KR102150417B1 - Sleep promoting animal model by optogenetic stimulation of astrocytes in the ventrolateral preoptic area and method for screening sleep control agents using the same - Google Patents
Sleep promoting animal model by optogenetic stimulation of astrocytes in the ventrolateral preoptic area and method for screening sleep control agents using the same Download PDFInfo
- Publication number
- KR102150417B1 KR102150417B1 KR1020180102017A KR20180102017A KR102150417B1 KR 102150417 B1 KR102150417 B1 KR 102150417B1 KR 1020180102017 A KR1020180102017 A KR 1020180102017A KR 20180102017 A KR20180102017 A KR 20180102017A KR 102150417 B1 KR102150417 B1 KR 102150417B1
- Authority
- KR
- South Korea
- Prior art keywords
- sleep
- astrocytes
- vlpo
- photostimulation
- neurons
- Prior art date
Links
- 210000001130 astrocyte Anatomy 0.000 title claims abstract description 110
- 230000007958 sleep Effects 0.000 title claims abstract description 79
- 238000000034 method Methods 0.000 title claims abstract description 24
- 238000010171 animal model Methods 0.000 title claims abstract description 16
- 238000012216 screening Methods 0.000 title claims abstract description 8
- 230000000638 stimulation Effects 0.000 title abstract description 41
- 230000001737 promoting effect Effects 0.000 title description 3
- 210000003814 preoptic area Anatomy 0.000 title 1
- 230000000694 effects Effects 0.000 claims abstract description 24
- 210000004556 brain Anatomy 0.000 claims abstract description 23
- 230000001939 inductive effect Effects 0.000 claims abstract description 13
- 241000701161 unidentified adenovirus Species 0.000 claims abstract description 9
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 5
- 241001465754 Metazoa Species 0.000 claims description 25
- 108090000862 Ion Channels Proteins 0.000 claims description 15
- 239000003814 drug Substances 0.000 claims description 14
- 229940079593 drug Drugs 0.000 claims description 13
- 239000000126 substance Substances 0.000 claims description 13
- 239000013598 vector Substances 0.000 claims description 13
- 102000004310 Ion Channels Human genes 0.000 claims description 10
- 239000013603 viral vector Substances 0.000 claims description 10
- 108091006146 Channels Proteins 0.000 claims description 9
- 239000013604 expression vector Substances 0.000 claims description 9
- 229940000406 drug candidate Drugs 0.000 claims description 8
- 230000001747 exhibiting effect Effects 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 3
- 230000001131 transforming effect Effects 0.000 claims description 3
- 238000011282 treatment Methods 0.000 claims description 3
- 201000003631 narcolepsy Diseases 0.000 claims description 2
- 108091005462 Cation channels Proteins 0.000 claims 1
- 150000002500 ions Chemical class 0.000 claims 1
- 210000002569 neuron Anatomy 0.000 abstract description 81
- 210000004027 cell Anatomy 0.000 abstract description 20
- 108090000623 proteins and genes Proteins 0.000 abstract description 13
- 239000013307 optical fiber Substances 0.000 abstract description 9
- 230000001105 regulatory effect Effects 0.000 abstract description 7
- 102100039289 Glial fibrillary acidic protein Human genes 0.000 abstract description 5
- 101710193519 Glial fibrillary acidic protein Proteins 0.000 abstract description 5
- 238000005516 engineering process Methods 0.000 abstract description 5
- 210000005046 glial fibrillary acidic protein Anatomy 0.000 abstract description 5
- 230000001276 controlling effect Effects 0.000 abstract description 4
- 230000006698 induction Effects 0.000 abstract description 4
- 210000004498 neuroglial cell Anatomy 0.000 abstract description 4
- 230000001678 irradiating effect Effects 0.000 abstract description 3
- 201000010099 disease Diseases 0.000 abstract description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 abstract description 2
- 238000011269 treatment regimen Methods 0.000 abstract description 2
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 42
- 239000012528 membrane Substances 0.000 description 23
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 21
- 229960005305 adenosine Drugs 0.000 description 21
- 238000002474 experimental method Methods 0.000 description 21
- FFBDFADSZUINTG-UHFFFAOYSA-N DPCPX Chemical compound N1C=2C(=O)N(CCC)C(=O)N(CCC)C=2N=C1C1CCCC1 FFBDFADSZUINTG-UHFFFAOYSA-N 0.000 description 19
- 230000003371 gabaergic effect Effects 0.000 description 18
- 241000700159 Rattus Species 0.000 description 17
- 230000002829 reductive effect Effects 0.000 description 16
- 102100025683 Alkaline phosphatase, tissue-nonspecific isozyme Human genes 0.000 description 14
- 101000574445 Homo sapiens Alkaline phosphatase, tissue-nonspecific isozyme Proteins 0.000 description 14
- 206010001497 Agitation Diseases 0.000 description 13
- 230000008859 change Effects 0.000 description 12
- 230000000742 histaminergic effect Effects 0.000 description 12
- 210000003796 lateral hypothalamic area Anatomy 0.000 description 12
- 230000001965 increasing effect Effects 0.000 description 11
- 230000004044 response Effects 0.000 description 11
- 238000001690 micro-dialysis Methods 0.000 description 10
- SFLSHLFXELFNJZ-QMMMGPOBSA-N (-)-norepinephrine Chemical compound NC[C@H](O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-QMMMGPOBSA-N 0.000 description 9
- 229960002748 norepinephrine Drugs 0.000 description 9
- SFLSHLFXELFNJZ-UHFFFAOYSA-N norepinephrine Natural products NCC(O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-UHFFFAOYSA-N 0.000 description 9
- 239000012895 dilution Substances 0.000 description 8
- 238000010790 dilution Methods 0.000 description 8
- 210000003722 extracellular fluid Anatomy 0.000 description 8
- 230000008587 neuronal excitability Effects 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 8
- 102000005962 receptors Human genes 0.000 description 8
- 108020003175 receptors Proteins 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 7
- 230000001419 dependent effect Effects 0.000 description 7
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 230000002618 waking effect Effects 0.000 description 7
- BQENDLAVTKRQMS-SBBGFIFASA-L Carbenoxolone sodium Chemical compound [Na+].[Na+].C([C@H]1C2=CC(=O)[C@H]34)[C@@](C)(C([O-])=O)CC[C@]1(C)CC[C@@]2(C)[C@]4(C)CC[C@@H]1[C@]3(C)CC[C@H](OC(=O)CCC([O-])=O)C1(C)C BQENDLAVTKRQMS-SBBGFIFASA-L 0.000 description 6
- 150000001413 amino acids Chemical class 0.000 description 6
- 239000011575 calcium Substances 0.000 description 6
- 229960000530 carbenoxolone Drugs 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 239000001963 growth medium Substances 0.000 description 6
- 238000001727 in vivo Methods 0.000 description 6
- 239000003112 inhibitor Substances 0.000 description 6
- 238000000520 microinjection Methods 0.000 description 6
- 210000001176 projection neuron Anatomy 0.000 description 6
- 102000004169 proteins and genes Human genes 0.000 description 6
- 239000000523 sample Substances 0.000 description 6
- RWVGQQGBQSJDQV-UHFFFAOYSA-M sodium;3-[[4-[(e)-[4-(4-ethoxyanilino)phenyl]-[4-[ethyl-[(3-sulfonatophenyl)methyl]azaniumylidene]-2-methylcyclohexa-2,5-dien-1-ylidene]methyl]-n-ethyl-3-methylanilino]methyl]benzenesulfonate Chemical compound [Na+].C1=CC(OCC)=CC=C1NC1=CC=C(C(=C2C(=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C)C=2C(=CC(=CC=2)N(CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C)C=C1 RWVGQQGBQSJDQV-UHFFFAOYSA-M 0.000 description 6
- 206010002091 Anaesthesia Diseases 0.000 description 5
- 241001269524 Dura Species 0.000 description 5
- 238000001276 Kolmogorov–Smirnov test Methods 0.000 description 5
- 102000007568 Proto-Oncogene Proteins c-fos Human genes 0.000 description 5
- 108010071563 Proto-Oncogene Proteins c-fos Proteins 0.000 description 5
- 230000037005 anaesthesia Effects 0.000 description 5
- 230000037007 arousal Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 230000001404 mediated effect Effects 0.000 description 5
- -1 2MeCCPA Chemical compound 0.000 description 4
- 101150014889 Gad1 gene Proteins 0.000 description 4
- 102100035902 Glutamate decarboxylase 1 Human genes 0.000 description 4
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 4
- 102100037602 P2X purinoceptor 7 Human genes 0.000 description 4
- 101710189965 P2X purinoceptor 7 Proteins 0.000 description 4
- 230000001154 acute effect Effects 0.000 description 4
- 230000003542 behavioural effect Effects 0.000 description 4
- 230000001186 cumulative effect Effects 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 230000002401 inhibitory effect Effects 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 230000001537 neural effect Effects 0.000 description 4
- 230000037322 slow-wave sleep Effects 0.000 description 4
- 230000004936 stimulating effect Effects 0.000 description 4
- 238000001356 surgical procedure Methods 0.000 description 4
- 230000007428 synaptic transmission, GABAergic Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 3
- 108010035848 Channelrhodopsins Proteins 0.000 description 3
- MTCFGRXMJLQNBG-UWTATZPHSA-N D-Serine Chemical compound OC[C@@H](N)C(O)=O MTCFGRXMJLQNBG-UWTATZPHSA-N 0.000 description 3
- 229930195711 D-Serine Natural products 0.000 description 3
- 108020004414 DNA Proteins 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 3
- 102100037095 Histidine decarboxylase Human genes 0.000 description 3
- 108010014095 Histidine decarboxylase Proteins 0.000 description 3
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 3
- 241000283973 Oryctolagus cuniculus Species 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- 241000700605 Viruses Species 0.000 description 3
- 238000005415 bioluminescence Methods 0.000 description 3
- 230000029918 bioluminescence Effects 0.000 description 3
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 3
- 239000003479 dental cement Substances 0.000 description 3
- 230000002964 excitative effect Effects 0.000 description 3
- 239000012091 fetal bovine serum Substances 0.000 description 3
- 229930195712 glutamate Natural products 0.000 description 3
- 210000001320 hippocampus Anatomy 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- SLZIZIJTGAYEKK-CIJSCKBQSA-N molport-023-220-247 Chemical compound C([C@@H](C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=1N=CNC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1N=CNC=1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(N)=O)NC(=O)[C@H]1N(CCC1)C(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)CN)[C@@H](C)O)C1=CNC=N1 SLZIZIJTGAYEKK-CIJSCKBQSA-N 0.000 description 3
- 238000011002 quantification Methods 0.000 description 3
- 238000003757 reverse transcription PCR Methods 0.000 description 3
- 238000012453 sprague-dawley rat model Methods 0.000 description 3
- KOCIMZNSNPOGOP-IWCJZZDYSA-N (2r,3r,4s,5r)-2-[2-hex-1-ynyl-6-(methylamino)purin-9-yl]-5-(hydroxymethyl)oxolane-3,4-diol Chemical compound C12=NC(C#CCCCC)=NC(NC)=C2N=CN1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O KOCIMZNSNPOGOP-IWCJZZDYSA-N 0.000 description 2
- UPXRTVAIJMUAQR-UHFFFAOYSA-N 4-(9h-fluoren-9-ylmethoxycarbonylamino)-1-[(2-methylpropan-2-yl)oxycarbonyl]pyrrolidine-2-carboxylic acid Chemical compound C1C(C(O)=O)N(C(=O)OC(C)(C)C)CC1NC(=O)OCC1C2=CC=CC=C2C2=CC=CC=C21 UPXRTVAIJMUAQR-UHFFFAOYSA-N 0.000 description 2
- TYJOQICPGZGYDT-UHFFFAOYSA-N 4-methylsulfonylbenzenesulfonyl chloride Chemical compound CS(=O)(=O)C1=CC=C(S(Cl)(=O)=O)C=C1 TYJOQICPGZGYDT-UHFFFAOYSA-N 0.000 description 2
- PNFZSRRRZNXSMF-UHFFFAOYSA-N 5'-phosphopyridoxal-6-azobenzene-2,4-disulfonic acid Chemical compound O=CC1=C(O)C(C)=NC(N=NC=2C(=CC(=CC=2)S(O)(=O)=O)S(O)(=O)=O)=C1COP(O)(O)=O PNFZSRRRZNXSMF-UHFFFAOYSA-N 0.000 description 2
- 101000733593 Arabidopsis thaliana Apyrase 1 Proteins 0.000 description 2
- 101000733585 Arabidopsis thaliana Apyrase 2 Proteins 0.000 description 2
- 101000733587 Arabidopsis thaliana Probable apyrase 3 Proteins 0.000 description 2
- 101000733600 Arabidopsis thaliana Probable apyrase 4 Proteins 0.000 description 2
- 101000733603 Arabidopsis thaliana Probable apyrase 5 Proteins 0.000 description 2
- 101000733602 Arabidopsis thaliana Probable apyrase 6 Proteins 0.000 description 2
- 101000733605 Arabidopsis thaliana Probable apyrase 7 Proteins 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- ZTYHZMAZUWOXNC-UHFFFAOYSA-N BAY 60-6583 Chemical compound NC(=O)CSC1=NC(N)=C(C#N)C(C=2C=CC(OCC3CC3)=CC=2)=C1C#N ZTYHZMAZUWOXNC-UHFFFAOYSA-N 0.000 description 2
- PAOANWZGLPPROA-RQXXJAGISA-N CGS-21680 Chemical compound O[C@@H]1[C@H](O)[C@@H](C(=O)NCC)O[C@H]1N1C2=NC(NCCC=3C=CC(CCC(O)=O)=CC=3)=NC(N)=C2N=C1 PAOANWZGLPPROA-RQXXJAGISA-N 0.000 description 2
- 241001631457 Cannula Species 0.000 description 2
- 241000702421 Dependoparvovirus Species 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 102400001370 Galanin Human genes 0.000 description 2
- 101800002068 Galanin Proteins 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- PIWKPBJCKXDKJR-UHFFFAOYSA-N Isoflurane Chemical compound FC(F)OC(Cl)C(F)(F)F PIWKPBJCKXDKJR-UHFFFAOYSA-N 0.000 description 2
- YQEZLKZALYSWHR-UHFFFAOYSA-N Ketamine Chemical compound C=1C=CC=C(Cl)C=1C1(NC)CCCCC1=O YQEZLKZALYSWHR-UHFFFAOYSA-N 0.000 description 2
- 229930040373 Paraformaldehyde Natural products 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000002598 adenosine A1 receptor antagonist Substances 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 230000003925 brain function Effects 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 229960003692 gamma aminobutyric acid Drugs 0.000 description 2
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 2
- 230000013632 homeostatic process Effects 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 230000002102 hyperpolarization Effects 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 229960002725 isoflurane Drugs 0.000 description 2
- 229960003299 ketamine Drugs 0.000 description 2
- 229960004184 ketamine hydrochloride Drugs 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000028161 membrane depolarization Effects 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 230000037023 motor activity Effects 0.000 description 2
- FEMOMIGRRWSMCU-UHFFFAOYSA-N ninhydrin Chemical compound C1=CC=C2C(=O)C(O)(O)C(=O)C2=C1 FEMOMIGRRWSMCU-UHFFFAOYSA-N 0.000 description 2
- 230000000803 paradoxical effect Effects 0.000 description 2
- 229920002866 paraformaldehyde Polymers 0.000 description 2
- 230000010412 perfusion Effects 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 108091006084 receptor activators Proteins 0.000 description 2
- 239000002464 receptor antagonist Substances 0.000 description 2
- 229940044551 receptor antagonist Drugs 0.000 description 2
- 210000003625 skull Anatomy 0.000 description 2
- 230000004620 sleep latency Effects 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 229960005322 streptomycin Drugs 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 229960004175 xylazine hydrochloride Drugs 0.000 description 2
- BIXYYZIIJIXVFW-UUOKFMHZSA-N (2R,3R,4S,5R)-2-(6-amino-2-chloro-9-purinyl)-5-(hydroxymethyl)oxolane-3,4-diol Chemical compound C1=NC=2C(N)=NC(Cl)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O BIXYYZIIJIXVFW-UUOKFMHZSA-N 0.000 description 1
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- NCYCYZXNIZJOKI-IOUUIBBYSA-N 11-cis-retinal Chemical compound O=C/C=C(\C)/C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C NCYCYZXNIZJOKI-IOUUIBBYSA-N 0.000 description 1
- JZSPHTPWUXNQGB-UHFFFAOYSA-N 2,5-dimethoxy-N-(3-quinolinyl)benzenesulfonamide Chemical compound COC1=CC=C(OC)C(S(=O)(=O)NC=2C=C3C=CC=CC3=NC=2)=C1 JZSPHTPWUXNQGB-UHFFFAOYSA-N 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- OYIFNHCXNCRBQI-UHFFFAOYSA-N 2-aminoadipic acid Chemical compound OC(=O)C(N)CCCC(O)=O OYIFNHCXNCRBQI-UHFFFAOYSA-N 0.000 description 1
- 239000003140 4 aminobutyric acid A receptor blocking agent Substances 0.000 description 1
- 231100000582 ATP assay Toxicity 0.000 description 1
- 230000002407 ATP formation Effects 0.000 description 1
- ZKHQWZAMYRWXGA-KQYNXXCUSA-N Adenosine triphosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O ZKHQWZAMYRWXGA-KQYNXXCUSA-N 0.000 description 1
- ZKHQWZAMYRWXGA-UHFFFAOYSA-N Adenosine triphosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)C(O)C1O ZKHQWZAMYRWXGA-UHFFFAOYSA-N 0.000 description 1
- 239000012099 Alexa Fluor family Substances 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- OUVXYXNWSVIOSJ-UHFFFAOYSA-N Fluo-4 Chemical compound CC1=CC=C(N(CC(O)=O)CC(O)=O)C(OCCOC=2C(=CC=C(C=2)C2=C3C=C(F)C(=O)C=C3OC3=CC(O)=C(F)C=C32)N(CC(O)=O)CC(O)=O)=C1 OUVXYXNWSVIOSJ-UHFFFAOYSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 102100031181 Glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 239000012981 Hank's balanced salt solution Substances 0.000 description 1
- 238000012404 In vitro experiment Methods 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229920005372 Plexiglas® Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 102000004330 Rhodopsin Human genes 0.000 description 1
- 108090000820 Rhodopsin Proteins 0.000 description 1
- 208000013738 Sleep Initiation and Maintenance disease Diseases 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 108700019146 Transgenes Proteins 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000002582 adenosine A1 receptor agonist Substances 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 239000002269 analeptic agent Substances 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 238000003149 assay kit Methods 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 230000007177 brain activity Effects 0.000 description 1
- 210000005013 brain tissue Anatomy 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000027288 circadian rhythm Effects 0.000 description 1
- 230000006999 cognitive decline Effects 0.000 description 1
- 208000010877 cognitive disease Diseases 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000003636 conditioned culture medium Substances 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- DEFVIWRASFVYLL-UHFFFAOYSA-N ethylene glycol bis(2-aminoethyl)tetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)CCOCCOCCN(CC(O)=O)CC(O)=O DEFVIWRASFVYLL-UHFFFAOYSA-N 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 238000002073 fluorescence micrograph Methods 0.000 description 1
- 210000001222 gaba-ergic neuron Anatomy 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229940050410 gluconate Drugs 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 238000010185 immunofluorescence analysis Methods 0.000 description 1
- 238000002991 immunohistochemical analysis Methods 0.000 description 1
- 230000002055 immunohistochemical effect Effects 0.000 description 1
- 238000003364 immunohistochemistry Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 206010022437 insomnia Diseases 0.000 description 1
- 210000001153 interneuron Anatomy 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 230000013016 learning Effects 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 230000005056 memory consolidation Effects 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 210000000274 microglia Anatomy 0.000 description 1
- 239000007758 minimum essential medium Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 230000008035 nerve activity Effects 0.000 description 1
- 238000007857 nested PCR Methods 0.000 description 1
- 239000002858 neurotransmitter agent Substances 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 238000001543 one-way ANOVA Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000036407 pain Effects 0.000 description 1
- 230000001936 parietal effect Effects 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 230000002572 peristaltic effect Effects 0.000 description 1
- 230000002186 photoactivation Effects 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000002980 postoperative effect Effects 0.000 description 1
- 230000001242 postsynaptic effect Effects 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 239000003379 purinergic P1 receptor agonist Substances 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 208000019116 sleep disease Diseases 0.000 description 1
- 230000004617 sleep duration Effects 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 230000002208 somnogenic effect Effects 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 239000012192 staining solution Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- FIAFUQMPZJWCLV-UHFFFAOYSA-N suramin Chemical compound OS(=O)(=O)C1=CC(S(O)(=O)=O)=C2C(NC(=O)C3=CC=C(C(=C3)NC(=O)C=3C=C(NC(=O)NC=4C=C(C=CC=4)C(=O)NC=4C(=CC=C(C=4)C(=O)NC=4C5=C(C=C(C=C5C(=CC=4)S(O)(=O)=O)S(O)(=O)=O)S(O)(=O)=O)C)C=CC=3)C)=CC=C(S(O)(=O)=O)C2=C1 FIAFUQMPZJWCLV-UHFFFAOYSA-N 0.000 description 1
- 229960005314 suramin Drugs 0.000 description 1
- 230000003956 synaptic plasticity Effects 0.000 description 1
- 230000005062 synaptic transmission Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 108091006106 transcriptional activators Proteins 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
- 235000011178 triphosphate Nutrition 0.000 description 1
- 239000001226 triphosphate Substances 0.000 description 1
- UNXRWKVEANCORM-UHFFFAOYSA-N triphosphoric acid Chemical compound OP(O)(=O)OP(O)(=O)OP(O)(O)=O UNXRWKVEANCORM-UHFFFAOYSA-N 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 238000011870 unpaired t-test Methods 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 238000012403 whole-cell patch-clamp technology Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K67/00—Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
- A01K67/027—New or modified breeds of vertebrates
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/8509—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2207/00—Modified animals
- A01K2207/30—Animals modified by surgical methods
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2227/00—Animals characterised by species
- A01K2227/10—Mammal
- A01K2227/105—Murine
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2267/00—Animals characterised by purpose
- A01K2267/03—Animal model, e.g. for test or diseases
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/8509—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
- C12N2015/8527—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic for producing animal models, e.g. for tests or diseases
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2750/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
- C12N2750/00011—Details
- C12N2750/14011—Parvoviridae
- C12N2750/14111—Dependovirus, e.g. adenoassociated viruses
- C12N2750/14141—Use of virus, viral particle or viral elements as a vector
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Environmental Sciences (AREA)
- Wood Science & Technology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- Veterinary Medicine (AREA)
- Toxicology (AREA)
- Cell Biology (AREA)
- Plant Pathology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Immunology (AREA)
- Animal Behavior & Ethology (AREA)
- Animal Husbandry (AREA)
- Biodiversity & Conservation Biology (AREA)
- Microbiology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
본 발명은 복외측전시각영역(ventrolateral preoptic nucleus; VLPO) 내 성상세포의 광유전학적 자극을 통한 수면 유도 동물 모델 및 이를 이용한 수면 제어제의 스크리닝 방법에 관한 것으로서, 더욱 구체적으로는 생체 내에서 성상세포를 조절하기 위해 세포 특이적(GFAP) 프로모터에 의해 조절되는 빛에 반응하는 유전자를 포함하는 아데노바이러스를 랫트의 뇌 내로 주사하여 성상세포에서 광반응 유전자를 발현시켰다. 뇌 내로 광 자극을 전달하기 위해 광 섬유관을 이식하고 설치된 광 섬유관을 통해 파란색의 빛을 조사하여 성상세포를 자극하였다. 본 발명을 통하여 복외측전시각영역내에 성상세포 광 자극은 수면에 대한 증가를 유도할 수 있음을 확인하였으며, 글리아 세포의 활성과 신경세포의 활성을 유도할 수 있음을 확인하였다. 따라서 본 발명을 통해 개발된 기술은 수면 유도에서 성상세포의 조절작용을 연구하는데 유용하게 이용될 수 있을 뿐만 아니라 수면을 제어하고 수면과 관련된 질환을 치료하기 위한 성상세포 중심의 치료전략 개발의 가능성을 제시한다.The present invention relates to a sleep-inducing animal model through optogenetic stimulation of astrocytes in a ventrolateral preoptic nucleus (VLPO) and a method for screening a sleep control agent using the same. In order to regulate cells, an adenovirus containing a light-responsive gene regulated by a cell-specific (GFAP) promoter was injected into the brain of a rat to express the photoreactive gene in astrocytes. Astrocytes were stimulated by implanting an optical fiber tube and irradiating blue light through the installed optical fiber tube in order to transmit light stimulation into the brain. Through the present invention, it was confirmed that light stimulation of astrocytes in the ventral lateral vision area can induce an increase in sleep, and it has been confirmed that it can induce the activity of glia cells and neurons. Therefore, the technology developed through the present invention can be usefully used to study the regulatory action of astrocytes in sleep induction, as well as the possibility of developing a stellate cell-centered treatment strategy for controlling sleep and treating sleep-related diseases. present.
Description
본 발명은 복외측전시각영역(ventrolateral preoptic nucleus; VLPO) 내 성상세포의 광유전학적 자극을 통한 수면 유도 동물 모델 및 이를 이용한 수면 제어제의 스크리닝 방법에 관한 것이다.The present invention relates to a sleep-inducing animal model through optogenetic stimulation of astrocytes in a ventrolateral preoptic nucleus (VLPO) and a method for screening a sleep control agent using the same.
신경 활성의 유지는 에너지 소모가 많은 과정이고, 수면은 에너지를 회복하는데 필수적이다. 또한, 수면은 기억 응고화(memory consolidation) 및 시냅스 가소성(synaptic plasticity)을 포함하는 수많은 뇌기능과 관련되어 있다. 수면은 2가지 과정에 의해 조절된다. 하나는 일주기 리듬(circadian rhythm)이고, 다른 하나는 수면 성향(sleep propensity)인데, 이는 수면 압력(sleep pressure)으로도 알려져 있으며, 깨어있는 동안의 사전 뇌 활성에 의존적이다. 이와 관련하여, 수면 욕구에 기반한 수면 촉진은 "슬립-온(sleep-on)" 및 "웨이크-오프(wake-off)" 신호가 동시에 필요한데, 이에 수면 및 각성 중추 간의 상호 억제를 촉진하는 신경 회로가 수면 촉진에 중추적인 역할을 한다. 특히, 복외측전시각영역(VLPO)은 GABA성 억제 투사를 통해 뇌의 여러 각성 중추를 조절하는데, 이는 수면 압력 하에서 수면을 촉진하는 주요 핵 중 하나이다. 실제로, VLPO 내 병변은 불면증 및 NREM 수면의 장애를 유발한다. VLPO 내 뉴런 그룹에서, c-Fos 단백질의 발현은 수면 중에 특히 증가되지만, 깨어있는 동안에는 그렇지 않다. Maintaining nerve activity is an energy consuming process, and sleep is essential to recovering energy. In addition, sleep is associated with a number of brain functions, including memory consolidation and synaptic plasticity. Sleep is regulated by two processes. One is circadian rhythm and the other is sleep propensity, also known as sleep pressure, and is dependent on pre-brain activity during waking. In this regard, sleep stimulation based on sleep desire requires both "sleep-on" and "wake-off" signals at the same time, thereby promoting mutual inhibition between sleep and arousal centers. Plays a pivotal role in promoting sleep. In particular, the ventral lateral vision area (VLPO) regulates several arousal centers of the brain through GABA inhibitory projection, which is one of the major nuclei that promote sleep under sleep pressure. Indeed, lesions in VLPO cause insomnia and impairment of NREM sleep. In a group of neurons in VLPO, expression of the c-Fos protein is particularly increased during sleep, but not during waking.
신경 활성과 같은 적절한 자극에 대한 반응으로, 글루타메이트, ATP, D-세린 및 GABA를 포함하는 신경활성물질(gliotransmitters라고 불림)의 방출을 통해 성상세포가 인접한 뉴런과 상호 작용한다는 증거가 늘어나고 있다. 결과적으로, 성상세포는 시냅스의 연접전달(synaptic transmission), 호흡, 지각, 학습 및 기억과 같은 여러 생리학적 뇌 기능을 조절할 수 있다. 또한, 성상세포는 수면 항상성 및 수면 장애와 관련된 인지능 감소에 중요한 역할을 한다. 수면 항상성의 변화는 성상세포의 ATP 방출 및 ATP의 아데노신으로의 가수 분해에 의해 매개될 수 있고, 아데노신 A1 수용체에 의존적이다. 실제로, 아데노신은 내재성 수면-촉진 물질로서 여겨지고 있으며, 여러 뇌 부위에서의 세포 외 아데노신 농도는 수명 성향에 따라 증가된다.There is growing evidence that astrocytes interact with adjacent neurons in response to appropriate stimuli, such as neuronal activity, through the release of neuroactive substances (called gliotransmitters), including glutamate, ATP, D-serine and GABA. As a result, astrocytes can regulate several physiological brain functions such as synaptic transmission, respiration, perception, learning, and memory. In addition, astrocytes play an important role in sleep homeostasis and cognitive decline associated with sleep disorders. Changes in sleep homeostasis can be mediated by the release of ATP from astrocytes and hydrolysis of ATP to adenosine and is dependent on the adenosine A 1 receptor. Indeed, adenosine is believed to be an intrinsic sleep-promoting substance, and extracellular adenosine concentrations in several brain regions increase with life propensity.
깨어있는 동안 아데노신이 축적되고, VLPO를 포함한 여러 뇌 영역에서 외재적으로 적용된 아데노신의 수면 유도(somnogenic) 효과는 보고되어 있다. 하지만, VLPO 내 내재성 아데노신의 수면-촉진 효과에 대한 기작은 아직 밝혀지지 않았다.Adenosine accumulates during waking, and the somnogenic effect of adenosine applied externally in several brain regions, including VLPO, has been reported. However, the mechanism for the sleep-promoting effect of endogenous adenosine in VLPO has not been identified.
본 발명의 목적은 뇌 복외측전시각영역(ventrolateral preoptic nucleus; VLPO) 내 성상세포를 광유전학적으로 자극하는 단계를 포함하는 수면 유도 동물 모델 제조방법, 상기 방법으로 제조된 수면 유도 동물 모델 및 이를 이용한 수면 제어 약물의 스크리닝 방법을 제공하는데 있다.An object of the present invention is a method for manufacturing a sleep-induced animal model comprising the step of optogeneically stimulating astrocytes in a ventrolateral preoptic nucleus (VLPO) of the brain, a sleep-induced animal model prepared by the method, and It is to provide a method for screening a sleep control drug used.
본 발명은 인간을 제외한 동물의 뇌 복외측전시각영역(ventrolateral preoptic nucleus; VLPO) 내 성상세포를 광유전학적으로 자극하는 단계를 포함하는 수면 유도 동물 모델 제조방법을 제공한다.The present invention provides a method of manufacturing a sleep-induced animal model comprising the step of optogeneically stimulating astrocytes in a ventrolateral preoptic nucleus (VLPO) of an animal other than humans.
또한, 본 발명은 뇌 복외측전시각영역(ventrolateral preoptic nucleus; VLPO) 내 성상세포를 광유전학적으로 자극하여 제작된 인간을 제외한 수면 유도 동물 모델을 제공한다.In addition, the present invention provides a sleep-inducing animal model other than humans produced by optogenetic stimulation of astrocytes in the ventrolateral preoptic nucleus (VLPO) of the brain.
또한, 본 발명은 수면 유도 동물 모델에 수면 제어 약물 후보물질을 투여하는 단계; 및 대조물질을 투여한 동물군과 비교하여 수면 제어 효과를 나타내는 약물 후보물질을 선별하는 단계를 포함하는 수면 제어 약물의 스크리닝 방법을 제공한다.In addition, the present invention comprises the steps of administering a sleep control drug candidate to a sleep induction animal model; And it provides a method for screening a sleep control drug comprising the step of selecting a drug candidate exhibiting a sleep control effect compared to the control substance administered animal group.
본 발명은 복외측전시각영역(ventrolateral preoptic nucleus; VLPO) 내 성상세포의 광유전학적 자극을 통한 수면 유도 동물 모델 및 이를 이용한 수면 제어제의 스크리닝 방법에 관한 것으로서, 더욱 구체적으로는 생체 내에서 성상세포를 조절하기 위해 세포 특이적(GFAP) 프로모터에 의해 조절되는 빛에 반응하는 유전자를 포함하는 아데노바이러스를 랫트의 뇌 내로 주사하여 성상세포에서 광반응 유전자를 발현시켰다. 뇌 내로 광 자극을 전달하기 위해 광 섬유관을 이식하고 설치된 광 섬유관을 통해 파란색의 빛을 조사하여 성상세포를 자극하였다. 본 발명을 통하여 복외측전시각영역내에 성상세포 광 자극은 수면에 대한 증가를 유도할 수 있음을 확인하였으며, 글리아 세포의 활성과 신경세포의 활성을 유도할 수 있음을 확인하였다. 따라서 본 발명을 통해 개발된 기술은 수면 유도에서 성상세포의 조절작용을 연구하는데 유용하게 이용될 수 있을 뿐만 아니라 수면을 제어하고 수면과 관련된 질환을 치료하기 위한 성상세포 중심의 치료전략 개발의 가능성을 제시한다.The present invention relates to a sleep-inducing animal model through optogenetic stimulation of astrocytes in a ventrolateral preoptic nucleus (VLPO) and a method for screening a sleep control agent using the same. In order to regulate cells, an adenovirus containing a light-responsive gene regulated by a cell-specific (GFAP) promoter was injected into the brain of a rat to express the photoreactive gene in astrocytes. Astrocytes were stimulated by implanting an optical fiber tube and irradiating blue light through the installed optical fiber tube in order to transmit light stimulation into the brain. Through the present invention, it was confirmed that light stimulation of astrocytes in the ventral lateral vision area can induce an increase in sleep, and it has been confirmed that it can induce the activity of glia cells and neurons. Therefore, the technology developed through the present invention can be usefully used to study the regulatory action of astrocytes in sleep induction, as well as the possibility of developing a stellate cell-centered treatment strategy for controlling sleep and treating sleep-related diseases. present.
도 1은 랫트가 각성 상태(waking state)에 있을 때, VLPO 성상세포의 광유전학적 자극이 수면을 유도한다는 결과를 나타낸다. A, VLPO 성상세포를 자극하기 위해 사용한 캐뉼라 삽입 위치를 시각적으로 나타냈고, VLPO 부위에서의 ChR2-Kat1.3 발현 프로파일을 정량화한 결과를 나타낸다. B, VLPO 부위의 형광 이미지를 나타낸다. C, VLPO 부위 주변에서 ChR2-Kat1.3 및 GFAP 양성 세포를 정량화한 결과이다. D, 12:30-14:30 (La) 동안의 광자극 효과를 나타낸다. E, 15:30-17:30 (Lb) 동안의 광자극 효과를 나타낸다. F, 광자극 전 및 광자극 동안(Lb)의 전두엽(frontal) 및 두정부엽(parietal) EEG (각각 FC EEG 및 PC EEG), 운동 활성-관련 진동 및 수면 도표(hypnogram)를 나타낸다.
도 2는 광유전학적 자극 동안 성상세포가 ATP를 방출한다는 결과를 나타낸다. A, VLPO 부위에서 광자극 동안 세포 외액의 미세투석 모식도를 나타낸다. B, 광자극(120분) 전후의 투석물(세포 외액, ECF)의 ATP 농도를 나타낸다. C, VLPO 부위에서 얻은 미세투석물에서 D-세린, 글루타메이트 및 글리신 수준의 광자극(120분)-유도 변화를 나타낸다. D, 성상세포-조건화 배지(ACM)에서 측정된 세포 외 ATP 농도를 나타내는데, 이는 배양된 성상세포를 120 min 동안 광자극한 후 수집하였다. E, 배양된 성상세포에서의 ATP 방출에 있어, Brilliant Blue G (BBG, a P2X7 receptor antagonist, 100 nM) 또는 카베녹솔론(carbenoxolone; CBX, a hemichannel blocker, 3 μM)의 영향을 나타낸다.
도 3은 성상세포 ChR2의 광유전학적 자극이 NE-DP VLPO 뉴런의 흥분성을 감소시킨다는 결과를 나타낸다. A, 동일 뉴런에서 100 μM NE 적용 전, 적용시 및 적용 후에 측정된 전압 기록(상단 패널)과, 성상세포 ChR2의 광자극 전, 광자극 동안, 광자극 후의 전압 기록(473 nm, 중간 패널)을 나타낸다. 하단 패널은 광자극 전 및 광자극 동안의 전압 응답 기록을 확대된 시간 스케일로 나타냈다. B, AP 빈도(왼쪽) 및 막 전위(오른쪽)에 있어 NE-유도된 변화를 나타낸다. C, AP 빈도(왼쪽) 및 막 전위(오른쪽)에 있어 광자극-유도된 변화를 나타낸다. D, ATP (100 μM, n = 8) 또는 아데노신 (Ade, 100 μM, n = 17)에 의한 막 전위의 변화와, DPCPX (1 μM, 선택적 아데노신 A1 수용체 길항제, n = 16) 또는 TNAP-I (10 μM, TNAP 억제제, n = 6) 존재하에서 막 전위의 광자극-유도된 변화를 나타낸다. E, ATP (100 μM, n = 6) 또는 아데노신 (Ade, 100 μM, n = 15)에 의해 유도되는 AP 빈도 변화와, DPCPX (1 μM, n = 16) 또는 TNAP-I (10 μM, n = 7) 존재하에서 광자극-유도된 AP 빈도 변화를 나타낸다.
도 4는 성상세포 ChR2의 광유전학적 자극이 NE-HP VLPO 뉴런의 흥분성을 증가시킨다는 결과를 나타낸다. A, 동일 뉴런에서 100 μM NE 적용 전, 적용시 및 적용 후에 측정된 전압 기록(상단 패널)과, 성상세포 ChR2의 광자극 전, 광자극 동안, 광자극 후의 전압 기록(473 nm, 중간 패널)을 나타낸다. 하단 패널은 광자극 전 및 광자극 동안의 전압 응답 기록을 확대된 시간 스케일로 나타냈다. B, AP 빈도(왼쪽) 및 막 전위(오른쪽)에 있어 NE-유도된 변화를 나타낸다. C, AP 빈도(왼쪽) 및 막 전위(오른쪽)에 있어 광자극-유도된 변화를 나타낸다. D, ATP (100 μM, n = 7) 또는 아데노신 (Ade, 100 μM, n = 10)에 의한 막 전위의 변화와, DPCPX (1 μM, 선택적 아데노신 A1 수용체 길항제, n = 12) 또는 TNAP-I (10 μM, TNAP 억제제, n = 7) 존재하에서 막 전위의 광자극-유도된 변화를 나타낸다. E, ATP (100 μM, n = 6) 또는 아데노신 (Ade, 100 μM, n = 8)에 의해 유도되는 AP 빈도 변화와, DPCPX (1 μM, n = 12) 또는 TNAP-I (10 μM, n = 7) 존재하에서 광자극-유도된 AP 빈도 변화를 나타낸다.
도 5는 VLPO 성상세포의 광유전학적 자극이 NE-HP VLPO 뉴런으로의 GABAergic 전달을 감소시킨다는 결과를 나타낸다. A, NE-HP 뉴런에서 성상세포 ChR2의 광자극(473 nm) 전, 광자극 동안, 광자극 후 측정된 전류 기록을 나타낸다. B, GABAergic sIPSCs의 내부-이벤트 간격(왼쪽, p < 0.01, K-S test) 및 전류 진폭(오른쪽, p = 0.17, K-S test)에 대한 누적 확률 분포를 나타낸다. C, 1 μM DPCPX 존재하에서 성상세포 ChR2의 광자극(473 nm) 전, 광자극 동안, 광자극 후의 전류 기록을 나타낸다. D, DPCPX 존재 유무에 따른 GABAergic sIPSC 빈도의 광자극-유도 변화를 나타낸다. E, VLPO 부위에서의 GAD67 (빨간색), TNAP (녹색) 및 갈라닌 (GAL, 흰색)에 대한 면역조직화학분석 결과를 나타낸다. F, VLPO 부위에서의 GAD67, TNAP 및 갈라닌에 대한 면역반응 세포를 정량화한 결과를 나타낸다.
도 6은 VLPO 성상세포의 광유전학적 자극이 TMN 히스타민성 뉴런의 흥분성을 감소시킨다는 결과를 나타낸다. A, 성상세포 ChR2의 광자극(473 nm) 전, 광자극 동안, 광자극 후, 히스타민성 뉴런에서 기록한 전류 분석 결과를 나타낸다. B, GABAergic sIPSCs의 내부-이벤트 간격(왼쪽, p < 0.01, K-S test) 및 전류 진폭(오른쪽, p = 0.78, K-S test)에 대한 누적 확률 분포를 나타낸다. C, 1 μM DPCPX 존재하에서 성상세포 ChR2의 광자극(473 nm) 전, 광자극 동안, 광자극 후에 히스타민성 뉴런으로부터 측정된 전류 기록을 나타낸다. D, DPCPX 존재 유무에 따른 GABAergic sIPSC 빈도의 광자극-유도 변화를 나타낸다. E, 히스타민성 뉴런에서 성상세포 ChR2의 광자극(473 nm) 전 및 광자극 동안 측정된 전압 기록을 나타낸다. F, AP 빈도(a) 및 막 전위(b)에 있어서의 광자극 유도 변화를 나타낸다.
도 7은 본 발명에서 제안하는 VLPO 부위에서의 성상세포-매개 수면 유도 기작을 나타낸다.
도 8은 본 발명에서 사용한 광활성화 이온채널(light-activated ion channel)인 채널로돕신-2(channelrhodopsin-2; ChR2) 유전자를 포함하는 발현벡터의 모식도를 나타낸다. A, ChR2 구조체를 포함하는 아데노바이러스 벡터인 Ad-sGFAP-ChR2(H134R)-Katushka1.3(Ad-ChR2)의 모식도를 나타낸다. ChR2의 발현은 GFAP 프로모터의 단축 버전인 GfaABC1D에 의해 조절된다. 안티센스 방향에 있는 mCMV의 작동으로 키메릭 전사 활성자인 Gal4p56을 조절하고, 양 방향의 발현에 대한 특이성은 GfaABC1D에 의해 측정된다. B, ChR2 구조체를 포함하는 아데노-관련 바이러스 벡터인 AAV-GFAP-hChR2(H134R)-eYFP(AAV-ChR2)의 모식도를 나타낸다. ChR2의 발현은 GFAP 프로모터의 단축 버전인 GfaABC1D에 의해 조절된다.1 shows the results that when the rat is in a waking state, optogenetic stimulation of VLPO astrocytes induces sleep. A, The location of the cannula used to stimulate VLPO astrocytes was visually shown, and the results of quantifying the ChR2-Kat1.3 expression profile at the VLPO site are shown. B, a fluorescence image of the VLPO site is shown. This is the result of quantification of ChR2-Kat1.3 and GFAP-positive cells around C and VLPO sites. D, shows the photostimulation effect during 12:30-14:30 (La). E, shows the photostimulation effect during 15:30-17:30 (Lb). F, frontal and parietal EEG (FC EEG and PC EEG, respectively) before and during photostimulation (Lb), motor activity-related vibrations and hypnograms are shown.
2 shows the results that astrocytes release ATP during optogenetic stimulation. A, shows a schematic diagram of microdialysis of extracellular fluid during photostimulation at the VLPO site. B, ATP concentration of dialysate (extracellular fluid, ECF) before and after photostimulation (120 minutes) is shown. Photostimulation (120 min)-induced changes in the levels of D-serine, glutamate and glycine in microdialysates obtained at C and VLPO sites. D, shows the extracellular ATP concentration measured in astrocyte-conditioned medium (ACM), which was collected after photostimulation of the cultured astrocytes for 120 min. E, on the release of ATP from cultured astrocytes, it shows the effect of Brilliant Blue G (BBG, a P2X7 receptor antagonist, 100 nM) or carbenoxolone (CBX, a hemichannel blocker, 3 μM).
3 shows the results that optogenetic stimulation of astrocyte ChR2 reduces the excitability of NE-DP VLPO neurons. A, Records of voltages measured before, during and after 100 μM NE application in the same neuron (top panel), and voltage records before, during, and after photostimulation of astrocyte ChR2 (473 nm, middle panel) Represents. The bottom panel shows the voltage response records before and during photostimulation on an enlarged time scale. B, shows NE-induced changes in AP frequency (left) and membrane potential (right). C, shows photostimulation-induced changes in AP frequency (left) and membrane potential (right). D, change of membrane potential by ATP (100 μM, n = 8) or adenosine (Ade, 100 μM, n = 17) and DPCPX (1 μM, selective adenosine A 1 receptor antagonist, n = 16) or TNAP- Shows the photostimulation-induced change in membrane potential in the presence of I (10 μM, TNAP inhibitor, n = 6). AP frequency changes induced by E, ATP (100 μM, n = 6) or adenosine (Ade, 100 μM, n = 15) and DPCPX (1 μM, n = 16) or TNAP-I (10 μM, n = 7) Shows the photostimulation-induced AP frequency change in the presence.
4 shows the result that optogenetic stimulation of astrocyte ChR2 increases the excitability of NE-HP VLPO neurons. A, Records of voltages measured before, during and after 100 μM NE application in the same neuron (top panel), and voltage records before, during, and after photostimulation of astrocyte ChR2 (473 nm, middle panel) Represents. The bottom panel shows the voltage response records before and during photostimulation on an enlarged time scale. B, shows NE-induced changes in AP frequency (left) and membrane potential (right). C, shows photostimulation-induced changes in AP frequency (left) and membrane potential (right). D, change in membrane potential by ATP (100 μM, n = 7) or adenosine (Ade, 100 μM, n = 10) and DPCPX (1 μM, selective adenosine A 1 receptor antagonist, n = 12) or TNAP- Shows the photostimulation-induced change in membrane potential in the presence of I (10 μM, TNAP inhibitor, n = 7). AP frequency changes induced by E, ATP (100 μM, n = 6) or adenosine (Ade, 100 μM, n = 8) and DPCPX (1 μM, n = 12) or TNAP-I (10 μM, n = 7) Shows the photostimulation-induced AP frequency change in the presence.
5 shows the results that optogenetic stimulation of VLPO astrocytes decreases GABAergic transmission to NE-HP VLPO neurons. A, Current recordings of astrocyte ChR2 in NE-HP neurons before photostimulation (473 nm), during photostimulation, and after photostimulation are shown. B, shows the cumulative probability distribution for the internal-event interval (left, p <0.01, KS test) and current amplitude (right, p = 0.17, KS test) of GABAergic sIPSCs. C, Current recordings of astrocyte ChR2 in the presence of 1 μM DPCPX before photostimulation (473 nm), during photostimulation, and after photostimulation are shown. D, Photostimulation-induced change of GABAergic sIPSC frequency according to the presence or absence of DPCPX. E, the results of immunohistochemical analysis for GAD67 (red), TNAP (green) and galannine (GAL, white) at the VLPO site are shown. The results of quantification of immune response cells to GAD67, TNAP, and galatin at F and VLPO sites are shown.
6 shows the results that optogenetic stimulation of VLPO astrocytes reduces the excitability of TMN histaminergic neurons. A, Astrocyte ChR2 before photostimulation (473 nm), during photostimulation, after photostimulation, and current analysis results recorded in histaminergic neurons are shown. B, shows the cumulative probability distribution for the internal-event interval (left, p <0.01, KS test) and current amplitude (right, p = 0.78, KS test) of GABAergic sIPSCs. C, Current recordings measured from histaminergic neurons before, during, and after photostimulation of astrocyte ChR2 in the presence of 1 μM DPCPX (473 nm) are shown. D, Photostimulation-induced change of GABAergic sIPSC frequency according to the presence or absence of DPCPX. E, voltage records measured before and during photostimulation (473 nm) of astrocyte ChR2 in histaminergic neurons are shown. F, it shows the photostimulation-induced change in AP frequency (a) and film potential (b).
Figure 7 shows the astrocyte-mediated sleep induction mechanism in the VLPO site proposed in the present invention.
8 shows a schematic diagram of an expression vector including a channelrhodopsin-2 (ChR2) gene, which is a light-activated ion channel used in the present invention. A, a schematic diagram of Ad-sGFAP-ChR2 (H134R)-Katushka1.3 (Ad-ChR2), an adenovirus vector containing a ChR2 structure, is shown. Expression of ChR2 is regulated by GfaABC1D, a shortened version of the GFAP promoter. The actuation of mCMV in the antisense direction regulates the chimeric transcriptional activator Gal4p56, and the specificity for expression in both directions is measured by GfaABC1D. A schematic diagram of AAV-GFAP-hChR2(H134R)-eYFP(AAV-ChR2), which is an adeno-associated viral vector containing B, ChR2 construct is shown. Expression of ChR2 is regulated by GfaABC1D, a shortened version of the GFAP promoter.
본 발명은 인간을 제외한 동물의 뇌 복외측전시각영역(ventrolateral preoptic nucleus; VLPO) 내 성상세포를 광유전학적으로 자극하는 단계를 포함하는 수면 유도 동물 모델 제조방법을 제공한다. 바람직하게는, 상기 동물은 랫트일 수 있으나, 이에 제한되는 것은 아니다.The present invention provides a method of manufacturing a sleep-induced animal model comprising the step of optogeneically stimulating astrocytes in a ventrolateral preoptic nucleus (VLPO) of an animal other than humans. Preferably, the animal may be a rat, but is not limited thereto.
바람직하게는, 상기 VLPO 내 성상세포를 광유전학적으로 자극하는 단계는 1) VLPO 내 성상세포를 광활성화 이온채널(light-activated ion channel) 유전자를 포함하는 발현벡터로 형질전환하여, 상기 광활성화 이온채널을 발현시키는 단계; 및 2) 상기 VLPO 내 성상세포를 광자극하는 단계를 포함할 수 있으나, 이에 제한되는 것은 아니다. Preferably, the step of optogeneically stimulating astrocytes in VLPO comprises: 1) transforming astrocytes in VLPO with an expression vector containing a light-activated ion channel gene, and the photoactivation Expressing an ion channel; And 2) photostimulating astrocytes in the VLPO, but is not limited thereto.
또한, 본 발명은 뇌 복외측전시각영역(ventrolateral preoptic nucleus; VLPO) 내 성상세포를 광유전학적으로 자극하여 제작된 인간을 제외한 수면 유도 동물 모델을 제공한다. 바람직하게는, 상기 동물은 랫트일 수 있으나, 이에 제한되는 것은 아니다.In addition, the present invention provides a sleep-inducing animal model other than humans produced by optogenetic stimulation of astrocytes in the ventrolateral preoptic nucleus (VLPO) of the brain. Preferably, the animal may be a rat, but is not limited thereto.
바람직하게는, 상기 광유전학적 자극은 VLPO 내 성상세포를 광활성화 이온채널 유전자를 포함하는 발현벡터로 형질전환하여, 상기 광활성화 이온채널을 발현시키고, 상기 VLPO 내 성상세포를 광자극할 수 있으나, 이에 제한되는 것은 아니다.Preferably, the optogenetic stimulation transforms astrocytes in VLPO with an expression vector containing a photoactivated ion channel gene, thereby expressing the photoactivated ion channel, and photostimulating astrocytes in the VLPO. , But is not limited thereto.
본 발명에 있어서, 광유전학(optogenetics)은 최근 각광받고 있는 바이오 기술 분야의 하나로, 유전자를 조작해 빛으로 무엇인가를 조절한다는 뜻이다. 광유전학의 초기 연구는 빛을 이용해 신경세포의 활성을 조절하는데 응용되었고, 이는 신경세포에 빛을 쪼여주면 신경세포가 활성화되는 기술을 말한다. 이렇게 빛을 이용하여 신경세포의 활성을 조절하면 기존의 전기 자극을 이용해 신경세포를 조절하는 것보다 보다 정밀하게 신경세포의 활성을 통제할 수 있다. 전기 자극이 불특정 다수의 신경세포를 자극하는 것에 반해 광유전학 기술은 목표로 하는 특정세포를 정확하게 자극할 수 있기 때문이다. 따라서, 본 발명에서는 상기 광자극에 의해 성상세포를 활성화시킬 수 있는 광활성화 이온 채널을 성상세포 특이적 프로모터의 조절하에서 형질전환시키는 것을 목적으로 한다.In the present invention, optogenetics is one of the biotechnology fields that have recently been in the spotlight, and it means controlling something with light by manipulating genes. Early research in optogenetics was applied to control the activity of nerve cells using light, which refers to a technology that activates nerve cells when light is irradiated to them. In this way, by using light to control the activity of nerve cells, you can control the activity of nerve cells more precisely than to control nerve cells using conventional electrical stimulation. This is because, while electrical stimulation stimulates a large number of unspecified nerve cells, optogenetic technology can accurately stimulate specific cells of interest. Accordingly, an object of the present invention is to transform a photoactivated ion channel capable of activating astrocytes by the photostimulation under the control of an astrocyte-specific promoter.
본 발명에 있어서, 상기 광활성화 이온채널(light-activated ion channel)은 광 자극에 의해 공극을 열고 닫는 막 투과성 단백질 그룹이다. 본 발명에서 상기 광활성화 이온채널은 광 자극에 노출이 되었을 때에 이에 반응하여 세포막의 이온 채널을 열 수 있는 단백질이라면 제한 없이 사용이 가능하며, 채널로돕신(channelrhodopsin), 할로로돕신(halorhodopsin) 또는 알키로돕신(archaerhodopsin)과 같은 단백질을 사용할 수 있다. 바람직하게는, 본 발명의 일실시예에서는 채널로돕신-2(channelrhodopsin-2; ChR2)를 사용하였다. 한편, 본 발명에 사용한 채널로돕신-2는 genbank number EF47017(ChR2)의 401번째 염기가 구아닌으로 점 돌연변이된 변이체로서, ChR2(H134R)로도 표시하였다.In the present invention, the light-activated ion channel is a group of membrane-permeable proteins that open and close pores by light stimulation. In the present invention, the photo-activated ion channel can be used without limitation as long as it is a protein capable of opening an ion channel of a cell membrane in response to exposure to a light stimulus, and channelrhodopsin, halohodopsin, or alkyrodopsin Proteins such as (archaerhodopsin) can be used. Preferably, in one embodiment of the present invention, channelrhodopsin-2 (ChR2) was used. On the other hand, channelrhodopsin-2 used in the present invention is a variant in which the 401th base of genbank number EF47017 (ChR2) is point mutated to guanine, and is also indicated as ChR2 (H134R).
상기 채널로돕신(channel rhodopsin)의 채널(channel)은 무엇인가가 통과한다는 뜻이고, 로돕신(rhodopsin)이라는 단어는 빛과 관련된다. 이는 빛을 받으면 채널로돕신의 채널이 열려 무엇인가가 세포 안으로 들어오고, 빛이 없으면 채널이 열리지 않는 특징이 있다. 따라서, 상기 채널로돕신-2 단백질을 성상세포에 주입하여 성상세포 세포막에서 채널의 열림을 빛으로 조절할 수 있도록 하였고, 성상세포의 채널이 열리면 세포 안으로 칼륨(K)과 같은 양이온들이 세포 안으로 들어오게 되며, 이로 인하여 세포 안과 밖의 전위차가 발생하여 성상세포가 활성화되게 된다.The channel of the channel rhodopsin means that something passes, and the word rhodopsin is related to light. This has the characteristic that when it receives light, the channel of channel rhodopsin opens and something enters the cell, and the channel does not open without light. Therefore, the channel rhodopsin-2 protein was injected into astrocytes to control the opening of the channel in the astrocyte cell membrane with light, and when the channel of the astrocyte is opened, cations such as potassium (K) enter the cell into the cell. , As a result, a potential difference between the inside and outside of the cell occurs, and the astrocyte is activated.
본 발명에서 성상세포를 광활성화 이온 채널로 형질전환 시키는 방법은 당업계에서 공지된 형질전환 방법을 제한없이 이용할 수 있으며, 이의 비제한적인 예시로는 형질전환(transformation), 형질주입(transfection), 전기천공(electrophoresis), 형질도입(transduction), 미세주입(microinjection) 및 총알식 도입(balliatic introduction)으로 이루어진 군에서 선택될 수 있다In the present invention, the method of transforming astrocytes with a photoactivated ion channel may use a transformation method known in the art without limitation, and non-limiting examples thereof include transformation, transfection, and It can be selected from the group consisting of electrophoresis, transduction, microinjection, and balliatic introduction.
본 발명에서 상기 발현벡터는 선형 DNA 벡터, 플라스미드 DNA 벡터 및 재조합 바이러스 벡터로 이루어진 군에서 선택될 수 있으나, 이에 제한되는 것은 아니며 당업계에서 형질전환을 위해 사용되는 통상적인 벡터들은 모두 본 발명의 방법에 사용될 수 있다.In the present invention, the expression vector may be selected from the group consisting of a linear DNA vector, a plasmid DNA vector, and a recombinant viral vector, but is not limited thereto, and all conventional vectors used for transformation in the art are the methods of the present invention. Can be used for
바람직하게는, 본 발명의 일실시예에서 사용한 발현벡터는 아데노바이러스 벡터(adenoviral vector) 또는 아데노-관련 바이러스 벡터(adeno-associated viral vector)일 수 있으며, 보다 바람직하게는, 상기 발현벡터는 ChR2 구조체를 포함하는 아데노바이러스 벡터인 Ad-sGFAP-ChR2(H134R)-Katushka1.3(Ad-ChR2) 또는 ChR2 구조체를 포함하는 아데노-관련 바이러스 벡터인 AAV-GFAP-hChR2(H134R)-eYFP(AAV-ChR2)일 수 있으나, 이에 제한되는 것은 아니다. 상기 Ad-ChR2 및 AAV-ChR2의 모식도는 도 8에 나타냈다.Preferably, the expression vector used in one embodiment of the present invention may be an adenovirus vector or an adeno-associated viral vector, and more preferably, the expression vector is a ChR2 structure Ad-sGFAP-ChR2 (H134R)-Katushka1.3 (Ad-ChR2), an adenovirus vector comprising, or AAV-GFAP-hChR2 (H134R)-eYFP (AAV-ChR2), an adeno-associated viral vector comprising a ChR2 structure ), but is not limited thereto. A schematic diagram of the Ad-ChR2 and AAV-ChR2 is shown in FIG. 8.
본 발명에서 상기 광 자극은 450 내지 480 nm의 파장을 갖는 청색광을 조사하는 것이 바람직하며, 광 자극을 조사하는 시간은 30분 내지 120분으로, 1회 내지 3회 광 자극하는 것이 바람직하다. 한편, 광 자극을 조사하는 방법은 특별히 제한되지 않으며 동물을 고정시키고 외부에서 광 자극을 조사할 수도 있으며, VLPO 내로 광 섬유(optic fiber)를 이식하여 VLPO에 직접적인 광 자극을 조사할 수도 있다. 상기 광의 파장은 형질전환하는 광활성화 이온채널의 종류에 따라 달라질 수 있으며, 최적의 광 파장은 통상의 기술자가 반복시험을 통해 용이하게 선정할 수 있다.In the present invention, the optical stimulation is preferably irradiated with blue light having a wavelength of 450 to 480 nm, and the irradiation time for the optical stimulation is 30 to 120 minutes, and it is preferable to perform optical stimulation once to three times. On the other hand, the method of irradiating the light stimulation is not particularly limited, and the animal may be immobilized and the light may be irradiated from the outside, and the VLPO may be directly irradiated with light stimulation by implanting an optical fiber into the VLPO. The wavelength of the light may vary depending on the type of photoactivated ion channel to be transformed, and the optimal light wavelength may be easily selected by a person skilled in the art through repeated tests.
또한, 본 발명은 상기 수면 유도 동물 모델에 수면 제어 약물 후보물질을 투여하는 단계; 및 대조물질을 투여한 동물군과 비교하여 수면 제어 효과를 나타내는 약물 후보물질을 선별하는 단계를 포함하는 수면 제어 약물의 스크리닝 방법을 제공한다. 바람직하게는, 상기 수면 제어 약물은 기면증 치료제, 각성제 또는 수면제일 수 있으나, 이에 제한되는 것은 아니다.In addition, the present invention comprises the steps of administering a sleep control drug candidate material to the sleep-inducing animal model; And it provides a method for screening a sleep control drug comprising the step of selecting a drug candidate exhibiting a sleep control effect compared to the control substance administered animal group. Preferably, the sleep control drug may be a narcolepsy therapeutic agent, a stimulant agent, or a sleeping agent, but is not limited thereto.
본 발명에서 상기 수면 제어 약물 후보물질은 그 종류가 특별히 제한되지 않으며, 바람직하게는 천연물, 합성화합물, RNA, DNA, 폴리펩티드, 효소, 단백질, 리간드, 항체, 박테리아 또는 진균의 대사물 및 생활성 분자로 이루어진 군에서 선택될 수 있다. In the present invention, the type of the sleep control drug candidate is not particularly limited, and preferably natural products, synthetic compounds, RNA, DNA, polypeptides, enzymes, proteins, ligands, antibodies, metabolites and bioactive molecules of bacteria or fungi It may be selected from the group consisting of.
상기 수면 제어 약물 후보물질을 동물에 투여하는 방법은 당업계에서 동물에 약물을 투여하는 방법은 제한없이 이용될 수 있으며, 예를 들어 복강투여, 경구투여, 정맥투여, 음수투여, 척수강 내 투여 등이 이용될 수 있다. 후보물질의 투여 시기는 광 자극을 조사한 직후 내지 1일 이내일 수 있으나 이에 제한되는 것은 아니며, 후보물질의 종류에 따라서는 광 자극을 조사하기 이전에 미리 약물을 투여하여 수면 제어 효과를 평가할 수도 있다. 약물의 투여 시기, 투여 경로, 투여 간격 및 투여 용량은 후보물질의 종류, 성상, 작용기전 등에 따라 통상의 기술자가 예비 실험을 통해 최적의 조건을 용이하게 선정하여 적용할 수 있다.The method of administering the sleep control drug candidate to an animal can be used without limitation in the art of administering the drug to an animal, for example, intraperitoneal administration, oral administration, intravenous administration, negative administration, intrathecal administration, etc. Can be used. The timing of administration of the candidate substance may be immediately after irradiation with light stimulation to within 1 day, but is not limited thereto, and depending on the type of the candidate substance, the sleep control effect may be evaluated by administering a drug in advance before irradiation with light stimulation . The timing of administration, route of administration, administration interval, and dosage of the drug can be applied by a person skilled in the art by easily selecting and applying optimal conditions through preliminary experiments according to the kind, nature, and mechanism of action of the candidate substance.
이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.Hereinafter, examples will be described in detail to aid understanding of the present invention. However, the following examples are for illustrative purposes only, and the scope of the present invention is not limited to the following examples. The embodiments of the present invention are provided to more completely explain the present invention to those of ordinary skill in the art.
<< 실험예Experimental example >>
하기의 실험예들은 본 발명에 따른 각각의 실시예에 공통적으로 적용되는 실험예를 제공하기 위한 것이다. The following experimental examples are intended to provide experimental examples commonly applied to each of the examples according to the present invention.
1. 실험동물1. Experimental animals
모든 실험과정은 경북대학교 윤리위원회의 권고사항에 따라 수행하였으며, 실험에 사용된 동물의 고통을 최소화하기 위해 모든 노력을 다하였다. 모든 동물들은 Plexiglas cages (28 × 42 × 18 cm)에서 21-24℃, 12:12 h 명암 주기가 조절되는 환경에서 각각 사육하였다. 동물들은 표준적인 상업용 사료를 먹었고, 기록 당일을 제외하고는 물은 마음대로 먹을 수 있도록 하였다. 특별히 표시한 부분을 제외하고는, 모든 행동 연구 및 미세 투석(microdialysis) 실험에 성체 수컷 Sprague Dawley (SD) 랫트(275-300 g, 8-12 주령)를 사용하였다. 본 발명의 시작 및 종결 사이에 동물의 수는 차이가 없었다. 본 발명에 나타낸 모든 관련 데이터는 본 발명자들로부터 얻었다.All experiments were conducted according to the recommendations of the Kyungpook National University Ethics Committee, and every effort was made to minimize the pain of animals used in the experiments. All animals were reared in Plexiglas cages (28 × 42 × 18 cm) at 21-24° C. and 12:12 h in a controlled environment. Animals were fed standard commercial diet, and water was freely available except on the day of recording. Except where specifically indicated, adult male Sprague Dawley (SD) rats (275-300 g, 8-12 weeks old) were used for all behavioral studies and microdialysis experiments. There was no difference in the number of animals between the start and end of the invention. All relevant data shown in the present invention were obtained from the inventors.
2. 전기생리학적 실험2. Electrophysiological experiment
(1) 조직 절편 배양(1) tissue section culture
갓 태어난 SD 랫트(3-5 일령, 성별 무관)를 케타민(100 mg/kg, i.p.) 마취하에서 희생시켰다. 뇌를 절단하고, microslicer (VT1000S; Leica, Nussloch, Germany)를 사용하여 차가운 인공 뇌척수액(ACSF; in mM: 120 NaCl, 2 KCl, 1 KH2PO4, 26 NaHCO3, 2 CaCl2, 1 MgCl2, and 10 glucose, saturated with 95% O2 and 5% CO2)에서 400 μm 두께로 횡단면으로 절편하였다. VLPO 부위를 포함하는 절편은 a membrane insert (diameter, 30 mm; Millicell-CM, Millipore, Billerica, MA, USA) 상에 놓고, 웰 당 1 ml 배양 배지를 함유하는 6-웰 배양 플레이트로 옮겼다. 그 후, 아데노바이러스 벡터 [Ad-sGFAP-ChR2(H134R)-Katushka1.3, Ad-ChR2, 1 μl; titer 1.6 × 1011 PFU/ml]를 쌍안 현미경 하에서 마이크로피펫을 사용하여 VLPO 부위에 조심스럽게 주입하였다. 배양 배지는 50% minimum essential medium, 25% Hank's balanced salt solution, 25% heat-inactivated horse serum (all from Sigma, St. Lois, MO, USA) 및 1 mM glutamine으로 이루어졌다. 최종 농도 10 mM로 맞추기 위해서, 배지에 글루코스를 첨가하였다. 실험이 수행되기 전, 절편 배양은 37℃, 5% CO2 및 100% 습도에서 2-3일 동안 유지하였다. 그 후, 절편은 기록 챔버로 옮겨졌고, 침수형 대물렌즈(×40)가 장착된 upright microscope (E600FN; Nikon, Tokyo, Japan) 하에서 VLPO 부위를 확인하였다. 실험의 서브세트로, VLPO 및 TMN이 포함된 뇌 절편 시상면을 동일한 배지에서 배양하였다.Newborn SD rats (3-5 days old, regardless of gender) were sacrificed under ketamine (100 mg/kg, ip) anesthesia. The brain was cut, and cold artificial cerebrospinal fluid (ACSF; in mM: 120 NaCl, 2 KCl, 1 KH 2 PO 4 , 26 NaHCO 3 , 2 CaCl 2 , 1 MgCl 2 ) using a microslicer (VT1000S; Leica, Nussloch, Germany) , and 10 glucose, saturated with 95% O 2 and 5% CO 2 ) in cross section with a thickness of 400 μm. Sections containing the VLPO site were placed on a membrane insert (diameter, 30 mm; Millicell-CM, Millipore, Billerica, MA, USA) and transferred to a 6-well culture plate containing 1 ml culture medium per well. Then, adenovirus vector [Ad-sGFAP-ChR2(H134R)-Katushka1.3, Ad-ChR2, 1 μl; titer 1.6 × 10 11 PFU/ml] was carefully injected into the VLPO site using a micropipette under a binocular microscope. The culture medium consisted of 50% minimum essential medium, 25% Hank's balanced salt solution, 25% heat-inactivated horse serum (all from Sigma, St. Lois, MO, USA) and 1 mM glutamine. To bring the final concentration to 10 mM, glucose was added to the medium. Before the experiment was performed, section culture was maintained at 37° C., 5% CO 2 and 100% humidity for 2-3 days. Thereafter, the section was transferred to the recording chamber, and the VLPO site was confirmed under an upright microscope (E600FN; Nikon, Tokyo, Japan) equipped with a submerged objective lens (×40). As a subset of the experiment, brain slice sagittal planes containing VLPO and TMN were cultured in the same medium.
(2) 급성 절편 준비(2) Preparation of acute section
어린 성체 수컷 SD 랫트 (3-4 주령)는 케타민 하이드로클로라이드(72.6 mg/kg) 및 자일라진 하이드로클로라이드(5.1 mg/kg)의 칵테일(2 ml/kg)을 사용하여 복막 마취하였고, 뇌정위 고정장치(stereotaxic frame)에 놓았다. VLPO의 하측 부위에 아데노-관련 바이러스 벡터[AAV5-GFAP-ChR2(H134R)-eYFP, AAV-ChR2, 1 μl; titer 1.6 Х 1012 PFU/ml]를 미세 주입하였다. 미세주입 7 내지 10일 후, 랫트는 케타민(100 mg/kg, i.p.) 마취하에서 희생시켰다. 뇌를 절단하고, microslicer (VT1000S)를 사용하여 차가운 인공 뇌척수액에서 350 μm 두께로 횡단면(transversely) 또는 사상면(sagittally)으로 절편하였다. 전기생리학적으로 기록하기 전에 적어도 1시간 동안, 뇌 절편 횡단면 또는 사상면은 ACSF에서 보관하였고, 95% O2 및 5% CO2로 상온(22-25℃)을 유지하였다. 그 후, VLPO나 VLPO 및 TMN을 모두 포함하는 절편을 기록 챔버로 옮겼고, 침수형 대물렌즈(×40)가 장착된 upright microscope (E600FN) 하에서 VLPO 뉴런 또는 히스타민성 뉴런을 확인하였다. digital microscope camera (ProgRes® MF; Jenoptik, Yena, Germany or DS-Ri1; Nikon, Tokyo, Japan)를 이용하여, 이미지들을 얻어냈다.Young adult male SD rats (3-4 weeks old) were peritoneal anesthesia using a cocktail (2 ml/kg) of ketamine hydrochloride (72.6 mg/kg) and xylazine hydrochloride (5.1 mg/kg), and stereotactic fixation. Placed on the device (stereotaxic frame). Adeno-associated viral vector [AAV5-GFAP-ChR2(H134R)-eYFP, AAV-ChR2, 1 μl; in the lower region of VLPO; titer 1.6 Х 10 12 PFU/ml] was microinjected. 7-10 days after microinjection, rats were sacrificed under anesthesia with ketamine (100 mg/kg, ip). The brain was cut and sectioned transversely or sagittally at 350 μm thick in cold artificial cerebrospinal fluid using a microslicer (VT1000S). For at least 1 hour prior to electrophysiological recording, the brain section cross-sections or fibroblasts were stored in ACSF and maintained at room temperature (22-25° C.) with 95% O 2 and 5% CO 2 . Thereafter, the section containing both VLPO or VLPO and TMN was transferred to a recording chamber, and VLPO neurons or histaminergic neurons were identified under an upright microscope (E600FN) equipped with a submerged objective lens (×40). Images were acquired using a digital microscope camera (ProgRes® MF; Jenoptik, Yena, Germany or DS-Ri1; Nikon, Tokyo, Japan).
(3) 전체 세포 패치 클램프 기록(3) Whole cell patch clamp recording
모든 전기생리학적 측정은 computer-controlled patch-clamp amplifier (Axopatch 200B; Molecular Devices; Union City, CA, USA)를 사용하여 수행하였다. 전체 세포 기록을 위해, pipette puller (P-97; Sutter Instrument Co., Novato, CA, USA)를 사용하여 borosilicate capillary glass (1.5 mm outer diameter, 0.9 mm inner diameter; G-1.5; Narishige, Tokyo, Japan)로부터 패치 피펫을 만들었다. 내부 용액(in mM; 140 K-gluconate, 10 KCl, 2 EGTA, 2 Mg-ATP, and 10 HEPES, pH 7.2 with Tris-base)으로 채워진 기록 피펫의 저항은 2-5 MΩ이었다. 액간 접촉 전위는 수정되었다. 서브세트 실험에서, 피펫 용액에 Alexa 594 (Alexa Fluor dye 594 hydrazide sodium salt; Thermo Fisher Scientific Korea Ltd. Seoul, Korea)를 최종 농도 50 μM이 되도록 첨가하였다. 피펫 정전용량 및 직렬 저항은 50-70% 보상되었다. 전류-클램프 기록에 있어서, 증폭기는 직렬 저항 보상 기능이 있는 전류-클램프(I-CLAMP) 모드로 전환되었다. 이를 통해 다른 증폭기의 '브릿지 밸런스(bridge balance)'와 동등한 효과를 얻을 수 있었다. 막 전압 또는 전류는 2-5 kHz에서 저역 통과 필터 되었고, 10-20 kHz에서 획득되었다(Digidata 1440; Molecular Devices). 모든 실험은 22-24℃의 온도 범위에서 수행하였다. 수조는 연동 펌프(MP-1000; EYELA, Tokyo, Japan)를 사용하여 2 ml/min의 ACSF로 관류시켰다.All electrophysiological measurements were performed using a computer-controlled patch-clamp amplifier (Axopatch 200B; Molecular Devices; Union City, CA, USA). For whole cell recording, borosilicate capillary glass (1.5 mm outer diameter, 0.9 mm inner diameter; G-1.5; Narishige, Tokyo, Japan) using a pipette puller (P-97; Sutter Instrument Co., Novato, CA, USA). ) To make a patch pipette. The resistance of the recording pipette filled with the internal solution (in mM; 140 K-gluconate, 10 KCl, 2 EGTA, 2 Mg-ATP, and 10 HEPES, pH 7.2 with Tris-base) was 2-5 MΩ. The liquid-to-liquid contact potential was corrected. In a subset experiment, Alexa 594 (Alexa Fluor dye 594 hydrazide sodium salt; Thermo Fisher Scientific Korea Ltd. Seoul, Korea) was added to the pipette solution to a final concentration of 50 μM. Pipette capacitance and series resistance were compensated by 50-70%. For current-clamp recording, the amplifier was switched to current-clamp (I-CLAMP) mode with series resistance compensation. Through this, the same effect as the'bridge balance' of other amplifiers could be obtained. Membrane voltage or current was low-pass filtered at 2-5 kHz and acquired at 10-20 kHz (Digidata 1440; Molecular Devices). All experiments were conducted in a temperature range of 22-24°C. The water bath was perfused with ACSF at 2 ml/min using a peristaltic pump (MP-1000; EYELA, Tokyo, Japan).
(4) ChR2의 광자극(4) Photostimulation of ChR2
레이저 광원(blue laser [473 nm]; SDL-473-100MFL; Shanghai Dream Lasers Technology Co., Shanghai, China)에 연결된 광섬유관(200 μm inner diameter, 0.37 NA)은 미세조작장치(micromanipulator)를 이용하여 VLPO 부위의 표면에 놓았다. 광자극(500 ms duration)은 자극기(SEN-7203; Nihon Kohden, Tokyo, Japan)를 사용하여 1 Hz (500 ms on/off)의 빈도에서 자극하였고, 3-5분 동안 적용하였다. 광섬유관 끝의 최대 광 세기는 1.7 mW이었다(PM204; Thorlabs Co., Newton, NJ, USA).The optical fiber tube (200 μm inner diameter, 0.37 NA) connected to the laser light source (blue laser [473 nm]; SDL-473-100MFL; Shanghai Dream Lasers Technology Co., Shanghai, China) is used with a micromanipulator. Placed on the surface of the VLPO site. Photostimulation (500 ms duration) was stimulated at a frequency of 1 Hz (500 ms on/off) using a stimulator (SEN-7203; Nihon Kohden, Tokyo, Japan), and applied for 3-5 minutes. The maximum light intensity at the end of the fiber optic tube was 1.7 mW (PM204; Thorlabs Co., Newton, NJ, USA).
(5) 데이터 분석(5) data analysis
APs 및 GABAergic sIPSCs를 계수하였고, pClamp 10.3 (Molecular Devices) 또는 MiniAnalysis program (Synaptosoft, Inc., Decatur, GA, USA)을 사용하여 분석하였다. 대조 기간(5-10 min) 및 광자극 기간(3-5 min) 동안의 sIPSCs 또는 APs의 빈도는 각 조건별로 계산되었다. 광자극의 효과는 APs 또는 sIPSCs 빈도의 백분율 변화를 통해 정량하였고, 막 전위는 대조군 수치와 비교하였다. 표준화된 대조군 수치를 이용한, 수치적 결과는 별로도 표시한 것을 제외하고는 mean ± SEM로서 표시하였다.APs and GABAergic sIPSCs were counted and analyzed using pClamp 10.3 (Molecular Devices) or MiniAnalysis program (Synaptosoft, Inc., Decatur, GA, USA). The frequency of sIPSCs or APs during the control period (5-10 min) and photostimulation period (3-5 min) was calculated for each condition. The effect of photostimulation was quantified through the percentage change in the frequency of APs or sIPSCs, and the membrane potential was compared with the control value. Using standardized control values, numerical results were expressed as mean±SEM, except for those indicated separately.
(6) 약물(6) drugs
본 발명에 사용된 약물은 ATP, Bz-ATP, adenosine, DPCPX, suramin, PPADS, ARL67156, BBG, CBX (Sigma Aldrich, St. Louis, MO, USA), SR95531, 2MeCCPA, CGS 21680, BAY 60-6583, HEMADO (Tocris, Bristol, UK) 및 2,5-dimethoxy-N-(quinolin-3-yl)benzenesulfonamide (TNAP inhibitor, TNAP-I, from Merck Millipore, Darmstadt, Germany)이다. 모든 약물은 수조 적용(bath application)을 통해 투여하였다.The drugs used in the present invention are ATP, Bz-ATP, adenosine, DPCPX, suramin, PPADS, ARL67156, BBG, CBX (Sigma Aldrich, St. Louis, MO, USA), SR95531, 2MeCCPA, CGS 21680, BAY 60-6583 , HEMADO (Tocris, Bristol, UK) and 2,5-dimethoxy-N-(quinolin-3-yl)benzenesulfonamide (TNAP inhibitor, TNAP-I, from Merck Millipore, Darmstadt, Germany). All drugs were administered via bath application.
(7) 단일 세포 RT-PCR(7) single cell RT-PCR
전체 세포 패치 클램프 기록 후, mRNA를 포함하는 기록된 뉴런 구성물은 기록 피펫을 통해 조심스럽게 흡입시켰다. 그 후, 패치 피펫에 수확된 물질을 PCR 튜프에 옮겼다. 역전사 및 1차 PCR 반응은 one-step RT-PCR kit (Qiagen, Hilden, Germany)를 사용하여 동일한 튜브에서 수행하였다. RT-PCR에 사용된 프라이머는 다음과 같다. galanin (1st) 5'-tggctcctgttggttgcaacc-3'/5'-gtggtctcaggactgctctag-3', (2nd) 5'-aacagcgctggctaccttctg-3'/5'-tcttctgaggaggtggccaag-3' (product size 251 bp), GAD67 (1st) 5'-gtgtgctgctccagtgttctg-3'/5'-gaagttggccttgtccccttg-3', (2nd) 5'-tgcaaccagatgtgtgcaggc-3'/5'-ttgatcttgggagccaccctg-3' (product size 350 bp), histidine decarboxylase (HDC) (1st) 5'-atctgccagtacctgagcacc-3'/5'-ggcaacaagacgagcgttcag-3', (2nd) 5'-atgtgaagcctgggtacctgc-3'/5'-ggactcatcagcattgggctc-3' (product size 440 bp) 및 GAPDH (1st) 5'-catcttccaggagcgagatcc-3'/5'-cagtgagcttcccgttcagct-3', (2nd) 5'-tggagtctactggcgtcttcac-3'/5'-gatgcagggatgatgttctggg-3' (product size 350 bp). 2차 nested PCR은 GoTaqⓡ DNA polymerase (Promega)를 이용하여 수행하였고, 각각의 1차 라운드 PCR 산물을 주형(2 μl)으로 사용하였다. 증폭된 PCR 산물은 RedSafeTM Nucleic Acid Staining Solution이 첨가된 2% 아가로스 젤에서 전기영동되었고, 그 후 상기 젤은 사진촬영되었다.After whole cell patch clamp recording, the recorded neuronal constructs containing the mRNA were carefully aspirated through a recording pipette. Then, the material harvested in the patch pipette was transferred to a PCR tube. Reverse transcription and the first PCR reaction were performed in the same tube using a one-step RT-PCR kit (Qiagen, Hilden, Germany). Primers used for RT-PCR are as follows. galanin (1st) 5'-tggctcctgttggttgcaacc-3'/5'-gtggtctcaggactgctctag-3', (2nd) 5'-aacagcgctggctaccttctg-3'/5'-tcttctgaggaggtggccaag-3' (product size 251 bp), GAD67 (1st) 5 '-gtgtgctgctccagtgttctg-3'/5'-gaagttggccttgtccccttg-3', (2nd) 5'-tgcaaccagatgtgtgcaggc-3'/5'-ttgatcttgggagccaccctg-3' (product size 350 bp), histidine decarboxylase (HDC) (1st) 5'-atctgccagtacctgagcacc-3'/5'-ggcaacaagacgagcgttcag-3', (2nd) 5'-atgtgaagcctgggtacctgc-3'/5'-ggactcatcagcattgggctc-3' (product size 440 bp) and GAPDH (1st) 5'-catcttccaggagcg'/5'-cagtgagcttcccgttcagct-3', (2nd) 5'-tggagtctactggcgtcttcac-3'/5'-gatgcagggatgatgttctggg-3' (product size 350 bp). Secondary nested PCR was performed using a GoTaq ⓡ DNA polymerase (Promega), it was used for each of the first round PCR product as a template (2 μl). The amplified PCR product was electrophoresed on a 2% agarose gel to which RedSafe TM Nucleic Acid Staining Solution was added, and the gel was then photographed.
3. 3. 분자학Molecular science , 세포학 및 조직학적 연구, Cytology and histological studies
(1) 생체 내(in vivo) 바이러스 유전자 전달(1) in vivo (in vivo) virus gene transfer
성체 랫트는 2-4% 이소플루란(isoflurane)(Baxter, Deerfield, IL, USA)로 마취시켰고, 뇌정위 고정장치(stereotaxic frame)에 놓았다. VLPO의 하측 부위에 아데노바이러스 벡터(Ad-ChR2; generously provided by Dr. Kasparov at University of Bristol, Bristol, UK)를 다음과 같이 일방 또는 쌍방으로 미세 주입하였다. 정수리점(bregma)으로부터 앞뒤 방향(antero-posterior; AP) -0.4 mm, 좌우 방향(lateral; L) ±1.1 mm 및 경질막(dura)으로부터 하측(ventral; V) -8.5 mm. 한편, 아데노-관련 바이러스 벡터 (AAV-ChR2; University of North Carolina Gene Therapy Program Vector Core)도 동일한 VLPO 부위에 유사하게 주입하였다. 미세 주입 후, 상처를 봉합하였다. 수술 후 처치를 즉시 수행하였고, 이식유전자의 높은 발현 수준을 확인하기 위한 실험 전에, 동물들을 7일 동안 회복시켰다. 바이러스 벡터(Ad-ChR2, Ad-eGFP, AAV-ChR2 및 AAV-eYFP)를 이용한 모든 행동 실험에 있어서, VLPO 부위 내 관련 단백질들의 발현은 각 실험 종료 후 형광 신호를 통해 확인하였다. VLPO 부위 내에서 형광 신호가 검출되지 않은 행동 실험 결과는 제외하였다. Adult rats were anesthetized with 2-4% isoflurane (Baxter, Deerfield, IL, USA) and placed on a stereotaxic frame. An adenovirus vector (Ad-ChR2; generously provided by Dr. Kasparov at University of Bristol, Bristol, UK) was microinjected into the lower region of VLPO in one or both directions as follows. Antero-posterior (AP) -0.4 mm from the bregma, lateral (L) ±1.1 mm and ventral (V) -8.5 mm from the dura. Meanwhile, an adeno-associated virus vector (AAV-ChR2; University of North Carolina Gene Therapy Program Vector Core) was similarly injected into the same VLPO site. After microinjection, the wound was closed. Postoperative treatment was performed immediately, and animals were recovered for 7 days before the experiment to confirm the high expression level of the transgene. In all behavioral experiments using viral vectors (Ad-ChR2, Ad-eGFP, AAV-ChR2, and AAV-eYFP), expression of related proteins in the VLPO site was confirmed through fluorescence signals after each experiment. The results of behavioral experiments in which no fluorescence signal was detected in the VLPO site were excluded.
(2) 배양된 성상세포에서의 Ca2 + 반응에 대한 공초점 이미지 분석(2) Confocal image analysis of Ca 2 + reaction in cultured astrocytes
Ad-ChR2 또는 AAV-ChR2로 감염시킨 후, 초대 배양된 성상세포에 칼슘 표지자인 Fluo-4 또는 rhodamine 2를 사용하였다. 이미지들은 침수형 대물렌즈(×40)가 장착된 공초점 현미경을 사용하여 얻어냈다. ChR2를 활성화시키기 위해서, 488 nm Argon laser가 사용되었고, bandpass filter (505-550 nm)를 사용하여 측정되었다. 레이저의 강도, 세기는 최소를 유지하였다(at 0.5-0.7% of laser output).After infection with Ad-ChR2 or AAV-ChR2, a calcium marker Fluo-4 or
(3) 미세 투석(Microdialysis)(3) Microdialysis
성체 랫트는 이소플루란을 사용하여 마취를 유지시켰고, 뇌정위 고정장치(stereotaxic frame)에 고정시켰다. 2개의 가이드 캐뉼라 중, 하나는 광자극을 위한 것이고, 다른 하나는 미세 투석을 위한 것으로, VLPO 부위에 이식하였다. 가이드 캐뉼라의 끝은 표적의 1.0 mm 아래에 놓았다. 정수리점(bregma)으로부터 AP -0.4 mm, L ±1.1 mm 및 경질막(dura)으로부터 -8.5 mm. 이들은 치과용 접착제를 사용하여 앵커 나사 3개로 두개골에 고정시켰다. 광자극을 위한 캐뉼라는 비스듬히 삽입하였고(20°각도), 미세 투석 프로브 캐뉼라는 VLPO 내에 수직으로 삽입하였다. 캐뉼라 이식 후, 사육실에서 7일 동안 회복시켰다. 미세 투석 시작 24시간 전에, 미세 투석 프로브(CMA Microdialysis AB, Stockholm, Sweden)를 가이드 캐뉼라를 통해 VLPO 내로 삽입하였다. 상기 프로브는 폴리에틸렌 튜빙된 미세관류 펌프에 연결시켰고, 0.5 μl/min 유량의 인공 뇌척수액으로 관류시켰다. 튜브 배출구 말단으로부터 세포외액(Extracellular fluid; ECF)을 얼음에 유지시킨 플라스틱 바이알에 수집하였다. 샘플은 60분 간격으로 120분 동안 수집하였다. 수집된 샘플은 즉시 -80℃에서 동결시켰고, ATP, 아데노신(adenosine) 및 다른 신경활성물질(gliotransmitters) 분석 전까지 유지하였다. 몇몇 실험을 위해서, 성상세포의 대사작용 억제제(L-α-AA, 10 nM; Sigma Aldrich, St. Louis, MO, USA) 투여 후, ECF를 수집하였다.Adult rats were anesthetized using isoflurane and fixed to a stereotaxic frame. Of the two guide cannulaes, one was for photostimulation and the other was for microdialysis, which was implanted at the VLPO site. The tip of the guide cannula was placed 1.0 mm below the target. AP -0.4 mm from the bregma, L ±1.1 mm and -8.5 mm from the dura. They were fixed to the skull with 3 anchor screws using dental adhesive. The cannula for photostimulation was inserted at an angle (20° angle), and the microdialysis probe cannula was inserted vertically into the VLPO. After cannula implantation, it was recovered for 7 days in the breeding room. 24 hours before the start of microdialysis, a microdialysis probe (CMA Microdialysis AB, Stockholm, Sweden) was inserted into the VLPO through a guide cannula. The probe was connected to a polyethylene tubed microperfusion pump and perfused with artificial cerebrospinal fluid at a flow rate of 0.5 μl/min. Extracellular fluid (ECF) from the end of the tube outlet was collected in a plastic vial kept on ice. Samples were collected for 120 minutes at 60 minute intervals. The collected samples were immediately frozen at -80°C and maintained until analysis of ATP, adenosine and other neurotransmitters. For some experiments, ECF was collected after administration of an astrocyte metabolism inhibitor (L-α-AA, 10 nM; Sigma Aldrich, St. Louis, MO, USA).
(4) 면역조직화학분석(Immunohistochemistry)(4) Immunohistochemistry
동물들은 디에틸 에테르로 마취시켰고, 우선 식염수로 심장을 통해 관류시킨 후, 100 mM PBS에 희석한 4% 파라포름알데히드로 관류시켰다. 뇌는 4% 파라포름알데히드에 1일 동안 고정시켰고, 그 후 30% 수크로스 용액을 사용하여 탈수 작업 후 초저온냉동고에 동결보존하였다. 고정된 뇌는 OCT 화합물(Tissue-Tek; Sakura Finetek, Tokyo, Japan)로 포매되었고, 20-25 μm 두께로 절편하였다. 이중 또는 삼중 면역형광 분석을 위해, 조직 절편은 일차 항체 mouse anti-GFAP antibody (1:500 dilution; BD Biosciences, San Diego, CA, catalogue number: 556330), goat anti-TNAP antibody (1:500 dilution; Santa Cruz Biotech, Dallas, TX, catalogue number: sc-23430, mouse anti-GAD67 (1:500 dilution; Millipore, Billerica, MA, catalogue number: MAB5406), rabbit anti-galanin (1:500 dilution; Peninsula Laboratories; San Carlos, CA, catalogue number: T-4334), mouse anti-c-Fos (1:500 dilution; Santa Cruz Biotech, Dallas, TX, catalogue number: sc-8047), rabbit anti-GFAP (1:1000 dilution; Dako, Glostrup, Denmark, catalogue number: Z0334), rabbit anti-Iba-1 (1:1000 dilution; Wako, Osaka, Japan, catalogue number: 019-19741) 및 mouse anti-NeuN (1:500 dilution; Millipore, catalogue number: MAB377)으로 반응시켰다. 그 후, 이차항체 Cy3-, Cy5- 및 FITC-conjugated anti-mouse, anti-rabbit 또는 anti-goat IgG antibody (The Jackson Laboratory, Bar Harbor, ME; Cy3-mouse, catalogue number: 715-165-151; Cy3-rabbit, catalogue number: 711-165-152; Cy3-goat, catalogue number: 705-165-147; Cy5-rabbit, catalogue number: 711-175-152; FITC-mouse, catalogue number: 715-095-151; FITC-rabbit, catalogue number: 711-096-152; FITC-goat, catalogue number: 705-095-147)와의 반응을 통해 가시화되었고, 형광 또는 공초점 현미경 하에서 확인되었다. ImageJ software version 1.44 (National Institutes of Health, Bethesda, MD, USA)을 이용하여, 형광 세기를 정량하였다. 정량 분석을 위해 VLPO 내 임의로 선택된 비-오버랩핑 영역으로부터 이미지들을 얻었다.Animals were anesthetized with diethyl ether, first perfused through the heart with saline, and then perfused with 4% paraformaldehyde diluted in 100 mM PBS. Brains were fixed in 4% paraformaldehyde for 1 day, and after dehydration using 30% sucrose solution, they were cryopreserved in a cryogenic freezer. The fixed brain was embedded with an OCT compound (Tissue-Tek; Sakura Finetek, Tokyo, Japan), and sliced to a thickness of 20-25 μm. For double or triple immunofluorescence analysis, tissue sections were prepared with primary antibody mouse anti-GFAP antibody (1:500 dilution; BD Biosciences, San Diego, CA, catalog number: 556330), goat anti-TNAP antibody (1:500 dilution; Santa Cruz Biotech, Dallas, TX, catalog number: sc-23430, mouse anti-GAD67 (1:500 dilution; Millipore, Billerica, MA, catalog number: MAB5406), rabbit anti-galanin (1:500 dilution; Peninsula Laboratories; San Carlos, CA, catalog number: T-4334), mouse anti-c-Fos (1:500 dilution; Santa Cruz Biotech, Dallas, TX, catalog number: sc-8047), rabbit anti-GFAP (1:1000 dilution ; Dako, Glostrup, Denmark, catalog number: Z0334), rabbit anti-Iba-1 (1:1000 dilution; Wako, Osaka, Japan, catalog number: 019-19741) and mouse anti-NeuN (1:500 dilution; Millipore , catalog number: MAB377) After that, secondary antibodies Cy3-, Cy5- and FITC-conjugated anti-mouse, anti-rabbit or anti-goat IgG antibody (The Jackson Laboratory, Bar Harbor, ME; Cy3-mouse , catalog number: 715-165-151; Cy3-rabbit, catalog number: 711-165-152; Cy3-goat, c atalogue number: 705-165-147; Cy5-rabbit, catalog number: 711-175-152; FITC-mouse, catalog number: 715-095-151; FITC-rabbit, catalog number: 711-096-152; FITC-goat, catalog number: 705-095-147) and confirmed under a fluorescence or confocal microscope. Fluorescence intensity was quantified using ImageJ software version 1.44 (National Institutes of Health, Bethesda, MD, USA). Images were obtained from randomly selected non-overlapping areas in VLPO for quantitative analysis.
(5) 생물발광분석(Bioluminescence assay)(5) Bioluminescence assay
ATP bioluminescence assay kit (Sigma) 및 Synergy 4 Multi-Detection Microplate Reader (BioTek Instruments Inc., Winooski, VT, USA)를 사용하여, 샘플의 세포 외 ATP 함량을 측정하였다. ATP 분석을 위해, 초대배양 성상세포 유래 배양 배지(100 μl) 또는 미세투석 뇌조직액(25 μl)은 96-웰 마이크로플레이트에 피펫으로 옮겼다. ATP 분석 혼합 용액(100 μl)을 각 웰에 첨가하였고, 1분 내에 발광 신호를 동역학적으로 측정하였다.ATP bioluminescence assay kit (Sigma) and
(6) 아미노산 자동분석기를 사용한 신경활성물질(gliotransmitters)의 분석(6) Analysis of neuroactive substances (gliotransmitters) using an automatic amino acid analyzer
6 N HCl로 가수분해된, 50 μl 투석물 샘플을 아미노산 자동분석기(L-8900, Hitachi, Japan)에 주입하였다. 이온 교환 컬럼(2622 SC PF, Hitachi)으로, 50℃에서 자유 아미노산을 분리하였고, 이동상인 완충액 세트(PF-1, PF-2, PF-3, PF-4, PF-6, PF-RG, R-3 및 C-1)에 용출시켰다. 용출된 자유 아미노산은 닌하이드린 용액(Wako, Japan)으로 135℃에서 컬럼 후 반응시켰다. 570 및 440 nm 파장에서 측정된, 닌하이드린-표지된 자유 아미노산 검출을 정량하였다. type ANII 및 type B (Wako)의 혼합물은 자유 아미노산 정량을 위한 내부 표준물질로서 사용하였다.A sample of 50 μl dialysate hydrolyzed with 6 N HCl was injected into an automatic amino acid analyzer (L-8900, Hitachi, Japan). With an ion exchange column (2622 SC PF, Hitachi), free amino acids were separated at 50° C., and a mobile phase buffer set (PF-1, PF-2, PF-3, PF-4, PF-6, PF-RG, It was eluted in R-3 and C-1). The eluted free amino acids were reacted after column at 135° C. with a ninhydrin solution (Wako, Japan). The detection of ninhydrin-labeled free amino acids, measured at 570 and 440 nm wavelengths, was quantified. A mixture of type ANII and type B (Wako) was used as an internal standard for quantification of free amino acids.
(7) 성상세포의 초대 배양(7) Primary culture of astrocytes
신생 성상세포 배양물은 혼합 신경교세포 배양으로부터 제조하였다. 간단히 설명하면, SD 랫트(2-3일령, 성별무관)의 전체 뇌를 잘라, 나일론 메쉬를 사용하여 기계적으로 부수었다. 얻어진 세포들은 배양 플라스크에 접종하였고, 10% 우태아혈청(fetal bovine serum; FBS) 및 100 U/ml 페니실린-스트렙토마이신(Gibco-BRL, Rockville, MD, USA)이 첨가된 Dulbecco's modified Eagle's medium (DMEM)에서 37℃, 5% CO2 대기 조건하에서 배양하였다. 5일 후, 배양 배지를 처음으로 바꿨고, 그 후에는 3일마다 바꿨다. 세포는 14-21일 동안 배양 후 사용하였다. 혼합 신경교세포는 교반기에서 12시간 동안 250 rpm을 가하여 성상세포와 미세아교세포를 분리하였다. 배양 배지는 제거하였고, 성상세포는 trypsin-EDTA (Gibco-BRL)를 사용하여 분리하였으며, 1,200 rpm으로 10분 동안 원심분리시켜 수집하였다. 초대배양 성상세포는 10% FBS 및 페니실린-스트렙토마이신이 첨가된 DMEM 배지를 사용하였고, 37℃와, 5% CO2를 유지한 배양기에서 배양되었다.New astrocyte cultures were prepared from mixed glial cell cultures. Briefly, the entire brain of SD rats (2-3 days old, regardless of gender) was cut and mechanically broken using a nylon mesh. The obtained cells were inoculated into culture flasks, and Dulbecco's modified Eagle's medium (DMEM) to which 10% fetal bovine serum (FBS) and 100 U/ml penicillin-streptomycin (Gibco-BRL, Rockville, MD, USA) were added. ) At 37° C., 5% CO 2 under atmospheric conditions. After 5 days, the culture medium was changed for the first time, after which it was changed every 3 days. Cells were used after incubation for 14-21 days. For mixed glial cells, astrocytes and microglia were separated by applying 250 rpm for 12 hours in a stirrer. The culture medium was removed, and astrocytes were separated using trypsin-EDTA (Gibco-BRL), and collected by centrifugation at 1,200 rpm for 10 minutes. Primary cultured astrocytes were cultured in a DMEM medium supplemented with 10% FBS and penicillin-streptomycin, and incubated at 37° C. and 5% CO 2 .
4. 생체 내(4. In vivo ( In In vivovivo ) 수면 기록) Sleep record
(1) 수술 및 바이러스 벡터의 미세 주입(1) surgery and microinjection of viral vectors
성체 랫트는 케타민 하이드로클로라이드(72.6 mg/kg) 및 자일라진 하이드로클로라이드(5.1 mg/kg)의 칵테일(2 ml/kg)을 사용하여 복막 마취하였다. 마취 유지가 필요하면, 상기 칵테일(1 ml/kg)을 추가적으로 반복하여 주입하였다. EEG 전극을 편평한 두개골 부위에 이식하기 위해서, 랫트를 뇌정위 고정장치(David-Kopf Instrument Co., Tujunga, CA, USA)에 놓았다. 2개의 22-게이지 스테인레스 스틸 가이드 캐뉼라를 쌍방에 이식하였고, 끝은 VLPO 상의 1.0-3.0 mm 아래(-0.6 mm from bregma, ±1.4 from midline, -8.8 mm from dura) 또는 해마 상의 1 mm 아래(-4.3 mm from bregma, ±4.0 from midline, -3.0 mm from dura)에 놓았는데, 이는 표적 영역의 손상을 방지하기 위함이다. 모든 전극 및 가이드 캐뉼라는 치과용 접착제로 고정하였다. 27-게이지 주사 바늘을 각각의 면에 주입하여, 끝이 VLPO에 도달하도록 하였다. 아데노바이러스 벡터(Ad-ChR2 또는 Ad-eGFP) 또는 아데노-관련 바이러스 벡터(AAV-ChR2 또는 AAV-eYFP)를 0.1 μl/min의 속도로 10분 동안 주입하였다. 바늘은 주입 10분 후 제거하였다. 그 후, 광섬유 캐뉼라(200 μm diameter, 0.37 NA)를 각각의 가이드 캐뉼라로 삽입하여, 끝이 VLPO 상 0.5 mm에 놓이도록 하고, 치과용 접착제로 고정하였다.Adult rats were subjected to peritoneal anesthesia using a cocktail (2 ml/kg) of ketamine hydrochloride (72.6 mg/kg) and xylazine hydrochloride (5.1 mg/kg). If maintenance of anesthesia was required, the cocktail (1 ml/kg) was additionally repeatedly injected. In order to implant the EEG electrode in the flat skull area, the rat was placed in a stereotactic fixation device (David-Kopf Instrument Co., Tujunga, CA, USA). Two 22-gauge stainless steel guide cannulaes were implanted on both sides, the ends 1.0-3.0 mm below the VLPO (-0.6 mm from bregma, ±1.4 from midline, -8.8 mm from dura) or 1 mm below the hippocampus (- 4.3 mm from bregma, ±4.0 from midline, -3.0 mm from dura) to prevent damage to the target area. All electrodes and guide cannula were fixed with dental adhesive. A 27-gauge injection needle was injected on each side so that the tip reached the VLPO. Adenovirus vector (Ad-ChR2 or Ad-eGFP) or adeno-associated virus vector (AAV-ChR2 or AAV-eYFP) was injected for 10 minutes at a rate of 0.1 μl/min. The needle was removed 10 minutes after injection. Then, an optical fiber cannula (200 μm diameter, 0.37 NA) was inserted into each guide cannula, the tip was placed 0.5 mm on VLPO and fixed with dental adhesive.
(2) 광자극(2) photostimulation
수술로부터 회복 후, 광자극을 위해서, 레이저 광원(473 nm; SDL-473-100MFL, Shanghai Dream Lasers Co., Shanghai, China)에 연결된 광케이블을 광 케뉼라에 연결시켰다. 광자극은 자극기(Model S-88, Grass Inc., USA)를 통해 1 Hz (500 ms on/off)의 빈도로, 30 내지 120분 동안 쌍방으로 적용하였다. 광케이블 섬유 끝의 광 세기는 1.3-1.7 mW로 셋팅하였다(PM204, Thorlabs Co.). 일반적으로, 광 케뉼라 끝의 광 세기는 광케이블의 80-85% 였다. 우선, 대부분 수면 중인 상태(12:30-14:30; sleep period in the light phase) 및 깨어있는 상태(15:30-17:30; wake period in the light phase) 동안 각각 120분 광자극을 2번 시행하여 시험하였다. 만약 광자극이 수면을 촉진시키면, 케이지를 기울여서(케이지의 한 부분을 들어올려 바닥으로부터 각도가 45도가 되도록 3번 수행) 동물을 깨운 후 즉시 30분 자극을 3번 시행하였고(11:00-11:30, 14:00-14:30 및 17:00-17:30), 수면잠복기를 측정하였다. 다른 바이러스 벡터로 재현성을 확인하기 위해서, 광 상태(12:00-14:00) 및 암 상태(19:00-20:00)에서 랫트에 AAV-ChR2-eYFP 및 AAV-eYFP를 주입하는 추가적인 광자극 실험을 수행하였다. VLPO 성상세포 상의 특이적인 효과라는 점을 확인하기 위한 대조군 뇌 영역으로는 해마를 선택하였다.After recovery from surgery, for photostimulation, an optical cable connected to a laser light source (473 nm; SDL-473-100MFL, Shanghai Dream Lasers Co., Shanghai, China) was connected to the optical cannula. Photostimulation was applied in both directions for 30 to 120 minutes at a frequency of 1 Hz (500 ms on/off) through a stimulator (Model S-88, Grass Inc., USA). The light intensity at the end of the fiber optic cable was set to 1.3-1.7 mW (PM204, Thorlabs Co.). In general, the light intensity at the end of the optical cannula was 80-85% of the optical cable. First of all, during most sleep (12:30-14:30; sleep period in the light phase) and waking state (15:30-17:30; wake period in the light phase), 2 photostimulation for 120 minutes each. It was carried out and tested. If the photostimulation promotes sleep, the cage was tilted (3 times by lifting a part of the cage and making the angle 45 degrees from the floor) and immediately 30 minutes after waking the animal, stimulation was performed 3 times (11:00-11. :30, 14:00-14:30 and 17:00-17:30), the sleep latency was measured. In order to confirm reproducibility with other viral vectors, additional light injecting AAV-ChR2-eYFP and AAV-eYFP into rats in the light state (12:00-14:00) and dark state (19:00-20:00) A stimulation experiment was performed. The hippocampus was selected as a control brain region to confirm that it was a specific effect on VLPO astrocytes.
(3) 약물의 미세 주입(3) microinjection of drugs
3번의 연속적인 안정적 기록 세션 후, 실험적인 미세 주입을 시작하였다. 가이드 캐뉼라로부터 탐침을 제거하였고, 27-게이지 주입 바늘을 삽입하여, 끝이 VLPO(-0.6 mm from bregma, ±1.4 from midline, -8.8 mm from dura)로 확장되도록 하였다. 2-클로로아데노신(adenosine A1 receptor agonist, 10 nmol per side) 또는 대조군(100 mM PBS solution, 1 μl per side)을 syringe pump (Model 22; Harvard Apparatus, Inc., Holliston, MA, USA)를 사용하여, 0.1 μl/min의 속도로 10분 동안, 폴리에틸렌 튜빙(PE-25)을 통해 50-μl Hamilton syringe에 연결된 주입 바늘을 통해 관류시켰다. TNAP-I 또는 대조군(3 μl per side, 0.1 μl/min의 속도로 30분 동안)도 동일한 방법으로 관류시켰다.After 3 consecutive stable recording sessions, the experimental microinjection was started. The probe was removed from the guide cannula, and a 27-gauge injection needle was inserted so that the tip was extended to VLPO (-0.6 mm from bregma, ±1.4 from midline, -8.8 mm from dura). 2-chloroadenosine (adenosine A 1 receptor agonist, 10 nmol per side) or control (100 mM PBS solution, 1 μl per side) using a syringe pump (Model 22; Harvard Apparatus, Inc., Holliston, MA, USA) Thus, perfusion was performed through an injection needle connected to a 50-μl Hamilton syringe through polyethylene tubing (PE-25) for 10 minutes at a rate of 0.1 μl/min. TNAP-I or control (3 μl per side, 0.1 μl/min for 30 minutes) were perfused in the same manner.
(4) 기록 및 수면-각성 상태 점수화 (4) Recording and scoring sleep-wake status
최소한 수술 후 7일에는 기록을 시작하였다. 동물들이 기록 셋업(예를 들면, 챔버 및 연결 케이블)에 적응하면, 3일 동안 매일 09:30 에서 18:30에 기록을 수행하였다. 피질(cortices)로부터의 EEG 신호 및 진동 플레이트로부터의 진동 신호는 ×10,000 및 ×10로 각각 증폭되었고, 0.5-100 Hz (Model 3500; A-M Systems, Inc., WA, USA)에서 필터되었다. 신호는 200 Hz (DAQ PAD6015; National Instrument Inc., San Francisco, CA, USA) 속도에서 상업적으로 만들어진 LabView program (National Instruments Inc.)에 의해 디지털화되었다. 수면-각성 상태는 EEG 및 운동 활성을 기록하는 진동 신호에 따라, 2명의 경험 있는 기록원에 의해 평가되었다. 10-s 주기 마다 다음의 3개의 상태 중 하나로 기록하였다. 깨어있음(wake; W), 서파수면(slow-wave sleep; S 또는 SWS) 및 역설수면(paradoxical sleep; P 또는 PS). 수술과 바이러스 주입 및 수면-각성 상태의 점수화와 같은 행동 실험과 관련된 모든 과정은, 공평성을 확립하고 편견으로 인해 발생하는 오차를 피하기 위하여 임의 이중 블라인드 실험법으로 수행하였다.Recording was started at least 7 days after surgery. Once the animals have adapted to the recording setup (e.g., chamber and connecting cable), recordings are performed daily from 09:30 to 18:30 for 3 days. The EEG signal from the cortex and the vibration signal from the vibrating plate were amplified by ×10,000 and ×10, respectively, and filtered at 0.5-100 Hz (Model 3500; A-M Systems, Inc., WA, USA). The signal was digitized by a commercially made LabView program (National Instruments Inc.) at 200 Hz (DAQ PAD6015; National Instrument Inc., San Francisco, CA, USA) speed. Sleep-wake state was assessed by two experienced scorers, according to EEG and vibrational signals recording motor activity. Each 10-s period was recorded as one of the following three states. Wake (W), slow-wave sleep (S or SWS) and paradoxical sleep (P or PS). All procedures related to behavioral experiments, such as surgery and viral injection and scoring of sleep-wake states, were performed with a random double-blind method to establish fairness and avoid errors caused by bias.
(5) 파워 스펙트럼 분석(5) power spectrum analysis
각각의 수면-각성 상태의 파워 스펙트럼은 광자극 전 60분부터 광자극 후 60분까지 30분 단위로 기록을 분할한 후 각각의 부분에 대해 계산하였다. 수면 세기를 평가하기 위해서, 델타파(0.5-2.5 Hz)는 자극 동안 서파수면 단계의 파워 스펙트럼으로부터 얻었다. The power spectrum of each sleep-wake state was calculated for each part after dividing the recording by 30 minutes from 60 minutes before photostimulation to 60 minutes after photostimulation. To assess sleep intensity, delta waves (0.5-2.5 Hz) were obtained from the power spectrum of the slow-wave sleep phase during stimulation.
<< 실시예Example 1> 수면 유도에 있어 1> In inducing sleep VLPOVLPO 성상세포의Astrocyte 관련성 relevance
VLPO 부위 내 성상세포가 수면을 유도할 수 있는지는 확인하기 위해서, 본 발명자들은 근접한 뉴런에 직접적인 영향 없이 성상세포 활성을 선택적으로 조절할 수 있는 광유전학적 기술을 사용하였다. 우선, 광-민감성 양이온 채널인 채널로돕신-2(channelrhodopsin-2; ChR2)를 배양된 성상세포에서 바이러스 벡터(Ad-ChR2 또는 AAV-ChR2)를 통해 선택적으로 발현시켰다. 광섬유를 통한 광자극(473 nm 파장)은 상기 배양된 성상세포에서 직접적인 내부 막 전류를 유도하였는데, 이는 상기 성상세포에서 ChR2가 기능적으로 발현됨을 나타낸다. ChR2-발현 성상세포에서, 광자극은 세기 의존적인 방식으로 직접적인 내부 막 전류를 유도하였고, 광자극을 통한 최대 진폭은 1.4 내지 1.7 mW의 범위였다. 이에, 이후 모든 실험에서 ChR2-발현 성상세포를 자극하기 위해 사용된 세기는 1.7 mW이었다. 광자극-유도 막 전류는 Na+-free(NMDG+에 의해 동등 몰농도로 대체) 외부 용액에서 크게 감소하였으나, 세포 외 Ca2 +를 제거함에 따라 더욱 감소되었는데, 이는 ChR2가 Ca2 +를 투과할 수도 있다는 것을 뒷받침한다. 광자극은 세포 내 Ca2 + 농도의 순간적인 증가를 유도하였고, Ca2+ 진동(oscillations)을 유지시켰다.In order to confirm whether astrocytes in the VLPO site can induce sleep, the present inventors used a photogenetic technique capable of selectively controlling astrocyte activity without direct influence on adjacent neurons. First, channelrhodopsin-2 (ChR2), which is a light-sensitive cationic channel, was selectively expressed in cultured astrocytes through a viral vector (Ad-ChR2 or AAV-ChR2). Photostimulation (473 nm wavelength) through the optical fiber induced a direct internal membrane current in the cultured astrocytes, indicating that ChR2 is functionally expressed in the astrocytes. In ChR2-expressing astrocytes, photostimulation induced a direct inner membrane current in an intensity dependent manner, and the maximum amplitude through photostimulation ranged from 1.4 to 1.7 mW. Accordingly, in all subsequent experiments, the intensity used to stimulate ChR2-expressing astrocytes was 1.7 mW. The photostimulation-induced membrane current was greatly reduced in Na + -free (replaced by NMDG + with equivalent molar concentration) external solution, but further decreased as extracellular Ca 2 + was removed, which ChR2 penetrated Ca 2 + It supports that you can do it. Light stimulation was inducing a momentary increase in intracellular Ca 2 + concentrations the cells were maintained for Ca 2+ vibrations (oscillations).
다음으로, 본 발명자들은 뇌정위 고정장치(stereotaxic system)를 사용하여 랫트의 VLPO 부위에 Ad-ChR2 또는 AAV-ChR2를 주입하였다. 바이러스 주입 7일 후, 광섬유에 의한 광자극을 통해 VLPO 부위 내로 ChR2-발현 성상세포를 전달시켰고(도 1A-C), 상기 동물들의 수면 패턴을 분석하기 위해서 상기 동물로부터 뇌파(electroencephalogram; EEG)를 기록하였다. 각 실험 종료 후, ChR2의 성상세포 발현 뿐만 아니라 VLPO 부위 내 ChR2의 공간 발현 프로파일도 확인하였다(도 1A-C). 동물들이 수면 단계에 있으면, 광자극(1 Hz, 500 ms duration, 120 min)은 수면 및/또는 각성 주기를 크게 변화시키지 않았다(도 1D). 이에 비해, 동물들이 각성 상태에 있으면, 광자극은 서파수면 및 역설수면 지속기간을 상당히 증가시켰고, 수면 잠복기를 감소시켰다(p < 0.05, unpaired t-test, 도 1E-F). 상기와 같은 효과가 대조군 바이러스 벡터(Ad-eGFP 또는 AAV-eYFP)를 주입한 랫트에서는 관찰되지 않았다. 광자극은 수면 지속기간을 증가시켰음에도 불구하고, 서파수면 동안 델타파를 증가시키지는 않았다(도 1Eb). 또한, 수면 조절과 관련되지 않았다고 알려진 해마의 광자극은 수면을 유도하지 않았는데, 이는 VLPO 광자극의 수면 유도 효과가 특이적이라는 일관성 있는 결과를 나타낸다. 이전의 연구에 따르면, VLPO 내 c-Fos 발현 수준이 수면 지속기간과 비례한다고 보고되었으므로, 본 발명자들은 성상세포 ChR2의 광자극이 VLPO 뉴런 내 c-Fos 단백질 발현에 영향을 미치는지 확인하였다. 뉴런 내 c-Fos의 발현은 광자극을 수행하지 않은 대조군 그룹보다 광자극 그룹에서 더 높았다.Next, the present inventors injected Ad-ChR2 or AAV-ChR2 into the VLPO site of the rat using a stereotaxic system. Seven days after virus injection, ChR2-expressing astrocytes were delivered into the VLPO site through optical stimulation by optical fiber (Figs. 1A-C), and an electroencephalogram (EEG) from the animal was performed to analyze the sleep patterns of the animals. Recorded. After the completion of each experiment, not only the astrocyte expression of ChR2 but also the spatial expression profile of ChR2 in the VLPO site was confirmed (Figs. 1A-C). When the animals were in the sleep phase, photostimulation (1 Hz, 500 ms duration, 120 min) did not significantly change the sleep and/or arousal period (FIG. 1D ). In contrast, when the animals were in awake state, photostimulation significantly increased the duration of slow-wave sleep and paradoxical sleep, and decreased the sleep latency (p <0.05, unpaired t-test, FIGS. 1E-F). The above effect was not observed in the rats injected with the control virus vector (Ad-eGFP or AAV-eYFP). Although photostimulation increased sleep duration, it did not increase delta waves during slow-wave sleep (Fig. 1Eb). In addition, photostimulation of the hippocampus, which is known not to be related to sleep regulation, did not induce sleep, indicating a consistent result that the sleep-inducing effect of VLPO photostimulation was specific. According to a previous study, it was reported that the level of c-Fos expression in VLPO is proportional to the duration of sleep, so the present inventors confirmed whether photostimulation of astrocyte ChR2 affects the expression of c-Fos protein in VLPO neurons. The expression of c-Fos in neurons was higher in the photostimulation group than in the control group without photostimulation.
<< 실시예Example 2> 2> VLPOVLPO 부위 내에서 수면 조절 신경활성물질( Sleep-regulating neuroactive substances within the site ( gliotransmittersgliotransmitters )의 확인) Of
ChR2-발현 성상세포의 광자극이 갈라닌(galanin)-양성 뉴런을 포함하는 VLPO 세포에서 c-Fos 발현을 증가시킨다는 결과는 VLPO 부위에서 성상세포 및 뉴런 간의 상호작용 가능성을 뒷받침한다. 뉴런-성상세포 상호작용은 신경활성물질(gliotransmitters)에 의해 매개될 수 있으므로, 본 발명자들은 신경활성물질(gliotransmitters)이 VLPO 성상세포로부터 방출되는지 확인하였다. 살아있는 랫트의 VLPO 부위 내로 Ad-ChR2를 주입한 7일 후, VLPO 성상세포에 광자극을 수행하였고, 그 후 VLPO 부위 내에서 미세투석 기술을 사용하여 세포 외액을 얻어냈다(도 2A). 120분의 광자극 동안 수집된 미세투석물의 추가적인 생물발광 분석 결과, ChR2 발현되지 않은 실험군에 비해, ChR2 발현된 실험군에서 세포 외액 내 ATP 농도가 상당히 높다는 것을 밝혀냈다(대조군 및 실험군에서 각각 6.1 ± 0.6 nM 및 54.0 ± 8.5 nM, mean and standard deviation, p < 0.01, n = 3, 도 2B). 미세투석물 내에서 광자극에 의해 유도된 ATP 농도 증가는 성상세포의 대사 억제제인 α-아미노아디페이트(α-aminoadipate; L-α-AA, 10 nM)로 전처리하면 크게 감소하였는데, 이는 본 발명의 생체 내(in vivo) 실험에서 성상세포가 세포 내 주요 ATP 생성원이라는 것을 나타낸다. 하지만, 광자극 동안 VLPO 부위에서 얻어진 미세투석물에서 글루타메이트(glutamate), D-세린(D-serine) 및 글리신(glycine)과 같이 다른 알려진 신경활성물질(gliotransmitters)의 농도는 증가하지 않았다(도 2C). 또한, 뉴런이 없는 1차 성상세포 배양물을 사용한 시험관 내(in vitro) 실험에서, 본 발명자들은 광자극이 ChR2로 형질감염된 배양액 내 ATP 농도를 증가시킨다는 것을 확인하였는데(대조군 및 실험군에서 각각 1.4 ± 0.4 nM 및 21.7 ± 0.8 nM, mean ± standard deviation, p < 0.01, n = 6, 도 2D), 이는 광유전학적 자극이 성상세포로부터 ATP 방출을 유도한다는 것을 뒷받침한다. 광자극에 의해 유도된 세포 외 ATP 농도 증가는 P2X7 수용체 길항제인 100 nM Brilliant Blue G (BBG) 또는 헤미채널 차단제인 3 μM carbenoxolone (CBX)로 처리하면 상당히 감소하였는데(도 2E), 이는 ATP가 P2X7 수용체 또는 헤미채널을 통하여 방출될 수 있다는 것을 뒷받침한다.The result that photostimulation of ChR2-expressing astrocytes increases c-Fos expression in VLPO cells, including galanin-positive neurons, supports the possibility of interaction between astrocytes and neurons at the VLPO site. Since neuron-astrocytic interaction can be mediated by neuroactive substances (gliotransmitters), the present inventors confirmed whether neuroactive substances (gliotransmitters) are released from VLPO astrocytes. After 7 days of injection of Ad-ChR2 into the VLPO site of a living rat, photostimulation was performed on VLPO astrocytes, and then extracellular fluid was obtained using microdialysis technology in the VLPO site (Fig. 2A). As a result of additional bioluminescence analysis of microdialysates collected during 120 minutes of photostimulation, it was found that the ATP concentration in the extracellular fluid was significantly higher in the ChR2-expressing experimental group compared to the experimental group without ChR2 expression (6.1 ± 0.6 nM in the control and experimental groups, respectively. And 54.0 ± 8.5 nM, mean and standard deviation, p <0.01, n = 3, Figure 2B). The increase in ATP concentration induced by photostimulation in the microdialysate was greatly reduced when pretreatment with α-aminoadipate (L-α-AA, 10 nM), an inhibitor of metabolism of astrocytes, was greatly reduced. Astrocytes are the main source of ATP production in cells in an in vivo experiment. However, the concentration of other known neuroactive substances (gliotransmitters) such as glutamate, D-serine and glycine in the microdialysate obtained at the VLPO site during photostimulation did not increase (Fig. 2C). ). In addition, in an in vitro experiment using a primary astrocyte culture without neurons, the present inventors confirmed that photostimulation increased the ATP concentration in the culture medium transfected with ChR2 (1.4 ± in the control group and the experimental group, respectively. 0.4 nM and 21.7 ± 0.8 nM, mean ± standard deviation, p <0.01, n = 6, Figure 2D), which supports that optogenetic stimulation induces ATP release from astrocytes. The increase in extracellular ATP concentration induced by photostimulation was significantly reduced by treatment with 100 nM Brilliant Blue G (BBG), a P2X7 receptor antagonist, or 3 μM carbenoxolone (CBX), a hemichannel blocker (Fig. 2E), which showed that ATP was P2X7. It supports that it can be released through receptors or hemichannels.
<< 실시예Example 3> 3> VLPOVLPO 뉴런의 흥분성(excitability)에 있어서 In the excitability of neurons 성상세포Astrocyte 활성화의 영향 Effect of activation
광자극 동안 성상세포가 ATP를 신경활성물질(gliotransmitters)로서 방출할 가능성이 크다고 판단하여, 본 발명자들은 VLPO 부위를 포함하는 기관형(organotypic) 절편 배양에서 전체-세포 패치-클램프 기술을 사용하여 성상세포-뉴런 상호작용을 나타내는 잠재적인 기작을 확인하였다. 상기 배양에 있어, Ad-ChR2 감염을 통해 VLPO 부위에서 ChR2를 발현시켰다. 절편 배양에서 ChR2-발현 성상세포로부터 측정된 입력 저항은 180.4 ± 55.5 MΩ(29.4 내지 592.9 MΩ, n = 10) 이었다. 상기 성상세포의 잔여 막 전위는 -81.5 ± 1.5 mV (-74.0 내지 -89.4 mV, n = 10)이었고, 광자극은 성상세포의 막 전위를 5.8 ± 1.6 mV (1.9 내지 16.2 mV, n = 10)으로 탈분극시켰다. 비록 성상세포로부터 기록된 광자극-유도 막 전류는 1차 배양에서 보다 기관형(organotypic) 절편 배양에서 더 작았지만, 전류 밀도는 상당히 다르게 나타났다(절편 및 1차 배양에서 각각 3.2 ± 0.5 pA/pF 및 2.5 ± 0.6 pA, n = 10, p = 0.40, one-way ANOVA). Judging that astrocytes have a high possibility of releasing ATP as gliotransmitters during photostimulation, the present inventors used whole-cell patch-clamp technology in organotypic section culture including VLPO sites. Potential mechanisms indicative of cell-neuron interactions were identified. In the above culture, ChR2 was expressed at the VLPO site through Ad-ChR2 infection. The input resistance measured from ChR2-expressing astrocytes in section culture was 180.4 ± 55.5 MΩ (29.4 to 592.9 MΩ, n = 10). The remaining membrane potential of the astrocytes was -81.5 ± 1.5 mV (-74.0 to -89.4 mV, n = 10), and photostimulation increased the membrane potential of the astrocytes to 5.8 ± 1.6 mV (1.9 to 16.2 mV, n = 10). Was depolarized. Although the photostimulation-induced membrane currents recorded from astrocytes were smaller in the organotypic section culture than in the primary culture, the current densities were significantly different (3.2 ± 0.5 pA/pF respectively in the section and primary cultures). And 2.5 ± 0.6 pA, n = 10, p = 0.40, one-way ANOVA).
VLPO 부위에서 2가지 형태의 GABAergic 뉴런으로, 예를 들면, 수면-유도 투사 뉴런(projection neurons) 및 국소 중간뉴런(local interneurons)이 밝혀졌다. 상기 뉴런들은 노르에피네프린(norepinephrine; NE)에 대한 반응성, 스파이크 역치를 포함하는 막 특성(low-threshold spike [LTS] type versus non-LTS type) 및 갈라닌 발현 특성에 있어 서로 다르다. 우선, 본 발명자들은 다른 빈도(0.5 내지 5 Hz, 5 min train)에서의 광자극이 VLPO 뉴런의 흥분성을 변화시키는지 확인하였다. 두 형태의 VLPO 뉴런에서 AP 빈도는 1 Hz 광자극 빈도에서 가장 효과적으로 영향을 미쳤다. 또한, 본 발명자들은 신경 활성의 조절에 있어 VLPO 성상세포 및 뉴런 사이의 공간 관련성에 대한 영향을 분석하였다. 두 형태의 VLPO 뉴런에서 광자극에 대한 AP 빈도 반응은 뉴런 및 ChR2-발현 성상세포 사이의 간격(soma-soma distance)과 관련되어 있었다(p < 0.01). 이에, 이후의 모든 전기생리학적 결과는 ChR2-발현 성상세포로부터 100-μm 간격 내 VLPO 뉴런으로부터 기록되었고, 광자극은 상기 패치된 뉴런에 1 Hz 빈도(500 ms duration)로 적용하였다. 또한, VLPO 뉴런의 형태를 확인하기 위해, NE 반응성 및 스파이크 역치를 확인하였고, 상기 2가지 특성에 있어 불일치를 나타내는 VLPO 뉴런의 전기생리학적 결과는 제거하였다. 상기 뉴런(283개의 뉴런 중 41개)에 있어서, 광자극은 AP 빈도를 대조군의 81.3 ± 10.8%로 감소시켰다(n = 41, p < 0.01). 서브세트 실험에서, AAV-ChR2-eYFP로 감염된 급성 절편의 VLPO 뉴런으로부터 전기생리학적 기록을 얻어냈다. 광자극으로 인한 뉴런의 흥분성 변화는 급성 절편 및 기관형 절편 배양에서 유사하게 나타났다(도 3 내지 도 6). 이에, 분석시 양 절편으로부터 결과를 수집하였으나, 관련된 케이스에서는 분리하여 나타냈다. Two types of GABAergic neurons at the VLPO site have been identified, for example, sleep-induced projection neurons and local interneurons. The neurons differ from each other in reactivity to norepinephrine (NE), membrane properties including spike thresholds (low-threshold spike [LTS] type versus non-LTS type), and galanie expression properties. First, the present inventors confirmed whether photostimulation at different frequencies (0.5 to 5 Hz, 5 min train) changes the excitability of VLPO neurons. In both types of VLPO neurons, the AP frequency most effectively affected the 1 Hz photostimulation frequency. In addition, the present inventors analyzed the effect of the spatial relationship between VLPO astrocytes and neurons on the regulation of neural activity. In both types of VLPO neurons, the AP frequency response to photostimulation was related to the soma-soma distance between neurons and ChR2-expressing astrocytes (p <0.01). Thus, all subsequent electrophysiological results were recorded from VLPO neurons within 100-μm intervals from ChR2-expressing astrocytes, and photostimulation was applied to the patched neurons at a frequency of 1 Hz (500 ms duration). In addition, in order to confirm the morphology of VLPO neurons, NE reactivity and spike thresholds were checked, and electrophysiological results of VLPO neurons indicating inconsistency in the two characteristics were removed. For the neurons (41 of 283 neurons), photostimulation reduced the AP frequency to 81.3 ± 10.8% of the control group (n = 41, p <0.01). In a subset of experiments, electrophysiological records were obtained from VLPO neurons of acute sections infected with AAV-ChR2-eYFP. The changes in the excitability of neurons due to photostimulation were similar in the culture of acute and tracheal sections (FIGS. 3 to 6 ). Therefore, the results were collected from both sections during the analysis, but the related cases were separated and shown.
non-LTS 형태의 특성을 나타내고, 100 μM NE로 탈분극된 국소 GABAergic 중간뉴런(이하, "NE-DP" 뉴런으로 언급)에 있어서, 광자극(500 ms duration, 1 Hz, 5 min)은 AP 빈도를 대조군의 58.5 ± 5.4%로 감소시켰고, 막 전위를 -55.3 ± 0.8 mV 내지 -58.6 ± 0.9 mV로 약간 과분극시켰다(n = 24, p < 0.01, 도 3A-C). 상기 GABAergic 중간뉴런에서의 광자극-매개 억제 반응은 GABAergic 투사 뉴런에서 뉴런 흥분성을 증가시키는 것과 같다. NE-DP 뉴런에서, 수조-적용된 ATP(100 μM) 및 아데노신(100 μM) 모두 NE-DP 뉴런의 흥분성을 감소시켰다(도 3D-E). 상기 뉴런에서의 아데노신-유도 흥분성 감소는 AP 빈도에 영향이 없는 2MeCCPA (1 μM, 선택적 A1 수용체 활성제), CGS21680 (1 μM), BAY 60-6583 (1 μM) 및 HEMADO (1 μM, 선택적 A3 수용체 활성제)를 통해 재현되었다. 이에, 본 발명자들은 NE-DP 뉴런에서 관측된 광자극 반응이 아데노신 A1 수용체에 의존적인지 확인하였다. 광자극-유도 과분극(대조군 및 광자극 조건에서 각각 -54.3 ± 0.9 mV 및 -56.9 ± 0.8 mV, n = 16, p < 0.01)은 1 μM DPCPX에 의해 감소되었다(대조군 및 광자극 조건에서 각각 -54.5 ± 0.9 mV 및 -54.5 ± 0.9 mV, n = 16, p = 0.67, 도 3D). 또한, 광자극이 1 μM DPCPX의 존재하에서 AP 빈도를 감소시키는 것은 실패하였다(DPCPX 조건의 98.5 ± 6.8%, n = 16, p = 0.12, 도 3E). 상기 결과는 성상세포 ChR2의 광자극이 GABAergic 중간뉴런의 뉴런 흥분성을 아데노신 A1 수용체 의존적 방식으로 감소시키고, 성상세포에서 방출된 ATP는 엑토뉴클레오시드 트리포스페이트 디포스포하이드로레이즈(ectonucleoside triphosphate diphosphohydrolase; NTPDase) 및/또는 조직-비특이적 알카라인 포스파테이즈(tissue-nonspecific alkaline phosphatase; TNAP)를 포함하는 ATP-분해 효소들에 의해 아데노신을 가수화시킬 수도 있다는 것을 뒷받침한다.For local GABAergic intermediate neurons (hereinafter referred to as "NE-DP" neurons) exhibiting the characteristics of the non-LTS form and depolarized with 100 μM NE, photostimulation (500 ms duration, 1 Hz, 5 min) is the AP frequency Was reduced to 58.5 ± 5.4% of the control group, and the membrane potential was slightly hyperpolarized to -55.3 ± 0.8 mV to -58.6 ± 0.9 mV (n = 24, p <0.01, FIGS. 3A-C). The photostimulation-mediated inhibitory response in the GABAergic intermediate neuron is equivalent to increasing neuronal excitability in the GABAergic projection neuron. In NE-DP neurons, both water bath-applied ATP (100 μM) and adenosine (100 μM) decreased the excitability of NE-DP neurons (Fig. 3D-E). Adenosine-induced decrease in excitability in these neurons was found to be 2MeCCPA (1 μM, selective A 1 receptor activator), CGS21680 (1 μM), BAY 60-6583 (1 μM) and HEMADO (1 μM, selective A), which did not affect AP frequency. 3 receptor activator). Thus, the present inventors confirmed whether the photostimulation response observed in NE-DP neurons is dependent on the adenosine A 1 receptor. Photostimulation-induced hyperpolarization (-54.3 ± 0.9 mV and -56.9 ± 0.8 mV, n = 16, p <0.01, respectively, in the control and photostimulation conditions) was reduced by 1 μM DPCPX (in the control and photostimulation conditions, respectively- 54.5 ± 0.9 mV and -54.5 ± 0.9 mV, n = 16, p = 0.67, Figure 3D). In addition, the photostimulation failed to decrease the AP frequency in the presence of 1 μM DPCPX (98.5 ± 6.8% of DPCPX conditions, n = 16, p = 0.12, Fig. 3E). The above results show that photostimulation of astrocytes ChR2 reduces the neuronal excitability of GABAergic intermediate neurons in an adenosine A 1 receptor-dependent manner, and ATP released from astrocytes is ectonucleoside triphosphate diphosphohydrolase (NTPDase). ) And/or tissue-nonspecific alkaline phosphatase (TNAP), including ATP-degrading enzymes.
TNAP는 뇌에서 많이 발현되고, 여러 뇌 부위에서 세포 외 ATP 가수분해를 담당하므로, 본 발명자들은 NE-DP 뉴런의 광자극-유도 흥분성 변화에 있어 TNAP의 영향을 확인하였다. 상기 뉴런에서, 광자극-유도된 과분극(대조군 및 광자극 조건에서 각각 -54.3 ± 1.0 mV 및 -57.4 ± 1.7 mV, n = 9, p < 0.01)은 10 μM TNAP 억제제(TNAP-I)에 의해 감소되었고(대조군 및 광자극된 뉴런에서 각각 -53.3 ± 0.8 mV and -53.4 ± 0.7 mV, n = 9, p = 0.77, 도 3D), 광자극이 10 μM TNAP-I 존재하에서 AP 빈도를 감소시키는 것은 역시 실패하였다(TNAP-I 조건의 115.1 ± 15.2%, n = 9, p = 0.95, 도 3E). 하지만, 본 발명자들은 NE-DP 뉴런에서 NTPDase 차단제인 ARL67156 (30 μM)이 광자극-유도된 막 전위 및 AP 빈도를 변화시키지는 않는다는 것을 확인하였다. 상기 결과와 일치하게, 생체 내에서(in vivo) VLPO 부위 내로 3 μl TNAP-I (10 mg/ml)을 30분 동안 직접 관류시키면, 깨어있는 시간이 상당히 증가되었다. 또한, 본 발명자들은 NE-DP 뉴런에서의 광자극 반응이 3 μM BBG 또는 100 μM CBX에 의해 완전히 감소되는 것을 확인하였는데, 이는 광유전학적 자극에 의해 P2X7 수용체 및/또는 헤미채널을 통한 ATP 방출이 가능할 수도 있다는 이전의 결과를 뒷받침한다. 종합하면, 상기 결과는 광자극 후에 성상세포로부터 방출된 ATP가 특이적인 효소 TNAP에 의해 아데노신으로 빠르게 가수분해될 수 있고, GABAergic 중간뉴런의 뉴런 흥분성을 감소시키기 위해 아데노신이 A1 수용체에 작용한다는 것을 나타낸다.Since TNAP is highly expressed in the brain and is responsible for extracellular ATP hydrolysis in several brain regions, the present inventors confirmed the effect of TNAP on photostimulation-induced excitatory changes in NE-DP neurons. In these neurons, photostimulation-induced hyperpolarization (-54.3 ± 1.0 mV and -57.4 ± 1.7 mV, respectively, n = 9, p <0.01 in the control and photostimulation conditions) was obtained by a 10 μM TNAP inhibitor (TNAP-I). Reduced (-53.3 ± 0.8 mV and -53.4 ± 0.7 mV, n = 9, p = 0.77, Fig. 3D, respectively in control and photostimulated neurons), and photostimulation reduced AP frequency in the presence of 10 μM TNAP-I. It also failed (115.1 ± 15.2% of the TNAP-I condition, n = 9, p = 0.95, Figure 3E). However, the present inventors have confirmed that ARL67156 (30 μM), an NTPDase blocker in NE-DP neurons, does not change the photostimulation-induced membrane potential and AP frequency. Consistent with the above results, direct perfusion of 3 μl TNAP-I (10 mg/ml) into the VLPO site in vivo significantly increased waking time. In addition, the present inventors have confirmed that the photostimulation response in NE-DP neurons is completely reduced by 3 μM BBG or 100 μM CBX, which is caused by photogenetic stimulation of ATP release through the P2X7 receptor and/or hemichannel. It supports previous findings that it may be possible. Taken together, the above results show that ATP released from astrocytes after photostimulation can be rapidly hydrolyzed to adenosine by the specific enzyme TNAP, and that adenosine acts on the A 1 receptor to reduce neuronal excitability of GABAergic intermediate neurons. Show.
LTS 형태의 특성을 나타내고, 100 μM NE로 탈분극된 GABAergic 투사 뉴런(이하, "NE-HP" 뉴런으로 언급)에 있어서, 광자극은 AP 빈도를 대조군의 161.7 ± 11.3%로 증가시켰고(n = 22, p < 0.01), 막 전위를 -56.6 ± 0.8 mV 내지 -53.5 ± 1.0 mV로 약간 과분극시켰다(n = 22, p < 0.01, 도 4A-C). 광자극에 의한 GABAergic 투사 뉴런에서의 흥분성 반응은 GABAergic 억제 방출을 증가시킴으로써 각성 중추의 뉴런 흥분성을 억제할 수도 있다. 하지만, 수조-적용된 ATP(100 μM) 및 아데노신(100 μM)은 NE-HP 뉴런의 흥분성을 감소시켰고(도 4D), 뉴런 흥분성에 있어서 광자극-유도 증가는 PPADS (20 μM, 비선택적 P2 수용체 길항제)에 의해 감소되지는 않았는데, P2 수용체가 광자극에 의해 유도되는 뉴런 흥분성 증가에는 관여하지 않는다는 것을 뒷받침한다. 또한, 실험한 아데노신 수용체 작용제 중 어느 것도 NE-HP 뉴런의 흥분성을 증가시키지 않았다. NE-DP 뉴런에서의 결과와 유사하게, NE-HP 뉴런에서 광자극-유도 탈분극(대조군 및 광자극 조건에서 각각 -58.5 ± 1.2 mV 및 -55.7 ± 1.3 mV, n = 12, p < 0.01)은 1 μM DPCPX에 의해 감소되었다(대조군 및 광자극 조건에서 각각 -58.4 ± 1.3 mV 및 -58.5 ± 1.3 mV, n = 12, p = 0.65, 도 4D). 한편, 광자극이 1 μM DPCPX 존재하에서 AP 빈도를 증가시키는 것은 실패하였다(DPCPX 조건의 131.5 ± 29.9%, n = 12, p = 0.75, 도 4E). 또한, 본 발명자들은 NE-HP 뉴런의 흥분성에 있어 광자극-유도 변화에 대한 TNAP-I의 영향을 확인하였다. 광자극-유도 탈분극(대조군 및 광자극 조건에서 각각 -56.3 ± 0.8 mV 및 -52.9 ± 1.2 mV, n = 7, p < 0.01)은 10 μM TNAP-I에 의해 감소되었고(대조군 및 광자극 조건에서 각각 -55.9 ± 1.5 mV 및 -54.9 ± 2.1 mV, n = 7, p = 0.23, 도 4D), 광자극이 10 μM TNAP-I 존재하에서 AP 빈도를 증가시키는 것은 역시 실패하였다(TNAP-I 조건의 104.2 ± 4.0%, n = 7, p = 0.40, 도 4E). In GABAergic projection neurons (hereinafter referred to as "NE-HP" neurons) exhibiting LTS-type characteristics and depolarized with 100 μM NE, photostimulation increased the AP frequency to 161.7 ± 11.3% of the control group (n = 22 , p <0.01), the membrane potential was slightly hyperpolarized from -56.6 ± 0.8 mV to -53.5 ± 1.0 mV (n = 22, p <0.01, FIGS. 4A-C). The excitatory response in GABAergic projection neurons by photostimulation may also inhibit neuronal excitability in the arousal center by increasing GABAergic inhibitory release. However, water bath-applied ATP (100 μM) and adenosine (100 μM) decreased the excitability of NE-HP neurons (Fig. 4D), and the photostimulation-induced increase in neuronal excitability was PPADS (20 μM, non-selective P2 receptor. Antagonists), but support that the P2 receptor is not involved in the increase in neuronal excitability induced by photostimulation. In addition, none of the adenosine receptor agonists tested did increase the excitability of NE-HP neurons. Similar to the results in NE-DP neurons, photostimulation-induced depolarization in NE-HP neurons (-58.5 ± 1.2 mV and -55.7 ± 1.3 mV, n = 12, p <0.01, respectively, in control and photostimulation conditions) It was reduced by 1 μM DPCPX (-58.4 ± 1.3 mV and -58.5 ± 1.3 mV, respectively, in control and photostimulation conditions, n = 12, p = 0.65, Fig. 4D). On the other hand, the photostimulation failed to increase the AP frequency in the presence of 1 μM DPCPX (131.5 ± 29.9% of DPCPX condition, n = 12, p = 0.75, Fig. 4E). In addition, the present inventors confirmed the effect of TNAP-I on photostimulation-induced changes in the excitability of NE-HP neurons. Photostimulation-induced depolarization (-56.3 ± 0.8 mV and -52.9 ± 1.2 mV, n = 7, p <0.01, respectively, in control and photostimulation conditions) was reduced by 10 μM TNAP-I (in control and photostimulation conditions, respectively). -55.9 ± 1.5 mV and -54.9 ± 2.1 mV, respectively, n = 7, p = 0.23, Figure 4D), photostimulation also failed to increase the AP frequency in the presence of 10 μM TNAP-I (TNAP-I condition 104.2 ± 4.0%, n = 7, p = 0.40, Figure 4E).
<< 실시예Example 4> 4> VLPOVLPO 부위에서 차등적 뉴런- Differential neurons at the site- 성상세포Astrocyte 상호작용을 나타내는 잠재적인 기작 분석 Analysis of potential mechanisms indicative of interactions
상기 결과는 광자극이 NE-HP 뉴런을 억제할 수 있다고 여겨지는 NE-DP 뉴런의 뉴런 흥분성을 감소시킴으로써, NE-HP 뉴런에서의 광자극-유도된 흥분성 반응이 VLPO 내 신경회로에 기반한 간접적인 기작에 의해 매개될 수 있다는 것을 나타낸다. 본 발명자들은 선택적 GABAA 수용체 차단제인 SR95531이 농도의존적 방식으로 NE-HP 뉴런의 뉴런 흥분성을 증가시킨다는 것을 확인하였다. 상기 결과를 통해, 성상세포 ChR2의 광자극이 NE-HP에서의 GABAergic 시냅스 전달에 영향을 미치는지 시험하였다. 본 발명자들은 고농도-Cl- 내부 용액(110 mM의 pipette Cl- 농도)을 사용하였고, GABAergic 자발적 억제성 시냅스 후 전류(spontaneous inhibitory postsynaptic currents; sIPSCs)를 -60 mV의 유지 전위(holding potential)에서 기록하였다. 상기 내향성 sIPSCs는 1 μM SR95531의 존재하에서 완전히 사라졌다. 상기 조건하에서, 성상세포의 광유전적 자극은 전류 진폭의 영향 없이 GABAergic sIPSC 빈도(대조군의 73.3 ± 4.1%, n = 9, p < 0.01)를 상당히 감소시켰다(대조군의 102.7 ± 1.7%, n = 9, p = 0.16, 도 5A-B). 또한, 내부-이벤트 간격의 누적 분포는 오른쪽으로 이동하였는데, 이는 sIPSC 빈도 감소와 일치한다(도 5B). sIPSC 빈도의 광자극-유도 감소는 1 μM DPCPX에 의해 감소되었다(DPCPX 조건의 106.0 ± 29.2%, n = 9, p = 0.54, 도 5C-D). 상기 결과는 sIPSC 빈도의 광자극-유도 감소가 아데노신 A1 수용체에 의존한다는 것을 뒷받침한다. 이 점을 염두에 두더라도, 어떻게 성상세포-유래 ATP가 VLPO 부위에서 NE-HP 뉴런에 대한 직접적인 영향 없이 NE-DP 뉴런을 억제하는지는 불분명하다. 상기 차등적 반응에 대해, 비록 VLPO 성상세포가 두 종류의 VLPO 뉴런 형태 주변에서 ATP를 방출하더라도, 방출된 ATP는 NE-DP 뉴런 근처에서 선택적으로 가수분해된다는 설명이 가능하다. 본 발명자들은 VLPO 부위에서 TNAP 면역반응성은 GAD67과는 겹치지만, 갈라닌 면역반응성과는 겹치지 않는다는 것을 확인하였다(도 5E-F). 상기 결과는 VLPO 부위에서, TNAP는 수면-유도 투사 뉴런에서 보다 GABAergic 중간뉴런에서 발현된다는 것을 뒷받침한다. 또한, 1차 성상세포 배양에서의 ATP 농도 측정 결과 뿐만 아니라 면역조직화학적 결과에 따르면, TNAP는 VLPO 성상세포에서는 발현되지 않는 것 같았다.The results show that the photostimulation-induced excitatory response in NE-HP neurons is indirectly based on neural circuits in VLPO by reducing the neuronal excitability of NE-DP neurons, which is believed to be able to inhibit NE-HP neurons. It indicates that it can be mediated by a mechanism. The present inventors confirmed that SR95531, a selective GABA A receptor blocker, increases the neuronal excitability of NE-HP neurons in a concentration-dependent manner. Through the above results, it was tested whether photostimulation of astrocyte ChR2 affects GABAergic synaptic transmission in NE-HP. The present inventors used high concentration-Cl - internal solution (110 mM pipette Cl - concentration), and recorded GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs) at a holding potential of -60 mV. I did. The introverted sIPSCs completely disappeared in the presence of 1 μM SR95531. Under these conditions, optogenetic stimulation of astrocytes significantly reduced GABAergic sIPSC frequency (73.3 ± 4.1% of the control group, n = 9, p <0.01) without the influence of the current amplitude (102.7 ± 1.7% of the control group, n = 9). , p = 0.16, Figs. 5A-B). In addition, the cumulative distribution of the inter-event intervals shifted to the right, which is consistent with the decrease in sIPSC frequency (Fig. 5B). The photostimulation-induced decrease in sIPSC frequency was reduced by 1 μM DPCPX (106.0 ± 29.2% of DPCPX condition, n = 9, p = 0.54, Figure 5C-D). These results support that the photostimulation-induced decrease in sIPSC frequency is dependent on the adenosine A 1 receptor. Even with this in mind, it is unclear how astrocyte-derived ATP inhibits NE-DP neurons without direct effect on NE-HP neurons at the VLPO site. For this differential response, it is possible to explain that even though VLPO astrocytes release ATP around the two types of VLPO neurons, the released ATP is selectively hydrolyzed near NE-DP neurons. The present inventors confirmed that the TNAP immunoreactivity at the VLPO site overlaps with GAD67, but does not overlap with the galanine immunoreactivity (FIGS. 5E-F). These results support that at the VLPO site, TNAP is expressed in GABAergic intermediate neurons rather than in sleep-induced projection neurons. In addition, according to the immunohistochemical results as well as the ATP concentration measurement results in primary astrocyte culture, TNAP did not seem to be expressed in VLPO astrocytes.
VLPO 부위에서 성상세포의 광유전학적 자극이 GABAergic 투사 뉴런인 NE-HP VLPO 뉴런을 흥분시키는 것을 고려하면, 결국 VLPO 성상세포의 광자극은 조면유두체핵(tuberomammillary nucleus; TMN)를 포함하는 각성 관련 뇌 부위로의 GABAergic 시냅스 전달을 증가시킬 수 있다. 이러한 점을 확인하기 위해서, 본 발명자들은 VLPO 및 TMN을 포함하는 사상면 뇌 절편의 기관형 배양을 수행하였고, VLPO 성상세포의 활성화가 TMN 히스타민성 뉴런으로의 GABAergic 전달에 영향을 미치는지 확인하였다. 히스타민성 뉴런은 규칙적인 발화 패턴 및 과분극화- 및 사이클릭 뉴클레오타이드-활성화된 양이온 채널 새그 전위(sag potentials)의 존재와 같은 막 특성 및 특이적 히스타민성 마커인 히스티딘 디카르복실레이즈의 발현에 의해 확인되었다. 본 발명자들은 TMN 히스타민성 뉴런에서 VLPO 성상세포의 광유전학적 자극이 전류 진폭의 영향 없이 sIPSC 빈도(대조군의 150.2 ± 10.4%, n = 9, p < 0.01)를 상당히 증가시켰다는 것을 확인하였다(대조군의 102.1 ± 4.8%, n = 9, p = 0.48, 도 6A-B). 또한, 내부-이벤트 간격의 누적 분포는 왼쪽으로 이동하였는데(p < 0.01, K-S test), 이는 sIPSC 빈도 증가와 일치한다(도 6B). sIPSC 빈도의 광자극-유도 증가는 1 μM DPCPX에 의해 감소되었다(DPCPX 조건의 98.5 ± 10.8%, n = 9, p = 0.68, 도 6C-D). 최종적으로, 본 발명자들은 VLPO 성상세포의 광유전학적 자극이 TMN 뉴런의 흥분성을 변화시키는지 확인하였다. 상기 실험에서, 랫트의 VLPO 부위는 AAV-ChR2-eYFP로 감염시켰고, 급성 사상면 절편을 이용하여 TMN 히스타민성 뉴런으로부터 전기생리학적 기록을 진행하였다. 본 발명자들은 TMN 히스타민성 뉴런에서 VLPO 성상세포의 광유전학적 자극이 AP 빈도를 상당히 감소시켰고(대조군의 77.2 ± 7.2%, n = 6, p < 0.05), 막 전위를 2.8 ± 0.7 mV로 과분극시켰다는 것을 확인하였다(n = 6, p < 0.05, 도 6E-F). 상기 결과는 VLPO 성상세포의 광유전학적 자극이 GABAergic 전달을 증가시킴으로써, TMN 히스타민성 뉴런의 흥분성을 감소시키는데, 이를 통해 수면을 유도한다는 것을 나타낸다(도 7).Considering that optogenetic stimulation of astrocytes at the VLPO site excites NE-HP VLPO neurons, which are GABAergic projection neurons, in the end, photostimulation of VLPO astrocytes is an arousal-related brain including tuberomammillary nucleus (TMN). GABAergic synaptic transmission to the site can be increased. To confirm this point, the present inventors performed organotype cultivation of filamentous brain slices containing VLPO and TMN, and it was confirmed that activation of VLPO astrocytes affects GABAergic delivery to TMN histaminergic neurons. Histaminergic neurons are identified by regular firing patterns and membrane properties such as the presence of hyperpolarization- and cyclic nucleotide-activated cationic channel sag potentials and the expression of a specific histaminergic marker, histidine decarboxylase. Became. The present inventors confirmed that optogenetic stimulation of VLPO astrocytes in TMN histaminergic neurons significantly increased the sIPSC frequency (150.2 ± 10.4% of the control group, n = 9, p <0.01) without the effect of the current amplitude (control group). 102.1 ± 4.8%, n = 9, p = 0.48, Figures 6A-B). In addition, the cumulative distribution of the internal-event interval shifted to the left (p <0.01, K-S test), which is consistent with the increase in sIPSC frequency (Fig. 6B). The photostimulation-induced increase in sIPSC frequency was reduced by 1 μM DPCPX (98.5 ± 10.8% of DPCPX condition, n = 9, p = 0.68, Fig. 6C-D). Finally, the present inventors confirmed whether optogenetic stimulation of VLPO astrocytes changes the excitability of TMN neurons. In the above experiment, the VLPO site of the rat was infected with AAV-ChR2-eYFP, and electrophysiological recording was performed from TMN histaminergic neurons using an acute filamentous section. The present inventors found that optogenetic stimulation of VLPO astrocytes in TMN histaminergic neurons significantly reduced the AP frequency (77.2 ± 7.2% of the control group, n = 6, p <0.05), and hyperpolarized the membrane potential to 2.8 ± 0.7 mV. Was confirmed (n = 6, p <0.05, Fig. 6E-F). The above results indicate that optogenetic stimulation of VLPO astrocytes increases GABAergic transmission, thereby reducing excitability of TMN histaminergic neurons, thereby inducing sleep (FIG. 7).
Claims (11)
대조물질을 투여한 동물군과 비교하여 수면 제어 효과를 나타내는 약물 후보물질을 선별하는 단계를 포함하는 수면 제어 약물의 스크리닝 방법. Administering a sleep control drug candidate to the sleep-inducing animal model according to claim 7 or 9; And
A method for screening a sleep control drug comprising the step of selecting a drug candidate material exhibiting a sleep control effect compared to the control substance administered animal group.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180102017A KR102150417B1 (en) | 2018-08-29 | 2018-08-29 | Sleep promoting animal model by optogenetic stimulation of astrocytes in the ventrolateral preoptic area and method for screening sleep control agents using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180102017A KR102150417B1 (en) | 2018-08-29 | 2018-08-29 | Sleep promoting animal model by optogenetic stimulation of astrocytes in the ventrolateral preoptic area and method for screening sleep control agents using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20200025125A KR20200025125A (en) | 2020-03-10 |
KR102150417B1 true KR102150417B1 (en) | 2020-09-01 |
Family
ID=69800782
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020180102017A KR102150417B1 (en) | 2018-08-29 | 2018-08-29 | Sleep promoting animal model by optogenetic stimulation of astrocytes in the ventrolateral preoptic area and method for screening sleep control agents using the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102150417B1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017158528A (en) | 2016-03-11 | 2017-09-14 | 国立大学法人 東京大学 | Sleep disorder model nonhuman animal, animal cell for sleep disorder evaluation, and screening method using them |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6346548B1 (en) * | 1999-08-16 | 2002-02-12 | Cephalon, Inc. | Compositions including modafinil for treatment of attention deficit hyperactivity disorder and multiple sclerosis fatigue |
KR101906577B1 (en) | 2016-08-23 | 2018-10-10 | 경북대학교 산학협력단 | Method for inducing pain by optogenetic stimulation of spinal astrocytes and method for screening analgesic using it |
-
2018
- 2018-08-29 KR KR1020180102017A patent/KR102150417B1/en active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017158528A (en) | 2016-03-11 | 2017-09-14 | 国立大学法人 東京大学 | Sleep disorder model nonhuman animal, animal cell for sleep disorder evaluation, and screening method using them |
Non-Patent Citations (3)
Title |
---|
Current Biology, Vol. 26, No. 16, pp 2137-2143(2016.08.22. 온라인 공개) |
European Journal of Neuroscience, Vol. 43, No. 10, pp 1298-1306(2015.10.16. 온라인 공개)* |
Neuroscience, Vol. 115, No. 1, pp 285-294(2002.11.15. 온라인 공개)* |
Also Published As
Publication number | Publication date |
---|---|
KR20200025125A (en) | 2020-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dale et al. | Phrenic motor neuron TrkB expression is necessary for acute intermittent hypoxia-induced phrenic long-term facilitation | |
US11564949B2 (en) | Ameliorating nervous systems disorders | |
Wang et al. | Selective optogenetic activation of orexinergic terminals in the basal forebrain and locus coeruleus promotes emergence from isoflurane anaesthesia in rats | |
Kim et al. | Astrocytes in the ventrolateral preoptic area promote sleep | |
Gao et al. | Activation of mGluR1 contributes to neuronal hyperexcitability in the rat anterior cingulate cortex via inhibition of HCN channels | |
Xiong et al. | Effects of long non-coding RNA uc. 48+ on pain transmission in trigeminal neuralgia | |
Ji et al. | Plasticity in ventral pallidal cholinergic neuron-derived circuits contributes to comorbid chronic pain-like and depression-like behaviour in male mice | |
Choi et al. | Astrocyte‐derived adenosine excites sleep‐promoting neurons in the ventrolateral preoptic nucleus: Astrocyte‐neuron interactions in the regulation of sleep | |
Sheng et al. | Activation of ventrolateral orbital cortex improves mouse neuropathic pain–induced anxiodepression | |
Song et al. | NAc-DBS corrects depression-like behaviors in CUMS mouse model via disinhibition of DA neurons in the VTA | |
Li et al. | Anterior cingulate cortex projections to the dorsal medial striatum underlie insomnia associated with chronic pain | |
Elina et al. | Activation of CamKIIα expressing neurons on ventrolateral periaqueductal gray improves behavioral hypersensitivity and thalamic discharge in a trigeminal neuralgia rat model | |
Cai et al. | Regulation of wakefulness by astrocytes in the lateral hypothalamus | |
Zhang et al. | The vestibulo‐and preposito‐cerebellar cholinergic neurons of a C h AT‐td T omato transgenic rat exhibit heterogeneous firing properties and the expression of various neurotransmitter receptors | |
Marcano-Reik et al. | An abrupt developmental shift in callosal modulation of sleep-related spindle bursts coincides with the emergence of excitatory-inhibitory balance and a reduction of somatosensory cortical plasticity. | |
Han et al. | Impaired lactate release in dorsal CA1 astrocytes contributed to nociceptive sensitization and comorbid memory deficits in rodents | |
KR102150417B1 (en) | Sleep promoting animal model by optogenetic stimulation of astrocytes in the ventrolateral preoptic area and method for screening sleep control agents using the same | |
Wu et al. | The transport rate of cholera toxin B subunit in the retinofugal pathways of the chick | |
CN108853510A (en) | Treatment and drug of the combination of NMDAR inhibitor and T-type calcium channel inhibitor to depression | |
Hu et al. | A developmental critical period for ocular dominance plasticity of binocular neurons in mouse superior colliculus | |
Xu et al. | Targeted sonogenetic modulation of GABAergic interneurons in the hippocampal CA1 region in status epilepticus | |
Wang et al. | Central nucleus of the amygdala to medial prefrontal cortex 5-HTergic neural circuit modulates the recovery of consciousness during sevoflurane anesthesia | |
Li et al. | Local continuous glial cell derived neurotrophic factor release using osmotic pump promotes parasympathetic nerve rehabilitation in an animal model of cavernous nerve injury induced erectile dysfunction | |
CN114984187B (en) | Application of transmembrane protein Tmem63b in preparation of medicine for treating peripheral nerve demyelinating diseases | |
Li et al. | HCN1 channels in GABAergic amygdalar neurons underpin male-biased aggressive behaviors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
X091 | Application refused [patent] | ||
AMND | Amendment | ||
X701 | Decision to grant (after re-examination) | ||
GRNT | Written decision to grant |