KR102144929B1 - Manufacture method of ceramics sintered body - Google Patents

Manufacture method of ceramics sintered body Download PDF

Info

Publication number
KR102144929B1
KR102144929B1 KR1020190062657A KR20190062657A KR102144929B1 KR 102144929 B1 KR102144929 B1 KR 102144929B1 KR 1020190062657 A KR1020190062657 A KR 1020190062657A KR 20190062657 A KR20190062657 A KR 20190062657A KR 102144929 B1 KR102144929 B1 KR 102144929B1
Authority
KR
South Korea
Prior art keywords
weight
parts
molded product
temperature
ceramic
Prior art date
Application number
KR1020190062657A
Other languages
Korean (ko)
Inventor
박병옥
Original Assignee
주식회사 동국세라믹
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 동국세라믹 filed Critical 주식회사 동국세라믹
Priority to KR1020190062657A priority Critical patent/KR102144929B1/en
Application granted granted Critical
Publication of KR102144929B1 publication Critical patent/KR102144929B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0038Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by superficial sintering or bonding of particulate matter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • B28B11/243Setting, e.g. drying, dehydrating or firing ceramic articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/02Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein a ram exerts pressure on the material in a moulding space; Ram heads of special form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/20Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/04Clay; Kaolin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/131Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/30Drying methods
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/32Burning methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

Disclosed is a method for manufacturing a sintered body of low-temperature sintered lightweight porous ceramics. According to the present invention, the method comprises: a base material mixing step of mixing a ceramic base material including 50-80 parts by weight of white clay, 20-50 parts by weight of clay, and 10-30 parts by weight of decomposed granite with 5-20 parts by weight of nanosilica solution or powder including 5-20 parts by weight of alkali materials; a base material kneading and aging step of uniformly kneading and aging the ceramic base material mixed with 10-20 parts by weight of water; a base material forming step of inputting the kneaded and aged ceramic base material into a mold to perform press-molding or inputting the same into an extruder to perform extrusion molding; a molded product drying step of drying a molded product at 50-150°C for 2-72 hrs; and a molded product sintering step (S5) of sintering a dry molded product at 900-1,050°C for 10-36 hrs. Accordingly, the sintering temperature of a ceramic material is lowered, and thus energy required for sintering is reduced. Moreover, since pores are formed inside a sintered material, the weight of the sintered material is reduced and thermal conductivity is reduced, thereby maximizing insulation performance.

Description

저온소결 경량 다공세라믹 소결재 제조방법{MANUFACTURE METHOD OF CERAMICS SINTERED BODY}Manufacturing method of low-temperature sintered lightweight porous ceramic sintered material{MANUFACTURE METHOD OF CERAMICS SINTERED BODY}

본 발명은 저온소결 경량 다공세라믹 소결재 제조방법에 관한 것으로, 더욱 상세하게는 소결에 필요한 에너지를 절감하고 소결재 내부에 기공을 구비하여 무게를 경량화하며 열전도율을 낮추어 단열성능을 극대화한 저온소결 경량 다공세라믹 소결재 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a low-temperature sintered lightweight porous ceramic sintering material, and more particularly, a low-temperature sintering lightweight that reduces energy required for sintering and provides pores in the sintered material to reduce weight and reduce thermal conductivity to maximize thermal insulation performance. It relates to a method for manufacturing a porous ceramic sintered material.

일반적으로 세라믹 벽돌이나 타일은 소결 시 소성온도를 낮추기 위해 화력발전소에서 발생하는 미 연소 탄소성분이 함유된 석탄재(플라이애쉬나 바텀애쉬)를 주로 사용하거나 또는 제지소각회 등을 사용하고 있으며, 미연소 탄소성분의 소결 시 휘발됨으로 공극을 만들어 소재를 경량화 하고 있다.In general, ceramic bricks or tiles mainly use coal ash (fly ash or bottom ash) containing unburned carbon components generated in thermal power plants to lower the firing temperature during sintering, or paper incineration ash, etc. When the carbon component is sintered, it is volatilized to create voids, thus reducing the weight of the material.

그러나, 미분탄을 사용하는 석탄 화력발전소에서 배출되는 플라이애쉬의 사용은 그 일부를 콘크리트 혼화제로 활용하고 나머지 대부분은 매립 처리하므로 매년 수백만톤에 달하는 플라이애쉬의 처리방법에 대한 대안이 강구되지 않아 환경적인 문제로 대두되고 있는 실정이다.However, the use of fly ash discharged from coal-fired power plants using pulverized coal utilizes part of it as a concrete admixture and most of it is landfilled.Therefore, no alternative to the treatment method of millions of tons of fly ash every year has been found. It is being raised as a problem.

또한 플라이애쉬 입자간 소결온도는 사용하는 석탄과 연소조건에서 생성된 플라이애쉬의 조성에 따라 약간씩 변화하며 통상 약 1,400℃ 이상이 되고 일부 표면조성의 연화점 역시 약 1,200℃ 이상인 것으로 알려져 있으므로 소성온도보다 낮은 저온에서 소성시키기 위해서는 저온에서 용융하며 보다 강한 결합력을 가지는 융제를 사용하거나 액상의 점결제를 사용해야 하는 문제점이 있다.In addition, the sintering temperature between fly ash particles varies slightly depending on the composition of the coal used and the fly ash generated under the combustion conditions, and it is usually about 1,400°C or higher, and the softening point of some surface compositions is also known to be about 1,200°C or higher. In order to sinter at a low low temperature, there is a problem in that a flux melts at a low temperature and has a stronger bonding force or a liquid binder needs to be used.

이를 해결하기 위해 종래 기술로, 등록특허 10-0432775호인 저온소성 성형벽돌 제품의 조성물 및 그 제조방법이 안출된 바 있으며, 이는 다량의 미 연소 탄소분이 함유된 플라이애쉬를 주로 사용하고 규산소다와 산화철을 첨가하여 상온에서 혼합, 성형하여 소성한 벽돌을 제조하는 것으로 플라이애쉬를 대량으로 활용하여 환경 친화적이며 저온 소성으로 인한 에너지를 절감시키고 압축강도가 양호하고 밀도가 작아 경량제품으로 제조가 가능하고 수축률이 작아서 제품의 치수 안정성과 불량률이 적은 소성벽돌을 제조할 수 있도록, 플라이애쉬 100중량부에 대하여 산화철 5-15중량부를 첨가시켜 혼합한 후 액상규산소다 20-40중량부를 첨가하여 균질 및 혼합시켜서 상기 혼합물을 금형에 장입하고 100-200kg/cm2 의 성형압력으로 압축, 탈형하고 건조된 성형물을 50℃, 105℃ 및 550℃에서 각각 2시간 유지한 후 최종적으로 약 850℃에서 4시간 소성한 후 냉각시켜서 제조하도록 하고 있다.In order to solve this problem, as a conventional technology, a composition of a low-temperature-fired molding brick product of Registration Patent No. 10-0432775 and a method for manufacturing the same have been devised, which mainly uses fly ash containing a large amount of unburned carbon, and uses sodium silicate and iron oxide. It is environmentally friendly by using a large amount of fly ash and saves energy due to low temperature firing, and has good compressive strength and low density, so it can be manufactured as a lightweight product and shrinkage rate. In order to produce a small, dimensional stability and low defect rate of the product, 5-15 parts by weight of iron oxide is added and mixed with respect to 100 parts by weight of fly ash, and then 20-40 parts by weight of liquid sodium silicate is added and homogenized and mixed. After loading the mixture into a mold, compressing and demolding at a molding pressure of 100-200kg/cm2, and holding the dried molding at 50°C, 105°C and 550°C for 2 hours, and finally firing at about 850°C for 4 hours It is prepared by cooling.

그러나, 이러한 종래 기술에 의해 제조된 벽돌의 경우에는 일반적으로 생산하는 점토벽돌로 인식하기 어려워 실질적으로 건축물의 외관에 적합하지 않은 문제점이 있다.However, in the case of a brick manufactured according to the prior art, it is difficult to recognize it as a commonly produced clay brick, and thus there is a problem that is not substantially suitable for the exterior of a building.

더욱이, 미연소 탄소성분이 포함된 플라이애쉬를 사용함에 따라 다공성 및 경량화는 물론 소성온도를 낮추었다고 할 수 있으나, 석탄 화력발전소의 경우 대기환경 문제로 인해 점차적으로 가동이 중단되는 추세임을 감안할 때 장기적으로 미연소 탄소성분이 포함된 플라이애쉬를 사용하여 벽돌을 제조할 수 없게 되어 이를 대체할 기술 개발이 절실하게 요구되고 있는 실정이다.Moreover, it can be said that the use of fly ash containing unburned carbon has reduced porosity and weight as well as lowering the firing temperature.However, considering that coal-fired power plants are gradually shutting down due to atmospheric environmental problems, in the long term. As a result, it is impossible to manufacture bricks using fly ash containing unburned carbon, and there is an urgent need to develop technologies to replace them.

뿐만 아니라, 세라믹소재로 제조되는 점토벽돌은 주성분이 규산 알루미늄 물질인 실리카가 주성분으로 알루미나가 첨가되고 있으며, 산화철, 산화나트륨, 산화칼륨, 산화칼슘, 산화마그네슘, 이산화티타늄이 소량의 비율로 첨가되는 것으로, 이 중 알카리 금속성분인 산화나트륨이나 산화칼륨이 소성 시 가장 큰 소결재 역할을 하고 부가적으로 알카리 토금속 성분인 산화칼슘이나 산화마그네슘이 소결재 역할을 하고는 있으나, 점토 벽돌 제조를 위해 사용되는 자연광물 중에 존재하는 규산 알류미늄질 원료인 점토 광물은 소결재 역할을 하는 산화나트륨이나 산화칼륨 성분이 극히 미미하여 제품 제조 시 높은 온도에서 소결을 위해 다량의 에너지를 소비하고 있으며, 이는 에너지 사용량 증가에 따른 대기환경 문제의 발생과 천연 에너지 자원의 부족으로 인해 지구 생태계를 위협하게 되는 문제점이 야기되고 있다.In addition, in clay bricks made of ceramic materials, alumina is added as a main component of silica, which is an aluminum silicate material, and iron oxide, sodium oxide, potassium oxide, calcium oxide, magnesium oxide, and titanium dioxide are added in small proportions. Among them, sodium oxide or potassium oxide, which is an alkali metal component, serves as the largest sintering material during firing, and calcium oxide or magnesium oxide, which is an alkaline earth metal component, serves as a sintering material, but is used for the manufacture of clay bricks. Clay minerals, which are the raw materials of aluminum silicate, which exist among natural minerals, have very little sodium oxide or potassium oxide that acts as a sintering material, so they consume a lot of energy for sintering at high temperatures during product manufacturing, which is due to an increase in energy consumption. As a result, there is a problem that threatens the global ecosystem due to the occurrence of air environment problems and lack of natural energy resources.

특허문헌 1 : 대한민국등록특허 10-0432775호(2004.05.13. 등록)Patent Document 1: Korean Patent Registration No. 10-0432775 (registered on May 13, 2004) 특허문헌 2 : 대한민국등록특허 10-0678365호(2007.01.29. 등록)Patent Document 2: Korean Patent Registration No. 10-0678365 (registered on January 29, 2007)

본 발명은 미연소 탄소성분이 포함된 석탄회를 대체할 수 있으며 소재의 소결 시 저온소결이 가능한 알카리가 5 ~ 20 중량부 함유된 나노실리카졸 또는 나노실리카분말을 소결재에 혼합하여 소결재의 소결 온도를 낮추고 소결재와 알카리가 함유된 나노실리카 분말의 소결 온도차이에 의한 공극이 생성되도록 하여 무게를 경량화할 수 있으며 다공성에 의해 물류비 절감 및 단열성능을 높일 수 있도록 한 저온소결 경량 다공세라믹 소결재 제조방법을 제공함에 그 목적이 있다.The present invention can replace coal ash containing unburned carbon and sintering of sintered material by mixing nano-silica sol or nano-silica powder containing 5 to 20 parts by weight of alkali that can be sintered at low temperature when sintering the material. A low-temperature sintered lightweight porous ceramic sintering material that reduces the temperature and creates voids due to the difference in sintering temperature between the sintered material and the alkali-containing nano-silica powder, thereby reducing the weight and reducing logistics costs and increasing the insulation performance by porosity. Its purpose is to provide a manufacturing method.

상기 목적을 달성하기 위한 수단으로 본 발명인 저온소결 경량 다공세라믹 소결재 제조방법은, 백토 50 ~ 80 중량부, 점토 20 ~ 50 중량부, 마사 10 ~ 30 중량부로 이루어진 세라믹 소지에 알카리가 5 ~ 20 중량부 함유된 나노실리카졸 또는 나노실리카분말 5 ~ 20 중량부를 혼합하여 세라믹소지를 혼합하는 소지혼합단계; 소지혼합단계 후, 수분 10 ~ 20 중량부로 혼합된 세라믹 소지를 균일하게 반죽하고 숙성하는 소지반죽 및 숙성단계; 소지반죽 및 숙성단계 후, 반죽 숙성된 세라믹 소지를 성형틀에 넣고 가압하여 성형하거나 또는 토련기에 투입하여 압출성형하는 소지 성형단계; 소지 성형단계 후, 성형품을 50 ~ 150℃ 온도에서 2 ~ 72 시간 건조하는 성형품 건조단계; 성형품 건조단계 후, 건조된 성형품을 900 ~ 1050℃의 온도에서 10 ~ 36 시간 소성하는 건조품 소성단계로 구비되어 이루어진다.As a means for achieving the above object, the method for manufacturing a low-temperature sintered lightweight porous ceramic sintered material according to the present invention includes 5 to 20 parts by weight of alkali in a ceramic base consisting of 50 to 80 parts by weight of clay, 20 to 50 parts by weight of clay, and 10 to 30 parts by weight of mass. A body-mixing step of mixing 5 to 20 parts by weight of the nano-silica sol or nano-silica powder contained in parts by weight to mix the ceramic body; After the body mixing step, the body kneading and aging step of uniformly kneading and aging the ceramic body mixed with a moisture content of 10 to 20 parts by weight; After the body kneading and aging step, the body molding step of putting the dough-aged ceramic body into a mold and molding by pressing or putting it into a clay mill for extrusion molding; After the body molding step, the molded article drying step of drying the molded article at a temperature of 50 ~ 150 ℃ 2 ~ 72 hours; After the molded product drying step, the dried molded product is fired at a temperature of 900 to 1050°C for 10 to 36 hours.

본 발명은 점토와 백토 또는 마사(sand)를 포함하는 세라믹 소지에 알카리가 함유된 나노실리카졸 또는 나노실리카분말을 이용하여 세라믹 소지의 소결을 위한 소성 시 소성온도를 낮추고 소결에 필요한 에너지를 절감할 수 있으며, 소결재 내부에 기공이 구비됨에 따라 소결재의 무게를 경량화할 수 있어 물류비 절감은 물론 시공에 따른 시공성 및 작업성을 크게 향상시킬 수 있으며 기공에 의한 열전도율을 낮출 수 있어 단열성능을 높여 건축자재로 사용할 때 건축물의 냉방은 물론 난방용 에너지를 크게 절감할 수 있다.The present invention uses nano-silica sol or nano-silica powder containing alkali in a ceramic body including clay and clay or sand to reduce the sintering temperature and reduce energy required for sintering. And, as pores are provided inside the sintered material, the weight of the sintered material can be reduced, reducing logistics costs, as well as improving workability and workability according to construction, and lowering the thermal conductivity due to pores, thereby increasing the insulation performance. When used as a building material, energy for heating as well as cooling of buildings can be greatly reduced.

도 1은 본 발명인 저온소결 경량 다공세라믹 소결재 제조방법의 공정을 나타낸 공정도이다.
도 2는 저온소결 경량 다공세라믹 소결재 제조방법에 의해 제조된 소결재를 나타낸 사진이다.
1 is a flow chart showing the process of the method of manufacturing a low-temperature sintered lightweight porous ceramic sintered material according to the present invention.
Figure 2 is a photograph showing a sintered material manufactured by the low-temperature sintered lightweight porous ceramic sintered material manufacturing method.

이하, 상기 목적 외에 본 발명의 다른 목적 및 특징들은 첨부 도면을 참조한 실시예에 대한 설명을 통하여 명백히 드러나게 될 것이다.Hereinafter, other objects and features of the present invention in addition to the above objects will be clearly revealed through the description of the embodiments with reference to the accompanying drawings.

다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가진 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which the present invention belongs. Terms such as those defined in a commonly used dictionary should be interpreted as having a meaning consistent with the meaning of the related technology, and should not be interpreted as an ideal or excessively formal meaning unless explicitly defined in this application. Does not.

이하에서는, 본 발명의 실시예에 따른 저온소결 경량 다공세라믹 소결재 제조방법을 첨부된 도면을 참고하여 좀 더 구체적으로 설명한다.Hereinafter, a method of manufacturing a low-temperature sintered lightweight porous ceramic sintered material according to an embodiment of the present invention will be described in more detail with reference to the accompanying drawings.

도시된 바와 같이 본 발명은, 백토 50 ~ 80 중량부, 점토 20 ~ 50 중량부, 마사 10 ~ 30 중량부로 이루어진 세라믹 소지에 알카리가 5 ~20 중량부 함유된 나노실리카졸 또는 나노실리카분말 5 ~ 20 중량부 혼합하여 세라믹소지를 혼합하는 소지혼합단계(S1)와, 소지혼합단계(S1) 후 수분 10 ~ 20 중량부로 혼합된 세라믹 소지를 균일하게 반죽하고 숙성하는 소지반죽 및 숙성단계(S2)와, 소지반죽 및 숙성단계(S2) 후 반죽 숙성된 세라믹 소지를 성형틀에 넣고 가압하여 성형하거나 또는 토련기에 투입하여 압출성형하는 성형품 성형단계(S3), 성형품 성형단계(S3) 후 성형품을 50 ~ 150℃ 온도에서 2 ~ 72 시간 건조하는 성형품 건조단계(S4) 및 성형품 건조단계(S4) 후 건조된 성형품을 900 ~ 1050℃의 온도에서 10 ~ 36 시간 소성하는 성형품 소성단계(S5)로 구비되어 이루어진다.As shown in the present invention, 50 to 80 parts by weight of clay, 20 to 50 parts by weight of clay, and 5 to 20 parts by weight of alkaline are contained in a ceramic base consisting of 10 to 30 parts by weight of masa, nano silica sol or nano silica powder 5 to The body kneading and aging step (S2) of uniformly kneading and aging the ceramic body mixed with a moisture content of 10 to 20 parts by weight after the body mixing step (S1) of mixing 20 parts by weight of the ceramic body and the body mixing step (S1) Wow, after the kneading and aging step (S2), the molded product is molded by putting the dough-aged ceramic material into a mold and pressing it or putting it into a clay mill for extrusion molding (S3) and the molded product after the molding step (S3). The molded product drying step (S4) dried at ~ 150℃ for 2 to 72 hours and the molded product dried after the molded product drying step (S4) are fired at a temperature of 900 to 1050℃ for 10 to 36 hours. Is done.

[소지혼합단계][Body mixing step]

본 발명의 소지혼합단계(S1)는, 백토 50 ~ 80 중량부, 점토 20 ~ 50 중량부, 마사(sand) 10 ~ 30 중량부로 이루어진 세라믹 소지에 알카리가 5 ~ 20 중량부 함유된 나노실리카졸 또는 나노실리카분말 5 ~ 20 중량부를 혼합하여 세라믹소지를 혼합하는 단계로, 이 때 나노실리카졸 또는 나노실리카분말은, 정량공급펌프 또는 정량 스크류피더를 이용하여 공급 혼합한다.The material mixing step (S1) of the present invention is a nano silica sol containing 5 to 20 parts by weight of alkali in a ceramic base consisting of 50 to 80 parts by weight of clay, 20 to 50 parts by weight of clay, and 10 to 30 parts by weight of sand Alternatively, a step of mixing 5 to 20 parts by weight of the nano silica powder to mix the ceramic body, wherein the nano silica sol or nano silica powder is supplied and mixed using a quantitative supply pump or a quantitative screw feeder.

상기 원료 배합에 있어 백토 및 점토의 비율이 증가할 경우 세라믹 소지의 가소성이 증가되는 반면, 건조 및 소성시간이 증가하고 동시에 건조 수축 및 소성수축율이 증가되기 때문에 백토 50 ~ 80 중량부, 점토 20 ~ 50 중량부를 한정하는 것이 바람직하다.When the ratio of clay and clay increases in the raw material formulation, the plasticity of the ceramic material increases, while drying and firing time increases, and at the same time, drying shrinkage and firing shrinkage rate increase, so 50 to 80 parts by weight of clay, 20 to 20 parts by weight of clay. It is preferable to limit 50 parts by weight.

또한 상기 마사(sand)는 세라믹 소지의 뼈대 기능을 하는 것으로, 마사가 10 ~ 30 중량부 이상으로 혼합될 경우 가소성을 낮추게 되고 소성 후 물리적 성능이 저하되기 때문에 10 ~ 30 중량부로 한정하는 것이 바람직하다.In addition, the sand serves as a skeleton for the ceramic base, and when the mass is mixed in an amount of 10 to 30 parts by weight or more, plasticity is lowered and the physical performance after firing is deteriorated, so it is preferable to limit it to 10 to 30 parts by weight. .

또한 상기 알카리가 5 ~ 20 중량부 함유된 나노실리카졸 또는 나노실리카분말을 5 ~ 20 중량부로 한정하는 이유는 상기 나노실리카졸 또는 나노실리카분말이 20 중량부 이상으로 혼합될 경우 소성된 성형품의 물리적 성능은 개선될 수 있으나 제조 공정상 여러 문제가 발생되기 때문에 상기 나노실리카졸 또는 나노실리카분말을 5 ~ 20 중량부로 한정한다.In addition, the reason why the nano-silica sol or nano-silica powder containing 5 to 20 parts by weight of alkali is limited to 5 to 20 parts by weight is that when the nano-silica sol or nano-silica powder is mixed in more than 20 parts by weight, the physical The performance can be improved, but since various problems occur in the manufacturing process, the nanosilicasol or nanosilica powder is limited to 5 to 20 parts by weight.

백토는 산화철 함량이 거의 포함되지 않은 미세입자로 구성된 규산 알루미늄질로 수분을 함유하면 가소성을 나타내고 건조하면 강도를 나타내는 물질로, 소성하면 흰색으로 나타난다.Clay is an aluminum silicate composed of fine particles containing little iron oxide. When it contains moisture, it exhibits plasticity, and when dried, it exhibits strength, and when it is fired, it appears white.

점토는 백토와 비슷한 화학성분과 물리적인 특성을 나타내지만 산화철 함량이 일정향 포함되어 있어 소성하면 핑크색상이나 붉은 색으로 나타난다.Clay shows similar chemical composition and physical properties to white clay, but contains a certain amount of iron oxide, so it appears pink or red when fired.

이와 같이 백토와 점토는, 모두 가소성을 가지며 미세한 입자로 구성되어 있기 때문에 제품을 생산할 때 생산성을 높기 위해 마사(sand)를 일정량 혼합하는 것이다.In this way, since both clay and clay have plasticity and are composed of fine particles, a certain amount of sand is mixed in order to increase productivity when producing a product.

또한 나노실리카졸은 70 ~ 90 중량부의 실리카입자에 5 ~ 20 중량부의 나트륨입자가 물에 희석되어 있는 것이고, 나노실리카분말은 나노실리카졸에 포함된 수분을 제거하고 건조하여 분말화 한 것이다.In addition, nano-silica sol is 70 to 90 parts by weight of silica particles and 5 to 20 parts by weight of sodium particles are diluted in water, and nano-silica powder is powdered by removing moisture contained in nano-silica sol and drying.

[소지반죽 및 숙성단계][Battery dough and aging stage]

본 발명의 소지반죽 및 숙성단계(S2)는, 소지혼합단계(S1)에 의해 혼합된 세라믹소지에 수분 즉 물을 10 ~ 20 중량부를 투입하고 퍼그밀을 이용하여 균일하게 혼합한 다음 숙성하는 것으로, 이 때 상기 소지반죽 및 숙성단계(S1)에서 숙성시간은, 12 ~ 36 시간 방치하여 숙성한다.In the dough and aging step (S2) of the present invention, 10 to 20 parts by weight of water, that is, water, is added to the ceramic substrate mixed by the substrate mixing step (S1), uniformly mixed using a pug mill, and then aged. , At this time, the aging time in the base dough and aging step (S1) is aged by leaving 12 to 36 hours.

이는 수분이 세라믹 소지에 골고루 분포되도록 하여 가소성을 향상시키고 건조강도를 증진시키기 위함이다.This is to improve plasticity and dry strength by allowing moisture to be evenly distributed on the ceramic substrate.

[성형품 성형단계][Molded product molding step]

본 발명의 성형품 성형단계(S3)는, 혼합 및 숙성된 세라믹 소지를 일정한 모양의 금형에 공급하여 가압성형 또는 압출성형에 의해 성형품을 성형하는 것으로, 가압성형은 유압프레스를 이용하여 150kg/cm2의 압력을 이용하여 가압성형하고, 압출성형은 토련기를 이용하여 210 ~ 230암페어(A)전력으로 압출 성형한다.In the molded product molding step (S3) of the present invention, the mixed and aged ceramic material is supplied to a mold of a certain shape to form a molded product by pressure molding or extrusion molding, and the pressure molding is 150kg/cm2 using a hydraulic press. Press-molding using pressure, and extrusion molding with 210 to 230 amps (A) power using an earth mill.

[성형품 건조단계][Molded product drying stage]

본 발명의 성형품 건조단계(S4)는, 성형품을 50 ~ 150℃ 온도에서 2 ~ 72 시간 건조하는 것이다.The molded article drying step (S4) of the present invention is to dry the molded article at a temperature of 50 to 150° C. for 2 to 72 hours.

이 때, 상기 성형품 건조단계(S4)는 드라이오븐 또는 건조실을 이용하여 성형품을 건조하는 것으로, 세라믹 소지의 수분함량이 1 중량부 이하가 되도록 조절하여 건조하면 되는 것이며, 열풍을 이용하여 건조시간을 단축시킬 수 있음은 물론이다.In this case, in the step of drying the molded product (S4), the molded product is dried using a dry oven or a drying chamber, and the moisture content of the ceramic body can be adjusted to be 1 part by weight or less, and dried. Of course, it can be shortened.

[성형품 소성단계][Molded product firing stage]

본 발명의 성형품 소성단계(S5)는, 전기로나 소성가마를 이용하여 건조된 성형품을 900 ~ 1050℃의 온도에서 10 ~ 36 시간 소성하는 것으로, 이 때 세라믹 소지입자를 코팅하고 있는 나노실리카졸이나 나노실리카분말의 융점이 세라믹소지의 융점보다 낮기 때문에 세라믹소지에 비해 나노실리카졸이나 나노실리카분말이 먼저 수축되어 동시에 기공이 형성된다.In the sintering step (S5) of the molded article of the present invention, the molded article dried using an electric furnace or a firing kiln is calcined for 10 to 36 hours at a temperature of 900 to 1050°C. At this time, the nano silica sol coating the ceramic base particles or Since the melting point of the nano-silica powder is lower than that of the ceramic body, the nano-silica sol or the nano-silica powder first shrinks compared to the ceramic body to form pores at the same time.

Figure 112019054776250-pat00001
Figure 112019054776250-pat00001

Figure 112019054776250-pat00002
Figure 112019054776250-pat00002

Figure 112019054776250-pat00003
Figure 112019054776250-pat00003

Figure 112019054776250-pat00004
Figure 112019054776250-pat00004

Figure 112019054776250-pat00005
Figure 112019054776250-pat00005

Figure 112019054776250-pat00006
Figure 112019054776250-pat00006

이상과 같이 본 발명에서는 구체적인 구성 요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.As described above, in the present invention, specific matters such as specific components, etc., and limited embodiments and drawings have been described, but this is provided only to help a more general understanding of the present invention, and the present invention is not limited to the above embodiments. , If a person of ordinary skill in the field to which the present invention belongs, various modifications and variations are possible from these descriptions.

따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 청구범위뿐 아니라 이 청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.Accordingly, the spirit of the present invention is limited to the described embodiments and should not be defined, and all things equivalent or equivalent to the claims as well as the claims to be described later belong to the scope of the inventive concept.

S1 : 소지 혼합단계 S2 : 소지반죽 및 숙성단계
S3 : 소지 성형단계 S4 : 성형품 건조단계
S5 : 건조품 소성단계
S1: Body mixing step S2: Base dough and aging step
S3: Body molding step S4: Molded product drying step
S5: Dry product firing step

Claims (4)

백토 50 ~ 80 중량부, 점토 20 ~ 50 중량부, 마사 10 ~ 30 중량부로 이루어진 세라믹 소지에 알카리가 5 ~ 20 중량부 함유된 나노실리카졸 또는 나노실리카분말 5 ~ 20 중량부를 혼합하여 세라믹소지를 혼합하는 소지혼합단계(S1);
소지혼합단계(S1) 후,
수분 10 ~ 20 중량부로 혼합된 세라믹 소지를 균일하게 반죽하고 숙성하는 소지반죽 및 숙성단계(S2);
소지반죽 및 숙성단계(S2) 후,
반죽 숙성된 세라믹 소지를 성형틀에 넣고 가압하여 성형하거나 또는 토련기에 투입하여 압출성형하는 소지 성형단계(S3);
소지 성형단계(S3) 후,
성형품을 50 ~ 150℃ 온도에서 2 ~ 72 시간 건조하는 성형품 건조단계(S4);
성형품 건조단계(S4) 후,
건조된 성형품을 900 ~ 1050℃의 온도에서 10 ~ 36 시간 소성하는 성형품 소성단계(S5)로 구비되어 이루어지는 것을 특징으로 하는 저온소결 경량 다공세라믹 소결재 제조방법.
A ceramic base made of 50 to 80 parts by weight of clay, 20 to 50 parts by weight of clay, and 10 to 30 parts by weight of masa is mixed with 5 to 20 parts by weight of nano silica sol or nano silica powder containing 5 to 20 parts by weight of alkali. The body mixing step (S1) of mixing;
After the body mixing step (S1),
The base kneading and aging step (S2) of uniformly kneading and aging the ceramic base mixed with a moisture content of 10 to 20 parts by weight (S2);
After the base dough and aging step (S2),
A body molding step (S3) of putting the dough-aged ceramic body into a molding mold and pressing it or putting it into a clay mill for extrusion molding;
After the body molding step (S3),
The molded article drying step (S4) of drying the molded article at a temperature of 50 to 150°C for 2 to 72 hours;
After the molded product drying step (S4),
A method for manufacturing a low-temperature sintered lightweight porous ceramic sintered material comprising a molded product firing step (S5) of firing the dried molded product at a temperature of 900 to 1050°C for 10 to 36 hours.
제1항에 있어서,
상기 소지혼합단계(S1)에서 알카리가 함유된 나노실리카졸 또는 나노실리카분말은, 정량공급펌프 또는 정량 스크류피더를 이용하여 공급 혼합하도록 이루어지는 것을 특징으로 하는 저온소결 경량 다공세라믹 소결재 제조방법.
The method of claim 1,
The method of manufacturing a low-temperature sintered lightweight porous ceramic sintered material, characterized in that the nano-silica sol or nano-silica powder containing alkali in the body mixing step (S1) is supplied and mixed using a quantitative supply pump or a quantitative screw feeder.
제1항에 있어서,
상기 소지반죽 및 숙성단계(S1)에서 숙성시간은,
수분이 세라믹 소지에 골고루 분포되도록 12 ~ 36 시간 방치하여 숙성하도록 구비되어 이루어지는 것을 특징으로 하는 저온소결 경량 다공세라믹 소결재 제조방법.
The method of claim 1,
The maturation time in the holding dough and aging step (S1),
A method for manufacturing a low-temperature sintered lightweight porous ceramic sintered material, characterized in that it is provided to be aged for 12 to 36 hours so that moisture is evenly distributed on the ceramic substrate.
제1항에 있어서,
상기 성형품 건조단계(S4)는 드라이오븐 또는 건조실을 이용하여 성형품을 건조하고,
상기 성형품 소성단계(S5)는 전기로나 소성가마를 이용하여 성형품을 소성하도록 구비되어 이루어지는 것을 특징으로 하는 저온소결 경량 다공세라믹 소결재 제조방법.
The method of claim 1,
The molded article drying step (S4) is to dry the molded article using a dry oven or a drying chamber,
The molded product firing step (S5) is a method for producing a low-temperature sintered lightweight porous ceramic sintered material, characterized in that it is provided to fire the molded product using an electric furnace or a firing kiln.
KR1020190062657A 2019-05-28 2019-05-28 Manufacture method of ceramics sintered body KR102144929B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190062657A KR102144929B1 (en) 2019-05-28 2019-05-28 Manufacture method of ceramics sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190062657A KR102144929B1 (en) 2019-05-28 2019-05-28 Manufacture method of ceramics sintered body

Publications (1)

Publication Number Publication Date
KR102144929B1 true KR102144929B1 (en) 2020-08-14

Family

ID=72050280

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190062657A KR102144929B1 (en) 2019-05-28 2019-05-28 Manufacture method of ceramics sintered body

Country Status (1)

Country Link
KR (1) KR102144929B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113321528A (en) * 2021-07-02 2021-08-31 山东理工大学 Full-ceramic sound barrier and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11171635A (en) * 1997-12-08 1999-06-29 Soka Kawara Kogyo Kk Production of ceramic for construction
KR100432775B1 (en) 2001-08-04 2004-05-24 한국지질자원연구원 Compositions and manufacturing of low temperature calcined brick
KR20040099677A (en) * 2003-05-19 2004-12-02 우성세라믹스공업 주식회사 Low temperature sintering porous and hollow light weight clay brick and method of producing it using solid industrial waste
KR100760040B1 (en) * 2007-01-26 2007-09-18 박민화 Manufacture method of foam ceramics
KR101706512B1 (en) * 2016-09-27 2017-02-15 부경대학교 산학협력단 Foam for building material and manufacturing method of the foam

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11171635A (en) * 1997-12-08 1999-06-29 Soka Kawara Kogyo Kk Production of ceramic for construction
KR100432775B1 (en) 2001-08-04 2004-05-24 한국지질자원연구원 Compositions and manufacturing of low temperature calcined brick
KR20040099677A (en) * 2003-05-19 2004-12-02 우성세라믹스공업 주식회사 Low temperature sintering porous and hollow light weight clay brick and method of producing it using solid industrial waste
KR100678365B1 (en) 2003-05-19 2007-02-05 우성세라믹스공업 주식회사 Low temperature sintering porous and hollow light weight clay brick and method of producing it using solid industrial waste
KR100760040B1 (en) * 2007-01-26 2007-09-18 박민화 Manufacture method of foam ceramics
KR101706512B1 (en) * 2016-09-27 2017-02-15 부경대학교 산학협력단 Foam for building material and manufacturing method of the foam

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113321528A (en) * 2021-07-02 2021-08-31 山东理工大学 Full-ceramic sound barrier and preparation method thereof
CN113321528B (en) * 2021-07-02 2022-10-11 山东理工大学 Full-ceramic sound barrier and preparation method thereof

Similar Documents

Publication Publication Date Title
CN102617154B (en) Method for preparing environment-friendly building ceramic tile by using high lean material
CN104909799A (en) Lightweight high-strength ceramsite and preparation method thereof
CN101638324B (en) Light porous heat-insulating refractory material and preparation method and applications thereof
CN103922768B (en) A kind of function composite zirconia refractory product and preparation method thereof
KR101713438B1 (en) Producing method of eco-friendly lightweight tiles using waste coal tailings
CN101672079B (en) Method for preparing high stone powder mixing quantity porous baked brick
CN101081732A (en) Stone powder sludge sintering brick and method for making the same
CN105130391B (en) The method for preparing light ceramic using bottom mud in lake and municipal sludge microwave sintering
CN104446625A (en) High-porosity porous ceramic and preparation method thereof
CN104788108B (en) A kind of zirconium oxide fiber board and preparation method
CN101955371A (en) Method for preparing closed pore foam ceramic
CN101830728A (en) Method for producing foamed ceramics by using ceramic waste
CN103951394A (en) High-temperature thermal shock resistant aluminum oxide ceramic burning loading plate and preparation process thereof
CN106220203B (en) The preparation method of wear-resistant ceramic load bearing board
CN108467258A (en) A kind of perforation stomata porous ceramics standby using coal ash for manufacturing and preparation method thereof
CN105669163B (en) The light high-strength haydite and its preparation process that a kind of nickel ground-slag is fired
CN107935608A (en) The method that zircon brick is prepared using compact zircon aggregate
CN109265136A (en) A method of ceramics are produced using waste sand of quartz
KR102144929B1 (en) Manufacture method of ceramics sintered body
CN108911726B (en) Coal gangue-desulfurized gypsum-calcium carbonate system water-permeable ceramic tile and preparation method thereof
CN102329111B (en) Lightweight brick manufactured by utilizing printing and dyeing sludge and manufacturing method thereof
KR20110125913A (en) Bricks for interior containing stone sludge and methods for preparing thereof
CN106747620A (en) A kind of low energy consumption sintering seepage brick and its manufacture method
CN108395264B (en) Regenerated brick for carbon furnace and preparation method thereof
Mishulovich et al. Ceramic tiles from high-carbon fly ash

Legal Events

Date Code Title Description
GRNT Written decision to grant