나무형 가지를 가지는 주상구조를 형성함으로써 산화그래핀 환원물의 일정하게 배열된 활동영역(Active site)을 증가시키고 안정적 구조 형성을 통한 고수명 사이클 구현 및 고용량, 고출력 특성을 지닌 에너지 저장소자의 전극 효과를 제공한다.The present invention provides an energy storage device including a negative electrode and a negative electrode for an energy storage device including a graphene oxide reduced product having a columnar structure having branches, comprising: a current collector; The technical gist of the present invention is to include a negative electrode active material having a graphene oxide reduced product having a columnar structure having a pine branch formed on one side of the current collector. Thereby, the complex paste of graphene oxide reduced product and water-soluble polymer is freeze-dried to form a columnar structure with highly conductive pine branches, thereby increasing the regularly arranged active site of the graphene oxide reducing product and forming a stable structure. It provides the electrode effect of energy storage with high capacity and high power characteristics and realization of high life cycle through
Description
본 발명은 주상 삼차원 구조의 산화그래핀 환원물을 음극활물질로 가지는 에너지 저장소자용 음극에 관한 것으로, 더욱 상세하게는, 산화그래핀 환원물 및 수용성폴리머의 복합 페이스트를 동결건조시켜 소나무형 가지를 가지는 주상구조를 형성한 산화그래핀 환원물을 포함하는 에너지 저장소자용 음극 및 음극을 포함하는 에너지 저장소자에 관한 것이다.The present invention relates to a negative electrode for an energy storage device having a columnar three-dimensional graphene oxide reduced product as a negative electrode active material, and more particularly, a composite paste of a graphene oxide reduced product and a water-soluble polymer is freeze-dried to have a pine branch. It relates to an energy storage device including a negative electrode and a negative electrode for an energy storage device comprising a graphene oxide reduced product forming a columnar structure.
산업발전 및 생활수준 향상에 맞춰 휴대 전자기기의 소형화와 장시간 연속 사용을 목표로 부품의 경량화와 저소비 전력화에 대한 연구와 더불어 소형이면서 고용량을 실현할 수 있는 고성능 에너지 저장소자가 요구되고 있다. 이에 최근에는 리튬 이온 전지(Lithium ion battery) 또는 슈퍼 커패시터(Super capacitor)는 전기자동차, 전지전력 저장시스템 등 대용량 전력저장전지와 휴대전화, 캠코더, 노트북 등의 휴대전자기기 등과 같은 소형의 고성능 에너지원으로 사용되고 있다.In line with the development of industry and the improvement of living standards, a high-performance energy storage device that can realize small size and high capacity is required along with research on lightweight parts and low power consumption aiming at miniaturization and long-term continuous use of portable electronic devices. Therefore, in recent years, lithium ion batteries or super capacitors are small, high-performance energy sources such as large-capacity power storage batteries such as electric vehicles and battery power storage systems, and portable electronic devices such as mobile phones, camcorders, and notebook computers. Is being used.
특히, 리튬 이온 전지는 높은 에너지 밀도, 면적당 큰 용량, 낮은 자기방전율이 및 긴 수명의 장점을 가지고 있다. 또한, 메모리 효과가 없기 때문에 사용자가 사용하는 데 편리하며, 수명이 길다는 특성을 지니고 있다. 그러나, 음극소재의 긴 확산길이(Long diffusion length) 및 전해액과의 반응으로 인한 표면 오염(Surface electrolyte interface:SEI) 등과 같은 이유로 인하여 저출력특성 및 싸이클 특성의 저하가 발생한다는 문제점이 있다. In particular, the lithium ion battery has advantages of high energy density, large capacity per area, low self-discharge rate, and long life. In addition, since there is no memory effect, it is convenient for users to use and has a long lifespan. However, there is a problem in that low power characteristics and cycle characteristics are deteriorated due to reasons such as a long diffusion length of the negative electrode material and surface electrolyte interface (SEI) due to a reaction with an electrolyte.
리튬 이온 전지의 구조는 집전체로써 음극(Anode), 양극(Cathode), 격리막(Separator) 및 전해액(Electrolyte)으로 구성되어 있다. 일반적인 음극재료는 탄소소재기반으로써 흑연(Graphite) 또는 금속산화물이 사용되고 있다. 이는 값이 싸고 높은 에너지 밀도를 지니기 때문이다. 그러나 흑연의 경우 도 1에 도시된 바와 같이 길이가 긴 그래핀층이 복수 개가 있으며 그래핀층 간의 간격이 3.4Å으로 매우 짧아 그래핀층 사이로 이온의 출입이 용이하지 못하다. 즉 이온의 삽입 및 탈리 시간이 길기 때문에 이를 이용한 전지는 고속 충방전 및 고출력성을 구현하기 어렵다.The structure of a lithium ion battery is a current collector and is composed of an anode, a cathode, a separator, and an electrolyte. As a general anode material, graphite or metal oxide is used as a carbon material base. This is because it is inexpensive and has a high energy density. However, in the case of graphite, as shown in FIG. 1, there are a plurality of long graphene layers, and the gap between the graphene layers is very short (3.4Å), making it difficult for ions to enter and exit between the graphene layers. That is, since the insertion and desorption time of ions is long, it is difficult to implement high-speed charging/discharging and high output of a battery using the same.
이를 해결하기 위하여 새롭게 제시된 탄소기반 재료는 종래기술 '대한민국특허청 공개특허 공개번호 제10-2013-0094560호 수소환원을 이용한 금속 나노입자와 환원된 산화그래핀의 하이브리드 물질을 제조방법'에 알려진 바와 같이 산화그래핀 환원물을 이용한다. 산화그래핀 환원물은 복수의 층으로 쌓여있는 그래핀을 산화시켜 층 사이의 틈이 벌어지게 한다. 틈이 벌어진 산화그래핀은 용매에 잘 분산되기 때문에 용매에 존재하는 산화그래핀을 초음파나 믹서기를 이용하여 한 층씩 분리한다. 각 층이 분리된 산화그래핀은 절연성질을 가지기 때문에 이를 다시 전도성 물질로 변화시키기 위해 환원제를 이용하여 환원시켜 최종적으로 산화그래핀 환원물을 제조한다. In order to solve this problem, the newly proposed carbon-based material is as known in the prior art'Method of manufacturing a hybrid material of metal nanoparticles and reduced graphene oxide using hydrogen reduction in Korean Patent Office Publication No. 10-2013-0094560'. Graphene oxide reduction product is used. The graphene oxide reduction product oxidizes graphene accumulated in a plurality of layers, causing gaps between the layers. Since the graphene oxide with a gap is well dispersed in the solvent, the graphene oxide present in the solvent is separated layer by layer using ultrasonic waves or a blender. Since the graphene oxide from which each layer is separated has insulating properties, it is reduced with a reducing agent to change it back into a conductive material to finally prepare a graphene oxide reduced product.
이러한 산화그래핀 환원물은 나노구조를 지니고 있어서 비표면적이 넓고, 리튬 이온의 삽입과 탈리가 용이한 짧은 확산길이를 지닌 다양한 기공을 제조할 수 있으며, 전기전도도가 우수하기 때문에 고출력 및 초고속 충방전이 가능한 리튬 이온 전지를 제작할 수 있는 장점이 있다. 또한, 기계적인 변형에 의한 저항변화가 적기 때문에 유연 에너지 저장소자의 응용이 가능한 탄소나노소재기반의 음극을 제작할 수 있다. 그러나 이러한 나노소재는 기공형성의 문제와 음극의 구조의 구조형성시 전기전도도가 저하되는 문제점이 있다.This graphene oxide reduced product has a nanostructure, so it has a large specific surface area, can produce various pores with a short diffusion length that facilitates insertion and desorption of lithium ions, and has excellent electrical conductivity, so high power and high-speed charging and discharging There is an advantage to be able to manufacture this possible lithium ion battery. In addition, since there is little change in resistance due to mechanical deformation, a cathode based on a carbon nanomaterial that can be applied as a flexible energy storage device can be manufactured. However, these nanomaterials have a problem of forming pores and a problem in that electrical conductivity is lowered when the structure of the structure of the cathode is formed.
본 발명의 전해액과 접촉할 수 있는 열린기공(Open pore) 형성, 비표면적 증가를 통한 음극내 활동영역(Active site)의 증가, 전해액과 접촉면 증가, 수직으로 일정하게 배열된 매크로(Macro) 구조 형성을 통한 전기전도도 증가 및 안정성 향상이 가능한 음극을 제조함으로써, 고출력, 초고속, 고용량의 특성을 갖는 주상 삼차원 구조의 산화그래핀 환원물을 음극활물질로 가지는 에너지 저장소자용 음극을 제공하는 것을 목적으로 한다.Formation of open pores that can contact the electrolyte of the present invention, increase of active site in the cathode through increase of specific surface area, increase of contact surface with the electrolyte, and formation of a vertically uniformly arranged macro structure An object of the present invention is to provide a negative electrode for an energy storage device having a columnar three-dimensional graphene oxide reduced product having as a negative electrode active material having characteristics of high power, ultra-high speed, and high capacity by manufacturing a negative electrode capable of increasing electrical conductivity and improving stability.
상기한 목적은, 집전체와; 상기 집전체의 일면에 형성된 소나무형 가지를 가지는 주상구조의 산화그래핀 환원물을 갖는 음극활물질을 포함하는 것을 특징으로 하는 에너지 저장소자용 음극에 의해 달성된다.The above object is a current collector; It is achieved by the negative electrode for energy storage, characterized in that it comprises a negative electrode active material having a graphene oxide reduction product of a columnar structure having a pine branch formed on one side of the current collector.
여기서, 상기 산화그래핀 환원물은, 산화그래핀 환원물 페이스트 및 수용성폴리머를 혼합하여 복합 페이스트를 형성하고, 상기 복합페이스트를 집전체에 도포한 후 상기 집전체를 동결건조하여 소나무형 가지를 가지는 주상구조를 형성시키는 것이 바람직하다.Here, the graphene oxide reduced product forms a composite paste by mixing a graphene oxide reduced product paste and a water-soluble polymer, and after applying the composite paste to a current collector, the current collector is freeze-dried to have a pine branch. It is desirable to form a columnar structure.
상기 수용성폴리머는, 폴리비닐알콜(Polyvinyl alcohol), 폴리에틸렌글리콜(Polyethylene glycol), 폴리에틸렌이민(Polyethyleneimine), 폴리아마이드아민(Polyamideamine), 폴리비닐포름아미드(Polyvinyl formamide), 폴리비닐아세테이트(Polyvinyl acetate), 폴리아크릴아마이드(Polyacrylamide), 폴리비닐피롤리돈(Polyvinylpyrrolidone), 폴리디알릴디메틸암모늄클로라이드, 폴리에틸렌옥사이드(Polyethyleneoxide), 폴리아크릴산(Polyacrylic acid), 폴리스티렌설폰산(Polystyrenesulfonic acid), 폴리규산(Polysilicic acid), 폴리인산(Polyphosphoric acid), 폴리에틸렌설폰산(Polyethylenesulfonic acid), 폴리-3-비닐록시프로펜-1-설폰산(Poly-3-vinyloxypropane-1-sulfonic acid), 폴리-4-비닐페놀(Poly-4-vinylphenol), 폴리-4-비닐페닐설폰산(Poly-4-vinylphenyl sulfuric acid), 폴리에틸렌포스포릭산(Polyethyleneohosphoric acid), 폴리말릭산(Polymaleic acid), 폴리-4-비닐벤조산(Poly-4-vinylbenzoic acid), 메틸셀룰로오스(Methyl cellulose), 하이드록시에틸셀룰로오스(Hydroxy ethyl cellulose), 카복시메틸셀룰로오스(Carboxy methyl cellulose), 소듐카복시메틸셀룰로오스(Sodium carboxy methyl cellulose), 하이드록시프로필셀룰로오스(Hydroxy propyl cellulose), 소듐카복시메틸셀룰로오스(Sodium carboxymethylcellulose), 폴리사카라이드(Polysaccharide), 전분(Starch)으로 이루어진 군 및 이의 혼합물 군에서 선택된 1종인 것이 바람직하다.The water-soluble polymer is polyvinyl alcohol, polyethylene glycol, polyethyleneimine, polyamideamine, polyvinyl formamide, polyvinyl acetate, Polyacrylamide, Polyvinylpyrrolidone, Polydiallyldimethylammonium Chloride, Polyethyleneoxide, Polyacrylic acid, Polystyrenesulfonic acid, Polysilicic acid , Polyphosphoric acid, Polyethylenesulfonic acid, Poly-3-vinyloxypropane-1-sulfonic acid, Poly-4-vinylphenol (Poly -4-vinylphenol), Poly-4-vinylphenyl sulfuric acid, Polyethyleneohosphoric acid, Polymaleic acid, Poly-4-vinylbenzoic acid (Poly- 4-vinylbenzoic acid), methyl cellulose, hydroxyethyl cellulose, carboxy methyl cellulose, sodium carboxy methyl cellulose, hydroxypropyl cellulose Cellulose), sodium carboxymethylcellulose (Sodium carboxymethylcellulose), polysaccharide (Polysaccharide), starch (Starch) is preferably one selected from the group consisting of and mixtures thereof.
상기 산화그래핀 환원물 페이스트는, 분말상태의 그래파이트 플레이크로부터 분말상태의 산화그래파이트 플레이크를 합성하고, 상기 산화그래파이트 플레이크를 용매 내에 분산시켜 산화그래핀 분산용액을 형성하며, 상기 산화그래핀 분산용액을 양이온-파이 상호작용을 통해 양이온반응 산화그래핀 분산용액을 제조한 후 상기 양이온반응 산화그래핀 분산용액을 환원제를 이용하여 환원시켜 얻는 것이 바람직하며, 상기 집전체는, 구리(Cu), 알루미늄(Al), 백금(Pt), 금(Au), 니켈(Ni), 티타늄(Ti), 철(Fe), 몰리브덴(Mo)으로 이루어진 군 및 이의 혼합물 군에서 선택된 1종인 것이 바람직하다.The graphene oxide reduced product paste synthesizes powdered graphite oxide flakes from powdered graphite flakes, disperses the graphite oxide flakes in a solvent to form a graphene oxide dispersion solution, and prepares the graphene oxide dispersion solution. It is preferable to prepare a cation-reacted graphene oxide dispersion solution through a cation-pi interaction, and then reduce the cation-reacted graphene oxide dispersion solution using a reducing agent, and the current collector is copper (Cu), aluminum ( Al), platinum (Pt), gold (Au), nickel (Ni), titanium (Ti), iron (Fe), molybdenum (Mo) is preferably one selected from the group consisting of and mixtures thereof.
삭제delete
삭제delete
상술한 본 발명의 구성에 따르면 산화그래핀 환원물 및 수용성폴리머의 복합 페이스트를 동결건조시켜 고전도성 소나무형 가지를 가지는 주상구조를 형성함으로써 산화그래핀 환원물의 일정하게 배열된 활동영역(Active site)을 증가시키고 안정적 구조 형성을 통한 고수명 사이클 구현 및 고용량, 고출력 특성을 지닌 주상 삼차원 구조의 산화그래핀 환원물을 음극활물질로 가지는 에너지 저장소자용 음극을 제공한다.According to the configuration of the present invention as described above, a columnar structure having a highly conductive pine-like branch is formed by freeze-drying a composite paste of a graphene oxide reduced product and a water-soluble polymer, thereby uniformly arranged active sites of the graphene oxide reduced product. It provides a negative electrode for an energy storage device having a columnar three-dimensional graphene oxide reducing product having a high capacity and high output characteristics as a negative electrode active material, and a high life cycle through the formation of a stable structure.
도 1은 수용성 폴리머를 포함하지 않고 동결건조시켜 불규칙적인 주상 삼차원 구조(columnar three-dimensional structure)를 지닌 산화그래핀 환원물의 전자현미경 사진, 이를 집전체에 코팅시킨 후 형성시킨 경우 불안정한 구조로 인한 부서짐을 나타내는 음극사진 및 산화그래핀 페이스트를 100℃에서 건조시킨 산화그래핀 전자현미경 사진이고,
도 2 및 도 3은 본 발명의 실시예에 따른 소나무형 가지를 가지는 주상구조의 산화그래핀 환원물 및 수용성폴리머를 포함하는 에너지 저장소자용 음극 제조방법의 순서도이고,
도 4는 복합 페이스트의 동결구조가 형성되는 기구를 나타낸 사시도이고,
도 5는 본 발명 산화그래핀 환원물의 주상구조를 전자현미경, 투과전자현미경 사진 및 그래핀 사이의 간격을 나타내는 도이고,
도 6은 흑연, 2차원 산화그래핀 환원물 필름, 수용성폴리머를 포함하는 2차원 산화그래핀 환원물 필름, 수용성폴리머를 포함하지 않고 동결건조시킨 3차원 그래핀 폼, 수용성폴리머를 포함하는 복합 페이스트 기반 소나무형 가지를 가지는 주상 삼차원 산화그래핀 환원물의 라만 스펙트럼(Raman spectra)이고,
도 7은 상기 도 6의 비교군을 포함하는 주상 삼차원 산화그래핀 환원물의 X선 회절(X-ray diffraction)을 통하여 확산거리의 비교를 나타내는 그래프이고,
도 8은 상기 도 6의 비교군을 포함하는 주상 삼차원 산화그래핀 환원물의 관능기를 나타내는 IR 스펙트럼이고,
도 9는 상기 도 6의 비교군을 포함하는 주상 삼차원 산화그래핀 환원물 음극의 직류 저항 그래프이고,
도 10 내지 도 13은 흑연, 2차원 산화그래핀 환원물 필름, 주상 삼차원 산화그래핀 환원물의 충방전 용량을 나타낸 그래프이고,
도 14는 상기 도 10 내지 도 13의 비교군을 포함하는 셀을 이용한 주상 삼차원 산화그래핀 환원물의 임피던스(교류저항)를 나타내는 나이퀘스트 플롯(Nyquist plot) 그래프이다.1 is an electron micrograph of a graphene oxide reduced product having an irregular columnar three-dimensional structure by freeze-drying without containing a water-soluble polymer. When formed after coating it on a current collector, it is broken due to an unstable structure. It is an electron micrograph of a negative electrode and graphene oxide obtained by drying the graphene oxide paste at 100°C,
2 and 3 are flow charts of a method for manufacturing a negative electrode for an energy storage device including a graphene oxide reduced product and a water-soluble polymer having a columnar structure having a pine branch according to an embodiment of the present invention,
Figure 4 is a perspective view showing a mechanism for forming a frozen structure of the composite paste,
5 is a diagram showing the spacing between graphene and an electron microscope, a transmission electron microscope photograph of the columnar structure of the graphene oxide reduced product of the present invention,
6 is a graphite, a two-dimensional graphene oxide reduced product film, a two-dimensional graphene oxide reduced product film containing a water-soluble polymer, a three-dimensional graphene foam freeze-dried without including a water-soluble polymer, and a composite paste containing a water-soluble polymer It is a Raman spectra of a columnar three-dimensional graphene oxide reduction product having a base pine branch,
FIG. 7 is a graph showing a comparison of diffusion distances through X-ray diffraction of a columnar three-dimensional graphene oxide reduced product including the comparison group of FIG. 6,
8 is an IR spectrum showing a functional group of a columnar three-dimensional graphene oxide reduced product including the comparative group of FIG. 6,
9 is a DC resistance graph of a columnar three-dimensional graphene oxide reduced cathode including the comparative group of FIG. 6,
10 to 13 are graphs showing charge and discharge capacity of graphite, two-dimensional graphene oxide reduced product film, and columnar three-dimensional graphene oxide reduced product,
14 is a Nyquist plot graph showing the impedance (AC resistance) of a columnar three-dimensional graphene oxide reduction product using a cell including the comparison group of FIGS. 10 to 13.
이하 도면을 참조하여 본 발명의 실시예에 따른 주상 삼차원 구조(columnar three-dimensional structure)의 산화그래핀 환원물을 포함하는 에너지 저장소자용 음극을 상세히 설명한다.Hereinafter, a cathode for an energy storage device including a graphene oxide reduced product having a columnar three-dimensional structure according to an embodiment of the present invention will be described in detail with reference to the drawings.
소나무형 가지를 가지는 주상구조의 산화그래핀 환원물을 얻는 방법으로는 먼저, 도 2에 도시된 바와 같이 페이스트를 준비한다(S1).As a method of obtaining a graphene oxide reduced product having a columnar structure having a pine branch, first, a paste is prepared as shown in FIG. 2 (S1).
여기서 페이스트는 고전도성 산화그래핀 환원물(Reduced graphene oxide)을 포함하는 페이스트(Paste)를 말한다. Here, the paste refers to a paste containing highly conductive reduced graphene oxide.
페이스트 제조방법으로는 먼저 분말상태의 그래파이트 플레이크(Flake)로부터 분말상태의 산화 그래파이트 플레이크를 합성한다. In the paste manufacturing method, first, graphite oxide flakes in powder form are synthesized from graphite flakes in powder form.
산화 그래파이트 플레이크는 분말상태의 고순도 그래파이트 플레이크(99.9995%)를 산처리를 통해 합성한 후 수용액의 반복 세척과정과 원심분리기를 이용하여 불순물을 제거함으로써 얻어진다. 여기서 산처리는 스타우덴마이어법, 험머스법, 브로디법 중 어느 하나를 이용하며, 농질산(Fuming nitric acid) 또는 황산(Sulfuric acid)에 소듐클로레이트(NaClO4) 또는 포타슘망가네이트(KMnO4)를 첨가하여 상온에서 48시간 교반을 통해 산화시킨다. 그리고 증류수를 사용하여 중화시킨 후 필터링(Filtering) 및 워싱(Washing)을 반복한다. 산화된 그래파이트 용액은 건조과정을 거친 후 그라인딩(Grinding)을 이용하여 분말 상태의 산화 그래파이트 플레이크를 얻는다.Graphite oxide flakes are obtained by synthesizing powdery high-purity graphite flakes (99.9995%) through acid treatment, and then removing impurities using a repeated washing process of an aqueous solution and a centrifuge. Here, the acid treatment uses any one of the Staudenmeyer method, Hummers method, and Brody method, and sodium chlorate (NaClO 4 ) or potassium manganate (KMnO 4 ) is used in concentrated nitric acid or sulfuric acid. And oxidized through stirring at room temperature for 48 hours. After neutralizing with distilled water, filtering and washing are repeated. The oxidized graphite solution undergoes a drying process and then grinding to obtain powdery graphite oxide flakes.
산화 그래파이트 플레이크를 용매 내에 분산 및 박리시켜 저결함, 고순도 산화그래핀을 제조한다. 여기서 산화 그래파이트 플레이크를 분산시키기 위한 용매는 수산화나트륨(NaOH), 수산화칼륨(KOH), 수산화암모늄(NH4H), 수산화리튬(LiOH), 수산화칼슘(Ca(OH)2)으로 이루어진 군 및 이의 혼합물 군에서 선택된 1종을 포함하는 수용액을 사용하며, 용매의 pH는 8 이상에서 분산이 가능하며 10 이상이 바람직하다. 또한 산화 그래핀 형성을 위한 산화 그래파이트 분산 및 박리는 초음파분쇄(Sonication), 호모게나이저(Homogenizer), 고압균질기(High pressurehomogenizer) 중 하나 이상을 사용하여 형성된다. 이때 분산 및 박리시 필요한 시간은 10분 내지 5시간으로, 10분 미만일 경우 분산 및 박리가 원활이 이루어지지 않으며, 5시간을 초과하여 처리를 실시할 경우 결함 형성이 많아져 고품질 산화그래핀을 얻을 수 없다.Graphene oxide flakes are dispersed and peeled in a solvent to produce low-defect, high-purity graphene oxide. Here, the solvent for dispersing the graphite oxide flakes is a group consisting of sodium hydroxide (NaOH), potassium hydroxide (KOH), ammonium hydroxide (NH 4 H), lithium hydroxide (LiOH), calcium hydroxide (Ca(OH) 2 ), and mixtures thereof An aqueous solution containing one selected from the group is used, and the pH of the solvent can be dispersed at 8 or more, and 10 or more is preferable. In addition, graphite oxide dispersion and exfoliation for formation of graphene oxide are formed by using at least one of ultrasonication, homogenizer, and high pressure homogenizer. At this time, the time required for dispersion and peeling is 10 minutes to 5 hours, and if it is less than 10 minutes, dispersion and peeling are not performed smoothly, and if the treatment is performed for more than 5 hours, defects are formed and high-quality graphene oxide is obtained. Can't.
다음으로 양이온-파이 상호작용을 통하여 고농도의 양이온반응 산화그래핀 분산용액을 형성시키는 방법으로써, 알칼리 용매의 첨가를 통하여 나트륨, 칼륨, 암모늄, 리튬과 같은 양이온과 육각형 sp2 영역의 파이 구조와의 반응을 활성화시킨다. 이와 같은 상호작용은 알칼리 용매의 약환원반응을 통한 산화그래핀의 산소작용기 제거 및 양이온과의 상호작용을 위한 반응시간의 유지를 통하여 형성된다. 이 방법은 초음파분쇄와 같은 외부의 물리적인 힘이 가해지지 않는 상태에서 산화그래핀 분산용액을 1분 내지 10시간 정도의 반응시간을 유지함으로써 양이온반응이 일어난다. 양이온-파이 상호작용에 의해 산화그래핀 분산용액을 제조할 경우 기존의 분산용액에 비해 분산성이 향상된다. 또한 양이온-파이 상호작용의 활성화를 위하여 회전증발법(Rotary evaporation)을 이용한 산화그래핀의 고농도 분산용액을 형성시키는 것이 바람직하다.Next, as a method of forming a high concentration cationic graphene oxide dispersion solution through a cation-pi interaction, the cation such as sodium, potassium, ammonium, and lithium and the pie structure of the hexagonal sp 2 region are formed through the addition of an alkali solvent. Activate the reaction. Such an interaction is formed through the removal of oxygen functional groups of graphene oxide through weak reduction reaction of an alkali solvent and maintenance of reaction time for interaction with cations. In this method, a cation reaction occurs by maintaining a reaction time of about 1 minute to 10 hours in the graphene oxide dispersion solution in a state where no external physical force such as ultrasonic grinding is applied. When a graphene oxide dispersion solution is prepared by cation-pi interaction, the dispersibility is improved compared to the existing dispersion solution. In addition, it is preferable to form a high concentration dispersion solution of graphene oxide using rotary evaporation to activate the cation-pi interaction.
그 후 양이온반응 산화그래핀 분산용액을 용매에 중화시킨 후 제조된 용액에 환원제를 첨가하여 습식공정을 통해 환원시킴으로써 산화그래핀 환원물을 얻게 된다. 여기서 환원제는 통상적인 환원제를 제한 없이 사용할 수 있으며, 예를 들어 수산화나트륨(NaOH), 수산화칼륨(KOH), 수산화암모늄(NH4OH), 수산화붕소나트륨(NaBH4), 히드라진(N2H4), 하이드로아이오닉산(Hydroionic acid), 아스코빅산(Ascovic acid)으로 이루어진 군 및 이의 혼합물 군에서 선택된 1종인 것이 바람직하다. Thereafter, the cationically reactive graphene oxide dispersion solution is neutralized in a solvent, and then a reducing agent is added to the prepared solution to reduce it through a wet process, thereby obtaining a reduced graphene oxide product. Here, the reducing agent can be used without limitation, for example, sodium hydroxide (NaOH), potassium hydroxide (KOH), ammonium hydroxide (NH 4 OH), sodium borohydride (NaBH 4 ), hydrazine (N 2 H 4 ), hydroionic acid (Hydroionic acid), ascorbic acid (Ascovic acid) is preferably one selected from the group consisting of and mixtures thereof.
또한 용매는 아세톤(Acetone), 메틸에틸케톤(Methyl ethyl ketone), 메틸알콜(Methyl alcohol), 에틸알콜(Ethyl alcohol), 이소프로필알콜(Isopropyl alcohol), 부틸알콜(Butyl alcohol), 에틸렌글리콜(Ethylene glycol), 폴리에틸렌글리콜(Polyethylene glycol), 테트라하이드로퓨란(Tetrahydrofuran), 테트라하이드로피란(Tetrahydropyran) 디메틸포름아마이드(Dimethyl formamide), 디메틸아세트아마이드(Dimethyl acetamide), N-메틸-2-피롤리돈(N-Methyl-2-pyrolidone), 헥산(Hexane), 사이클로헥사논(Cycolhexanone), 톨루엔(Toluene), 클로로폼(Cloroform), 디클로로벤젠(Dichlorobenzene), 디메틸벤젠(Dimethyl benzene), 트리메틸벤젠(Trimethyl benzene), 피리딘(Pyridine), 메틸나프탈렌(Methyl naphthalene), 니트로메탄(Nitromethane), 아크릴로니트릴(Acrylonitrile), 옥타데실아민(Octadecylamine), 아닐린(Aniline), 디메틸설폭사이드(Dimethyl sulfoxide), 증류수로 이루어진 군 및 이의 혼합물 군에서 선택된 1종인 것이 바람직하다.In addition, solvents include Acetone, Methyl ethyl ketone, Methyl alcohol, Ethyl alcohol, Isopropyl alcohol, Butyl alcohol, and Ethylene glycol. glycol), polyethylene glycol, tetrahydrofuran, tetrahydropyran, dimethyl formamide, dimethyl acetamide, N-methyl-2-pyrrolidone (N -Methyl-2-pyrolidone), hexane, Cycolhexanone, toluene, chloroform, dichlorobenzene, dimethyl benzene, trimethyl benzene , Pyridine, methyl naphthalene, nitromethane, acrylonitrile, octadecylamine, aniline, dimethyl sulfoxide, and distilled water And it is preferably one selected from the group of mixtures thereof.
페이스트를 수용성 폴리머와 혼합하여 분산 복합 페이스트를 제조한다(S2).The paste is mixed with a water-soluble polymer to prepare a dispersion composite paste (S2).
S1 단계에서 제조된 고농도 및 고전도성 산화그래핀 환원물을 포함하는 페이스트를 수용성 폴리머와 혼합하여 안정적으로 분산되는 분산 복합 페이스트를 제조한다. 분산용액에 분산된 산화그래핀 환원물을 원심분리를 통해 페이스트화하고, 여기에 수용성폴리머를 혼합하여 산화그래핀 환원물을 분산시켜 분산 복합 페이스트를 제조한다. 산화그래핀 환원물 페이스트는 수용성폴리머 100중량부에 대해 50중량부 내지 200중량부만큼 혼합하는 것이 바람직하다. 만약 분산 복합 페이스트가 50중량부 미만일 경우 필요한 그래핀의 양이 적어 전지에 알맞지 않으며, 분산 복합 페이스트가 200중량부를 초과할 경우 수용성폴리머의 양이 작아 원하는 형상의 주상 구조를 만들 수 없다. A dispersion composite paste stably dispersed is prepared by mixing the paste containing the highly concentrated and highly conductive graphene oxide reduced product prepared in step S1 with a water-soluble polymer. The graphene oxide reduced product dispersed in the dispersion solution is formed into a paste through centrifugation, and a water-soluble polymer is mixed therein to disperse the graphene oxide reduced product to prepare a dispersion composite paste. The graphene oxide reduced product paste is preferably mixed by 50 parts by weight to 200 parts by weight based on 100 parts by weight of the water-soluble polymer. If the amount of the dispersed composite paste is less than 50 parts by weight, the required amount of graphene is not suitable for the battery, and if the amount of the dispersed composite paste exceeds 200 parts by weight, the amount of the water-soluble polymer is small, so that the columnar structure of the desired shape cannot be formed.
여기서 수용성 폴리머는 폴리비닐알콜(Polyvinyl alcohol), 폴리에틸렌글리콜(Polyethylene glycol), 폴리에틸렌이민(Polyethyleneimine), 폴리아마이드아민(Polyamideamine), 폴리비닐포름아미드(Polyvinyl formamide), 폴리비닐아세테이트(Polyvinyl acetate), 폴리아크릴아마이드(Polyacrylamide), 폴리비닐피롤리돈(Polyvinylpyrrolidone), 폴리디알릴디메틸암모늄클로라이드, 폴리에틸렌옥사이드(Polyethyleneoxide), 폴리아크릴산(Polyacrylic acid), 폴리스티렌설폰산(Polystyrenesulfonic acid), 폴리규산(Polysilicic acid), 폴리인산(Polyphosphoric acid), 폴리에틸렌설폰산(Polyethylenesulfonic acid), 폴리-3-비닐록시프로펜-1-설폰산(Poly-3-vinyloxypropane-1-sulfonic acid), 폴리-4-비닐페놀(Poly-4-vinylphenol), 폴리-4-비닐페닐설폰산(Poly-4-vinylphenyl sulfuric acid), 폴리에틸렌포스포릭산(Polyethyleneohosphoric acid), 폴리말릭산(Polymaleic acid), 폴리-4-비닐벤조산(Poly-4-vinylbenzoic acid), 메틸셀룰로오스(Methyl cellulose), 하이드록시에틸셀룰로오스(Hydroxy ethyl cellulose), 카복시메틸셀룰로오스(Carboxy methyl cellulose), 소듐카복시메틸셀룰로오스(Sodium carboxy methyl cellulose), 하이드록시프로필셀룰로오스(Hydroxy propyl cellulose), 소듐카복시메틸셀룰로오스(Sodium carboxymethylcellulose), 폴리사카라이드(Polysaccharide), 전분(Starch)으로 이루어진 군 및 이의 혼합물 군에서 선택된 1종인 것이 바람직하다.Here, the water-soluble polymer is polyvinyl alcohol, polyethylene glycol, polyethyleneimine, polyamideamine, polyvinyl formamide, polyvinyl acetate, polyvinyl acetate, and polyvinyl acetate. Acrylamide, Polyvinylpyrrolidone, Polydiallyldimethylammonium chloride, Polyethyleneoxide, Polyacrylic acid, Polystyrenesulfonic acid, Polysilicic acid, Polyphosphoric acid, polyethylenesulfonic acid, poly-3-vinyloxypropane-1-sulfonic acid, poly-4-vinylphenol (Poly- 4-vinylphenol), Poly-4-vinylphenyl sulfuric acid, Polyethyleneohosphoric acid, Polymaleic acid, Poly-4-vinylbenzoic acid (Poly-4 -vinylbenzoic acid), methyl cellulose, hydroxyethyl cellulose, carboxy methyl cellulose, sodium carboxy methyl cellulose, hydroxypropyl cellulose ), sodium carboxymethylcellulose (Sodium carboxymethylcellulose), polysaccharide (Polysaccharide), starch (Starch) is preferably one selected from the group consisting of and mixtures thereof.
산화그래핀 환원물 페이스트와 수용성폴리머의 원활한 분산을 위해 교반(Stirring), 혼합(Thinky mixer), 3롤분쇄(3Roll milling), 볼분쇄(Ball milling) 중 적어도 어느 하나의 방법을 이용하여 제조되는 것이 바람직하다.Produced by using at least one of stirring, mixing (Thinky mixer), 3-roll milling, and ball milling for smooth dispersion of graphene oxide reduced product paste and water-soluble polymer. It is desirable.
복합 페이스트와 후술할 집전체와의 접착력을 향상시키기 위해 경우에 따라서 복합 페이스트에 접착제를 첨가할 수 있다. 접착제는 일반적으로 금속 위에 활물질을 도포할 때 사용되는 폴리불화비닐리덴(Polyvinylidene fluoride), 폴리염화비닐리덴(Polyvinylidene chloride), 폴리비닐알콜(Polyvinyl alcohol), 카르복시메틸셀룰로오즈(Carboxymethyl cellulose), 히드록시프로필셀룰로오즈(Hydroxypropylcellulose), 폴리비닐피롤리돈(Polyvinyl pyrrolidone), 폴리비닐피롤리돈폴리비돈(Polyvinylpyrrolidonepolyvidone), 테트라플루오로에틸렌(Tetrafluoroethylene), 폴리에틸렌(Polyethylene), 폴리프로필렌(Polypropylene)으로 이루어진 군 및 이의 혼합물 군에서 선택된 1종인 것이 바람직하다.In order to improve the adhesion between the composite paste and a current collector to be described later, an adhesive may be added to the composite paste in some cases. Adhesives are polyvinylidene fluoride, polyvinylidene chloride, polyvinyl alcohol, carboxymethyl cellulose, and hydroxypropyl, which are generally used when applying active materials on metal Group consisting of cellulose (Hydroxypropylcellulose), polyvinyl pyrrolidone, polyvinylpyrrolidonepolyvidone, tetrafluoroethylene, polyethylene, polypropylene, and mixtures thereof It is preferably one selected from the group.
복합 페이스트를 집전체에 도포한다(S3).The composite paste is applied to the current collector (S3).
S2 단계를 통해 제조된 산화그래핀 환원물 및 수용성폴리머를 포함하는 복합 페이스트(10)를 에너지 저장소자의 음극 제작을 위해 집전체(20)에 도포한다. 도 3a에 도시된 바와 같이 필요한 영역만큼을 외부와 격리시키는 틀(30)을 집전체(20)의 상부에 올리고, 틀(30)의 내부에 복합 페이스트(10)를 주입한다. 그 후 페이스트(10)의 상부를 도 3b와 같이 롤링바(40)를 통해 내부 및 표면에 빈공간 없이 페이스트(10)가 균일하게 도포되도록 한다. 여기서 집전체(20)는 구리(Cu), 알루미늄(Al), 백금(Pt), 금(Au), 니켈(Ni), 티타늄(Ti), 철(Fe), 몰리브덴(Mo)으로 이루어진 군 및 이의 혼합물 군에서 선택된 1종이 바람직하다.The
경우에 따라서 틀을 이용하지 않고 패터닝(Patterning), 압출(Extruding), 블라스팅(Blasting), 스프레드(Spread) 등과 같은 가공법을 이용하여 복합 페이스트(10)를 집전체(20)에 도포 가능하다.In some cases, the
복합 페이스트를 동결건조하여 주상 삼차원 구조의 산화그래핀 환원물을 형성한다(S4).The composite paste is freeze-dried to form a graphene oxide reduced product having a columnar three-dimensional structure (S4).
집전체(20)의 상부에 배치된 복합 페이스트(10)를 동결건조하여 도 3c와 같이 복합 페이스트가 소나무형 가지를 가지는 주상구조의 산화그래핀 환원물(50)을 갖도록 한다. 동결건조는 액화질소를 이용하여 -100 내지 270℃에서 10 내지 60분 정도 동결시킨 후, 이를 10-3 torr에서 1시간 내지 24시간 동안 건조시킨다.The
이와 같이 복합 페이스트(10)를 동결건조하게 되면, 도 4에 도시된 바와 같이 어는점이 낮은 물(60)이 먼저 얼기 때문에 수용성폴리머(11)와 물(60) 간에 상분리가 일어나게 된다. 즉, 물(60)이 기둥형상으로 동결되면, 산화그래핀 환원물(13) 및 수용성폴리머(11)는 물(13)이 동결되지 않은 영역에 정렬되고, 온도가 물(13)이 동결된 온도보다 더 낮아지게 되면 동결된다. 그 후 저온에서 건조시키게 되면 물(13)과 수용성폴리머(11)가 승화되어 도 5에 도시된 바와 같이 소나무 형상과 유사한 소나무형 가지를 가지는 주상구조의 산화그래핀 환원물(50)이 형성된다. 이와 같은 소나무형 가지를 가지는 주상구조는 물(11)과 물(11)을 제외한 복합 페이스트(10)와의 어는점 차이에 의해 생성된다.When the
여기서 집전체는 1㎛ 내지 1cm의 두께를 갖는 것이 바람직하다.Here, the current collector preferably has a thickness of 1 μm to 1 cm.
산화그래핀 환원물을 압착한다.(S5)The reduced graphene oxide is compressed (S5).
동결건조를 통해 소나무형 가지를 가지는 주상구조가 형성된 산화그래핀 환원물(50)은 물(13)과 수용성폴리머(11)가 승화되면서 큰 활동영역(Active site)이 형성되며, 이에 의해 주상 삼차원 구조의 가지를 가지는 주상 산화그래핀 환원물(50)의 부피가 일반적인 동결건조에 의한 산화그래핀의 환원물보다 커진다. 주상 삼차원 산화그래핀 환원물(50)의 부피가 클 경우 전지의 전체 부피가 커지기 때문에 이를 집전체(20)에 압착시켜 부피를 감소시킨다. 압착시키는 방법으로는 S3 단계에서 설치했던 틀(30)을 집전체(20)로부터 제거하고, 가지를 가지는 주상 산화그래핀 환원물(50)을 일반적으로 사용되는 압착 방법을 이용하며 압착한다. 압착 방법은 가지를 가지는 주상 산화그래핀 환원물(50)의 상부를 무거운 물체나 기체를 이용하여 압착하는 가압(Pressurization), 복수의 롤 사이를 통과시키는 압연(Rolling), 긴 관을 통과하여 부피를 감소시키는 압출(Extrusion) 등과 같은 방법을 사용할 수 있다. 이와 같이 집전체(20)에 소나무형 가지를 가지는 주상구조를 갖는 산화그래핀 환원물(50)이 형성된 음극(100)은 에너지 저장소자에 사용 가능하다.The graphene oxide reduced
음극을 이용하여 적층형 에너지 저장소자를 제작한다(S6).A stacked energy storage device is fabricated using the cathode (S6).
S1 내지 S5 단계를 통해 제조된 가지를 가지는 주상 삼차원 형상의 산화그래핀 환원물(50)을 포함하는 음극(100)을 이용하여 리튬 이온 전지나 슈퍼 커패시터와 같은 적층형 에너지 저장소자를 제조한다. 여기서 에너지 저장소자는 파우치(Pouch) 형상 또는 코인 셀(Coin cell) 형상이 바람직하다. 리튬 이온 전지의 경우 음극(100)과 리튬 금속으로 이루어진 양극(200) 사이에 분리막(Separator, 300)를 설치하여 최종적으로 전지를 제조한다.A stacked energy storage device such as a lithium ion battery or a super capacitor is manufactured by using the
종래의 음극활물질로 사용되는 흑연 또는 그래핀 화합물의 경우 복수의 그래핀이 매우 근접하게 적층되어 있으며 활동영역(Active site)이 좁아 이온의 삽입과 탈리가 어려울 뿐만 아니라 삽입 및 탈리 시간이 많이 소요되는 문제점이 있었다.In the case of graphite or graphene compound used as a conventional negative electrode active material, a plurality of graphenes are stacked very closely and the active site is narrow, making it difficult to insert and desorb ions, as well as take a long time for insertion and desorption. There was a problem.
하지만 S1 내지 S5 단계를 통해 제조된 소나무형 가지를 가지는 주상구조를 갖는 산화그래핀 환원물은 활동영역(Active site)이 넓기 때문에 빠른시간 내에 이온 삽입 및 탈리가 가능하여 고속 충방전이 가능하며, 이온 저장영역이 넓어 충방전 용량이 크다는 장점이 있다.However, since the graphene oxide reduced product having a columnar structure having a pine-shaped branch manufactured through steps S1 to S5 has a wide active site, ions can be inserted and desorbed within a short time, and high-speed charging and discharging is possible. There is an advantage in that the charge/discharge capacity is large due to the wide ion storage area.
이하 본원발명의 실시예와 비교예를 도면을 통해 상세히 설명한다.Hereinafter, examples and comparative examples of the present invention will be described in detail through the drawings.
도면의 설명에서는 실시예인 소나무형 가지를 가지는 주상구조의 산화그래핀 환원물의 분석 그래프 및 비교예인 산화그래핀 환원물을 이용한 다양한 실험 결과에 대한 그래프이다.In the description of the drawings, an analysis graph of a graphene oxide reduced product having a columnar structure having a pine branch as an example and a graph of various experimental results using a graphene oxide reduced product as a comparative example.
도 6a는 라만 스펙트럼을 나타낸 것으로 여기서 흑연(NG), 일반적인 방법으로 핫플레이트에서 건조시킨 산화그래핀 환원물(2D-rGO), 일반적인 방법으로 산화그래핀 환원물과 수용성폴리머를 혼합하여 건조시킨 산화그래핀 환원물(2D-rGO(SCMC)), 동결건조를 통해 제조된 산화그래핀 환원물(rGO foam), 수용성폴리머를 혼합하여 동결건조시켜 가지를 가지는 주상 구조를 갖는 산화그래핀 환원물(M-rGO(SCMC))을 의미한다.6A shows a Raman spectrum, where graphite (NG), graphene oxide reduced product (2D-rGO) dried on a hot plate by a general method, graphene oxide reduced product and a water-soluble polymer are mixed and dried by a general method. Graphene reduced product (2D-rGO (SCMC)), graphene oxide reduced product prepared through lyophilization (rGO foam), and lyophilized graphene oxide reduced product having a columnar structure with branches ( M-rGO (SCMC)).
A 영역의 피크는 그래파이트 피크로 모든 시료에서 나타나는 것을 확인할 수 있다. B 영역의 피크는 결함피크이거나 SCMC의 피크를 나타내는 데 만약 결함피크일 경우 C 영역의 피크가 줄어들게 된다. 이에 대해 2D-rGO 및 rGO foam 피크는 C 영역의 피크가 작은 것이 확인되어 A 영역의 피크가 결함피크로 인식되지만 2D-rGO(SCMC) 및 M-rGO(SCMC)는 C 영역의 피크가 줄어들지 않은 것으로 보아 A 영역의 피크는 SCMC 피크인 것을 확인할 수 있다.The peak in region A is a graphite peak, and it can be seen that it appears in all samples. The peak in region B represents a defect peak or a peak in SCMC. If the peak is a defect peak, the peak in region C decreases. In contrast, 2D-rGO and rGO foam peaks have a small peak in the C region, so the peak in A region is recognized as a defect peak, but 2D-rGO (SCMC) and M-rGO (SCMC) do not decrease the peak in C region. As a result, it can be seen that the peak in region A is an SCMC peak.
도 6b는 또한 라만 스펙트럼에 관한 것으로 각각의 ID/IG 비율은 2D-rGO: 1.23, 2D-rGO(SCMC): 1.84, rGO foam: 1.34, M-rGO(SCMC): 2.73으로 M-rGO(SCMC)가 가장 높았으며, I2D/G 비율은 D-rGO: 0.42, 2D-rGO(SCMC): 0.89, rGO foam: 0.21, M-rGO(SCMC): 1.10으로 역시 M-rGO(SCMC)가 가장 높은 것을 확인할 수 있다. 따라서 M-rGO(SCMC)의 퀄리티가 가장 좋은 것이 확인된다.Figure 6b also relates to the Raman spectrum, each of the I D / I G ratio is 2D-rGO: 1.23, 2D-rGO (SCMC): 1.84, rGO foam: 1.34, M-rGO (SCMC): 2.73 M-rGO. (SCMC) was the highest, and the I 2D / G ratio was D-rGO: 0.42, 2D-rGO (SCMC): 0.89, rGO foam: 0.21, M-rGO (SCMC): 1.10, which is also M-rGO (SCMC). You can see that is the highest. Therefore, it is confirmed that the quality of M-rGO (SCMC) is the best.
도 7은 X선 회절(X-ray diffraction)을 나타낸 것으로 각각의 피크에서 나타내는 2세타(theta), 피크의 위치를 통한 층간간격, 피크의 반측폭을 통하여 결정화간격(Lc)을 통한 확산거리(Diffusion length)를 쉐러 방정식(Scherrer equation)을 통하여 얻을 수 있으며, 이때의 Lc 값들은 NG(Natural graphite: 흑연): 437.2, 2D-rGO:15.3, 2D-rGO(SCMC):15., rGO foam: 14.7, M-rGO(SCMC): 13.8로써 소나무형 가지를 가지는 주상구조를 갖는 산화그래핀 환원물이 가장 낮은 확산거리를 갖게 되는 결과를 확인할 수 있다. 이를 통하여 이온의 삽입과 탈리를 가장 용이하게 할 수 있는 구조임을 확인할 수 있다.7 shows X-ray diffraction, and the diffusion distance through the crystallization interval Lc through the 2 theta represented by each peak, the interlayer gap through the position of the peak, and the half-side width of the peak ( Diffusion length) can be obtained through the Scherrer equation, and the Lc values at this time are NG (Natural graphite): 437.2, 2D-rGO:15.3, 2D-rGO (SCMC):15., rGO foam: 14.7, M-rGO (SCMC): As 13.8, it can be confirmed that the graphene oxide reduced product having the columnar structure with pine branches has the lowest diffusion distance. Through this, it can be confirmed that it is a structure that can most easily insert and desorb ions.
도 8은 IR 스펙트럼을 나타낸 것으로 C=C sp2 피크는 그래파이트 피크를 의미한다. C-O stretching을 나타내는 2개의 피크는 그래핀이 산화된 경우 그래핀 주위에 산소관능기가 붙기 때문에 이에 의해 C-O stretching 위치에서 피크를 발견할 수 있다. 산화그래핀을 나타내는 GO의 경우에는 이 위치에서 피크가 발견되지만 산화그래핀 환원물에는 산소관능기가 없기 때문에 rGO는 C-O stretching 피크를 발견할 수 없다. 또한 rGO(SCMC)의 피크는 하부의 SCMC 피크와 유사한 것으로 보아 산화그래핀 환원물과 수용성폴리머가 혼합된 것을 확인할 수 있다.Figure 8 shows the IR spectrum, C = C sp 2 peak means a graphite peak. The two peaks representing CO stretching are because when graphene is oxidized, an oxygen functional group is attached around the graphene, whereby the peak can be found at the CO stretching position. In the case of GO, which represents graphene oxide, a peak is found at this position, but since there is no oxygen functional group in the graphene oxide reduced product, rGO cannot find a CO stretching peak. In addition, since the peak of rGO (SCMC) is similar to the peak of the lower SCMC, it can be seen that the graphene oxide reduced product and the water-soluble polymer are mixed.
도 9는 각 시료를 포함하는 전극을 놓고 직렬저항을 측정한 그래프이다. 여기서 기울기가 클수록 저항이 낮은 것을 의미한다. 기울기는 2D-rGO가 가장 커 저항이 가장 낮지만 2D-rGO는 활동영역이 작기 때문에 저장가능한 용량이 적어 전극용으로는 적합하지 않다. 그 다음으로는 M-rGO(SCMC) 및 2D-rGO(SCMC)가 저항이 작은데 2D-rGO(SCMC)는 2D-rGO와 동일한 이유로 전극용으로는 적합하지 않다. 그리고 동결건조 방법으로 제조한 M-rGO(SCMC)와 rGO foam을 비교할 경우 M-rGO(SCMC)의 저항이 낮은데 이 이유는 무질서하게 포어를 갖는 구조보다는 일정하게 정렬된 가지를 가지는 주상 구조의 포어를 갖는 것이 저항을 낮추는 데 중요한 요인으로 생각된다.9 is a graph of measuring series resistance by placing an electrode including each sample. Here, the larger the slope, the lower the resistance. 2D-rGO has the highest slope and the lowest resistance, but because 2D-rGO has a small active area, it has a small storage capacity and is not suitable for electrodes. Next, M-rGO (SCMC) and 2D-rGO (SCMC) have low resistance, but 2D-rGO (SCMC) is not suitable for electrodes for the same reason as 2D-rGO. In addition, when comparing M-rGO (SCMC) and rGO foam produced by the freeze-drying method, the resistance of M-rGO (SCMC) is low. This is because pores of columnar structure with uniformly aligned branches rather than structures with disordered pores. It is thought to be an important factor in lowering the resistance.
도 10은 M-rGO(SCMC)를 포함하는 전지에 급속 충방전 했을 때의 용량을 나타낸 것으로 1C는 1시간 동안 충방전 했을 때의 용량, 0.2C는 2시간, 10C는 1/10시간, 50C는 1/50시간을 나타낸다. 또한 CHA는 충전(Charge), DCH는 방전(Discharge)을 나타낸다. 그래프에서 볼 수 있듯이 1/50시간이라는 짧은 시간에 급속 충방전을 하여도 용량이 큰 것이 확인된다.Figure 10 shows the capacity when rapidly charging and discharging a battery containing M-rGO (SCMC). 1C is the capacity when charging and discharging for 1 hour, 0.2C is 2 hours, 10C is 1/10 hours, 50C. Represents 1/50 hours. In addition, CHA stands for Charge, and DCH stands for Discharge. As can be seen from the graph, it is confirmed that the capacity is large even when rapid charging and discharging in a short time of 1/50 hours.
도 11은 0.2C 즉 5시간 동안 2D-rGO와 M-rGO(SCMC)를 포함하는 전지에 각각 충방전 했을 때의 용량을 나타낸 그래프이다. 여기에서 2D-rGO보다 M-rGO(SCMC)의 충방전 용량이 월등히 큰 것을 확인할 수 있다.FIG. 11 is a graph showing the capacity when charging and discharging batteries containing 2D-rGO and M-rGO (SCMC) for 5 hours, that is, 0.2C. Here, it can be seen that the charge/discharge capacity of M-rGO (SCMC) is much larger than that of 2D-rGO.
도 12는 각 시간별로 전지를 방전했을 때 빠른 방전이 가능한가를 확인하는 그래프로 NG 및 M-rGO(SCMC)를 포함하는 전지에 대해 각각 실험하였다. 여기서 0.2C는 5시간, 1C는 1시간, 5C는 1/5시간, 10C는 1/10시간, 30C는 1/30시간, 50C는 1/50시간, 100C는 1/100시간을 각각 나타낸 것이다. 각 시간에 대해 충방전 사이클을 5번 반복하여 측정한 결과로 M-rGO(SCMC)는 시간이 1/100이라도 방전이 가능하지만, NG는 방전용량이 매우 작은 것을 확인할 수 있다. 특히 1/50시간과 1/100시간에는 방전되지 않았다.12 is a graph confirming whether rapid discharge is possible when the battery is discharged for each time period, and experiments were performed on the battery including NG and M-rGO (SCMC). Here, 0.2C is 5 hours, 1C is 1 hour, 5C is 1/5 hours, 10C is 1/10 hours, 30C is 1/30 hours, 50C is 1/50 hours, and 100C is 1/100 hours. . As a result of measuring by repeating the charge/
도 13은 충방전 사이클을 100번을 돌려서 전지의 충방전이 얼마나 안정적인지 확인한 것으로 M-rGO(SCMC)는 100번의 사이클을 돌려도 안정적인 것을 확인할 수 있지만, NG은 90번을 넘어가게 되면 급속도로 충방전 용량이 줄어드는 것을 확인할 수 있다.13 shows how stable the charging/discharging of the battery is by rotating 100 times of charging and discharging cycles. It can be confirmed that M-rGO (SCMC) is stable even after 100 cycles. However, when NG exceeds 90 times, it is rapidly charged. It can be seen that the discharge capacity decreases.
도 14는 NG, 2D-rGO, M-rGO(SCMC)를 포함하는 전극, 전해액 및 격리막을 모두 포함하는 셀을 이용하여 임피던스(impedance)가를 측정한 그래프로 전극저항, 전해액저항 및 계면저항을 모두 함께 확인할 수 있는 나이퀘스트 플롯(Nyquist plot) 그래프이다. 이 그래프는 기울기가 클수록 이온의 확산저항이 작은 것을 의미한다. 따라서 기울기가 큰 M-rGO(SCMC) 및 NG가 저항이 작다. 또한 높은 주파수 영역에서 반원을 그릴 수 있는데, 그려지는 반원의 직경이 커질수록 임피던스가 커진다. 원의 직경은 NG가 가장 크며 M-rGO(SCMC)가 가장 작다. 따라서 전체적으로 조합했을 경우 임피던스가 가장 작은 것은 M-rGO(SCMC)인 것을 확인할 수 있다.14 is a graph measuring the impedance value using an electrode including NG, 2D-rGO, and M-rGO (SCMC), a cell including all of an electrolyte and a separator. All of the electrode resistance, electrolyte resistance, and interface resistance This is a Nyquist plot graph that can be checked together. This graph means that the larger the slope, the smaller the diffusion resistance of ions. Therefore, M-rGO (SCMC) and NG having a large slope have a small resistance. In addition, a semicircle can be drawn in a high frequency range, and the impedance increases as the diameter of the drawn semicircle increases. The diameter of the circle is the largest in NG and the smallest in M-rGO (SCMC). Therefore, when combined as a whole, it can be confirmed that the lowest impedance is M-rGO (SCMC).
이상 실시예와 비교예를 확인해본 결과 비교예로 사용된 NG, 2D-rGO, r-GO foam와 비교하여 본 발명의 M-rGO(SCMC)는 직렬저항을 측정하였을 때에는 그다시 좋은 효과를 볼 수 없었으나, 셀을 이용하여 저항을 측정한 결과 M-rGO(SCMC)가 임피던스가 가장 작은 것으로 확인되었다. 이는 비교예가 활동영역(Active site)이 작기 때문에 셀에는 적합하지 않다는 것을 의미한다. 또한 실시예를 급속 충방전 실험을 해본 결과, 충방전 용량이 컸으며 짧은 시간내에 급속 충방전이 가능하다는 것을 확인할 수 있었다. 이를 통해 소나무형 가지를 가지는 주상구조를 가진 산화그래핀 환원물은 에너지 저장소자에 매우 적합한 재료인 것이 확인되었다.As a result of checking the above examples and comparative examples, compared with the NG, 2D-rGO, and r-GO foams used as comparative examples, the M-rGO (SCMC) of the present invention has a good effect again when the series resistance is measured. It was not possible, but as a result of measuring resistance using a cell, it was confirmed that M-rGO (SCMC) has the smallest impedance. This means that the comparative example is not suitable for cells because the active site is small. In addition, as a result of performing a rapid charge/discharge experiment in the embodiment, it was confirmed that the charge/discharge capacity was large and that rapid charge/discharge was possible within a short time. Through this, it was confirmed that the reduced graphene oxide having a columnar structure with pine branches is a very suitable material for energy storage.
10: 복합 페이스트 11: 수용성폴리머
13: 물 15: 산환그래핀 환원물
20: 집전체 30: 틀
40: 롤링바 50: 가지를 가지는 주상 산화그래핀 환원물
100: 음극 200: 양극
300: 분리막10: composite paste 11: water-soluble polymer
13: Water 15: Reduced product of oxidized graphene
20: current collector 30: frame
40: rolling bar 50: columnar graphene oxide reduced product having branches
100: cathode 200: anode
300: separator
Claims (8)
상기 음극활물질이
산화그래핀 환원물을 소나무처럼 가지를 가진 주상 구조로 형성시켜 이루어지는 것을 특징으로 하는 주상 삼차원 구조의 산화그래핀 환원물을 음극활물질로 가지는 에너지 저장소자용 음극.With the current collector; In the negative electrode for an energy storage member composed of a negative electrode active material formed on one surface of the current collector,
The negative active material
A negative electrode for an energy storage device having a graphene oxide reduced product having a columnar three-dimensional structure as an anode active material, characterized in that the graphene oxide reduced product is formed by forming a columnar structure having branches like pine trees.
상기 음극활물질은
산화그래핀 환원물 페이스트 및 수용성폴리머를 혼합하여 복합 페이스트를 형성하고, 상기 복합페이스트를 집전체에 도포한 후 상기 집전체를 동결건조하여 소나무처럼 가지를 가지는 주상 구조로 형성시키는 것을 특징으로 하는 주상 삼차원 구조의 산화그래핀 환원물을 음극활물질로 가지는 에너지 저장소자용 음극.The method of claim 1,
The negative active material is
A column, characterized in that the graphene oxide reduced product paste and the water-soluble polymer are mixed to form a composite paste, and after applying the composite paste to a current collector, the current collector is freeze-dried to form a columnar structure having branches like pine trees. A negative electrode for energy storage that has a three-dimensional structure of graphene oxide reduced product as a negative electrode active material.
상기 수용성폴리머는,
폴리비닐알콜(Polyvinyl alcohol), 폴리에틸렌글리콜(Polyethylene glycol), 폴리에틸렌이민(Polyethyleneimine), 폴리아마이드아민(Polyamideamine), 폴리비닐포름아미드(Polyvinyl formamide), 폴리비닐아세테이트(Polyvinyl acetate), 폴리아크릴아마이드(Polyacrylamide), 폴리비닐피롤리돈(Polyvinylpyrrolidone), 폴리디알릴디메틸암모늄클로라이드, 폴리에틸렌옥사이드(Polyethyleneoxide), 폴리아크릴산(Polyacrylic acid), 폴리스티렌설폰산(Polystyrenesulfonic acid), 폴리규산(Polysilicic acid), 폴리인산(Polyphosphoric acid), 폴리에틸렌설폰산(Polyethylenesulfonic acid), 폴리-3-비닐록시프로펜-1-설폰산(Poly-3-vinyloxypropane-1-sulfonic acid), 폴리-4-비닐페놀(Poly-4-vinylphenol), 폴리-4-비닐페닐설폰산(Poly-4-vinylphenyl sulfuric acid), 폴리에틸렌포스포릭산(Polyethyleneohosphoric acid), 폴리말릭산(Polymaleic acid), 폴리-4-비닐벤조산(Poly-4-vinylbenzoic acid), 메틸셀룰로오스(Methyl cellulose), 하이드록시에틸셀룰로오스(Hydroxy ethyl cellulose), 카복시메틸셀룰로오스(Carboxy methyl cellulose), 소듐카복시메틸셀룰로오스(Sodium carboxy methyl cellulose), 하이드록시프로필셀룰로오스(Hydroxy propyl cellulose), 소듐카복시메틸셀룰로오스(Sodium carboxymethylcellulose), 폴리사카라이드(Polysaccharide), 전분(Starch)으로 이루어진 군 및 이의 혼합물 군에서 선택된 1종인 것을 특징으로 하는 주상 삼차원 구조의 산화그래핀 환원물을 음극활물질로 가지는 에너지 저장소자용 음극.The method of claim 2,
The water-soluble polymer,
Polyvinyl alcohol, polyethylene glycol, polyethyleneimine, polyamideamine, polyvinyl formamide, polyvinyl acetate, polyacrylamide ), polyvinylpyrrolidone, polydiallyldimethylammonium chloride, polyethylene oxide, polyacrylic acid, polystyrenesulfonic acid, polysilicic acid, polyphosphoric acid acid), Polyethylenesulfonic acid, Poly-3-vinyloxypropane-1-sulfonic acid, Poly-4-vinylphenol , Poly-4-vinylphenyl sulfuric acid, Polyethyleneohosphoric acid, Polymaleic acid, Poly-4-vinylbenzoic acid , Methyl cellulose, Hydroxy ethyl cellulose, Carboxy methyl cellulose, Sodium carboxy methyl cellulose, Hydroxy propyl cellulose, Sodium carboxy Oxidation of columnar three-dimensional structure, characterized in that it is one selected from the group consisting of sodium carboxymethylcellulose, polysaccharide, and starch, and mixtures thereof A negative electrode for energy storage devices having a graphene reduced product as a negative electrode active material.
상기 산화그래핀 환원물 페이스트는,
분말상태의 그래파이트 플레이크로부터 분말상태의 산화그래파이트 플레이크를 합성하고, 상기 산화그래파이트 플레이크를 용매 내에 분산시켜 산화그래핀 분산용액을 형성하며, 상기 산화그래핀 분산용액을 양이온-파이 상호작용을 통해 양이온반응 산화그래핀 분산용액을 제조한 후 상기 양이온반응 산화그래핀 분산용액을 환원제를 이용하여 환원시켜 얻는 것을 특징으로 하는 주상 삼차원 구조의 산화그래핀 환원물을 음극활물질로 가지는 에너지 저장소자용 음극The method of claim 2,
The graphene oxide reduced product paste,
Powdered graphite oxide flakes are synthesized from powdered graphite flakes, the graphite oxide flakes are dispersed in a solvent to form a graphene oxide dispersion solution, and the graphene oxide dispersion solution is cationic through a cation-pi interaction A negative electrode for energy storage having a columnar three-dimensional graphene oxide reduced product as a negative electrode active material, characterized in that obtained by reducing the cationic graphene oxide dispersion solution using a reducing agent after preparing a graphene oxide dispersion solution
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160046160A KR102152149B1 (en) | 2016-04-15 | 2016-04-15 | Anode for energy storage devices having reduced graphene oxide based anode-active materials of columnar three-dimensional structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160046160A KR102152149B1 (en) | 2016-04-15 | 2016-04-15 | Anode for energy storage devices having reduced graphene oxide based anode-active materials of columnar three-dimensional structure |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020140116302A Division KR101643935B1 (en) | 2014-09-02 | 2014-09-02 | Prepatation of materials for energy storage devices using monolithic 3 dimensional of reduced graphene oxide and fabrication method thereby |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20160046778A KR20160046778A (en) | 2016-04-29 |
KR102152149B1 true KR102152149B1 (en) | 2020-09-04 |
Family
ID=55915830
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020160046160A KR102152149B1 (en) | 2016-04-15 | 2016-04-15 | Anode for energy storage devices having reduced graphene oxide based anode-active materials of columnar three-dimensional structure |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102152149B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102535164B1 (en) * | 2016-10-10 | 2023-05-19 | 한국전기연구원 | graphene oxide powder and its manufacturing method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101297423B1 (en) * | 2011-11-30 | 2013-08-14 | 한국전기연구원 | High concentration and stable dispersion of reduced graphene oxide by cation-pi interaction and the manufacturing method thereby |
-
2016
- 2016-04-15 KR KR1020160046160A patent/KR102152149B1/en active IP Right Grant
Non-Patent Citations (3)
Title |
---|
Sheng Han et al., Porous Graphene Materials for Advanced Electrochemical Energy Storage and Conversion Devices, Adv. Mater. 2014, 26, 849-864 (2013.12.17.)* |
Ying Tao et al., Monolithic carbons with spheroidal and hierarchical pores produced by the linkage of functionalized graphene sheets, Carbon 69 (2014), 169-177 (2013.12.06.)* |
Yongli Zhang et al., Porous graphene oxide/carboxymethyl cellulose monoliths, with highmetal ion adsorption, Carbohydrate Polymers 101, 2014, 392-400 (2013.09.30.) |
Also Published As
Publication number | Publication date |
---|---|
KR20160046778A (en) | 2016-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kakunuri et al. | Candle soot derived fractal-like carbon nanoparticles network as high-rate lithium ion battery anode material | |
Xu et al. | Graphene-based electrodes for electrochemical energy storage | |
Vinayan et al. | Synthesis of graphene-multiwalled carbon nanotubes hybrid nanostructure by strengthened electrostatic interaction and its lithium ion battery application | |
US9340894B2 (en) | Anode battery materials and methods of making the same | |
Ma et al. | High capacity Li storage in sulfur and nitrogen dual-doped graphene networks | |
Cheng et al. | A high-performance lithium-ion capacitor with carbonized NiCo2O4 anode and vertically-aligned carbon nanoflakes cathode | |
Zhang et al. | Wasp nest-imitated assembly of elastic rGO/p-Ti3C2Tx MXene-cellulose nanofibers for high-performance sodium-ion batteries | |
Han et al. | Nitrogen-doping of chemically reduced mesocarbon microbead oxide for the improved performance of lithium ion batteries | |
Choi et al. | Three-dimensional porous graphene-metal oxide composite microspheres: Preparation and application in Li-ion batteries | |
Zhou et al. | High-rate and long-cycle silicon/porous nitrogen-doped carbon anode via a low-cost facile pre-template-coating approach for Li-ion batteries | |
Wang et al. | Onion-like carbon matrix supported Co 3 O 4 nanocomposites: a highly reversible anode material for lithium ion batteries with excellent cycling stability | |
Jiang et al. | A carbon coated NASICON structure material embedded in porous carbon enabling superior sodium storage performance: NaTi 2 (PO 4) 3 as an example | |
KR20200128403A (en) | Silicon-carbon nanomaterial, method for manufacturing the same, and use thereof | |
Zhang et al. | Nano-size porous carbon spheres as a high-capacity anode with high initial coulombic efficiency for potassium-ion batteries | |
Hu et al. | Controllable synthesis of nitrogen-doped graphene oxide by tablet-sintering for efficient lithium/sodium-ion storage | |
Liu et al. | Binder-free three-dimensional porous Mn 3 O 4 nanorods/reduced graphene oxide paper-like electrodes for electrochemical energy storage | |
Zhang et al. | Crossed carbon skeleton enhances the electrochemical performance of porous silicon nanowires for lithium ion battery anode | |
Hsieh et al. | Bio-inspired, nitrogen doped CNT-graphene hybrid with amphiphilic properties as a porous current collector for lithium-ion batteries | |
Chen et al. | Remarkable enhancement of the electrochemical properties of Co 3 O 4 nanowire arrays by in situ surface derivatization of an amorphous phosphate shell | |
Pramanik et al. | Efficient energy storage in mustard husk derived porous spherical carbon nanostructures | |
Ren et al. | 3D porous Li3VO4@ C composite anodes with ultra-high rate capacity for lithium-ion capacitors | |
Qiang et al. | Ge@ C core–shell nanostructures for improved anode rate performance in lithium-ion batteries | |
KR101643935B1 (en) | Prepatation of materials for energy storage devices using monolithic 3 dimensional of reduced graphene oxide and fabrication method thereby | |
Duraisamy et al. | Sustainably‐derived hierarchical porous carbon from spent honeycomb for high‐performance lithium‐ion battery and ultracapacitors | |
Liu et al. | Reduced graphene oxide bridged, TiO2 modified and Mn3O4 intercalated Ti3C2Tx sandwich-like nanocomposite as a high performance anode for enhanced lithium storage applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |