KR102146448B1 - Multi-layered structure and manufacturing method thereof - Google Patents

Multi-layered structure and manufacturing method thereof Download PDF

Info

Publication number
KR102146448B1
KR102146448B1 KR1020180089595A KR20180089595A KR102146448B1 KR 102146448 B1 KR102146448 B1 KR 102146448B1 KR 1020180089595 A KR1020180089595 A KR 1020180089595A KR 20180089595 A KR20180089595 A KR 20180089595A KR 102146448 B1 KR102146448 B1 KR 102146448B1
Authority
KR
South Korea
Prior art keywords
layer
thin film
conductive
conductive oxide
barrier
Prior art date
Application number
KR1020180089595A
Other languages
Korean (ko)
Other versions
KR20200014472A (en
Inventor
김형근
박승일
Original Assignee
전자부품연구원
주식회사 석원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전자부품연구원, 주식회사 석원 filed Critical 전자부품연구원
Priority to KR1020180089595A priority Critical patent/KR102146448B1/en
Publication of KR20200014472A publication Critical patent/KR20200014472A/en
Application granted granted Critical
Publication of KR102146448B1 publication Critical patent/KR102146448B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Vapour Deposition (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

우수한 신뢰성을 갖는 다층박막필름 및 그의 제조방법이 제안된다. 본 발명에 따른 다층박막필름은 전도성산화물층; 전도성산화물층에 형성된 제1배리어박막층; 제1배리어박막층에 노출된 전도성산화물층과 전기적으로 연결되는 전도층; 및 전도층 상의 제2배리어박막층;을 포함한다.
A multilayer thin film having excellent reliability and a method of manufacturing the same are proposed. The multilayer thin film according to the present invention comprises a conductive oxide layer; A first barrier thin film layer formed on the conductive oxide layer; A conductive layer electrically connected to the conductive oxide layer exposed to the first barrier thin film layer; And a second barrier thin film layer on the conductive layer.

Description

다층박막필름 및 그의 제조방법{Multi-layered structure and manufacturing method thereof}Multi-layered structure and manufacturing method thereof TECHNICAL FIELD

본 발명은 다층박막필름 및 그의 제조방법에 관한 것으로, 더욱 상세하게는 우수한 신뢰성을 갖는 다층박막필름 및 그의 제조방법에 관한 것이다.The present invention relates to a multilayer thin film and a method of manufacturing the same, and more particularly, to a multilayer thin film having excellent reliability and a method of manufacturing the same.

최근 플렉서블 OLED나 OPV 등 유연 기판 소재를 이용한 다양한 플렉서블 응용 소자의 제품화가 이루어지고 있다. 이들은 차세대 디스플레이에 적용되면서 접을 수 있는 정보전달 디스플레이 소자나 저전력으로 구동 가능한 EC 스마트 커튼 모듈 등으로 그 응용폭이 점차 넓어지고 있다. Recently, various flexible application devices using flexible substrate materials such as flexible OLED and OPV have been commercialized. As these are applied to next-generation displays, their application range is gradually expanding into foldable information transmission display devices or EC smart curtain modules that can be driven with low power.

그러나, 신뢰성 측면에서 수분과 온도에 취약한 유기광전물질은 봉지기술을 통해 외부 환경과 완전한 차단이 필요하다. 아울러, 이들 소자는 모두 기계적 인성을 만족하면서 고성능 봉지막 특성과, 고투과 저저항 투명전도성산화물 박막이 요구되고 있어 기존의 박막 제조기술 및 장비로는 구현이 매우 어려운 실정이다. However, in terms of reliability, organic photoelectric materials that are vulnerable to moisture and temperature need to be completely blocked from the external environment through encapsulation technology. In addition, since all of these devices satisfy mechanical toughness, high-performance encapsulation film properties, and high-transmission, low-resistance transparent conductive oxide thin films are required, it is very difficult to implement them with existing thin film manufacturing technologies and equipment.

대면적 소자에서 박막봉지공정은 양산성이 낮고, 미세유리 봉지공정(Frit Glass Encapsulation)은 쉽게 깨지는 문제점이 있다. 현재 양산되는 대면적 OLED는 배면 발광(Bottom Emission Type)으로 빛이 유리 기판 방향으로 진행하기 때문에 금속을 배리어필름으로 적용하여 양산성과 플렉서블한 특성을 모두 만족시킬 수 있으나, 투명 디스플레이 또는 전면 발광(Top Emission)방식에 적용하는 경우 투명한 배리어필름을 사용할 수 밖에 없다. In a large-area device, the thin film encapsulation process has low mass productivity, and the fine glass encapsulation process is easily broken. Currently mass-produced large-area OLEDs are bottom emission type, and since light proceeds in the direction of the glass substrate, metal can be applied as a barrier film to satisfy both mass production and flexible characteristics. When applied to the emission) method, a transparent barrier film must be used.

따라서, 투명하면서도 초박형이어서 플렉서블장치의 봉지공정에 사용될 수 있는 배리어필름의 개발이 요청된다.Therefore, development of a barrier film that is transparent and ultra-thin and can be used in the sealing process of a flexible device is required.

본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은, 우수한 신뢰성을 갖는 다층박막필름 및 그의 제조방법을 제공함에 있다.The present invention has been devised to solve the above problems, and an object of the present invention is to provide a multilayer thin film having excellent reliability and a method of manufacturing the same.

상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른 다층박막필름은 전도성산화물층; 전도성산화물층에 형성된 제1배리어박막층; 제1배리어박막층에 노출된 전도성산화물층과 전기적으로 연결되는 전도층; 및 전도층 상의 제2배리어박막층;을 포함한다. A multilayer thin film according to an embodiment of the present invention for achieving the above object is a conductive oxide layer; A first barrier thin film layer formed on the conductive oxide layer; A conductive layer electrically connected to the conductive oxide layer exposed to the first barrier thin film layer; And a second barrier thin film layer on the conductive layer.

전도성산화물층은 ITO(indium tin oxide), IZO(indium zinc oxide), FTO(F-doped tin oxide), ATO(antimony tin oxide), AZO(ZnO:Al), GZO(ZnO:Ga) 및 a-IGZO(In2O3:Ga2O3:ZnO) 중 어느 하나를 포함할 수 있다. The conductive oxide layer is ITO (indium tin oxide), IZO (indium zinc oxide), FTO (F-doped tin oxide), ATO (antimony tin oxide), AZO (ZnO:Al), GZO (ZnO:Ga) and a- It may contain any one of IGZO (In 2 O 3 :Ga 2 O 3 :ZnO).

제1배리어박막층 및 제2배리어박막층은 금속산화물을 포함할 수 있다. The first barrier thin film layer and the second barrier thin film layer may include a metal oxide.

전도층은 은(Ag) 및 구리(Cu) 중 적어도 하나를 포함할 수 있다. The conductive layer may include at least one of silver (Ag) and copper (Cu).

전도성산화물층의 두께는 10nm 내지 30nm이고, 제1배리어박막층의 두께는 1.0nm 내지 5.0nm이고, 전도층의 두께는 5 내지 10nm이며, 제2배리어박막층의 두께는 10 내지 30nm일 수 있다. The thickness of the conductive oxide layer may be 10 nm to 30 nm, the thickness of the first barrier thin layer may be 1.0 nm to 5.0 nm, the thickness of the conductive layer may be 5 to 10 nm, and the thickness of the second barrier thin layer may be 10 to 30 nm.

본 발명의 다른 측면에 따르면, 전도성산화물층을 형성하는 제1단계; 전도성산화물층 상에 제1배리어박막층을 형성하는 제2단계; 전도성산화물층이 노출되도록 제1배리어박막층을 일부 제거하는 제3단계; 노출된 전도성산화물층과 접촉되도록 제1배리어박막층 상에 전도층을 형성하는 제4단계; 및 전도층 상에 제2배리어박막층을 형성하는 제5단계;를 포함하는 다층박막필름 제조방법이 제공된다.According to another aspect of the present invention, a first step of forming a conductive oxide layer; A second step of forming a first barrier thin film layer on the conductive oxide layer; A third step of partially removing the first barrier thin film layer so that the conductive oxide layer is exposed; A fourth step of forming a conductive layer on the first barrier thin film layer to contact the exposed conductive oxide layer; And a fifth step of forming a second barrier thin film layer on the conductive layer.

제1단계 및 제4단계는 스퍼터링공정으로 수행될 수 있다.The first and fourth steps may be performed by a sputtering process.

제2단계는 원자층증착공정으로 수행될 수 있다.The second step may be performed by an atomic layer deposition process.

제3단계는 전도성산화물층 에칭속도 및 제1배리어박막층의 에칭속도가 상이한 에칭공정으로 수행될 수 있다.The third step may be performed by an etching process in which the etching rate of the conductive oxide layer and the etching rate of the first barrier thin layer are different.

본 발명의 또다른 측면에 따르면, 스퍼터링공정으로 형성된 투명전도성산화물층; 투명전도성산화물층 상에 원자층증착공정으로 형성되되, 일부가 제거되어 투명전도성산화물층이 노출된 금속산화물층; 스퍼터링공정으로 형성된 금속층; 및 금속층 상에 형성된 금속산화물층;을 포함하는 투명전극이 제공된다.According to another aspect of the present invention, a transparent conductive oxide layer formed by a sputtering process; A metal oxide layer formed by an atomic layer deposition process on the transparent conductive oxide layer, and partially removed to expose the transparent conductive oxide layer; A metal layer formed by a sputtering process; And a metal oxide layer formed on the metal layer.

본 발명의 또다른 측면에 따르면, 기판 상에 스퍼터링공정으로 전도성산화물층 및 전도층을 형성하기 위한 스퍼터링부; 스퍼터링부로부터 이동한 잔여가스를 제거하기 위한 버퍼영역부; 및 버퍼영역부를 통과한 전도성산화물층 및 전도층 상에 원자층증착공정으로 각각 제1배리어박막층 및 제2배리어박막층을 형성하기 위한 원자층증착부;를 포함하는 다층박막필름 제조장치가 제공된다.According to another aspect of the present invention, a sputtering unit for forming a conductive oxide layer and a conductive layer on a substrate by a sputtering process; A buffer area unit for removing residual gas that has moved from the sputtering unit; And an atomic layer deposition unit for forming a first barrier thin film layer and a second barrier thin film layer, respectively, on the conductive oxide layer passing through the buffer region and the atomic layer deposition process on the conductive layer.

기판은 롤투롤방식으로 스퍼터링부, 버퍼영역부 및 원자층증착부를 이동하는 것일 수 있다. The substrate may move the sputtering portion, the buffer region portion, and the atomic layer deposition portion in a roll-to-roll manner.

이상 설명한 바와 같이, 본 발명의 실시예들에 따른 다층박막필름은 고속의 스퍼터링공정 및 표면조도 향상이 가능한 원자층증착공정이 동시에 적용되어 우수한 품질을 나타내는 신뢰성 높은 배리어 필름이나 투명전극으로 다양하게 응용가능한 효과가 있다. As described above, the multilayer thin film according to the embodiments of the present invention is applied in various ways as a highly reliable barrier film or transparent electrode showing excellent quality by simultaneously applying a high-speed sputtering process and an atomic layer deposition process capable of improving surface roughness. There is a possible effect.

도 1 내지 도 7은 본 발명의 일실시예에 따른 다층박막필름 제조방법의 설명에 제공되는 도면들이다.
도 8a는 PEN기판 상에 원자층증착공정에 의한 AZO층 및 원자층증착공정에 의한 Al2O3층이 형성된 다층박막필름의 표면이미지, 도 8b는 PEN기판 상에 스퍼터링공정에 의한 AZO층 및 스퍼터링공정에 의한 Al2O3층이 형성된 다층박막필름의 표면이미지, 도 8c는 PEN기판 상에 스퍼터링공정에 의한 AZO층 및 원자층증착공정에 의한 Al2O3층이 형성된 다층박막필름의 표면이미지를 나타낸 도면이다.
도 9는 스퍼터링공정만으로 형성된 다층박막필름의 WVTR결과를 나타낸 도면이고, 도 10은 스퍼터링공정/원자층증착공정으로 형성된 다층박막필름 및 원자층증착공정만으로 형성된 다층박막필름의 WVTR결과를 나타낸 도면이다.
1 to 7 are views provided to explain a method of manufacturing a multilayer thin film according to an embodiment of the present invention.
8A is a surface image of a multilayer thin film film having an AZO layer by an atomic layer deposition process and an Al 2 O 3 layer by an atomic layer deposition process on a PEN substrate, and FIG. 8B is an AZO layer and an AZO layer by a sputtering process on a PEN substrate. Surface image of a multilayer thin film film with an Al 2 O 3 layer formed by sputtering process, FIG. 8C is the surface of a multilayer thin film film formed with an AZO layer by sputtering process and an Al 2 O 3 layer by atomic layer deposition process on a PEN substrate It is a diagram showing an image.
9 is a view showing the WVTR results of a multilayer thin film formed only by a sputtering process, and FIG. 10 is a view showing the WVTR results of a multilayer thin film formed only by a sputtering process / atomic layer deposition process and an atomic layer deposition process. .

이하, 첨부된 도면을 참조하여 본 발명의 실시형태를 설명한다. 그러나, 본 발명의 실시형태는 여러가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시형태로 한정되는 것은 아니다. 본 발명의 실시형태는 당업계에서 통상의 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다. 첨부된 도면에서 특정 패턴을 갖도록 도시되거나 소정두께를 갖는 구성요소가 있을 수 있으나, 이는 설명 또는 구별의 편의를 위한 것이므로 특정패턴 및 소정두께를 갖는다고 하여도 본 발명이 도시된 구성요소에 대한 특징만으로 한정되는 것은 아니다.Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. However, the embodiments of the present invention may be modified into various other forms, and the scope of the present invention is not limited to the embodiments described below. Embodiments of the present invention are provided to more completely describe the present invention to those of ordinary skill in the art. In the accompanying drawings, there may be elements having a specific pattern or having a predetermined thickness, but this is for convenience of description or distinction, so even if they have a specific pattern and a predetermined thickness, the present invention is characterized by the illustrated elements. It is not limited to only.

도 1 내지 도 7은 본 발명의 일실시예에 따른 다층박막필름 제조방법의 설명에 제공되는 도면들이다. 본 실시예에 따른 다층박막필름 제조방법은 전도성산화물층을 형성하는 제1단계; 전도성산화물층 상에 제1배리어박막층을 형성하는 제2단계; 및 전도성산화물층이 노출되도록 제1배리어박막층을 일부 제거하는 제3단계; 노출된 전도성산화물층과 접촉되도록 제1배리어박막층 상에 전도층을 형성하는 제4단계; 및 전도층 상에 제2배리어박막층을 형성하는 제5단계;를 포함한다. 1 to 7 are views provided to explain a method of manufacturing a multilayer thin film according to an embodiment of the present invention. The method for manufacturing a multilayer thin film according to the present embodiment comprises: a first step of forming a conductive oxide layer; A second step of forming a first barrier thin film layer on the conductive oxide layer; And a third step of partially removing the first barrier thin film layer so that the conductive oxide layer is exposed. A fourth step of forming a conductive layer on the first barrier thin film layer to contact the exposed conductive oxide layer; And a fifth step of forming a second barrier thin film layer on the conductive layer.

본 발명에 따른 다층박막필름 제조방법에서는 먼저, 전도성산화물층(110)을 형성하는 제1단계가 수행된다(도 1). 본 발명에 따른 다층박막필름(100)은 전도성산화물층(110)을 포함하여 전도성을 나타낼 수 있다. 전도성산화물층(110)은 ITO(indium tin oxide), IZO(indium zinc oxide), FTO(F-doped tin oxide), ATO(antimony tin oxide), AZO(ZnO:Al), GZO(ZnO:Ga) 및 a-IGZO(In2O3:Ga2O3:ZnO) 중 어느 하나를 포함할 수 있다. In the method of manufacturing a multilayer thin film according to the present invention, first, a first step of forming the conductive oxide layer 110 is performed (FIG. 1). The multilayer thin film 100 according to the present invention may exhibit conductivity by including the conductive oxide layer 110. The conductive oxide layer 110 is ITO (indium tin oxide), IZO (indium zinc oxide), FTO (F-doped tin oxide), ATO (antimony tin oxide), AZO (ZnO:Al), GZO (ZnO:Ga) And a-IGZO (In2O3:Ga2O3:ZnO).

제1단계에서는 스퍼터링공정으로 전도성산화물층(110)이 형성될 수 있다. 스퍼터링공정은 고에너지의 입자를 원하는 박막과 동질인 물질로 이루어진 타겟에 충돌시켜 그곳으로부터 원자와 분자가 떨어져 나와 박막을 형성하는 공정을 의미한다. 스퍼터링 공정의 경우, 설비의 안정성이 높고 유지 관리 측면에서 유리하며, 박막 두께와 성분 등을 용이하게 조절할 수 있는 장점이 있다. 또한, 이후 진행될 원자층증착공정에 비해 박막증착시간이 짧은 장점이 있다. In the first step, the conductive oxide layer 110 may be formed by a sputtering process. The sputtering process refers to a process in which high-energy particles collide with a target made of a material homogeneous to a desired thin film, and atoms and molecules are separated from the target to form a thin film. In the case of the sputtering process, the stability of the equipment is high, it is advantageous in terms of maintenance, and has the advantage of being able to easily control the thickness and components of the thin film. In addition, there is an advantage in that the thin film deposition time is short compared to the atomic layer deposition process to be performed later.

그러나, 스퍼터링공정에 의하여 형성된 박막층은 도 2에서와 같이 표면에 공극, 그레인 바운더리 및 채널과 같은 결함이 발생할 수 있다. 스퍼터링공정으로 형성된 전도성산화물층(120)에는 결함이 다수 존재하므로 이러한 스퍼터링공정으로 형성된 전도성산화물층(120)을 예를 들어 배리어 필름으로 사용하는 경우, 결함부분으로의 수분침투가 용이하여 배리어될 소자의 신뢰성에 문제가 발생할 수 있다. 또한 전도성산화물층(110)을 전극으로 사용하는 경우에도 전류흐름이 불안정하여 신뢰성에 악영향을 미칠 수 있다. However, the thin film layer formed by the sputtering process may have defects such as voids, grain boundaries, and channels on the surface as shown in FIG. 2. Since a number of defects exist in the conductive oxide layer 120 formed by the sputtering process, when the conductive oxide layer 120 formed by the sputtering process is used as a barrier film, for example, moisture penetration into the defective part is easy, and the device to be barrier May cause problems with the reliability of the product. In addition, even when the conductive oxide layer 110 is used as an electrode, the current flow is unstable, and reliability may be adversely affected.

이에 따라, 본 발명에서는 전도성산화물층(110) 상에 제1배리어박막층(120)을 형성한다. 배리어필름의 특성상 박형일 것이 요구되므로 가능한한 두께를 얇게 유지하기 위해서는 전도성산화물층(110)의 결함을 치유하기 위해 추가로 형성하는 층의 두께도 얇은 것이 바람직하다. 원자층증착(atomic layer deposition: ALD) 공정은 원자단위의 증착공정으로서, 증착속도가 스퍼터링공정에 비해 느리나 원자수준의 층을 형성할 수 있어서 얇은 박막 형성이 가능하다. Accordingly, in the present invention, the first barrier thin film layer 120 is formed on the conductive oxide layer 110. Since the barrier film is required to be thin, in order to keep the thickness as thin as possible, it is preferable that the thickness of the additional layer formed to heal the defects of the conductive oxide layer 110 is also thin. The atomic layer deposition (ALD) process is an atomic-level deposition process. Although the deposition rate is slower than that of the sputtering process, a thin film can be formed because a layer at the atomic level can be formed.

제1배리어박막층(120)은 금속산화물을 포함할 수 있는데, 금속산화물로는 규소 산화물, 규소 질화물, 규소 질화산화물, 알루미늄 산화물, 알루미늄 질화물 또는 알루미늄 질화산화물 등이 있다. 예를 들어, 본 발명에 사용될 수 있는 금속산화물로는 ZnO, BaO, Bi2O3, SiO2, SiCOx 및 Al2O3이 있다. The first barrier thin film layer 120 may include a metal oxide. Examples of the metal oxide include silicon oxide, silicon nitride, silicon nitride oxide, aluminum oxide, aluminum nitride, or aluminum nitride oxide. For example, metal oxides that can be used in the present invention include ZnO, BaO, Bi 2 O 3 , SiO 2 , SiCOx and Al 2 O 3 .

또한, 증착공정의 특성상, 전도성산화물층(110)의 표면은 도 4에서와 같이 평탄하지 않고 요철이 형성될 수 있다. 이때, 특히 요철의 골부분에는 크랙과 같은 결함(111)이 발생할 가능성이 높다. 따라서, 전도성산화물층(110) 상에 제1배리어박막층(120)을 형성하는 제2단계가 수행되면, 전도성산화물층(110)에 존재하는 공극이나 그레인 바운더리, 채널 또는 크랙 등을 치유할 수 있게 된다. In addition, due to the characteristics of the deposition process, the surface of the conductive oxide layer 110 may not be flat and may have irregularities as shown in FIG. 4. At this time, there is a high possibility that defects 111 such as cracks may occur in the valleys of the irregularities. Therefore, when the second step of forming the first barrier thin film layer 120 on the conductive oxide layer 110 is performed, voids, grain boundaries, channels or cracks existing in the conductive oxide layer 110 can be healed. do.

제1배리어박막층(120)이 형성되면, 전도성산화물층(110)이 노출되도록 제1배리어박막층(120)은 일부 제거된다(제3단계, 도 6). 전도성산화물층(110)의 노출된 영역(112)는 이후 형성될 전도층(130)과 접촉된다(도 7). When the first barrier thin layer 120 is formed, the first barrier thin layer 120 is partially removed so that the conductive oxide layer 110 is exposed (3rd step, FIG. 6). The exposed area 112 of the conductive oxide layer 110 is in contact with the conductive layer 130 to be formed later (FIG. 7).

제1배리어박막층(120)의 일부를 제거하여 전도성산화물층(110)의 일부가 외부로 노출되도록 하기 위해서는 전도성산화물층(110) 에칭속도 및 제1배리어박막층(120)의 에칭속도가 상이하도록 건식에칭공정(RIE, ALE)을 이용한 에칭공정이 수행될 수 있다. 즉, 도 5에서는 제1배리어박막층(120)의 표면에 요철이 있어나, 전도성산화물층(110) 일부를 제거할 때 에칭속도를 제어하여 표면을 평활화할 수 있다. 이에 따라, 상부에 적층되는 전도층(130) 및 제2배리어박막층(140)의 표면도 함께 평활화되어 전체 다층박막필름(100)의 품질이 향상된다. In order to remove a part of the first barrier thin film layer 120 so that a part of the conductive oxide layer 110 is exposed to the outside, a dry method so that the etching rate of the conductive oxide layer 110 and the etching rate of the first barrier thin film layer 120 are different. An etching process using an etching process (RIE, ALE) may be performed. That is, in FIG. 5, there are irregularities on the surface of the first barrier thin film layer 120, but when a part of the conductive oxide layer 110 is removed, the surface can be smoothed by controlling the etching rate. Accordingly, the surfaces of the conductive layer 130 and the second barrier thin film layer 140 stacked thereon are also smoothed, thereby improving the quality of the entire multilayer thin film 100.

전도층(130)은 노출된 전도성산화물층(110)과 접촉되도록 제1배리어박막층(120) 상에 형성된다(제4단계, 도 7). 전도층(140)에 사용될 수 있는 금속으로는 전기전도성이 높은 금속으로서, 예를 들면, Ag, Cu, Al, Ir, In, Ni, Mg, Pt 및 Pd 중 어느 하나일 수 있다. 전도층(140)은 금속박막형성공정이라면 어떤 공정이든 이용될 수 있다. 예를 들어, 전도층(140)은 스퍼터링공정으로 형성될 수 있다. The conductive layer 130 is formed on the first barrier thin film layer 120 to contact the exposed conductive oxide layer 110 (step 4, FIG. 7). The metal that may be used for the conductive layer 140 is a metal having high electrical conductivity, and may be, for example, any one of Ag, Cu, Al, Ir, In, Ni, Mg, Pt, and Pd. The conductive layer 140 may be any process as long as it is a metal thin film forming process. For example, the conductive layer 140 may be formed through a sputtering process.

전도층(130) 상에는 다시 제2배리어박막층(140)이 형성될 수 있다(제5단계). 제2배리어박막층(140)은 제1배리어박막층(120)과 같이 금속산화물을 포함할 수 있으며, 전체 다층박막필름(100)의 배리어특성을 향상시키기 위한 층이다. 제2배리어박막층(140)도 제1배리어박막층(120)과 같이 원자층증착공정으로 형성될 수 있고, 또는 이와 달리 스퍼터링공정으로도 형성될 수 있다. 제1배리어박막층(120)은 전도성산화물층(110)의 결함 등을 치유하기 위한 층이므로 원자층증착공정으로 형성하는 것이 바람직하나, 전도층(130) 상부에 형성되는 제2배리어박막층(140)은 원자층증착공정으로 형성될 필요는 없다. A second barrier thin film layer 140 may be formed on the conductive layer 130 again (step 5). The second barrier thin film layer 140 may include a metal oxide, like the first barrier thin film layer 120, and is a layer for improving the barrier characteristics of the entire multilayer thin film 100. Like the first barrier thin film layer 120, the second barrier thin film layer 140 may be formed by an atomic layer deposition process, or alternatively, may be formed by a sputtering process. Since the first barrier thin film layer 120 is a layer for healing defects in the conductive oxide layer 110, it is preferable to form it by an atomic layer deposition process, but the second barrier thin film layer 140 formed on the conductive layer 130 Silver need not be formed by an atomic layer deposition process.

본 발명에 따른 다층박막필름(100)에서, 전도성산화물층(110)의 두께는 10nm 내지 30nm이고, 제1배리어박막층(120)의 두께는 1.0nm 내지 5.0nm이고, 전도층(130)의 두께는 5 내지 10nm이며, 제2배리어박막층(140)의 두께는 10 내지 30nm일 수 있다. In the multilayer thin film 100 according to the present invention, the thickness of the conductive oxide layer 110 is 10 nm to 30 nm, the thickness of the first barrier thin film layer 120 is 1.0 nm to 5.0 nm, and the thickness of the conductive layer 130 Is 5 to 10 nm, and the thickness of the second barrier thin film layer 140 may be 10 to 30 nm.

도 8a는 PEN기판 상에 원자층증착공정에 의한 AZO층 및 원자층증착공정에 의한 Al2O3층이 형성된 다층박막필름의 표면이미지, 도 8b는 PEN기판 상에 스퍼터링공정에 의한 AZO층 및 스퍼터링공정에 의한 Al2O3층이 형성된 다층박막필름의 표면이미지, 도 8c는 PEN기판 상에 스퍼터링공정에 의한 AZO층 및 원자층증착공정에 의한 Al2O3층이 형성된 다층박막필름의 표면이미지를 나타낸 도면이다. 본 명세서에서 스퍼터링공정은 Sukwon's in-line sputter를 이용하여 수행하였고, 원자층증착공정은 CN1_TALD_Classic를 이용하여 수행하였으며, WVTR값은 MOCON AQUATRON MODEL 2를 사용하여 측정하였다. 8A is a surface image of a multilayer thin film film in which an AZO layer by an atomic layer deposition process and an Al2O3 layer by an atomic layer deposition process are formed on a PEN substrate. A surface image of a multilayer thin film film with an Al2O3 layer formed thereon, FIG. 8C is a view showing a surface image of a multilayer thin film film having an AZO layer by a sputtering process and an Al2O3 layer by an atomic layer deposition process on a PEN substrate. In this specification, the sputtering process was performed using Sukwon's in-line sputter, the atomic layer deposition process was performed using CN1_TALD_Classic, and the WVTR value was measured using MOCON AQUATRON MODEL 2.

도 8a의 다층박막필름은 2개층 모두 원자층증착공정에 의해 형성되어 우수한 점착성(conformality)을 나타내고 있으나, 도 8b의 다층박막필름은 2개층 모두 스퍼터링공정에 의해 형성되어 바람직하지 않은 점착성이 나타난다. AZO층을 스퍼터링공정으로 형성하고, Al2O3층을 원자층증착공정으로 형성한 도 8c의 다층박막필름의 표면 점착성(conformality)이 가장 우수하게 나타났다. 도 8a 및 도 8c의 다층박막필름 모두 표면 점착성이 우수하였으나, 스퍼터링공정의 경우 초당 수 nm의 박막형성이 가능하나, 원자층증착공정의 경우, 초당 0.1Å이하의 박막 형성이 가능하므로 도 8a의 다층박막필름은 공정시간이 너무 길어 대량생산에는 적합하지 않은 측면이 있어 도 8c와 같이 스퍼터링공정으로 제조된 층 상에 원자층증착공정으로 제조된 층이 형성되는 것이 가장 바람직하다. The multilayer thin film of FIG. 8A shows excellent conformality as both layers are formed by an atomic layer deposition process. However, the multilayer thin film of FIG. 8B is formed by a sputtering process and exhibits undesirable adhesion. The surface conformality of the multilayer thin film of FIG. 8C, in which an AZO layer was formed by a sputtering process and an Al 2 O 3 layer was formed by an atomic layer deposition process, was the most excellent. Both the multilayer thin film of FIGS. 8A and 8C had excellent surface adhesion. However, in the case of the sputtering process, a thin film of several nm per second can be formed, but in the case of the atomic layer deposition process, a thin film of 0.1Å or less per second is possible. Since the multilayer thin film has a side that is not suitable for mass production because the process time is too long, it is most preferable that the layer produced by the atomic layer deposition process is formed on the layer produced by the sputtering process as shown in FIG. 8C.

도 9는 스퍼터링공정만으로 형성된 다층박막필름의 WVTR결과를 나타낸 도면이고, 도 10은 스퍼터링공정/원자층증착공정으로 형성된 다층박막필름 및 원자층증착공정만으로 형성된 다층박막필름의 WVTR결과를 나타낸 도면이다. WVTR(Water Vapor Transmission Rate, g/m2day)은 하루에 단위면적당 수분이 침투하는 정도를 나타낸다. LCD는 10-2이하의 WVTR이 요구되지만, 수분과 산소에 민감함 OLED의 경우, 10-4이하로 높은 수준의 WVTR이 요구되는 것이 일반적이다. OLED 디스플레이는 수분과 산소에 노출되면 픽셀 수축(Pixel Shrinkage)과 암점(Dark Spot), 전극 산화 등의 문제가 발생하므로, WVTR요구조건을 만족시기기 위하여 배리어필름을 형성하는 봉지공정(Encapsulation)이 필요하다. 9 is a view showing the WVTR results of a multilayer thin film formed only by a sputtering process, and FIG. 10 is a view showing the WVTR results of a multilayer thin film formed only by a sputtering process / atomic layer deposition process and an atomic layer deposition process. . WVTR (Water Vapor Transmission Rate, g/m 2 day) indicates the degree of penetration of water per unit area per day. LCD requires a WVTR of 10 -2 or less, but it is sensitive to moisture and oxygen. In the case of an OLED, a high WVTR of 10 -4 or less is generally required. When OLED displays are exposed to moisture and oxygen, problems such as pixel shrinkage, dark spots, and electrode oxidation occur, so the encapsulation process of forming a barrier film to satisfy the WVTR requirements is required. need.

도 9를 참조하면, 다층박막필름의 모든 층이 스퍼터링공정으로 형성된 경우, 모두 10-1 내지 10-2 수준의 WVTR값을 나타내었다. 그러나, 도 10에서와 같이 스퍼터링공정 및 원자층증착공정을 함께 사용하여 형성된 다층박막필름의 경우 10-4 수준의 WVTR값을 나타내어 우수한 수분차단결과를 있었다. 또한, 모든 층이 원자층증착공정에 의해 형성된 샘플 d의 경우에도, 10-4수준의 WVTR값을 나타내는 것을 확인할 수 있었다. Referring to FIG. 9, when all the layers of the multilayer thin film were formed by a sputtering process, all of them exhibited WVTR values of 10 -1 to 10 -2 . However, as shown in FIG. 10, in the case of a multilayer thin film formed by using a sputtering process and an atomic layer deposition process together, a WVTR value of 10 -4 was displayed, and thus excellent moisture barrier results were obtained. In addition, it was confirmed that all layers exhibited a WVTR value of 10 -4 even in the case of sample d formed by the atomic layer deposition process.

본 발명의 또다른 측면에 따르면, 스퍼터링공정으로 형성된 투명전도성산화물층; 투명전도성산화물층 상에 원자층증착공정으로 형성되되, 일부가 제거되어 투명전도성산화물층이 노출된 금속산화물층; 스퍼터링공정으로 형성된 금속층; 및 금속층 상에 형성된 금속산화물층;을 포함하는 투명전극이 제공된다. 본 발명에 따른 투명전극은 투명전도성 산화물층의 결함을 치유하는 원자층증착공정으로 형성된 금속산화물층, 투명전극의 전도성을 향상시켜 우수한 품질을 보장하는 금속층 및 전체 투명전극의 배리어특성을 향상시키는 최외곽 금속산화물층을 포함한다. 따라서, 우수한 전도성을 나타내며 외부 수분이나 고온에도 신뢰성높은 다층박막필름으로서, 우수한 성능의 투명전극으로도 응용가능하다. According to another aspect of the present invention, a transparent conductive oxide layer formed by a sputtering process; A metal oxide layer formed by an atomic layer deposition process on the transparent conductive oxide layer, and partially removed to expose the transparent conductive oxide layer; A metal layer formed by a sputtering process; And a metal oxide layer formed on the metal layer. The transparent electrode according to the present invention is a metal oxide layer formed by an atomic layer deposition process that heals defects in a transparent conductive oxide layer, a metal layer that guarantees excellent quality by improving the conductivity of the transparent electrode, and the barrier properties of the entire transparent electrode. It includes an outer metal oxide layer. Accordingly, it is a multilayer thin film that exhibits excellent conductivity and is highly reliable even at external moisture or high temperatures, and can be applied as a transparent electrode with excellent performance.

본 발명의 또다른 측면에 따르면, 기판 상에 스퍼터링공정으로 전도성산화물층 및 전도층을 형성하기 위한 스퍼터링부; 스퍼터링부로부터 이동한 잔여가스를 제거하기 위한 버퍼영역부; 및 버퍼영역부를 통과한 전도성산화물층 및 전도층 상에 원자층증착공정으로 각각 제1배리어박막층 및 제2배리어박막층을 형성하기 위한 원자층증착부;를 포함하는 다층박막필름 제조장치(미도시)가 제공된다.According to another aspect of the present invention, a sputtering unit for forming a conductive oxide layer and a conductive layer on a substrate by a sputtering process; A buffer area unit for removing residual gas that has moved from the sputtering unit; And an atomic layer deposition unit for forming a first barrier thin film layer and a second barrier thin film layer, respectively, on the conductive oxide layer and the conductive layer passing through the buffer region by an atomic layer deposition process (not shown). Is provided.

기판은 롤투롤방식으로 스퍼터링부, 버퍼영역부 및 원자층증착부를 이동하는 것일 수 있다. 기판은 롤투롤방식으로 스퍼터링부, 버퍼영역부 및 원자층증착부를 이동하면서, 연속공정으로 전도성산화물층 및 제1배리어박막층이 적층되어 다층박막필름이 형성될 수 있다. 버퍼영역부는 스퍼터링부 및 원자층증착부의 사용가스가 상이하므로, 스퍼터링부로부터의 잔여가스에 의해 원자층증착부에서의 제1배리어박막층의 영향을 제거하기 위한 영역이다. 기판은 스퍼터링부에서 전도성산화물층이 형성되고, 버퍼영역부를 거쳐, 원자층증착부에서 제1배리어박막층이 형성되고, 다시 버퍼영역부를 거쳐 전도층이 형성된다. 이후 버퍼영역부를 거쳐 원자층증착부에서 제2배리어박막층이 형성되면 다층박막필름이 제조될 수 있다.The substrate may move the sputtering portion, the buffer region portion, and the atomic layer deposition portion in a roll-to-roll manner. The substrate may form a multilayer thin film by stacking a conductive oxide layer and a first barrier thin film layer in a continuous process while moving the sputtering part, the buffer region part, and the atomic layer deposition part in a roll-to-roll method. The buffer area portion is a region for removing the influence of the first barrier thin film layer in the atomic layer deposition portion by the residual gas from the sputtering portion because the gas used for the sputtering portion and the atomic layer deposition portion are different. In the substrate, a conductive oxide layer is formed in a sputtering portion, a first barrier thin film layer is formed in an atomic layer deposition portion, and a conductive layer is formed through a buffer region. Thereafter, when the second barrier thin film layer is formed in the atomic layer deposition part through the buffer region part, a multilayer thin film film may be manufactured.

본 실시예에 따른 다층박막필름 제조장치는 에칭부를 더 포함하여, 제1배리어박막층의 일부를 제거하여 전도성산화물층을 노출시킬 수 있다. The apparatus for manufacturing a multilayer thin film according to the present exemplary embodiment may further include an etching part to expose the conductive oxide layer by removing a part of the first barrier thin film layer.

이상, 본 발명의 실시예들에 대하여 설명하였으나, 해당 기술 분야에서 통상의 지식을 가진 자라면 특허청구범위에 기재된 본 발명의 사상으로부터 벗어나지 않는 범위 내에서, 구성 요소의 부가, 변경, 삭제 또는 추가 등에 의해 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이며, 이 또한 본 발명의 권리범위 내에 포함된다고 할 것이다.In the above, embodiments of the present invention have been described, but those of ordinary skill in the relevant technical field add, change, delete or add components within the scope not departing from the spirit of the present invention described in the claims. Various modifications and changes can be made to the present invention by means of the like, and it will be said that this is also included within the scope of the present invention.

100: 다층박막필름
10: 기판
110: 전도성산화물층
111: 결함
112: 노출영역
120: 제1배리어박막층
130: 전도층
140: 제2배리어박막층
100: multilayer thin film
10: substrate
110: conductive oxide layer
111: defect
112: exposure area
120: first barrier thin film layer
130: conductive layer
140: second barrier thin film layer

Claims (12)

전도성산화물층;
전도성산화물층에 형성된 제1배리어박막층;
제1배리어박막층의 일부가 제거되어 노출된 전도성산화물층과 전기적으로 연결되는 전도층; 및
전도층 상의 다층박막필름의 배리어특성을 향상시키기 위하여 전도층 상부 전체에 형성된 제2배리어박막층;을 포함하는 다층박막필름.
A conductive oxide layer;
A first barrier thin film layer formed on the conductive oxide layer;
A conductive layer electrically connected to the exposed conductive oxide layer by removing a portion of the first barrier thin film; And
A multilayer thin film film comprising; a second barrier thin film layer formed over the entire conductive layer in order to improve the barrier properties of the multilayer thin film film on the conductive layer.
청구항 1에 있어서,
전도성산화물층은 ITO(indium tin oxide), IZO(indium zinc oxide), FTO(F-doped tin oxide), ATO(antimony tin oxide), AZO(ZnO:Al), GZO(ZnO:Ga) 및 a-IGZO(In2O3:Ga2O3:ZnO) 중 어느 하나를 포함하는 것을 특징으로 하는 다층박막필름.
The method according to claim 1,
The conductive oxide layer is ITO (indium tin oxide), IZO (indium zinc oxide), FTO (F-doped tin oxide), ATO (antimony tin oxide), AZO (ZnO:Al), GZO (ZnO:Ga) and a- Multilayer thin film comprising any one of IGZO (In 2 O 3 :Ga 2 O 3 :ZnO).
청구항 1에 있어서,
제1배리어박막층 및 제2배리어박막층은 금속산화물을 포함하는 것을 특징으로 하는 다층박막필름.
The method according to claim 1,
The first barrier thin film layer and the second barrier thin film layer are multilayer thin film, characterized in that it contains a metal oxide.
청구항 1에 있어서,
전도층은 은(Ag) 및 구리(Cu) 중 적어도 하나를 포함하는 것을 특징으로 하는 다층박막필름.
The method according to claim 1,
The conductive layer is a multilayer thin film comprising at least one of silver (Ag) and copper (Cu).
청구항 1에 있어서,
전도성산화물층의 두께는 10nm 내지 30nm이고,
제1배리어박막층의 두께는 1.0nm 내지 5.0nm이고,
전도층의 두께는 5 내지 10nm이며,
제2배리어박막층의 두께는 10 내지 30nm인 것을 특징으로 하는 다층박막필름.
The method according to claim 1,
The thickness of the conductive oxide layer is 10 nm to 30 nm,
The thickness of the first barrier thin film layer is 1.0 nm to 5.0 nm,
The thickness of the conductive layer is 5 to 10 nm,
The second barrier thin film layer has a thickness of 10 to 30 nm.
전도성산화물층을 형성하는 제1단계;
전도성산화물층 상에 제1배리어박막층을 형성하는 제2단계;
전도성산화물층이 노출되도록 제1배리어박막층을 일부 제거하는 제3단계;
노출된 전도성산화물층과 접촉되도록 제1배리어박막층 상에 전도층을 형성하는 제4단계; 및
전도층 상부 전체에 다층박막필름의 배리어특성을 향상시키기 위하여 제2배리어박막층을 형성하는 제5단계;를 포함하는 다층박막필름 제조방법.
A first step of forming a conductive oxide layer;
A second step of forming a first barrier thin film layer on the conductive oxide layer;
A third step of partially removing the first barrier thin film layer so that the conductive oxide layer is exposed;
A fourth step of forming a conductive layer on the first barrier thin film layer to contact the exposed conductive oxide layer; And
A method for manufacturing a multilayer thin film comprising; a fifth step of forming a second barrier thin film layer on the entire upper part of the conductive layer to improve the barrier properties of the multilayer thin film film.
청구항 6에 있어서,
제1단계 및 제4단계는 스퍼터링공정으로 수행되는 것을 특징으로 하는 다층박막필름 제조방법.
The method of claim 6,
The first step and the fourth step are multilayer thin film manufacturing method, characterized in that performed by a sputtering process.
청구항 6에 있어서,
제2단계는 원자층증착공정으로 수행되는 것을 특징으로 하는 다층박막필름 제조방법.
The method of claim 6,
The second step is a method of manufacturing a multilayer thin film, characterized in that it is performed by an atomic layer deposition process.
청구항 6에 있어서,
제3단계는 전도성산화물층 에칭속도 및 제1배리어박막층의 에칭속도가 상이한 에칭공정으로 수행되는 것을 특징으로 하는 다층박막필름 제조방법.
The method of claim 6,
The third step is a method of manufacturing a multilayer thin film, characterized in that the etching rate of the conductive oxide layer and the etching rate of the first barrier thin layer are performed by different etching processes.
스퍼터링공정으로 형성된 투명전도성산화물층;
투명전도성산화물층 상에 원자층증착공정으로 형성되되, 일부가 제거되어 투명전도성산화물층이 노출된 금속산화물층;
스퍼터링공정으로 형성된 금속층; 및
금속층 상에 투명전극의 배리어특성을 향상시키기 위하여 금속층 상부 전체에 형성된 금속산화물층;을 포함하는 투명전극.
A transparent conductive oxide layer formed by a sputtering process;
A metal oxide layer formed by an atomic layer deposition process on the transparent conductive oxide layer, and partially removed to expose the transparent conductive oxide layer;
A metal layer formed by a sputtering process; And
A transparent electrode comprising a; a metal oxide layer formed over the entire metal layer to improve the barrier property of the transparent electrode on the metal layer.
기판 상에 스퍼터링공정으로 전도성산화물층 및 전도층을 형성하기 위한 스퍼터링부;
스퍼터링부로부터 이동한 잔여가스를 제거하기 위한 버퍼영역부; 및
버퍼영역부를 통과한 전도성산화물층 및 전도층 상에 원자층증착공정으로 각각 제1배리어박막층 및 제2배리어박막층을 형성하기 위한 원자층증착부;를 포함하는 다층박막필름 제조장치.
A sputtering unit for forming a conductive oxide layer and a conductive layer on a substrate by a sputtering process;
A buffer area unit for removing residual gas that has moved from the sputtering unit; And
A multilayer thin film manufacturing apparatus comprising: an atomic layer deposition unit for forming a first barrier thin film layer and a second barrier thin film layer, respectively, on the conductive oxide layer passing through the buffer region and the atomic layer deposition process on the conductive layer.
청구항 11에 있어서,
기판은 롤투롤방식으로 스퍼터링부, 버퍼영역부 및 원자층증착부를 이동하는 것을 특징으로 하는 다층박막필름 제조장치.
The method of claim 11,
The substrate is a multilayer thin film manufacturing apparatus, characterized in that moving the sputtering portion, the buffer region portion and the atomic layer deposition portion in a roll-to-roll method.
KR1020180089595A 2018-07-31 2018-07-31 Multi-layered structure and manufacturing method thereof KR102146448B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180089595A KR102146448B1 (en) 2018-07-31 2018-07-31 Multi-layered structure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180089595A KR102146448B1 (en) 2018-07-31 2018-07-31 Multi-layered structure and manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR20200014472A KR20200014472A (en) 2020-02-11
KR102146448B1 true KR102146448B1 (en) 2020-08-21

Family

ID=69568596

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180089595A KR102146448B1 (en) 2018-07-31 2018-07-31 Multi-layered structure and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR102146448B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112713394A (en) * 2020-12-20 2021-04-27 英特睿达(山东)电子科技有限公司 Hybrid transparent antenna

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009043974A (en) * 2007-08-09 2009-02-26 Tokyo Electron Ltd Manufacturing method of semiconductor device, treatment device of semiconductor substrate, and storage medium

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101736483B1 (en) * 2015-09-18 2017-05-16 에스케이씨하스디스플레이필름(유) Method and apparatus for preparing barrier film
KR102680283B1 (en) * 2016-08-29 2024-07-03 한국재료연구원 Copper thin layer substrate and fabrication method for the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009043974A (en) * 2007-08-09 2009-02-26 Tokyo Electron Ltd Manufacturing method of semiconductor device, treatment device of semiconductor substrate, and storage medium

Also Published As

Publication number Publication date
KR20200014472A (en) 2020-02-11

Similar Documents

Publication Publication Date Title
JP5400019B2 (en) THIN FILM TRANSISTOR, ITS MANUFACTURING METHOD, AND ORGANIC ELECTROLUMINESCENT DEVICE EQUIPPED WITH THIN FILM TRANSISTOR
CN102097487B (en) Oxide semiconductor thin film transistor and method of manufacturing the same
KR101648684B1 (en) Thin film transistor
KR20230048490A (en) Array Substrate For Thin Film Transistor
US9947796B2 (en) Oxide thin film transistor and manufacturing method thereof, array substrate and display device
JP5615744B2 (en) FIELD EFFECT TRANSISTOR, DISPLAY DEVICE, SENSOR, AND METHOD FOR MANUFACTURING FIELD EFFECT TRANSISTOR
KR20190045659A (en) Thin film trnasistor comprising 2d semiconductor and display device comprising the same
KR101145916B1 (en) Method for manufacturing flexible multilayer transparent eletrode
KR20150016789A (en) Thin film transistor and method for fabricating the same
CN104882486B (en) High mobility, high stability metal oxide thin-film transistor and preparation technology thereof
WO2015119385A1 (en) Thin-film transistor having active layer made of molybdenum disulfide, method for manufacturing same, and display device comprising same
CN103972110B (en) Thin-film transistor and preparation method thereof, array base palte, display unit
KR102166272B1 (en) Thin film transistor, display substrate having the same and method of manufacturing a thin film transistor
KR102578422B1 (en) Thin film transistor having supporting layer, method for manufacturing the same and display device comprising the same
CN107104150A (en) Metal oxide TFT devices and preparation method thereof
US9153651B2 (en) Thin film transistor and method for manufacturing the same
JP2010165999A (en) Method for manufacturing thin film transistor and method for manufacturing electro-optical device
KR20090066245A (en) Transparent conductive film and method for preparing the same
KR102146448B1 (en) Multi-layered structure and manufacturing method thereof
CN103337462A (en) Preparation method of thin film transistor
CN108878683B (en) A kind of metal oxide stack field-effect electrode
KR101851428B1 (en) Thin-film transistor, display device, image sensor, and x-ray sensor
KR20160137129A (en) Thin film transistor, display with the same, and method of fabricating the same
US9559249B2 (en) Microwave-annealed indium gallium zinc oxide films and methods of making the same
TW201936951A (en) Oxide semiconductor thin film, thin film transistor, and sputtering target

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant