KR102148892B1 - Role of NF-κB-responsive miR-31-5p and miR-155-5p on inflammatory cytokine-induced impairment of endothelial progenitor cell function, and use thereof - Google Patents

Role of NF-κB-responsive miR-31-5p and miR-155-5p on inflammatory cytokine-induced impairment of endothelial progenitor cell function, and use thereof Download PDF

Info

Publication number
KR102148892B1
KR102148892B1 KR1020190140829A KR20190140829A KR102148892B1 KR 102148892 B1 KR102148892 B1 KR 102148892B1 KR 1020190140829 A KR1020190140829 A KR 1020190140829A KR 20190140829 A KR20190140829 A KR 20190140829A KR 102148892 B1 KR102148892 B1 KR 102148892B1
Authority
KR
South Korea
Prior art keywords
mir
inhibitor
expression
activity
endothelial progenitor
Prior art date
Application number
KR1020190140829A
Other languages
Korean (ko)
Inventor
김영명
김태훈
김지윤
김지희
박민식
Original Assignee
강원대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강원대학교산학협력단 filed Critical 강원대학교산학협력단
Priority to KR1020190140829A priority Critical patent/KR102148892B1/en
Priority to KR1020200056412A priority patent/KR20210055574A/en
Application granted granted Critical
Publication of KR102148892B1 publication Critical patent/KR102148892B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/13Nucleic acids or derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/306Foods, ingredients or supplements having a functional effect on health having an effect on bone mass, e.g. osteoporosis prevention
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/326Foods, ingredients or supplements having a functional effect on health having effect on cardiovascular health
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/328Foods, ingredients or supplements having a functional effect on health having effect on glycaemic control and diabetes

Abstract

The present invention relates to a role of NF-κB-dependent miR-31-5p and miR-155-5p in inflammatory cytokine-induced endothelial progenitor cell dysfunction, and use thereof. Particularly, the present invention relates to a composition for preventing, treating or alleviating inflammation-induced blood vessel dysfunction, or a composition for inducing angiogenesis or improving blood flow, which includes an inhibitor against expression or activity of miR-31-5p and miR-155-5p, or an inhibitor against expression or activity of NF-κB, as an active ingredient. The composition according to the present invention recovers inflammation-induced endothelial progenitor cell-related disorder, i.e. disorder of differentiation from monocytes into endothelial progenitor cells and endothelial progenitor cell dysfunction, and thus can effectively prevent, treat or alleviate inflammation-induced blood vessel dysfunction, and can effectively induce angiogenesis of inflammation tissues or patients suffering from inflammatory diseases, or can improve blood flow.

Description

염증 사이토카인에 의한 혈관내피전구세포의 기능 장애에서 NF-κB-의존적 miR-31-5p와 miR-155-5p의 역할 및 이의 이용{Role of NF-κB-responsive miR-31-5p and miR-155-5p on inflammatory cytokine-induced impairment of endothelial progenitor cell function, and use thereof}Role of NF-κB-dependent miR-31-5p and miR-155-5p and their use in dysfunction of vascular endothelial progenitor cells by inflammatory cytokines {Role of NF-κB-responsive miR-31-5p and miR- 155-5p on inflammatory cytokine-induced impairment of endothelial progenitor cell function, and use thereof}

본 발명은 염증 사이토카인에 의한 혈관내피전구세포의 기능 장애에서 NF-κB-의존적 miR-31-5p와 miR-155-5p의 역할 및 이의 이용에 관한 것으로, 구체적으로 miR-31-5p 또는 miR-155-5p의 발현 또는 활성 저해제, 또는 NF-κB의 발현 또는 활성 저해제를 유효성분으로 함유하는 염증에 의한 혈관기능 장애의 예방, 치료 또는 개선용 조성물 및 염증조직 또는 염증성 질환자의 혈관신생 유도 또는 혈류 개선용 조성물에 관한 것이다.The present invention relates to the role and use of NF-κB-dependent miR-31-5p and miR-155-5p in dysfunction of vascular endothelial progenitor cells by inflammatory cytokines, specifically miR-31-5p or miR -155-5p expression or activity inhibitor, or NF-κB expression or activity inhibitor as an active ingredient for preventing, treating or improving vascular dysfunction caused by inflammation, and inducing angiogenesis in inflammatory tissues or inflammatory diseases or It relates to a composition for improving blood flow.

혈관내피세포와 혈관내피전구세포(endothelial progenitor cells, EPCs)는 혈관신생을 통하여 태아의 발달, 혈압조절에 영향을 미칠 뿐만 아니라 상처치유, 심근경색증, 뇌졸중, 당뇨병증 및 미세혈관 합병증, 동맥경화, 류마티스성 관절염 등을 포함한 다양한 병리학적 증상에 영향을 미친다.Vascular endothelial cells and endothelial progenitor cells (EPCs) not only affect fetal development and blood pressure control through angiogenesis, but also wound healing, myocardial infarction, stroke, diabetes and microvascular complications, arteriosclerosis, It affects a variety of pathological symptoms including rheumatoid arthritis.

1997년 Asahara 등은 인간의 말초혈액으로부터 CD34+ 세포를 분리하여 일주일 간 배양한 결과 혈관내피세포의 특성을 갖는 세포로 분화되어 콜로니를 형성함을 확인하였고, 이들 세포를 혈관내피전구세포라 하였다. 이들 세포는 하지허혈 동물모델에서 혈관신생에 관여함을 확인하였다. 이들 세포는 주로 골수에서 유래되며, 혈액과 함께 순환되어 손상된 혈관을 복원하거나 허혈조직에서 혈관을 신생하는데 관여하는 것으로 알려져 있다.In 1997, Asahara et al. isolated CD34 + cells from human peripheral blood and cultured them for a week. As a result, they differentiated into cells having the characteristics of vascular endothelial cells to form colonies, and these cells were called vascular endothelial progenitor cells. It was confirmed that these cells are involved in angiogenesis in an animal model of lower limb ischemia. These cells are mainly derived from the bone marrow, and are known to be involved in restoring damaged blood vessels by circulating with blood or in creating blood vessels in ischemic tissues.

혈관내피전구세포는 초기 혈관내피전구세포(early EPCs)와 후기 혈관내피전구세포(late EPCs)로 분류된다. 초기 혈관내피전구세포는 말초 혈액의 단핵세포로부터 3주 이내에 분화된 방추형(spindle shape) 모양의 형태를 갖는 세포이며, 4 ~ 6주 후에는 증식능력을 잃게 되고 점차 사멸되지만 혈관신생인자의 분비능력이 우수한 것으로 밝혀져 있다. 한편, 후기 혈관내피전구세포는 단핵세포를 4 ~ 6주 배양했을 때 콜로니를 형성하는 세포로 제대정맥 혈관내피세포(human umbilical vein endothelial cells)와 유사한 세포모양인 자갈모양의 세포형태를 보인다. 이러한 세포는 10주 이상 지속적으로 증식하고, 혈관내피세포와 유사한 혈관신생 능력이 있음이 보고되고 있다.Vascular endothelial progenitor cells are classified into early vascular endothelial progenitor cells (early EPCs) and late vascular endothelial progenitor cells (late EPCs). Early vascular endothelial progenitor cells are cells that have a spindle shape differentiated within 3 weeks from mononuclear cells in peripheral blood, and lose their proliferative capacity after 4 to 6 weeks and are gradually killed, but the ability to secrete angiogenic factors. It turns out to be excellent. On the other hand, late vascular endothelial progenitor cells are cells that form colonies when mononuclear cells are cultured for 4 to 6 weeks, and show a gravel-like cell shape similar to human umbilical vein endothelial cells. These cells have been reported to proliferate continuously for more than 10 weeks and have angiogenic ability similar to that of vascular endothelial cells.

혈액 내 혈관내피전구세포의 수는 질환에 따라 상이함이 보고되고 있다. 예를 들어 염증과 관련된 질환인 류마티스성 관절염, 동맥경화, 비만, 제2형 당뇨병 등의 환자 혈액에는 혈중 혈관내피전구세포의 수가 정상인과 비교하여 매우 낮은 것으로 보고되고 있다. 뿐만 아니라 염증성질환으로 알려진 임신중독증 환자의 경우에도 혈중 혈관내피전구세포의 수가 건강한 임산부와 비교하여 낮은 것으로 보고되고 있다. 흥미롭게도, 임신중독증 환자의 경우 혈중 혈관내피전구세포는 조기 노화현상으로 혈관생성 및 혈관재생 효능이 매우 낮은 것으로 알려져 있다. 이러한 연구결과들은 염증으로 인하여 혈관내피전구세포의 수가 감소하고 분화억제 및 기능이상이 발생하여 다양한 혈관질환을 유발할 수 있음을 제시하고 있다. 따라서 이들 질환을 갖고 있는 환자에게 혈관내피전구세포의 분화를 촉진하거나 기능을 회복시키면, 염증으로 인한 혈관합병증을 예방하거나 치료할 수 있을 것으로 판단된다.It has been reported that the number of endothelial progenitor cells in the blood varies depending on the disease. For example, it is reported that the number of endothelial progenitor cells in blood in the blood of patients with inflammation-related diseases such as rheumatoid arthritis, arteriosclerosis, obesity, and type 2 diabetes is very low compared to that of normal subjects. In addition, it has been reported that the number of endothelial progenitor cells in blood in patients with pregnancy addiction known as inflammatory disease is lower than that of healthy pregnant women. Interestingly, in patients with pregnancy addiction, endothelial progenitor cells in blood are known to have very low angiogenesis and revascularization efficacy due to premature aging. These results suggest that the number of endothelial progenitor cells decreases due to inflammation, and differentiation inhibition and dysfunction occur, leading to various vascular diseases. Therefore, it is considered that vascular complications caused by inflammation can be prevented or treated by promoting the differentiation of endothelial progenitor cells or restoring their function in patients with these diseases.

다양한 원인에 의해 NF-κB가 활성화되면 TNF-α(tumor necrosis factor-α), IL-1β(interleukin-1β) 등 다양한 사이토카인의 발현이 증가하고, 이로 인하여 염증질환이 촉진된다. 특히, 이들 사이토카인은 혈관질환을 유발하며, 혈관신생 및 혈관재생 억제와 깊은 연관이 있는 것으로 알려져 있다. 예를 들어, 염증성 사이토카인은 혈관내피세포 일산화질소합성효소(endothelial nitric oxide synthase, eNOS)의 발현을 억제하여 혈관내피세포의 기능을 감소시키고, 다양한 혈관질환(고혈압, 동맥경화, 임신중독증 등)의 원인이 된다. 그러나 염증성 NF-κB의 활성화와 혈관내피전구세포의 분화 및 기능이상과의 상관성에 대한 명료한 연구결과는 보고된 바 없다.When NF-κB is activated due to various causes, expression of various cytokines such as TNF-α (tumor necrosis factor-α) and IL-1β (interleukin-1β) increases, thereby promoting inflammatory diseases. In particular, these cytokines cause vascular disease, and are known to be deeply associated with inhibition of angiogenesis and blood vessel regeneration. For example, inflammatory cytokines reduce the function of vascular endothelial cells by inhibiting the expression of vascular endothelial nitric oxide synthase (eNOS), and various vascular diseases (high blood pressure, arteriosclerosis, pregnancy addiction, etc.) Cause of. However, no clear study results have been reported on the correlation between inflammatory NF-κB activation and vascular endothelial progenitor cell differentiation and dysfunction.

최근 많은 연구에 따르면, 약 22개의 염기로 구성된 마이크로 RNA(microRNA, miRNA)는 특정 유전자의 mRNA와 결합하여 안정성을 감소시키거나 단백질합성을 방해하여 유전자 발현을 억제하는 것으로 알려져 있다. 특히, 염증조건에서 발현되는 마이크로 RNA는 염증성질환의 병인과 관련된 유전자의 발현을 조절함으로서 다양한 염증성 혈관질환(동맥경화, 심근경색, 고혈압, 임신중독증 등)을 유발하는 것으로 알려져 있다. 그러나 이들 마이크로 RNA가 혈관내피전구세포 분화 및 기능조절에 직접적으로 관여한다는 연구는 없다. 따라서 혈관내피세포 분화를 조절하는 마이크로 RNA를 발굴하고, 효능을 확인하는 것은 염증성 혈관질환의 새로운 치료전략을 수립하는데 매우 중요할 것이다.According to a number of recent studies, microRNA (miRNA) composed of about 22 bases is known to bind to the mRNA of a specific gene to reduce its stability or inhibit gene expression by interfering with protein synthesis. In particular, microRNAs expressed in inflammatory conditions are known to cause various inflammatory vascular diseases (arteriosclerosis, myocardial infarction, hypertension, pregnancy addiction, etc.) by regulating the expression of genes related to the etiology of inflammatory diseases. However, there are no studies showing that these microRNAs are directly involved in vascular endothelial progenitor cell differentiation and function regulation. Therefore, discovering microRNAs that regulate vascular endothelial cell differentiation and confirming the efficacy will be very important in establishing a new treatment strategy for inflammatory vascular disease.

본 발명자는 대표적 염증성 사이토카인인 TNF-α에 의해 활성화된 NF-κB에 의존적인 miR-31-5p와 miR-155-5p가 혈관내피전구세포의 활성을 조절 할 수 있음에 주목하였다. 특히, 염증성 질환인 임신중독증 환자의 혈액과 단핵세포에서 TNF-α와 miR-31-5p 및 miR-155-5p의 농도가 증가한 반면, 혈관내피전구세포의 수는 감소되어 있었다.The present inventors noted that miR-31-5p and miR-155-5p dependent on NF-κB activated by TNF-α, a representative inflammatory cytokine, can regulate the activity of endothelial progenitor cells. In particular, concentrations of TNF-α, miR-31-5p, and miR-155-5p were increased in blood and mononuclear cells of patients with inflammatory pregnancy addiction, whereas the number of endothelial progenitor cells was decreased.

이에 본 발명자는 TNF-α가 단핵세포로부터 혈관내피전구세포로의 분화를 억제하고, 이러한 현상은 NF-κB 활성화 억제와 miR-31-5p 및 miR-155-5p 저해제에 의해 효과적으로 회복된다는 것을 확인하였으며, 이를 바탕으로 NF-κB 및 이에 의존적인 miR-31-5p 및 miR-155-5p의 기능을 다양한 방법으로 연구한 결과, 염증으로 인한 혈관내피전구세포 분화 및 허혈조직에서 혈관신생의 억제는 NF-κB 저해제와 miR-31-5p 및 miR-155-5p 저해제에 의해 회복되며, 따라서 NF-κB의 저해제 및 NF-κB에 의존적 miR-31-5p 및 miR-155-5p의 억제제는 염증환경에서 혈관내피전구세포의 분화를 촉진시킬 수 있음을 확인하고 본 발명을 완성하였다.Accordingly, the present inventors confirmed that TNF-α inhibits the differentiation of mononuclear cells into vascular endothelial progenitor cells, and this phenomenon is effectively recovered by inhibition of NF-κB activation and miR-31-5p and miR-155-5p inhibitors. Based on this, as a result of studying NF-κB and its dependent functions of miR-31-5p and miR-155-5p in various ways, the differentiation of endothelial progenitor cells due to inflammation and inhibition of angiogenesis in ischemic tissue Recovered by NF-κB inhibitors and miR-31-5p and miR-155-5p inhibitors, therefore, inhibitors of NF-κB and inhibitors of NF-κB-dependent miR-31-5p and miR-155-5p are inflammatory environments. It was confirmed that differentiation of vascular endothelial progenitor cells can be promoted, and the present invention was completed.

Nature. 2005;438(7070):932-936.Nature. 2005;438(7070):932-936. Cell. 1996;86(3):353-364.Cell. 1996;86(3):353-364. Nature. 2005;438(7070):937-945.Nature. 2005;438(7070):937-945. Nat Rev Mol Cell Biol. 2007;8(6):464-478.Nat Rev Mol Cell Biol. 2007;8(6):464-478. J Hematother Stem Cell Res. 2002;11(2):171-178.J Hematother Stem Cell Res. 2002;11(2):171-178. Science. 1997;275:964-967.Science. 1997;275:964-967. J Clin Invest. 2000;105:71-77.J Clin Invest. 2000;105:71-77. Arterioscler Thromb Vasc Biol. 2004;24:288-293.Arterioscler Thromb Vasc Biol. 2004;24:288-293. Ann Rheum Dis. 2007;66(10):1284-1288.Ann Rheum Dis. 2007;66(10):1284-1288. Atherosclerosis. 2008;201(2):236-247.Atherosclerosis. 2008;201(2):236-247. Int J Obes (Lond). 2009;33(2):219-225.Int J Obes (Lond). 2009;33(2):219-225. J Am Coll Cardiol. 2005;45(9):1449-1457.J Am Coll Cardiol. 2005;45(9):1449-1457. Clin Sci (Lond). 2016;130(6):409-419.Clin Sci (Lond). 2016;130(6):409-419. Gynecol Obstet Invest. 2007;64(2):103-108.Gynecol Obstet Invest. 2007;64(2):103-108. Hypertension. 2014;64(1):23-25.Hypertension. 2014;64(1):23-25. J Clin Endocrinol Metab. 2005;90(9):5329-5332.J Clin Endocrinol Metab. 2005;90(9):5329-5332. Nat Rev Immunol. 2009 Nov;9(11):778-88.Nat Rev Immunol. 2009 Nov;9(11):778-88. Clin Sci (Lond). 2010 Feb 23;118(10):593-605.Clin Sci (Lond). 2010 Feb 23;118(10):593-605. Biochem Biophys Res Commun. 2014;448(1):101-107.Biochem Biophys Res Commun. 2014;448(1):101-107. J Biol Chem. 2018;293(49):18989-19000.J Biol Chem. 2018;293(49):18989-19000. Free Radic Biol Med. 2017;104:185-198.Free Radic Biol Med. 2017;104:185-198. Cell. 2009;136(2):215-233.Cell. 2009;136(2):215-233. Cell. 2009;136(1):26-36.Cell. 2009;136(1):26-36. Angiogenesis. 2018;21(4):699-710.Angiogenesis. 2018;21(4):699-710. J Cell Physiol. 2019. doi: 10.1002/jcp.28942.J Cell Physiol. 2019.doi: 10.1002/jcp.28942.

본 발명의 주된 목적은 염증환경에서 혈관내피전구세포의 분화 및 기능 조절에 관여하는 마이크로 RNA 및 이와 관련된 인자를 이용하여, 염증성 혈관질환을 예방, 치료 또는 개선하는데 이용할 수 있는 새로운 조성물을 제공하는데 있다.The main object of the present invention is to provide a novel composition that can be used to prevent, treat, or improve inflammatory vascular disease by using microRNAs and related factors involved in the differentiation and function regulation of vascular endothelial progenitor cells in an inflammatory environment. .

본 발명의 다른 목적은 상기와 같은 마이크로 RNA 및 이와 관련된 인자를 이용하여, 염증조직 또는 염증성 질환자의 혈관신생을 유도하거나 혈류를 개선하는데 이용할 수 있는 새로운 조성물을 제공하는데 있다.Another object of the present invention is to provide a new composition that can be used to induce angiogenesis or improve blood flow in inflammatory tissues or inflammatory diseases by using the above microRNAs and related factors.

본 발명의 한 양태에 따르면, 본 발명은 miR-31-5p 또는 miR-155-5p의 발현 또는 활성 저해제를 유효성분으로 함유하는 염증에 의한 혈관기능 장애의 예방 또는 치료용 약학 조성물을 제공한다.According to one aspect of the present invention, the present invention provides a pharmaceutical composition for preventing or treating vascular dysfunction caused by inflammation containing an inhibitor of expression or activity of miR-31-5p or miR-155-5p as an active ingredient.

본 발명의 염증에 의한 혈관기능 장애의 예방 또는 치료용 약학 조성물에 있어서, 상기 저해제는 miR-31-5p 또는 miR-155-5p의 염기서열의 전부 또는 일부에 결합할 수 있는 핵산분자인 것이 바람직하다.In the pharmaceutical composition for preventing or treating vascular dysfunction caused by inflammation of the present invention, the inhibitor is preferably a nucleic acid molecule capable of binding to all or part of the nucleotide sequence of miR-31-5p or miR-155-5p. Do.

본 발명의 염증에 의한 혈관기능 장애의 예방 또는 치료용 약학 조성물에 있어서, 상기 저해제는 서열번호 1 또는 서열번호 2의 염기서열을 포함하는 핵산분자인 것이 바람직하다.In the pharmaceutical composition for preventing or treating vascular dysfunction caused by inflammation of the present invention, the inhibitor is preferably a nucleic acid molecule containing the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 2.

본 발명의 염증에 의한 혈관기능 장애의 예방 또는 치료용 약학 조성물에 있어서, 상기 혈관기능 장애는 임신중독증, 상처염증, 심근경색증, 뇌졸중, 당뇨병증, 미세혈관 합병증, 동맥경화 및 류마티스성 관절염 중에서 선택된 질환으로 인한 혈관기능 장애인 것이 바람직하다.In the pharmaceutical composition for preventing or treating vascular dysfunction due to inflammation of the present invention, the vascular dysfunction is selected from pregnancy addiction, wound inflammation, myocardial infarction, stroke, diabetes, microvascular complications, arteriosclerosis and rheumatoid arthritis. It is desirable to have vascular dysfunction caused by disease.

본 발명의 다른 양태에 따르면, 본 발명은 miR-31-5p 또는 miR-155-5p의 발현 또는 활성 저해제를 유효성분으로 함유하는 염증에 의한 혈관기능 장애의 예방 또는 개선용 식품 조성물을 제공한다.According to another aspect of the present invention, the present invention provides a food composition for preventing or improving vascular dysfunction caused by inflammation containing an inhibitor of expression or activity of miR-31-5p or miR-155-5p as an active ingredient.

본 발명의 염증에 의한 혈관기능 장애의 예방 또는 개선용 식품 조성물에 있어서, 상기 저해제는 miR-31-5p 또는 miR-155-5p의 염기서열의 전부 또는 일부에 결합할 수 있는 핵산분자인 것이 바람직하다.In the food composition for preventing or improving vascular dysfunction caused by inflammation of the present invention, the inhibitor is preferably a nucleic acid molecule capable of binding to all or part of the nucleotide sequence of miR-31-5p or miR-155-5p. Do.

본 발명의 염증에 의한 혈관기능 장애의 예방 또는 개선용 식품 조성물에 있어서, 상기 저해제는 서열번호 1 또는 서열번호 2의 염기서열을 포함하는 핵산분자인 것이 바람직하다.In the food composition for preventing or improving vascular dysfunction caused by inflammation of the present invention, the inhibitor is preferably a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 2.

본 발명의 염증에 의한 혈관기능 장애의 예방 또는 개선용 식품 조성물에 있어서, 상기 혈관기능 장애는 임신중독증, 상처염증, 심근경색증, 뇌졸중, 당뇨병증, 미세혈관 합병증, 동맥경화 및 류마티스성 관절염 중에서 선택된 질환으로 인한 혈관기능 장애인 것이 바람직하다.In the food composition for preventing or improving vascular dysfunction caused by inflammation of the present invention, the vascular dysfunction is selected from pregnancy addiction, wound inflammation, myocardial infarction, stroke, diabetes, microvascular complications, arteriosclerosis and rheumatoid arthritis. It is preferable that the vascular function is impaired due to the disease.

본 발명의 또 다른 양태에 따르면, 본 발명은 miR-31-5p 또는 miR-155-5p의 발현 또는 활성 저해제를 유효성분으로 함유하는 염증조직 또는 염증성 질환자의 혈관신생 유도 또는 혈류 개선용 약학 조성물을 제공한다.According to another aspect of the present invention, the present invention provides a pharmaceutical composition for inducing angiogenesis or improving blood flow in inflammatory tissues or inflammatory diseases containing an inhibitor of expression or activity of miR-31-5p or miR-155-5p as an active ingredient. to provide.

본 발명의 염증조직 또는 염증성 질환자의 혈관신생 유도 또는 혈류 개선용 약학 조성물에 있어서, 상기 저해제는 miR-31-5p 또는 miR-155-5p의 염기서열의 전부 또는 일부에 결합할 수 있는 핵산분자인 것이 바람직하다.In the pharmaceutical composition for inducing angiogenesis or improving blood flow in inflammatory tissues or inflammatory diseases of the present invention, the inhibitor is a nucleic acid molecule capable of binding to all or part of the nucleotide sequence of miR-31-5p or miR-155-5p It is desirable.

본 발명의 염증조직 또는 염증성 질환자의 혈관신생 유도 또는 혈류 개선용 약학 조성물에 있어서, 상기 저해제는 서열번호 1 또는 서열번호 2의 염기서열을 포함하는 핵산분자인 것이 바람직하다.In the pharmaceutical composition for inducing angiogenesis or improving blood flow in inflammatory tissues or inflammatory diseases of the present invention, the inhibitor is preferably a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 2.

본 발명의 또 다른 양태에 따르면, 본 발명은 miR-31-5p 또는 miR-155-5p의 발현 또는 활성 저해제를 유효성분으로 함유하는 염증조직 또는 염증성 질환자의 혈관신생 유도 또는 혈류 개선용 식품 조성물을 제공한다.According to another aspect of the present invention, the present invention provides a food composition for inducing angiogenesis or improving blood flow in inflammatory tissues or inflammatory diseases containing an inhibitor of expression or activity of miR-31-5p or miR-155-5p as an active ingredient. to provide.

본 발명의 염증조직 또는 염증성 질환자의 혈관신생 유도 또는 혈류 개선용 식품 조성물에 있어서, 상기 저해제는 miR-31-5p 또는 miR-155-5p의 염기서열의 전부 또는 일부에 결합할 수 있는 핵산분자인 것이 바람직하다.In the food composition for inducing angiogenesis or improving blood flow in inflammatory tissues or inflammatory diseases of the present invention, the inhibitor is a nucleic acid molecule capable of binding to all or part of the nucleotide sequence of miR-31-5p or miR-155-5p. It is desirable.

본 발명의 염증조직 또는 염증성 질환자의 혈관신생 유도 또는 혈류 개선용 식품 조성물에 있어서, 상기 저해제는 서열번호 1 또는 서열번호 2의 염기서열을 포함하는 핵산분자인 것이 바람직하다.In the food composition for inducing angiogenesis or improving blood flow in inflammatory tissues or inflammatory diseases of the present invention, the inhibitor is preferably a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 2.

본 발명의 또 다른 양태에 따르면, 본 발명은 NF-κB의 발현 또는 활성 저해제를 유효성분으로 함유하는 염증에 의한 혈관기능 장애의 예방 또는 치료용 약학 조성물을 제공한다.According to another aspect of the present invention, the present invention provides a pharmaceutical composition for preventing or treating vascular dysfunction caused by inflammation containing an inhibitor of NF-κB expression or activity as an active ingredient.

본 발명의 염증에 의한 혈관기능 장애의 예방 또는 치료용 약학 조성물에 있어서, 상기 NF-κB의 발현 또는 활성 저해제는 NF-κB p65의 발현 또는 활성을 저해하는 분자인 것이 바람직하다.In the pharmaceutical composition for preventing or treating vascular dysfunction caused by inflammation of the present invention, the inhibitor of NF-κB expression or activity is preferably a molecule that inhibits the expression or activity of NF-κB p65.

본 발명의 염증에 의한 혈관기능 장애의 예방 또는 치료용 약학 조성물에 있어서, 상기 혈관기능 장애는 임신중독증, 상처염증, 심근경색증, 뇌졸중, 당뇨병증, 미세혈관 합병증, 동맥경화 및 류마티스성 관절염 중에서 선택된 질환으로 인한 혈관기능 장애인 것이 바람직하다.In the pharmaceutical composition for preventing or treating vascular dysfunction due to inflammation of the present invention, the vascular dysfunction is selected from pregnancy addiction, wound inflammation, myocardial infarction, stroke, diabetes, microvascular complications, arteriosclerosis and rheumatoid arthritis. It is preferable that the vascular function is impaired due to the disease.

본 발명의 또 다른 양태에 따르면, 본 발명은 NF-κB의 발현 또는 활성 저해제를 유효성분으로 함유하는 염증에 의한 혈관기능 장애의 예방 또는 개선용 식품 조성물을 제공한다.According to another aspect of the present invention, the present invention provides a food composition for preventing or improving vascular dysfunction caused by inflammation containing an inhibitor of NF-κB expression or activity as an active ingredient.

본 발명의 염증에 의한 혈관기능 장애의 예방 또는 개선용 식품 조성물에 있어서, 상기 NF-κB의 발현 또는 활성 저해제는 NF-κB p65의 발현 또는 활성을 저해하는 분자인 것이 바람직하다.In the food composition for preventing or improving vascular dysfunction caused by inflammation of the present invention, the inhibitor of NF-κB expression or activity is preferably a molecule that inhibits the expression or activity of NF-κB p65.

본 발명의 염증에 의한 혈관기능 장애의 예방 또는 개선용 식품 조성물에 있어서, 상기 혈관기능 장애는 임신중독증, 상처염증, 심근경색증, 뇌졸중, 당뇨병증, 미세혈관 합병증, 동맥경화 및 류마티스성 관절염 중에서 선택된 질환으로 인한 혈관기능 장애인 것이 바람직하다.In the food composition for preventing or improving vascular dysfunction caused by inflammation of the present invention, the vascular dysfunction is selected from pregnancy addiction, wound inflammation, myocardial infarction, stroke, diabetes, microvascular complications, arteriosclerosis and rheumatoid arthritis. It is desirable to have vascular dysfunction caused by disease.

본 발명의 또 다른 양태에 따르면, 본 발명은 NF-κB의 발현 또는 활성 저해제를 유효성분으로 함유하는 염증조직 또는 염증성 질환자의 혈관신생 유도 또는 혈류 개선용 약학 조성물을 제공한다.According to another aspect of the present invention, the present invention provides a pharmaceutical composition for inducing angiogenesis or improving blood flow in inflammatory tissues or inflammatory diseases containing an inhibitor of NF-κB expression or activity as an active ingredient.

본 발명의 염증조직 또는 염증성 질환자의 혈관신생 유도 또는 혈류 개선용 약학 조성물에 있어서, 상기 NF-κB의 발현 또는 활성 저해제는 NF-κB p65의 발현 또는 활성을 저해하는 분자인 것이 바람직하다.In the pharmaceutical composition for inducing angiogenesis or improving blood flow in inflammatory tissues or inflammatory diseases of the present invention, the inhibitor of NF-κB expression or activity is preferably a molecule that inhibits the expression or activity of NF-κB p65.

본 발명의 또 다른 양태에 따르면, 본 발명은 NF-κB의 발현 또는 활성 저해제를 유효성분으로 함유하는 염증조직 또는 염증성 질환자의 혈관신생 유도 또는 혈류 개선용 식품 조성물을 제공한다.According to another aspect of the present invention, the present invention provides a food composition for inducing angiogenesis or improving blood flow in inflammatory tissues or inflammatory diseases containing an inhibitor of NF-κB expression or activity as an active ingredient.

본 발명의 염증조직 또는 염증성 질환자의 혈관신생 유도 또는 혈류 개선용 식품 조성물에 있어서, 상기 NF-κB의 발현 또는 활성 저해제는 NF-κB p65의 발현 또는 활성을 저해하는 분자인 것이 바람직하다.In the food composition for inducing angiogenesis or improving blood flow in inflammatory tissues or inflammatory diseases of the present invention, the inhibitor of NF-κB expression or activity is preferably a molecule that inhibits the expression or activity of NF-κB p65.

본 발명의 조성물은 염증으로 인한 혈관내피전구세포 관련 장애, 즉 단핵세포로부터 혈관내피전구세포로의 분화 장애와 혈관내피전구세포의 기능 장애를 회복시킴으로서 염증에 의한 혈관기능 장애를 효과적으로 예방, 치료 또는 개선할 수 있으며, 염증조직 또는 염증성 질환자의 혈관신생을 효과적으로 유도하거나 혈류를 개선할 수 있다.The composition of the present invention effectively prevents, treats or effectively prevents vascular dysfunction caused by inflammation by restoring vascular endothelial progenitor cell-related disorders due to inflammation, that is, differentiation disorders from monocytes to vascular endothelial progenitor cells and dysfunction of vascular endothelial progenitor cells. It can improve, and can effectively induce angiogenesis in inflammatory tissues or people with inflammatory diseases or improve blood flow.

도 1은 건강한 임신부와 임신중독증 환자의 혈청 및 단핵세포에서 TNF-α와 miR-31-5p 및 miR-155-5p의 발현을 분석한 결과이다. A: 건강한 임신부(HP)와 임신중독증 환자(PE)의 혈액 내 혈관내피전구세포(CD34+/KDR+)의 비율을 확인한 결과, B: 건강한 임신부(HP)와 임신중독증 환자(PE)의 혈액 내 TNF-α의 농도를 측정한 결과, C: 건강한 임신부(HP)와 임신중독증 환자(PE)의 혈액 내 miR-31-5p 및 miR-155-5p의 농도를 측정한 결과, D: 건강한 임신부(HP)와 임신중독증 환자(PE)의 혈액으로부터 분리한 단핵세포에서 발현된 miR-31-5p 및 miR-155-5p를 측정한 결과, ***p<0.001.
도 2는 임신중독증 환자의 단핵세포를 자가혈청에서 배양할 때, miR-31-5p의 저해제, miR-155-5p의 저해제 및 TNF-α 중화항체의 처리에 따른 혈관내피전구세포로의 분화 정도를 분석한 결과이다. A: 건강한 임신부(HP)와 임신중독증 환자(PE)의 혈액으로부터 분리한 단핵세포를 자가혈청에서 4일간 배양한 후, 음성대조군(NC), miR-31-5p의 저해제, miR-155-5p의 저해제 그리고 miR-31-5p와 miR-155-5p의 저해제 혼합(31i/155i+αTNF-α) 및 TNF-α 중화항체를 처리하고 혈관내피전구세포로 분화된 정도를 Ac-LDL의 흡수 및 UCA-1과 결합으로 확인한 형광현미경 사진, B 및 C: 형광현미경 사진으로부터 혈관내피전구세포로 분화된 세포 수 및 분화 정도를 정량화한 결과, D 및 E: 분화된 혈관내피전구세포에서 KDR의 발현정도를 세포분석기로 분석한 결과 및 정량화한 결과, *p<0.05; **p<0.01; ***p<0.001.
도 3은 건강한 임신부의 제대혈로부터 분리한 단핵세포에 NF-κB p65 siRNA, miR-31-5p의 모사체 및 miR-155-5p의 모사체를 처리하고 TNF-α가 함유된 배지에서 배양하는 조건에서 혈관내피전구세포로의 분화 정도를 분석한 결과이다. A: 건강한 임신부의 제대혈로부터 분리한 단핵세포에 음성대조군(NC), NF-κB p65의 siRNA를 도입(sip65)하거나 NF-κB p65의 siRNA와 함께 합성 miR-31-5p 모사체와 miR-155-5p 모사체를 도입(sip65+31m/155m)한 후, TNF-α가 함유되거나 함유되지 않은 배지에서 배양하고, 혈관내피전구세포로 분화된 정도를 Ac-LDL의 흡수 및 UCA-1과 결합으로 확인한 형광현미경 사진, B: 분화된 혈관내피전구세포에서 조혈줄기세포 마커인 CD34와 혈관내피세포 마커인 CD31, KDR, VE-cadherin, vWF의 발현정도를 세포분석기로 분석한 후 정량화한 결과, *p<0.05; **p<0.01; ***p<0.001.
도 4는 건강한 임신부의 제대혈로부터 분리한 단핵세포에 miR-31-5p의 저해제, miR-155-5p의 저해제 또는 이들 조합을 처리하고, TNF-α가 함유된 배지에서 배양하는 조건에서 혈관내피전구세포로의 분화 정도를 분석한 결과이다. A: 건강한 임신부의 제대혈로부터 분리한 단핵세포에 음성대조군(NC), miR-31-5p의 저해제 (miR-31i, 31i), miR-155-5p의 저해제(miR-155i, 155i) 혹은 이들 저해제의 조합(31i/155i)을 도입한 후, TNF-α가 함유되거나 함유되지 않은 배지에서 배양하고, 혈관내피전구세포로 분화된 정도를 Ac-LDL의 흡수 및 UCA-1과 결합으로 확인한 형광현미경 사진, B: 분화된 혈관내피전구세포에서 CD31, CD34, KDR, VE-cadherin의 발현정도를 세포분석기로 분석한 후 정량화한 결과, *p<0.05; **p<0.01; ***p<0.001.
도 5는 건강한 임신부의 제대혈로부터 분리한 단핵세포에 miR-31-5p의 저해제, miR-155-5p의 저해제 또는 이들 저해제를 조합 처리한 후, TNF-α가 함유된 배지에서 배양하여 혈관내피전구세포로 분화시킨 다음 마우스의 하지허혈 조직에 주입하여 혈류재생 및 혈관형성 정도를 분석한 결과이다. A: 건강한 임신부의 제대혈로부터 분리한 단핵세포(MNCs)에 음성대조군(NC), miR-31-5p의 저해제(miR-31i, 31i), miR-155-5p의 저해제(miR-155i, 155i), 혹은 이들 저해제의 조합(miR-31i/155i, 31i/155i)을 도입한 후, TNF-α가 함유되거나 함유되지 않은 배지에서 배양하여 혈관내피전구세포로 분화시키고, 이들 세포 혹은 생리식염수(saline)를 면역결핍(nude) 마우스의 하지허혈 조직에 주입한 다음 혈류의 회복 정도를 레이저 도플러 혈류계로 촬영한 사진, B: 레이저 도플러 혈류계로 측정한 혈류의 회복 정도를 정량화한 결과, C: 마우스의 허혈조직에 새로운 모세혈관(녹색) 형성과 이들 모세혈관에 함입된 혈관내피전구세포(적색)를 촬영한 사진, D: 이들 사진으로부터 모세혈관의 생성정도를 정량화한 결과, *p<0.05; **p<0.01; ***p<0.001.
1 is a result of analyzing the expression of TNF-α, miR-31-5p, and miR-155-5p in serum and mononuclear cells of healthy pregnant women and pregnant addiction patients. A: As a result of confirming the ratio of endothelial progenitor cells (CD34 + /KDR + ) in the blood of healthy pregnant women (HP) and pregnancy addiction patients (PE), B: blood from healthy pregnant women (HP) and pregnancy addiction patients (PE) As a result of measuring the concentration of TNF-α, C: a result of measuring the concentration of miR-31-5p and miR-155-5p in the blood of a healthy pregnant woman (HP) and a pregnancy addiction patient (PE), D: a healthy pregnant woman As a result of measuring miR-31-5p and miR-155-5p expressed in mononuclear cells isolated from blood of (HP) and pregnancy addiction patients (PE), *** p <0.001.
Figure 2 shows the degree of differentiation into vascular endothelial progenitor cells according to the treatment of an inhibitor of miR-31-5p, an inhibitor of miR-155-5p, and a TNF-α neutralizing antibody when mononuclear cells of a gestational addiction patient are cultured in autologous serum. Is the result of analysis. A: Mononuclear cells isolated from the blood of healthy pregnant women (HP) and pregnancy addiction patients (PE) were cultured in autologous serum for 4 days, and then negative control (NC), inhibitor of miR-31-5p, miR-155-5p Inhibitors of and miR-31-5p and miR-155-5p mixture (31i/155i+αTNF-α) and TNF-α neutralizing antibody were treated, and the degree of differentiation into vascular endothelial progenitor cells was determined by the absorption of Ac-LDL and Fluorescence micrographs confirmed by binding with UCA-1, B and C: As a result of quantifying the number and degree of differentiation into vascular endothelial progenitor cells from fluorescence micrographs, D and E: expression of KDR in differentiated vascular endothelial progenitor cells As a result of analyzing and quantifying the degree with a cytometer, * p <0.05; ** p <0.01; *** p <0.001.
Figure 3 is a condition of treating mononuclear cells isolated from umbilical cord blood of a healthy pregnant woman with NF-κB p65 siRNA, miR-31-5p mimic, and miR-155-5p mimic, and cultured in a medium containing TNF-α This is the result of analyzing the degree of differentiation into vascular endothelial progenitor cells in. A: A negative control (NC), siRNA of NF-κB p65 was introduced into mononuclear cells isolated from umbilical cord blood of a healthy pregnant woman (sip65) or synthesized with siRNA of NF-κB p65, miR-31-5p mimic and miR-155 After introducing the -5p mimetic (sip65+31m/155m), culture in a medium containing or without TNF-α, the degree of differentiation into vascular endothelial progenitor cells, absorption of Ac-LDL and binding with UCA-1 Fluorescence micrograph, B: The expression levels of hematopoietic stem cell marker CD34 and vascular endothelial cell markers CD31, KDR, VE-cadherin, and vWF in differentiated vascular endothelial progenitor cells were analyzed and quantified with a cytometer. * p <0.05; ** p <0.01; *** p <0.001.
FIG. 4 is a vascular endothelial progenitor under conditions of treatment with an inhibitor of miR-31-5p, an inhibitor of miR-155-5p, or a combination thereof on mononuclear cells isolated from umbilical cord blood of a healthy pregnant woman, and culture in a medium containing TNF-α. This is the result of analyzing the degree of differentiation into cells. A: Negative control (NC), inhibitors of miR-31-5p (miR-31i, 31i), inhibitors of miR-155-5p (miR-155i, 155i) or inhibitors of these mononuclear cells isolated from cord blood of healthy pregnant women After introducing the combination of (31i/155i), cultured in a medium containing or not containing TNF-α, and the degree of differentiation into vascular endothelial progenitor cells was confirmed by absorption of Ac-LDL and binding with UCA-1 under a fluorescence microscope. Photo, B: The expression levels of CD31, CD34, KDR, and VE-cadherin in differentiated vascular endothelial progenitor cells were analyzed and quantified with a cytometer, * p <0.05; ** p <0.01; *** p <0.001.
5 is a vascular endothelial progenitor by culturing in a medium containing TNF-α after treating a mononuclear cell isolated from umbilical cord blood of a healthy pregnant woman with an inhibitor of miR-31-5p, an inhibitor of miR-155-5p, or a combination of these inhibitors. This is the result of analyzing the degree of blood flow regeneration and angiogenesis by differentiating into cells and then injecting it into the ischemic tissue of the mouse. A: Negative control (NC), inhibitors of miR-31-5p (miR-31i, 31i), inhibitors of miR-155-5p (miR-155i, 155i) in mononuclear cells (MNCs) isolated from umbilical cord blood of healthy pregnant women , Or a combination of these inhibitors (miR-31i/155i, 31i/155i), cultured in a medium containing or without TNF-α to differentiate into vascular endothelial progenitor cells, and these cells or saline ) Was injected into the lower limb ischemic tissue of an immunodeficient (nude) mouse, and then the degree of recovery of blood flow was taken with a laser Doppler hemometry, B: As a result of quantifying the degree of recovery of blood flow measured with a laser Doppler hemometry, C: Photographs of formation of new capillaries (green) in ischemic tissue and endothelial progenitor cells (red) embedded in these capillaries, D: As a result of quantifying the degree of capillary formation from these photographs, * p <0.05; ** p <0.01; *** p <0.001.

본 발명은 염증으로 인해 단핵세포로부터 혈관내피전구세포로 분화되는 것이 억제되고 혈관내피전구세포의 기능이 저해되는 것을 NF-κB에 의존적인 miR-31-5p 또는 miR-155-5p의 저해제가 회복시킬 수 있다는 새로운 연구결과를 바탕으로 안출된 것이다.In the present invention, inhibitors of miR-31-5p or miR-155-5p dependent on NF-κB recover from the inhibition of differentiation from mononuclear cells to vascular endothelial progenitor cells due to inflammation and inhibition of the function of vascular endothelial progenitor cells. It was conceived based on the new research results that it can be done.

miR-31 및 miR-155는 작은 크기의 RNA 분자로, 이에 관한 정보는 마이크로 RNA 데이터베이스인 miRBase(http://www.mirbase.org) 등을 통해 잘 알려져 있다. 대표적으로 인간(Homo sapiens)에서 miR-31의 스템-루프 서열(stem-loop sequence)은 서열번호 3과 같으며, 성숙한 형태인 miR-31-5p는 서열번호 4, 또 다른 성숙한 형태인 miR-31-3p는 서열번호 5의 서열로 이루어지고, miR-155의 스템-루프 서열(stem-loop sequence)은 서열번호 6과 같으며, 성숙한 형태인 miR-155-5p는 서열번호 7, 또 다른 성숙한 형태인 miR-155-3p는 서열번호 8의 서열로 이루어진다.miR-31 and miR-155 are small-sized RNA molecules, and their information is well known through the micro RNA database miRBase (http://www.mirbase.org). Representatively, in humans ( Homo sapiens ), the stem-loop sequence of miR-31 is the same as SEQ ID NO: 3, and the mature form of miR-31-5p is SEQ ID NO: 4, another mature form of miR- 31-3p consists of the sequence of SEQ ID NO: 5, the stem-loop sequence of miR-155 is the same as SEQ ID NO: 6, and the mature form of miR-155-5p is SEQ ID NO: 7, another The mature form, miR-155-3p, consists of the sequence of SEQ ID NO: 8.

본 발명의 조성물에 유효성분으로 함유되는 miR-31-5p 또는 miR-155-5p의 저해제는 생체 또는 세포에서 miR-31-5p 또는 miR-155-5p의 발현 또는 활성을 저해하는 물질을 의미하는 것으로, 전형적으로 miR-31-5p 또는 miR-155-5p에 대한 안타고미르(antagomir)가 해당될 수 있다. 이 밖에 miR-31-5p 또는 miR-155-5p에 대한 안티센스 분자, 쇼트헤어핀 RNA 분자(shRNA), 짧은 간섭 RNA(siRNA) 분자, 시드 표적(seed-targeting) LNA(locked nucleic acid), 앱타머, 리보자임, 또는 DNA-RNA 하이브리드를 인지하는 항체를 포함할 수 있다.The inhibitor of miR-31-5p or miR-155-5p contained as an active ingredient in the composition of the present invention refers to a substance that inhibits the expression or activity of miR-31-5p or miR-155-5p in a living body or cell. As such, typically miR-31-5p or antagomir for miR-155-5p may be applicable. In addition, antisense molecules against miR-31-5p or miR-155-5p, shorthairpin RNA molecules (shRNA), short interfering RNA (siRNA) molecules, seed-targeting locked nucleic acid (LNA), aptamers , Ribozymes, or DNA-RNA hybrids.

바람직하게는 miR-31-5p 또는 miR-155-5p의 염기서열의 전부 또는 일부에 결합할 수 있는 핵산분자이며, 이 핵산분자는 DNA, RNA, PNA(peptide nucleic acids), phosphothioester 핵산분자, phosphorothioated 핵산분자, 2'-O-methyl-modified 핵산분자 또는 LNA(locked nucleic acid)와 같은 형태일 수 있다.Preferably, it is a nucleic acid molecule capable of binding to all or part of the nucleotide sequence of miR-31-5p or miR-155-5p, and this nucleic acid molecule is DNA, RNA, peptide nucleic acids (PNA), phosphothioester nucleic acid molecule, phosphorothioated It may be in the form of a nucleic acid molecule, a 2'-O-methyl-modified nucleic acid molecule, or a locked nucleic acid (LNA).

보다 바람직하게는 서열번호 1 또는 서열번호 2의 염기서열을 갖는 핵산분자이며, 이 핵산분자를 함유하여 동물의 세포 내에서 이 핵산분자를 발현하는 벡터일 수 있다. 또한, 서열번호 1 또는 서열번호 2의 염기서열에서 일부 염기서열이 결실, 치환 또는 삽입에 의해 변형되더라도 기능적으로 동등한 작용을 할 수 있는 변이체도 포함할 수 있다.More preferably, it is a nucleic acid molecule having a nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 2, and may be a vector containing the nucleic acid molecule and expressing the nucleic acid molecule in an animal cell. In addition, even if some of the nucleotide sequences in the nucleotide sequence of SEQ ID NO: 1 or 2 are modified by deletion, substitution, or insertion, a variant capable of functionally equivalent function may also be included.

본 발명의 조성물에 유효성분으로 함유되는 NF-κB의 저해제는 생체 또는 세포에서 NF-κB의 발현 또는 활성을 저해하는 물질을 의미하는 것으로, 예를 들어 IMD-1041, SAR113945, VGX-1027, Bay11-7082, siRNA가 해당될 수 있다. 바람직하게는 NF-κB의 활성화를 저해하는 분자이고, 보다 바람직하게는 NF-κB의 서브유닛(subunit)인 p65의 발현을 저해하는 분자일 수 있다.The inhibitor of NF-κB contained as an active ingredient in the composition of the present invention refers to a substance that inhibits the expression or activity of NF-κB in a living body or cells, for example IMD-1041, SAR113945, VGX-1027, Bay11 -7082, siRNA may be applicable. Preferably, it is a molecule that inhibits the activation of NF-κB, and more preferably, it may be a molecule that inhibits the expression of p65, a subunit of NF-κB.

보다 바람직하게는 NF-κB p65의 siRNA 일 수 있으며, 예를 들어 서열번호 9의 센스가닥(sense strand) 및 서열번호 10의 안티센스가닥(anti-sense strand)으로 이루어지는 이중가닥 siRNA, 서열번호 11의 센스가닥(sense strand) 및 서열번호 12의 안티센스가닥(anti-sense strand)으로 이루어지는 이중가닥 siRNA 또는 서열번호 13의 센스가닥(sense strand) 및 서열번호 14의 안티센스가닥(anti-sense strand)으로 이루어지는 이중가닥 siRNA, 또는 이들 siRNA의 조합일 수 있다. 또한, siRNA의 안정성을 위해 상기 siRNA의 3' 말단에 디옥시티미딘 다이뉴클레오티드(deoxythymidine dinucleotide, dTdT)와 같은 siRNA 보호분자가 포함된 형태일 수 있다.More preferably, it may be an siRNA of NF-κB p65, for example, a double-stranded siRNA consisting of a sense strand of SEQ ID NO: 9 and an anti-sense strand of SEQ ID NO: 10, of SEQ ID NO: 11 Double-stranded siRNA consisting of a sense strand and an anti-sense strand of SEQ ID NO: 12 or a sense strand of SEQ ID NO: 13 and an anti-sense strand of SEQ ID NO: 14 It may be a double-stranded siRNA, or a combination of these siRNAs. In addition, for the stability of siRNA, siRNA protective molecules such as deoxythymidine dinucleotide (dTdT) may be included at the 3'end of the siRNA.

본 발명에 따르면 이러한 miR-31-5p 또는 miR-155-5p의 저해제, 또는 NF-κB의 저해제는 염증으로 인해 유발되는 혈관내피전구세포로의 분화(단핵세포가 혈관내피전구세포로 분화되는 것)가 억제되는 것과 분화된 혈관내피전구세포의 기능 장애를 회복시킴으로서, 염증에 의한 혈관기능 장애를 예방, 치료 또는 개선할 수 있다.According to the present invention, such inhibitors of miR-31-5p or miR-155-5p, or inhibitors of NF-κB, are differentiated into vascular endothelial progenitor cells caused by inflammation (monocytes are differentiated into vascular endothelial progenitor cells. ) Is inhibited and by restoring the dysfunction of differentiated vascular endothelial progenitor cells, vascular dysfunction caused by inflammation can be prevented, treated or improved.

이에 본 발명은 염증에 의한 혈관기능 장애의 예방 또는 치료용 약학 조성물, 그리고 염염증에 의한 혈관기능 장애의 예방 또는 개선용 식품 조성물을 제공한다.Accordingly, the present invention provides a pharmaceutical composition for preventing or treating vascular dysfunction caused by inflammation, and a food composition for preventing or improving vascular dysfunction caused by inflammation.

이때 염증에 의한 혈관기능 장애는 그 종류가 제한되는 것은 아니지만, 임신중독증, 상처염증, 심근경색증, 뇌졸중, 당뇨병증, 미세혈관 합병증, 동맥경화 및 류마티스성 관절염 중에서 선택된 질환으로 인한 혈관기능 장애일 수 있다.At this time, the type of vascular dysfunction caused by inflammation is not limited, but it may be a vascular dysfunction due to a disease selected from among pregnancy addiction, wound inflammation, myocardial infarction, stroke, diabetes, microvascular complications, arteriosclerosis and rheumatoid arthritis. have.

또한, 본 발명에 따르면 이러한 miR-31-5p 또는 miR-155-5p의 저해제, 또는 NF-κB의 저해제는 염증조직 또는 염증성 질환자의 혈관신생을 유도하거나 혈류를 개선할 수 있다.In addition, according to the present invention, such an inhibitor of miR-31-5p or miR-155-5p, or an inhibitor of NF-κB may induce angiogenesis or improve blood flow in inflammatory tissues or inflammatory diseases.

이에 본 발명은 염증조직 또는 염증성 질환자의 혈관신생 유도 또는 혈류 개선용 약학 조성물 및 식품 조성물 또한 제공한다.Accordingly, the present invention also provides pharmaceutical compositions and food compositions for inducing angiogenesis or improving blood flow in inflammatory tissues or inflammatory diseases.

본 발명에 따르면, miR-31-5p의 저해제와 miR-155-5p의 저해제를 함께 사용할 경우, 시너지 효과를 발휘할 수 있다. 따라서 본 발명의 조성물에 miR-31-5p의 저해제 및 miR-155-5p의 저해제 모두를 유효성분으로 함유시키면 보다 우수한 효과를 기대할 수 있다.According to the present invention, when an inhibitor of miR-31-5p and an inhibitor of miR-155-5p are used together, a synergistic effect can be exhibited. Therefore, if the composition of the present invention contains both an inhibitor of miR-31-5p and an inhibitor of miR-155-5p as active ingredients, a more excellent effect can be expected.

본 발명의 조성물은 유효성분인 저해제 그 자체, 또는 약학적 또는 식품학적으로 허용된 담체와 혼합한 조성물일 수 있다.The composition of the present invention may be an active ingredient, the inhibitor itself, or a composition mixed with a pharmaceutically or food pharmaceutically acceptable carrier.

또한, 본 발명의 저해제는 그 종류에 따라 저해제 본연의 기능, 즉 miR-31-5p, miR-155-5p 또는 NF-κB의 발현 또는 활성을 저해하는 기능을 발휘할 수 있는 한도 내에서 약학적으로 허용 가능한 산부가염 또는 금속 복합체 등의 형태로도 사용될 수 있다.In addition, the inhibitors of the present invention are pharmaceutically acceptable to the extent that they can exhibit the inherent function of the inhibitor, that is, inhibit the expression or activity of miR-31-5p, miR-155-5p, or NF-κB, depending on the type. It can also be used in the form of an acceptable acid addition salt or metal complex.

본 발명의 조성물은 임상 투여 시에 저해제의 형태에 따라 공지된 투여방법을 적용할 수 있으며, 경구 또는 비경구로 투여될 수 있고, 전신 또는 국소투여 될 수 있다. 예를 들면, miR-31-5p 또는 miR-155-5p의 저해제가 안타고미르인 경우 및 NF-κB의 저해제가 siRNA인 경우 본 발명의 조성물은 혈액에 주사하는 방식 또는 조직에 국소 투여하는 방식으로 투여될 수 있다.The composition of the present invention may be administered by a known administration method depending on the form of the inhibitor during clinical administration, may be administered orally or parenterally, and may be administered systemically or locally. For example, when the inhibitor of miR-31-5p or miR-155-5p is antagomir and the inhibitor of NF-κB is siRNA, the composition of the present invention may be administered by injection into blood or topically to tissues. Can be administered.

본 발명의 조성물은 단독으로, 또는 수술, 방사선 치료, 호르몬 치료, 화학 치료 및 생물학적 반응 조절제를 사용하는 방법들과 병용하여 사용될 수 있다.The composition of the present invention may be used alone or in combination with surgery, radiation therapy, hormone therapy, chemotherapy, and methods using biological response modifiers.

본 발명 조성물의 투여량은 투여대상의 체중, 연령, 성별, 건강상태, 식이, 투여시간, 투여방법, 배설율 및 질환의 중증도 등에 따라 그 범위가 다양하며, 적정한 투여량은 저해제의 종류나 효능 정도에 따라 달라질 수 있다. 예를 들면, miR-31-5p 또는 miR-155-5p의 저해제가 안타고미르이고, 혈액에 주사하는 방식으로 투여되는 경우 조성물에 함유된 저해제를 기준으로 체중 1㎏ 당 약 1㎎ ~ 200㎎일 수 있으며, 하루 1회 내지 수회 나누어 투여될 수 있다. 또한 NF-κB의 저해제가 siRNA이고, 혈액에 주사하는 방식으로 투여되는 경우 조성물에 함유된 저해제를 기준으로 체중 1㎏ 당 약 1㎎ ~ 200㎎일 수 있으며, 하루 1회 내지 수회 나누어 투여될 수 있다.The dosage of the composition of the present invention varies depending on the body weight, age, sex, health condition, diet, administration time, administration method, excretion rate, and severity of disease, and the appropriate dosage is the type or efficacy of the inhibitor. It can vary depending on the degree. For example, when the inhibitor of miR-31-5p or miR-155-5p is antagomir, and is administered by injection into blood, about 1 mg to 200 mg per 1 kg body weight based on the inhibitor contained in the composition It may be, and may be administered once to several times a day. In addition, the inhibitor of NF-κB is siRNA, and when administered by injection into the blood, it may be about 1 mg to 200 mg per 1 kg of body weight based on the inhibitor contained in the composition, and may be administered once to several times a day. have.

임상 투여 시 경구 또는 비경구의 다양한 형태의 제형으로 제제화할 수 있으며, 이때 일반적으로 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제, 부형제 또는 세포막 투과 보조제를 사용하여 조제할 수 있을 것이다.For clinical administration, it can be formulated into various forms of oral or parenteral formulation, and at this time, it can be prepared using generally used diluents such as fillers, extenders, binders, wetting agents, disintegrants, surfactants, excipients, or cell membrane penetration aids. There will be.

또한, 본 발명의 조성물은 유효성분인 저해제에 추가로 동일 또는 유사한 기능을 나타내는 유효성분을 1종 이상 함유할 수 있을 것이다.In addition, the composition of the present invention may contain one or more active ingredients exhibiting the same or similar functions in addition to the active ingredient inhibitor.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하기로 한다. 이들 실시예는 단지 본 발명을 예시하기 위한 것이므로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다.Hereinafter, the present invention will be described in more detail through examples. Since these examples are for illustrative purposes only, the scope of the present invention is not to be construed as being limited by these examples.

[실시예][Example]

1. 실험방법1. Experiment method

1-1. 실험재료 및 연구 윤리1-1. Experimental Materials and Research Ethics

실험에 사용된 마이크로 RNA와 관련된 모든 재료는 QIAGEN(독일)에서 구입하였고, 세포배양액 EGM-2 SingleQuots은 Lonza(스위스)에서 구입하였다. 본 실험에 사용된 혈액은 강원대학교병원 생명윤리심의위원회의 승인 하에 기증자의 동의를 얻어 건강한 임신부와 임신중독증 환자로부터 공급받았다. 임신중독증환자는 수축기혈압이 140mmHg 이상, 이완기혈압이 90mmHg 이상, 그리고 단백뇨가 0.3g/24시간 이상 이었다. 또한, 모든 동물실험은 강원대학교 실험동물보호와 사용에 대한 윤리위원회의 가이드라인에 따라 수행하였다.All materials related to the micro RNA used in the experiment were purchased from QIAGEN (Germany), and the cell culture solution EGM-2 SingleQuots was purchased from Lonza (Switzerland). The blood used in this experiment was supplied from healthy pregnant women and patients with pregnancy addiction with the consent of the donor under the approval of the Bioethics Review Committee of Kangwon National University Hospital. Pregnancy addiction patients had systolic blood pressure of 140 mmHg or more, diastolic blood pressure of 90 mmHg or more, and proteinuria of 0.3 g/24 hours or more. In addition, all animal experiments were conducted in accordance with the guidelines of the ethics committee on the protection and use of experimental animals at Kangwon National University.

1-2. 단핵세포 분리, 배양 및 혈관내피전구세포로의 분화1-2. Isolation and culture of mononuclear cells and differentiation into endothelial progenitor cells

피콜-하이파크(Ficoll-Hypaque)를 이용한 밀도 구배 원심분리 방법(특정 중력: 1.077)으로 혈액으로부터 단핵세포를 분리하고, EGM-2 SingleQuots 배지에 현탁(4x106 cells/㎖)한 후 피브로넥틴(50㎎/㎖; Sigma-Aldrich)으로 코팅된 플라스틱 세포배양 용기에 옮기고, 5% CO2 항온기(37℃)에서 4일간 배양하였다. 배양용기에 부착되지 않은 세포는 제거하고, NF-κB p65 siRNAs(80nM), 마이크로 RNA(miR-31-5p 또는 miR-155-5p) 저해제(80nM, 혼합의 경우 각 40nM, Quiagen), 마이크로 RNA(miR-31-5p 또는 miR-155-5p) 모사체(각 80nM, 혼합의 경우 각 40nM, Quiagen)를 Lipofectamine RNAiMAX 혹은 Lipofectamine 3000(Invitrogen)을 이용하여 세포 내로 도입시켰다. 이들 세포를 TNF-α(10ng/㎖, R&D Systems)를 포함하거나 포함하지 않은 배지에서 4일간 추가로 배양하여 혈관내피전구세포로 분화시켰다. 한편, 일부세포는 건강한 임신부와 임신중독증 환자로부터 분리한 자가혈청을 30% 포함한 배지에서 4일간 배양하였다. 자가혈청을 포함한 세포배양액의 경우 인간 TNF-α의 중화항체(10ng/㎖, R&D Systems)를 추가하기도 하였다.Mononuclear cells were isolated from blood by a density gradient centrifugation method using Ficoll-Hypaque (specific gravity: 1.077), suspended in EGM-2 SingleQuots medium (4x10 6 cells/ml), and fibronectin (50 Mg/ml; Sigma-Aldrich) was transferred to a plastic cell culture container and incubated for 4 days in a 5% CO 2 incubator (37° C.). Cells not attached to the culture vessel were removed, and NF-κB p65 siRNAs (80nM), micro RNA (miR-31-5p or miR-155-5p) inhibitors (80nM, mixed 40nM each, Quiagen), micro RNA (miR-31-5p or miR-155-5p) mimics (80 nM each, 40 nM in the case of mixing, Quiagen) were introduced into cells using Lipofectamine RNAiMAX or Lipofectamine 3000 (Invitrogen). These cells were cultured for an additional 4 days in a medium containing or without TNF-α (10 ng/ml, R&D Systems) to differentiate into vascular endothelial progenitor cells. Meanwhile, some cells were cultured for 4 days in a medium containing 30% autologous serum isolated from healthy pregnant women and patients with pregnancy addiction. In the case of cell culture fluid containing autologous serum, a neutralizing antibody of human TNF-α (10 ng/ml, R&D Systems) was also added.

이때, miR-31-5p의 저해제는 miR-31-5p 서열의 상보적인 서열(서열번호 1)로 이루어지는 합성 RNA 분자, miR-155-5p의 저해제는 miR-155-5p 서열의 상보적인 서열(서열번호 2)로 이루어지는 합성 RNA 분자, miR-31-5p의 모사체는 miR-31-5p 서열(서열번호 4)로 이루어지는 합성 RNA 분자, miR-155-5p의 모사체는 miR-155-5p 서열(서열번호 7)로 이루어지는 합성 RNA 분자를 사용하였다.At this time, the inhibitor of miR-31-5p is a synthetic RNA molecule consisting of a complementary sequence of the miR-31-5p sequence (SEQ ID NO: 1), and the inhibitor of miR-155-5p is a complementary sequence of the miR-155-5p sequence ( Synthetic RNA molecule consisting of SEQ ID NO: 2), miR-31-5p miR-31-5p synthetic RNA molecule consisting of sequence (SEQ ID NO: 4), miR-155-5p miR-155-5p A synthetic RNA molecule consisting of the sequence (SEQ ID NO: 7) was used.

NF-κB p65 siRNA는 서열번호 9의 서열 3' 말단에 dTdT(deoxythymidine dinucleotide)가 포함된 센스가닥 및 서열번호 10의 서열 3' 말단에 dTdT가 포함된 안티센스가닥으로 이루어지는 이중가닥 siRNA, 서열번호 11의 서열 3' 말단에 dTdT(deoxythymidine dinucleotide)가 포함된 센스가닥 및 서열번호 12의 서열 3' 말단에 dTdT가 포함된 안티센스가닥으로 이루어지는 이중가닥 siRNA, 서열번호 13의 서열 3' 말단에 dTdT(deoxythymidine dinucleotide)가 포함된 센스가닥 및 서열번호 14의 서열 3' 말단에 dTdT가 포함된 안티센스가닥으로 이루어지는 이중가닥 siRNA를 1 : 1 : 1의 비율로 혼합하여 사용하였다.NF-κB p65 siRNA is a double-stranded siRNA consisting of a sense strand containing dTdT (deoxythymidine dinucleotide) at the 3′ end of SEQ ID NO: 9 and an antisense strand containing dTdT at the 3′ end of SEQ ID NO: 10, SEQ ID NO: 11 Double-stranded siRNA consisting of a sense strand containing dTdT (deoxythymidine dinucleotide) at the 3′ end of the sequence and an antisense strand containing dTdT at the 3′ end of SEQ ID NO: 12, dTdT (deoxythymidine) at the 3′ end of SEQ ID NO: 13 dinucleotide) and a double-stranded siRNA consisting of an antisense strand containing dTdT at the 3'end of SEQ ID NO: 14 were mixed in a ratio of 1:1.

1-3. 세포배양조건에서 혈관내피전구세포 분화정도 분석1-3. Analysis of the degree of differentiation of endothelial progenitor cells under cell culture conditions

세포를 10㎎/㎖의 Dil-ac-LDL(Molecular Probes) 용액에서 2시간(CO2 항온, 37℃) 처리한 후, 2회 세척하고 2% 포름알데히드로 고정하였다. 고정된 세포를 10㎎/㎖의 FITC-UEA-1(Sigma) 용액에서 2시간 동안 처리한 후 세척하고, Dil-ac-LDL과 FITC-UEA-1을 흡수하거나 결합한 세포를 형광현미경으로 확인하였다.Cells were treated with 10 mg/ml of Dil-ac-LDL (Molecular Probes) solution for 2 hours (CO 2 constant temperature, 37° C.), washed twice and fixed with 2% formaldehyde. The fixed cells were treated in a 10 mg/ml FITC-UEA-1 (Sigma) solution for 2 hours and washed, and cells that absorbed or bound Dil-ac-LDL and FITC-UEA-1 were confirmed by fluorescence microscopy. .

추가적으로 세포배양용기에 부착된 세포를 비효소적 분리 용액(C5789; Sigma-Aldrich)으로 회수한 후, 피코에리트린(phycoerythrin, PE)이 부착된 항체(CD31, cat no. 560983: CD34, cat no. 555822; KDR, cat no. 560872; VE-cadherin, cat no. 560410: BD PharMingen)와 vWF 항체[(cat no. ab154193: Abcam)과 fluorescein isothiocyanate(FITC)가 부착된 토끼 IgG]를 이용하여 4℃에서 30분간 염색하고, 생리식염수로 세척한 후 2% 포름알데히드로 고정하였다.In addition, after recovering the cells attached to the cell culture vessel with a non-enzymatic separation solution (C5789; Sigma-Aldrich), an antibody with phycoerythrin (PE) (CD31, cat no. 560983: CD34, cat no) 555822; KDR, cat no. 560872; VE-cadherin, cat no. 560410: BD PharMingen) and vWF antibody [(cat no. ab154193: Abcam) and fluorescein isothiocyanate (FITC)-attached rabbit IgG] 4 After staining for 30 minutes at °C, washing with physiological saline, it was fixed with 2% formaldehyde.

염색된 세포에서 각 표적 단백질의 발현 정도는 유세포분석기(FACSCalibur, BD)를 이용하여 분석하고 정량화하였다.The level of expression of each target protein in the stained cells was analyzed and quantified using a flow cytometer (FACSCalibur, BD).

1-4. 혈액 내 혈관내피전구세포 분석1-4. Blood vessel endothelial progenitor cell analysis

혈액 200㎕에 FITC가 부착된 인간 CD34 항체(Clone 581, BD Biosciences)와 PE가 부착된 인간 KDR 항체(cat no. 560872, BD Bioscences)를 첨가하고, 암실에서 30분간 염색한 후, Pharm Lyse(BD Pharmingen) 용액 2㎖를 첨가하여 7분간 상온에서 유지시켜 적혈구를 용혈 시켰다. 남아있는 세포를 생리식염수로 세척하고, 2% 포름알데히드 용액 400㎕로 고정시켰다. 고정된 세포를 유세포분석기(FACSCalibur, BD)를 이용하여 분석하고 정량화하였다. 혈액 내 CD34+KDR+ 세포를 혈관내피전구세포로 정의하였다.Human CD34 antibody with FITC (Clone 581, BD Biosciences) and human KDR antibody with PE (cat no. 560872, BD Bioscences) were added to 200 µl of blood, stained for 30 minutes in the dark, and then Pharm Lyse ( BD Pharmingen) solution 2 ml was added and kept at room temperature for 7 minutes to hemolyze red blood cells. The remaining cells were washed with physiological saline and fixed with 400 µl of a 2% formaldehyde solution. The fixed cells were analyzed and quantified using a flow cytometer (FACSCalibur, BD). CD34 + KDR + cells in blood were defined as endothelial progenitor cells.

1-5. 마이크로 RNA와 TNF-α 정량화1-5. Micro RNA and TNF-α quantification

세포 및 혈액에 있는 전체 마이크로 RNA는 miRNeasy Mini kit 혹은 miRNeasy serum/plasma kit(QIAGEN)를 이용하여 분리하였다. 전체 마이크로 RNA 1㎍을 이용하여 cDNA을 합성하고, miScript SYBR Green PCR Kit(QIAGEN)를 이용하여 miR-31-5p 및 miR-155-5p의 농도를 qRT-PCR 방법으로 분석하였다. 이때 사용된 primer는 QIAGEN으로부터 구입하였다. 혈청 TNF-α 농도는 Quantikine ELISA kit(R&D Systems)를 이용하여 측정하였다.Total microRNAs in cells and blood were isolated using the miRNeasy Mini kit or the miRNeasy serum/plasma kit (QIAGEN). CDNA was synthesized using 1 μg of total micro RNA, and the concentrations of miR-31-5p and miR-155-5p were analyzed by qRT-PCR using the miScript SYBR Green PCR Kit (QIAGEN). The primer used at this time was purchased from QIAGEN. Serum TNF-α concentration was measured using a Quantikine ELISA kit (R&D Systems).

1-6. 마우스 하지허혈 실험1-6. Mouse lower limb ischemia experiment

흉선이 없는 누드 마우스(7주령, 17 ~ 20g, Jackson Laboratory)의 복강에 혼합 마취제[ketamine(50㎎/㎏) 및 xylazine(20㎎/㎏); Bayer Korea]를 투여한 후, 왼쪽 뒷다리의 대퇴동맥을 결찰하여 허혈을 유도하였다. 허혈자리의 근육조직에 형광물질인 CM-Dil(cat. no. C7000, Invitrogen Molecular Probes)로 염색한 혈관내피전구세포(5x105 세포)를 26-gauge 주사바늘로 4곳에 주입하였다. 대조군으로는 생리식염수를 주입하였다. 양쪽 뒷다리의 혈류의 흐름을 레이저 도플러 혈류계를 이용하여 측정하였다.Mixed anesthetics [ketamine (50 mg/kg) and xylazine (20 mg/kg) in the abdominal cavity of nude mice without thymus (7 weeks old, 17-20 g, Jackson Laboratory); Bayer Korea] was administered, and ischemia was induced by ligation of the femoral artery of the left hind limb. Endothelial progenitor cells ( 5 ×10 5 cells) stained with a fluorescent substance CM-Dil (cat. no. C7000, Invitrogen Molecular Probes) were injected into the muscle tissue of the ischemic site with a 26-gauge needle. As a control group, physiological saline was injected. Blood flow of both hind limbs was measured using a laser Doppler hemometer.

1-7. 조직 염색1-7. Tissue staining

마우스의 하지허혈조직의 골격근 조직을 분리하여 동결조직 포매제(OCT™ compound)로 감싸 동결시키고, 6㎛의 절편 조직을 만들었다. 절편조직을 FITC를 부착시킨 isolectin B4로 염색한 후, 전체 모세혈관 형성(FITC-isolectin B4, 녹색)과 혈관내피전구세포의 혈관구조 내 편입(CM-Dil, 적색)을 공초점형광현미경으로 관찰하였다.The skeletal muscle tissue of the lower extremity ischemic tissue of the mouse was isolated, wrapped in a frozen tissue embedding agent (OCT™ compound) and frozen, and a 6 µm sectioned tissue was made. After staining the section tissue with FITC-attached isolectin B4, the formation of total capillaries (FITC-isolectin B4, green) and incorporation of endothelial progenitor cells into the vascular structure (CM-Dil, red) were observed with a confocal fluorescence microscope. I did.

1-8. 통계 분석1-8. Statistical analysis

최소 3회 독립적으로 수행된 정량적 실험결과를 평균ㅁ표준오차(SEM)로 나타내었다. 통계적 유의성은 분석된 실험그룹의 수에 의존적인 ANOVA 또는 독립 스튜던트 T 검정(1-tailed)을 사용하여 결정하였다. 통계적 유의성은 P값 0.05 이하로 설정하였다.The results of quantitative experiments performed independently at least three times were expressed as mean-standard error (SEM). Statistical significance was determined using ANOVA or independent Student's T test (1-tailed) depending on the number of experimental groups analyzed. Statistical significance was set to P value of 0.05 or less.

2. 실험결과2. Experiment result

2-1. 임신중독증 환자의 혈청 및 단핵세포에서 TNF-α, miR-31-5p 및 miR-155-5p의 발현 양상2-1. Expression of TNF-α, miR-31-5p and miR-155-5p in serum and mononuclear cells of patients with pregnancy addiction

건강한 임신부와 임신중독증 환자의 말초혈액으로부터 확보한 혈청과 단핵세포(peripheral blood mononuclear cells, PBMCs)를 분석한 결과, 환자의 혈액에는 혈관내피전구세포인 CD34+/KDR+ 세포의 수가 낮고(도 1의 A 참조), 염증성 사이토카인인 TNF-α의 농도는 높으며(도 1의 B 참조), miR-31-5p와 miR-155-5p의 농도도 높은 것으로 나타났다(도 1의 C 참조). 한편 환자의 말초혈액에서 분리한 단핵세포에서도 miR-31-5p와 miR-155-5p의 농도가 높은 것으로 나타났다(도 1의 D 참조). 이러한 결과는 환자혈액 내 TNF-α, miR-31-5p 및 miR-155-5p의 농도와 혈관내피전구세포(endothelial progenitor cells, EPCs)의 수 간에는 역의 상관성(reverse correlation)이 있음을 의미한다.As a result of analysis of serum and mononuclear cells (PBMCs) obtained from peripheral blood of healthy pregnant women and patients with pregnancy addiction, the number of vascular endothelial progenitors, CD34 + /KDR + cells, was low in the patient's blood (Fig. 1). A), the concentration of the inflammatory cytokine TNF-α was high (see B in FIG. 1), and the concentrations of miR-31-5p and miR-155-5p were also high (see C in FIG. 1). On the other hand, it was found that the concentrations of miR-31-5p and miR-155-5p were also high in mononuclear cells isolated from the patient's peripheral blood (see D in FIG. 1). These results indicate that there is a reverse correlation between the concentration of TNF-α, miR-31-5p, and miR-155-5p in patient blood and the number of endothelial progenitor cells (EPCs). .

2-2. 임신중독증 환자의 단핵세포로부터 혈관내피전구세포로의 분화에서 TNF-α의 중화항체, miR-31-5p 저해제 및 miR-155-5p 저해제가 미치는 영향2-2. Effects of TNF-α neutralizing antibodies, miR-31-5p inhibitors, and miR-155-5p inhibitors on the differentiation of vascular endothelial progenitor cells from mononuclear cells in pregnancy addiction patients

건강한 임신부와 임신중독증 환자의 말초혈액으로부터 분리한 단핵세포를 자가혈청(autologous serum)에서 배양한 후, 혈관내피전구세포로 분화되는 정도를 Ac-LDL(acetylated low density lipoprotein)의 흡수 및 UCA-1(lex europaeus agglgutinin-I lectin)과의 결합을 통해 분석하였다. 그 결과, 환자의 자가혈청으로 배양한 단핵세포는 건강한 임신부의 자가혈청으로 배양한 단핵세포 보다 Ac-LDL의 흡수 및 UCA-1과 결합하는 능력이 유의하게 낮았고(도 2의 A ~ C 참조), 혈관내피전구세포의 마커분자인 혈관내피성장인자 수용체-1(vascular endothelail growth factor receptor-2, VEGFR-2/KDR)의 발현도 감소하는 것으로 나타났다(도 2의 D 및 E 참조). 이러한 억제 현상은 환자의 단핵세포 내로 miR-31-5p의 저해제 및 miR-155-5p의 저해제 도입과 자가혈청에 TNF-α 중화항체를 처리하는 것에 의해 건강한 세포 수준으로 회복되는 것으로 나타났다(도 1의 A ~ E 참조). 이러한 결과는 임신중독증 환자의 혈액 내에 증가된 TNF-α와 miR-31-5p 및 miR-155-5p가 단핵세포로부터 혈관내피전구세포로 분화되는 것을 억제한다는 것을 의미한다.After culturing mononuclear cells isolated from peripheral blood of healthy pregnant women and patients with pregnancy addiction in autologous serum, the degree of differentiation into vascular endothelial progenitor cells was determined by the absorption of Ac-LDL (acetylated low density lipoprotein) and UCA-1. (lex europaeus agglgutinin-I lectin) was analyzed through binding. As a result, mononuclear cells cultured with autologous serum of patients had significantly lower absorption of Ac-LDL and ability to bind to UCA-1 than mononuclear cells cultured with autologous serum of healthy pregnant women (see A to C in Fig. 2). , It was also found that the expression of vascular endothelail growth factor receptor-2 (VEGFR-2/KDR), which is a marker molecule of vascular endothelial progenitor cells, was also reduced (see D and E of FIG. 2). This inhibition was found to be restored to a healthy cell level by introducing an inhibitor of miR-31-5p and an inhibitor of miR-155-5p into the mononuclear cells of the patient and by treatment with a TNF-α neutralizing antibody in autologous serum (Fig. 1). See A to E of). These results indicate that increased TNF-α, miR-31-5p, and miR-155-5p in the blood of pregnant addiction patients inhibit the differentiation of mononuclear cells into vascular endothelial progenitor cells.

2-3. TNF-α에 의해 혈관내피전구세포로의 분화가 억제되는 환경에서 NF-κB p65의 발현제어와 miR-31-5p 모사체 및 miR-155-5p 모사체가 미치는 영향2-3. Expression control of NF-κB p65 and the effects of miR-31-5p and miR-155-5p mimics in an environment where TNF-α inhibits differentiation into vascular endothelial progenitor cells

건강한 임신부의 제대혈로부터 분리한 단핵세포를 상업용 TNF-α로 처리하면, Ac-LDL의 흡수 및 UCA-1과 결합하는 능력을 갖는 혈관내피전구세포로 분화된 세포의 수가 감소되는 것으로 나타났다(도 3의 A 참조). 그러나 단핵세포 내로 NF-κB p65의 siRNA를 도입시켜 NF-κB p65의 발현을 제어함으로서 NF-κB의 활성화를 억제시키면 TNF-α에 의해 감소된 혈관내피전구세포로 분화되는 능력이 회복되는 것으로 나타났다(도 3의 A 참조). NF-κB p65 siRNA 도입으로 인한 혈관내피전구세포로의 분화력 회복은 단핵세포 내로 miR-31-5p 모사체와 miR-155-5p 모사체(31m/155m)를 혼합 도입함에 의해 다시 사라지는 것으로 나타났다(도 3의 A 참조). 이러한 혈관내피전구세포 분화조절 현상은 혈관내피세포 표지분자인 CD31, CD34, KDR, VE-cadherin, vWF(von Willebrand factor)의 발현을 세포분석기를 이용한 분석법으로도 재확인하였다(도 3의 B 참조).When mononuclear cells isolated from umbilical cord blood of a healthy pregnant woman were treated with commercial TNF-α, the number of cells differentiated into vascular endothelial progenitor cells having the ability to absorb Ac-LDL and bind to UCA-1 was found to be reduced (Fig. 3). See A). However, inhibiting the activation of NF-κB by introducing siRNA of NF-κB p65 into mononuclear cells to control the expression of NF-κB p65 restored the ability to differentiate into vascular endothelial progenitor cells reduced by TNF-α. (See Fig. 3A). It was found that the recovery of differentiation into vascular endothelial progenitor cells due to the introduction of NF-κB p65 siRNA disappeared again by mixing the miR-31-5p mimic and miR-155-5p mimic (31m/155m) into the mononuclear cells. (See Fig. 3A). This vascular endothelial progenitor cell differentiation regulation was reconfirmed by an analysis method using a cytometer for the expression of vascular endothelial cell markers CD31, CD34, KDR, VE-cadherin, and vWF (von Willebrand factor) (see FIG. 3B). .

이러한 결과는 TNF-α에 의한 혈관내피전구세포 분화억제 현상이 NF-κB 활성화를 통한 miR-31-5p 및 miR-155-5p의 생합성에 기인되고, NF-κB 활성화 억제와 miR-31-5p 및 miR-155-5p 활성 억제는 염증조건에서 유발될 수 있는 혈관내피전구세포 분화억제를 회복시킬 수 있다는 것을 의미한다.These results indicate that the inhibition of vascular endothelial progenitor cell differentiation by TNF-α is due to the biosynthesis of miR-31-5p and miR-155-5p through NF-κB activation, and inhibition of NF-κB activation and miR-31-5p. And inhibition of miR-155-5p activity means that it is possible to restore the inhibition of vascular endothelial progenitor cell differentiation that may be induced in inflammatory conditions.

2-4. TNF-α에 의해 혈관내피전구세포로의 분화가 억제되는 환경에서 miR-31-5p 저해제 및 miR-155-5p 저해제가 미치는 영향2-4. Effects of miR-31-5p inhibitors and miR-155-5p inhibitors in an environment in which differentiation into vascular endothelial progenitor cells is inhibited by TNF-α

TNF-α에 의한 혈관내피전구세포 분화억제 과정에서 miR-31-5p 및 miR-155-5p의 역할을 확인하기 위하여, miR-31-5p의 저해제 혹은 miR-155-5p의 저해제를 제대혈 단핵세포 내로 도입한 후 혈관내피전구세포로 분화되는 정도를 분석하였다. miR-31-5p의 저해제 혹은 miR-155-5p의 저해제를 단핵세포 내로 도입시키면, TNF-α에 의한 혈관내피전구세포 분화억제가 유의하게 회복되는 것으로 나타났고, 이들 저해제를 혼합하여 단핵세포 내로 도입시킨 결과 시너지 효과가 유발되어 분화효율이 정상 수준으로 회복되는 것으로 나타났다(도 4의 A 참조). 한편, 유세포분석 기법을 이용하여 혈관내피세포 표지분자의 발현을 분석한 결과 TNF-α에 현저하게 감소된 CD31, CD34, KDR, VE-cadherin, vWF 등의 발현 정도가 miR-31-5p의 저해제 혹은 miR-155-5p의 저해제에 의해 일정 수준 회복되며, 이들 저해제를 혼합 처리한 결과 시너지 효과로 인하여 정상 수준으로 회복되는 것으로 나타났다(도 4의 B 참조).In order to confirm the role of miR-31-5p and miR-155-5p in the process of inhibiting vascular endothelial progenitor cell differentiation by TNF-α, an inhibitor of miR-31-5p or an inhibitor of miR-155-5p was used in cord blood mononuclear cells. After introduction, the degree of differentiation into vascular endothelial progenitor cells was analyzed. When an inhibitor of miR-31-5p or an inhibitor of miR-155-5p was introduced into mononuclear cells, it was found that the inhibition of endothelial progenitor cell differentiation by TNF-α was significantly restored, and these inhibitors were mixed into mononuclear cells. As a result of the introduction, it was found that synergistic effect was induced and the differentiation efficiency was restored to a normal level (see A in FIG. 4). Meanwhile, as a result of analyzing the expression of vascular endothelial cell marker molecules using flow cytometry, the expression levels of CD31, CD34, KDR, VE-cadherin, vWF, etc., significantly reduced in TNF-α, were inhibitors of miR-31-5p. Alternatively, a certain level was recovered by the inhibitor of miR-155-5p, and as a result of mixing treatment with these inhibitors, it was found to be recovered to a normal level due to a synergistic effect (see FIG. 4B).

이러한 결과는 miR-31-5p의 저해제 혹은 miR-155-5p의 저해제를 단독으로 처리하는 것 보다 혼합처리하면 염증으로 인한 혈관내피전구세포 분화억제를 보다 효과적으로 회복시킬 수 있다는 것을 의미한다.These results imply that the inhibition of vascular endothelial progenitor cell differentiation due to inflammation can be more effectively restored when mixed treatment than treatment with an inhibitor of miR-31-5p or an inhibitor of miR-155-5p alone.

2-5. TNF-α에 의해 혈관재생 활성이 억제된 혈관내피전구세포에 miR-31-5p 저해제 및 miR-155-5p 저해제가 미치는 영향2-5. Effects of miR-31-5p Inhibitors and miR-155-5p Inhibitors on Vascular Endothelial Progenitor Cells Inhibited by TNF-α

단핵세포로부터 분화가 유도된 혈관내피전구세포의 혈관재생 활성을 확인하기 위하여, 흉선이 없는 마우스의 하지허혈 조직에 혈관내피전구세포를 주입하고 혈류의 회복정도를 레이저 도플러 혈류계(laser Doppler flowmeter)를 이용하여 측정하였다. 제대혈 단핵세포로부터 정상적으로 분화를 유도시킨 혈관내피전구세포를 마우스의 하지허혈 조직에 주입하면, 혈류의 재생이 생리식염수(saline)를 투여한 대조군보다 효과적으로 유도되는 것으로 나타났다(도 5의 A 및 B 참조). 그러나 TNF-α를 처리하여 분화를 유도시킨 혈관내피전구세포는 혈류재생 효능이 유의적으로 억제되고, 이러한 억제효과는 miR-31-5p의 저해제 혹은 miR-155-5p의 저해제를 단독으로 처리함으로서 유의성 있게 회복되는 것으로 나타났다(도 5의 A 및 B 참조). 한편, 이들 두 저해제를 혼합하여 처리한 경우에는 시너지 효과가 유발되어 혈류재생이 정상 수준에 도달되는 것으로 나타났다(도 5의 A 및 B 참조).In order to confirm the revascularization activity of vascular endothelial progenitor cells induced differentiation from mononuclear cells, vascular endothelial progenitor cells are injected into the ischemic tissue of the lower extremity of a mouse without thymus, and the degree of recovery of blood flow is measured with a laser Doppler flowmeter. It was measured using. When vascular endothelial progenitor cells, which normally induce differentiation from umbilical cord blood mononuclear cells, were injected into the ischemic tissue of the lower extremity of the mouse, it was found that regeneration of blood flow was more effectively induced than the control group administered with physiological saline (see A and B in FIG. 5). ). However, vascular endothelial progenitor cells treated with TNF-α induce differentiation significantly inhibited the blood flow regeneration effect, and this inhibitory effect was achieved by treatment with an inhibitor of miR-31-5p or an inhibitor of miR-155-5p alone. It was found to recover significantly (see A and B in Fig. 5). On the other hand, when these two inhibitors were mixed and treated, it was found that synergistic effects were induced and blood flow regeneration reached a normal level (see A and B of FIG. 5).

허혈조직에서 혈류재생은 새로운 혈관형성과 밀접한 상관성이 있기 때문에, 허혈조직에서 새로운 혈관생성 정도를 공초점 형광현미경으로 확인하였다. 단핵세포로부터 정상적으로 분화가 유도된 혈관내피전구세포를 주입한 하지허혈 조직에서는 모세혈관 형성(isolectin B4로 염색, 녹색)이 생리식염수를 투여한 대조군에서 보다 효과적으로 촉진되었고(도 5의 C 상단 및 D 참조), 다수의 혈관내피전구세포가 신생모세혈관에 함입된 것으로 나타났다(Dil-Ac-LDL로 표식, 적색)(도 5의 C 하단 참조). 그러나 TNF-α를 처리하여 분화를 유도시킨 혈관내피전구세포는 모세혈관 형성과 혈관전구세포가 신생모세혈관에 함입되는 정도가 유의적으로 억제되고, 이러한 억제효과는 miR-31-5p의 저해제 혹은 miR-155-5p의 저해제 단독에 의해 유의하게 회복되며, 두 저해제를 혼합 처리한 경우에는 시너지 효과가 있는 것으로 나타났다(도 5의 C 및 D 참조).Since blood flow regeneration in ischemic tissue is closely correlated with new angiogenesis, the degree of new angiogenesis in ischemic tissue was confirmed with a confocal fluorescence microscope. Capillary formation (stained with isolectin B4, green) was more effectively promoted in the control group to which physiological saline was administered in the ischemic tissue of the lower extremity in which the vascular endothelial progenitor cells that were normally differentiated from the mononuclear cells were injected (Fig. Reference), it was found that a number of endothelial progenitor cells were incorporated into the new capillaries (labeled as Dil-Ac-LDL, red) (see C bottom of FIG. 5). However, in the vascular endothelial progenitor cells treated with TNF-α to induce differentiation, the degree of capillary formation and the incorporation of vascular progenitor cells into the new capillaries is significantly inhibited, and this inhibitory effect is an inhibitor of miR-31-5p It was significantly recovered by the inhibitor of miR-155-5p alone, and when the two inhibitors were mixed, there was a synergistic effect (see C and D of FIG. 5).

이러한 결과는 miR-31-5p의 저해제 혹은 miR-155-5p의 저해제를 처리하면 염증으로 인하여 유발되는 혈관내피전구세포 분화억제를 회복시켜 혈관신생 및 혈관 리모델링을 효과적으로 촉진할 수 있고, 이들 저해제를 혼합 처리하면 시너지 효과를 얻을 수 있다는 것을 의미한다. 따라서 이들 저해제는 염증성 질환에서 빈번하게 유발되는 혈관기능 장애 및 혈관내막 손상을 효과적으로 개선할 수 있다.These results show that treatment with an inhibitor of miR-31-5p or an inhibitor of miR-155-5p can effectively promote angiogenesis and vascular remodeling by restoring the inhibition of vascular endothelial progenitor cell differentiation caused by inflammation. This means that if you mix it, you can get a synergistic effect. Therefore, these inhibitors can effectively improve vascular dysfunction and endovascular damage frequently caused in inflammatory diseases.

<110> KNU-Industry Cooperation Foundation <120> Role of NF-kB-responsive miR-31-5p and miR-155-5p on inflammatory cytokine-induced impairment of endothelial progenitor cell function, and use thereof <130> PA-D19192 <160> 14 <170> KoPatentIn 3.0 <210> 1 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> miR-31-5p inhibitor <400> 1 agcuaugcca gcaucuugcc u 21 <210> 2 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> miR-155-5p inhibitor <400> 2 accccuauca cgauuagcau uaa 23 <210> 3 <211> 71 <212> RNA <213> Homo sapiens <400> 3 ggagaggagg caagaugcug gcauagcugu ugaacuggga accugcuaug ccaacauauu 60 gccaucuuuc c 71 <210> 4 <211> 21 <212> RNA <213> Homo sapiens <400> 4 aggcaagaug cuggcauagc u 21 <210> 5 <211> 22 <212> RNA <213> Homo sapiens <400> 5 ugcuaugcca acauauugcc au 22 <210> 6 <211> 62 <212> RNA <213> Homo sapiens <400> 6 cuguuaaugc uaaucgugau agggguuuuu gccucaagac uccuacauau uagcauuaac 60 ag 62 <210> 7 <211> 24 <212> RNA <213> Homo sapiens <400> 7 uuaaugcuaa ucgugauagg gguu 24 <210> 8 <211> 22 <212> RNA <213> Homo sapiens <400> 8 cuccuacaua uuagcauuaa ca 22 <210> 9 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> sense sequence of NF-kB p65 siRNA <400> 9 ccugagcacc aucaacuau 19 <210> 10 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> anti-sense sequence of NF-kB p65 siRNA <400> 10 auaguugaug gugcucagg 19 <210> 11 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> sense sequence of NF-kB p65 siRNA <400> 11 cugaugugca ccgacaagu 19 <210> 12 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> anti-sense sequence of NF-kB p65 siRNA <400> 12 acuugucggu gcacaucag 19 <210> 13 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> sense sequence of NF-kB p65 siRNA <400> 13 gauugaggag aaacguaaa 19 <210> 14 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> anti-sense sequence of NF-kB p65 siRNA <400> 14 uuuacguuuc uccucaauc 19 <110> KNU-Industry Cooperation Foundation <120> Role of NF-kB-responsive miR-31-5p and miR-155-5p on inflammatory cytokine-induced impairment of endothelial progenitor cell function, and use thereof <130> PA-D19192 <160> 14 <170> KoPatentIn 3.0 <210> 1 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> miR-31-5p inhibitor <400> 1 agcuaugcca gcaucuugcc u 21 <210> 2 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> miR-155-5p inhibitor <400> 2 accccuauca cgauuagcau uaa 23 <210> 3 <211> 71 <212> RNA <213> Homo sapiens <400> 3 ggagaggagg caagaugcug gcauagcugu ugaacuggga accugcuaug ccaacauauu 60 gccaucuuuc c 71 <210> 4 <211> 21 <212> RNA <213> Homo sapiens <400> 4 aggcaagaug cuggcauagc u 21 <210> 5 <211> 22 <212> RNA <213> Homo sapiens <400> 5 ugcuaugcca acauauugcc au 22 <210> 6 <211> 62 <212> RNA <213> Homo sapiens <400> 6 cuguuaaugc uaaucgugau agggguuuuu gccucaagac uccuacauau uagcauuaac 60 ag 62 <210> 7 <211> 24 <212> RNA <213> Homo sapiens <400> 7 uuaaugcuaa ucgugauagg gguu 24 <210> 8 <211> 22 <212> RNA <213> Homo sapiens <400> 8 cuccuacaua uuagcauuaa ca 22 <210> 9 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> sense sequence of NF-kB p65 siRNA <400> 9 ccugagcacc aucaacuau 19 <210> 10 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> anti-sense sequence of NF-kB p65 siRNA <400> 10 auaguugaug gugcucagg 19 <210> 11 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> sense sequence of NF-kB p65 siRNA <400> 11 cugaugugca ccgacaagu 19 <210> 12 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> anti-sense sequence of NF-kB p65 siRNA <400> 12 acuugucggu gcacaucag 19 <210> 13 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> sense sequence of NF-kB p65 siRNA <400> 13 gauugaggag aaacguaaa 19 <210> 14 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> anti-sense sequence of NF-kB p65 siRNA <400> 14 uuuacguuuc uccucaauc 19

Claims (24)

miR-31-5p의 발현 또는 활성 저해제 및 miR-155-5p의 발현 또는 활성 저해제를 유효성분으로 함유하고, 상기 miR-31-5p의 발현 또는 활성 저해제는 miR-31-5p의 염기서열의 전부 또는 일부에 결합할 수 있는 핵산분자이고, 상기 miR-155-5p의 발현 또는 활성 저해제는 miR-155-5p의 염기서열의 전부 또는 일부에 결합할 수 있는 핵산분자인 것을 특징으로 하는 염증에 의한 혈관기능 장애의 예방 또는 치료용 약학 조성물.It contains an inhibitor of expression or activity of miR-31-5p and an inhibitor of expression or activity of miR-155-5p as active ingredients, and the expression or activity inhibitor of miR-31-5p is all of the nucleotide sequence of miR-31-5p. Or a nucleic acid molecule capable of binding to a part, and the expression or activity inhibitor of miR-155-5p is a nucleic acid molecule capable of binding to all or part of the nucleotide sequence of miR-155-5p. A pharmaceutical composition for preventing or treating vascular dysfunction. 삭제delete 제 1항에 있어서,
상기 miR-31-5p의 발현 또는 활성 저해제는 서열번호 1의 염기서열을 포함하는 핵산분자이고,
상기 miR-155-5p의 발현 또는 활성 저해제는 서열번호 2의 염기서열을 포함하는 핵산분자인 것을 특징으로 하는 조성물.
The method of claim 1,
The expression or activity inhibitor of miR-31-5p is a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO: 1,
The composition, characterized in that the inhibitor of expression or activity of miR-155-5p is a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO: 2.
제 1항에 있어서,
상기 혈관기능 장애는 임신중독증, 상처염증, 심근경색증, 뇌졸중, 당뇨병증, 미세혈관 합병증, 동맥경화 및 류마티스성 관절염 중에서 선택된 질환으로 인한 혈관기능 장애인 것을 특징으로 하는 조성물.
The method of claim 1,
The vascular dysfunction is a vascular dysfunction due to a disease selected from among pregnancy addiction, wound inflammation, myocardial infarction, stroke, diabetes, microvascular complications, arteriosclerosis and rheumatoid arthritis.
miR-31-5p의 발현 또는 활성 저해제 및 miR-155-5p의 발현 또는 활성 저해제를 유효성분으로 함유하고, 상기 miR-31-5p의 발현 또는 활성 저해제는 miR-31-5p의 염기서열의 전부 또는 일부에 결합할 수 있는 핵산분자이고, 상기 miR-155-5p의 발현 또는 활성 저해제는 miR-155-5p의 염기서열의 전부 또는 일부에 결합할 수 있는 핵산분자인 것을 특징으로 하는 염증에 의한 혈관기능 장애의 예방 또는 개선용 식품 조성물.It contains an inhibitor of expression or activity of miR-31-5p and an inhibitor of expression or activity of miR-155-5p as active ingredients, and the expression or activity inhibitor of miR-31-5p is all of the nucleotide sequence of miR-31-5p. Or a nucleic acid molecule capable of binding to a part, and the expression or activity inhibitor of miR-155-5p is a nucleic acid molecule capable of binding to all or part of the nucleotide sequence of miR-155-5p. Food composition for preventing or improving vascular dysfunction. 삭제delete 제 5항에 있어서,
상기 miR-31-5p의 발현 또는 활성 저해제는 서열번호 1의 염기서열을 포함하는 핵산분자이고,
상기 miR-155-5p의 발현 또는 활성 저해제는 서열번호 2의 염기서열을 포함하는 핵산분자인 것을 특징으로 하는 조성물.
The method of claim 5,
The expression or activity inhibitor of miR-31-5p is a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO: 1,
The composition, characterized in that the inhibitor of expression or activity of miR-155-5p is a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO: 2.
제 5항에 있어서,
상기 혈관기능 장애는 임신중독증, 상처염증, 심근경색증, 뇌졸중, 당뇨병증, 미세혈관 합병증, 동맥경화 및 류마티스성 관절염 중에서 선택된 질환으로 인한 혈관기능 장애인 것을 특징으로 하는 조성물.
The method of claim 5,
The vascular dysfunction is a vascular dysfunction due to a disease selected from among pregnancy addiction, wound inflammation, myocardial infarction, stroke, diabetes, microvascular complications, arteriosclerosis and rheumatoid arthritis.
miR-31-5p의 발현 또는 활성 저해제 및 miR-155-5p의 발현 또는 활성 저해제를 유효성분으로 함유하고, 상기 miR-31-5p의 발현 또는 활성 저해제는 miR-31-5p의 염기서열의 전부 또는 일부에 결합할 수 있는 핵산분자이고, 상기 miR-155-5p의 발현 또는 활성 저해제는 miR-155-5p의 염기서열의 전부 또는 일부에 결합할 수 있는 핵산분자인 것을 특징으로 하는 염증조직 또는 염증성 질환자의 혈관신생 유도 또는 혈류 개선용 약학 조성물.It contains an inhibitor of expression or activity of miR-31-5p and an inhibitor of expression or activity of miR-155-5p as active ingredients, and the expression or activity inhibitor of miR-31-5p is all of the nucleotide sequence of miR-31-5p. Or a nucleic acid molecule capable of binding to a part, and the expression or activity inhibitor of miR-155-5p is a nucleic acid molecule capable of binding to all or part of the nucleotide sequence of miR-155-5p, or A pharmaceutical composition for inducing angiogenesis or improving blood flow in a person with an inflammatory disease. 삭제delete 제 9항에 있어서,
상기 miR-31-5p의 발현 또는 활성 저해제는 서열번호 1의 염기서열을 포함하는 핵산분자이고,
상기 miR-155-5p의 발현 또는 활성 저해제는 서열번호 2의 염기서열을 포함하는 핵산분자인 것을 특징으로 하는 조성물.
The method of claim 9,
The expression or activity inhibitor of miR-31-5p is a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO: 1,
The composition, characterized in that the inhibitor of expression or activity of miR-155-5p is a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO: 2.
miR-31-5p의 발현 또는 활성 저해제 및 miR-155-5p의 발현 또는 활성 저해제를 유효성분으로 함유하고, 상기 miR-31-5p의 발현 또는 활성 저해제는 miR-31-5p의 염기서열의 전부 또는 일부에 결합할 수 있는 핵산분자이고, 상기 miR-155-5p의 발현 또는 활성 저해제는 miR-155-5p의 염기서열의 전부 또는 일부에 결합할 수 있는 핵산분자인 것을 특징으로 하는 염증조직 또는 염증성 질환자의 혈관신생 유도 또는 혈류 개선용 식품 조성물.It contains an inhibitor of expression or activity of miR-31-5p and an inhibitor of expression or activity of miR-155-5p as active ingredients, and the expression or activity inhibitor of miR-31-5p is all of the nucleotide sequence of miR-31-5p. Or a nucleic acid molecule capable of binding to a part, and the expression or activity inhibitor of miR-155-5p is a nucleic acid molecule capable of binding to all or part of the nucleotide sequence of miR-155-5p, or Food composition for inducing angiogenesis or improving blood flow in people with inflammatory diseases. 삭제delete 제 12항에 있어서,
상기 miR-31-5p의 발현 또는 활성 저해제는 서열번호 1의 염기서열을 포함하는 핵산분자이고,
상기 miR-155-5p의 발현 또는 활성 저해제는 서열번호 2의 염기서열을 포함하는 핵산분자인 것을 특징으로 하는 조성물.
The method of claim 12,
The expression or activity inhibitor of miR-31-5p is a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO: 1,
The composition, characterized in that the inhibitor of expression or activity of miR-155-5p is a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO: 2.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020190140829A 2019-11-06 2019-11-06 Role of NF-κB-responsive miR-31-5p and miR-155-5p on inflammatory cytokine-induced impairment of endothelial progenitor cell function, and use thereof KR102148892B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020190140829A KR102148892B1 (en) 2019-11-06 2019-11-06 Role of NF-κB-responsive miR-31-5p and miR-155-5p on inflammatory cytokine-induced impairment of endothelial progenitor cell function, and use thereof
KR1020200056412A KR20210055574A (en) 2019-11-06 2020-05-12 Role of NF-κB-responsive miR-31-5p and miR-155-5p on inflammatory cytokine-induced impairment of endothelial progenitor cell function, and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190140829A KR102148892B1 (en) 2019-11-06 2019-11-06 Role of NF-κB-responsive miR-31-5p and miR-155-5p on inflammatory cytokine-induced impairment of endothelial progenitor cell function, and use thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020200056412A Division KR20210055574A (en) 2019-11-06 2020-05-12 Role of NF-κB-responsive miR-31-5p and miR-155-5p on inflammatory cytokine-induced impairment of endothelial progenitor cell function, and use thereof

Publications (1)

Publication Number Publication Date
KR102148892B1 true KR102148892B1 (en) 2020-08-27

Family

ID=72237471

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020190140829A KR102148892B1 (en) 2019-11-06 2019-11-06 Role of NF-κB-responsive miR-31-5p and miR-155-5p on inflammatory cytokine-induced impairment of endothelial progenitor cell function, and use thereof
KR1020200056412A KR20210055574A (en) 2019-11-06 2020-05-12 Role of NF-κB-responsive miR-31-5p and miR-155-5p on inflammatory cytokine-induced impairment of endothelial progenitor cell function, and use thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020200056412A KR20210055574A (en) 2019-11-06 2020-05-12 Role of NF-κB-responsive miR-31-5p and miR-155-5p on inflammatory cytokine-induced impairment of endothelial progenitor cell function, and use thereof

Country Status (1)

Country Link
KR (2) KR102148892B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230101608A (en) * 2021-12-29 2023-07-06 충남대학교산학협력단 Antiviral composition for fish against viral hemorrhagic septicemia virus containing miRNA 155 encapsulated in chitosan nanoparticles as an active ingredient

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100202973A1 (en) * 2007-05-18 2010-08-12 Karolinska Institutet Innovations Ab Microrna molecules associated with inflammatory skin disorders
US20100291585A1 (en) * 2008-01-27 2010-11-18 Rosetta Genomics Ltd. Methods and compositions for diagnosing complications of pregnancy
WO2016077574A1 (en) * 2014-11-12 2016-05-19 The General Hospital Corporation INHIBITORS OF MICRORNAs miR-155, miR-103, miR-105 and miR-107 THAT REGULATE PRODUCTION OF ATRIAL NATRIURETIC PEPTIDE (ANP) AS THERAPEUTICS AND USES THEREOF
KR20190057529A (en) * 2017-11-20 2019-05-29 강원대학교산학협력단 The biomarker miRNA-31-5p for diagnosis of pre-eclampsia and use thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100202973A1 (en) * 2007-05-18 2010-08-12 Karolinska Institutet Innovations Ab Microrna molecules associated with inflammatory skin disorders
US20100291585A1 (en) * 2008-01-27 2010-11-18 Rosetta Genomics Ltd. Methods and compositions for diagnosing complications of pregnancy
WO2016077574A1 (en) * 2014-11-12 2016-05-19 The General Hospital Corporation INHIBITORS OF MICRORNAs miR-155, miR-103, miR-105 and miR-107 THAT REGULATE PRODUCTION OF ATRIAL NATRIURETIC PEPTIDE (ANP) AS THERAPEUTICS AND USES THEREOF
KR20190057529A (en) * 2017-11-20 2019-05-29 강원대학교산학협력단 The biomarker miRNA-31-5p for diagnosis of pre-eclampsia and use thereof

Non-Patent Citations (28)

* Cited by examiner, † Cited by third party
Title
Angiogenesis. 2018;21(4):699-710.
Ann Rheum Dis. 2007;66(10):1284-1288.
Arterioscler Thromb Vasc Biol. 2004;24:288-293.
Atherosclerosis. 2008;201(2):236-247.
Biochem Biophys Res Commun. 2014;448(1):101-107.
Biomedicine & Pharmacotherapy. 2018. Vol.107, pp.24-33. *
Cell. 1996;86(3):353-364.
Cell. 2009;136(1):26-36.
Cell. 2009;136(2):215-233.
Clin Sci (Lond). 2010 Feb 23;118(10):593-605.
Clin Sci (Lond). 2016;130(6):409-419.
Free Radic Biol Med. 2017;104:185-198.
Gynecol Obstet Invest. 2007;64(2):103-108.
Hypertension. 2014;64(1):23-25.
Int J Obes (Lond). 2009;33(2):219-225.
J Am Coll Cardiol. 2005;45(9):1449-1457.
J Biol Chem. 2018;293(49):18989-19000.
J Cell Physiol. 2019. doi: 10.1002/jcp.28942.
J Clin Endocrinol Metab. 2005;90(9):5329-5332.
J Clin Invest. 2000;105:71-77.
J Hematother Stem Cell Res. 2002;11(2):171-178.
Nat Rev Immunol. 2009 Nov;9(11):778-88.
Nat Rev Mol Cell Biol. 2007;8(6):464-478.
Nature. 2005;438(7070):932-936.
Nature. 2005;438(7070):937-945.
Science. 1997;275:964-967.
Scientific Reports. 2019. Vol.9, Article 5836. *
Two distinct modes of post-translational and -transcriptional regulation of nitric oxide synthase in macrophages and endothelial cells. 이규선. 박사학위논문, 강원대학교 의학전문대학원 (2015.02).* *

Also Published As

Publication number Publication date
KR20210055574A (en) 2021-05-17

Similar Documents

Publication Publication Date Title
JP5911841B2 (en) Regeneration of endogenous myocardial tissue by induction of neovascularization
US8258113B2 (en) Method for promoting angiogenesis, vascularization or vessel repair
US20220193144A1 (en) Methods and compositions for modulating angiogenesis and vasculogenesis
Mathison et al. Cardiac reprogramming factor Gata4 reduces postinfarct cardiac fibrosis through direct repression of the profibrotic mediator snail
Odent et al. Combinatorial approach for improving the outcome of angiogenic therapy in ischemic tissues
KR102148892B1 (en) Role of NF-κB-responsive miR-31-5p and miR-155-5p on inflammatory cytokine-induced impairment of endothelial progenitor cell function, and use thereof
Mu et al. Slow-adhering stem cells derived from injured skeletal muscle have improved regenerative capacity
WO2009052211A1 (en) Compositions and methods for enhancing lymphangiogenesis
WO2012129513A2 (en) Blockage of pai-1 in diabetic cd34+ stem cells corrects cellular dysfunction
US20110275574A1 (en) Method of inhibiting proliferation of hepatic stellate cells
Muscari et al. Different expression of NOS isoforms in early endothelial progenitor cells derived from peripheral and cord blood
KR100935639B1 (en) Human mesenchymal stem cells improved tissue regeneration and production methods thereof
CN112342189B (en) Method for inducing myogenic differentiation of adipose-derived mesenchymal stem cells
WO2018156903A1 (en) Methods for identifying and isolating cardiac stem cells and methods for making and using them
Sastourne-Arrey et al. Adipose tissue is a source of fibro-adipogenic progenitors for regenerating skeletal muscles
Nanchahal et al. Prophylactic uses of fully reduced forms of hmgb1 prior to injury
Yuan et al. Upregulated Expression of STIM2, TRPC6 and Orai2 Contributes to the Transition of Pulmonary Arterial Smooth Muscle Cells from a Contractile to Proliferative Phenotype 2
EP3773667A1 (en) Prophylactic and therapeutic uses of fully reduced forms of hmgb1 in conditions involving organs

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant