KR102141888B1 - pump efficiency measuring method - Google Patents

pump efficiency measuring method Download PDF

Info

Publication number
KR102141888B1
KR102141888B1 KR1020160126072A KR20160126072A KR102141888B1 KR 102141888 B1 KR102141888 B1 KR 102141888B1 KR 1020160126072 A KR1020160126072 A KR 1020160126072A KR 20160126072 A KR20160126072 A KR 20160126072A KR 102141888 B1 KR102141888 B1 KR 102141888B1
Authority
KR
South Korea
Prior art keywords
pump
motor
fluid
calculating
flow rate
Prior art date
Application number
KR1020160126072A
Other languages
Korean (ko)
Other versions
KR20180036037A (en
Inventor
강성기
채장범
Original Assignee
주식회사 엠앤디
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엠앤디 filed Critical 주식회사 엠앤디
Priority to KR1020160126072A priority Critical patent/KR102141888B1/en
Publication of KR20180036037A publication Critical patent/KR20180036037A/en
Application granted granted Critical
Publication of KR102141888B1 publication Critical patent/KR102141888B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B51/00Testing machines, pumps, or pumping installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/28Safety arrangements; Monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0088Testing machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/001Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/008Subject matter not provided for in other groups of this subclass by doing functionality tests
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/03Torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/05Speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/10Voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/18Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/19Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/20Flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/83Testing, e.g. methods, components or tools therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

본 발명의 펌프 효율 산출방법은 펌프의 설계를 변경하지 않고 모터의 출력 토크를 검출하여, 방법을 적용하여 검출한 모터의 출력 토크를 이용함으로써, 펌프 효율 산출의 정확도를 높일 수 있으며, 이로 인해 펌프 제작, 펌프 설치, 펌프 시운전, 펌프 유지보수 등의 과정에서 펌프의 효율뿐만 아니라 모터의 상태를 정확하게 판단할 수 있게 되므로, 모터와 펌프의 유지보수 시점을 사용자가 정확하게 판단할 수 있다. In the pump efficiency calculation method of the present invention, the output torque of the motor is detected without changing the design of the pump, and the output torque of the motor detected by applying the method can be used to increase the accuracy of the pump efficiency calculation. In the process of manufacturing, pump installation, pump commissioning, and pump maintenance, the efficiency of the pump as well as the state of the motor can be accurately determined, so that the user can accurately determine the maintenance timing of the motor and pump.

Description

펌프 효율 산출방법{pump efficiency measuring method}Pump efficiency measuring method

본 발명은 펌프 효율 산출방법에 관한 것으로, 특히 펌프 모터 권선의 저항값과 펌프 모터에 공급되는 순시전압값과 순시 전류값에 의한 펌프 모터의 출력 토크와, 모터 회전축 또는 펌프 회전축에 장착된 회전속도센서에 의해 검출된 펌프 모터의 회전속도에 의해 펌프의 운전상의 실제 펌프모터의 축동력을 산출하도록 하여 정확한 펌프 효율을 산출할 수 있는 펌프 효율 산출방법에 관한 것이다.The present invention relates to a method for calculating the pump efficiency, in particular, the output torque of the pump motor by the resistance value of the pump motor winding, the instantaneous voltage value and the instantaneous current value supplied to the pump motor, and the rotational speed mounted on the motor rotation shaft or the pump rotation shaft. It relates to a pump efficiency calculation method that can calculate the correct pump efficiency by calculating the axial power of the actual pump motor in the operation of the pump by the rotational speed of the pump motor detected by the sensor.

펌프는 대부분이 모터에 의해서 구동되며, 사용하고자 하는 유체의 종류, 유량, 펌핑양정에 따라 선정되어 사용된다.Most of the pumps are driven by a motor, and are selected and used according to the type of fluid to be used, flow rate, and pumping head.

사용자는 펌프의 성능이나 에너지 효율 등에 따라 그에 맞는 적합한 펌프를 사용하여야 한다.The user should use a suitable pump according to the performance or energy efficiency of the pump.

펌프 효율(%)은 (펌프의 수동력/모터의 축동력)×100 이고, 펌프의 수동력(㎾)은 밀도(kg/㎥) x 중력가속도(9.8m/sec²) x 유량(㎥/sec) x 양정(m)에 의해 산출된다.The pump efficiency (%) is (passive force of the pump/motor axial power)×100, and the passive force of the pump (㎾) is density (kg/㎥) x gravity acceleration (9.8m/sec²) x flow rate (㎥/sec) It is calculated by x head (m).

모터의 축동력(kW)은 모터 전력 입력값(kW) x 모터 효율에 의해 산출할 수 있으나, 모터 효율은 제작사가 제공하는 값을 사용하거나 산업계에서 일반적으로 통용되는 값을 사용하여 모터의 축동력을 산출한다.The axial power of the motor (kW) can be calculated by the motor power input value (kW) x motor efficiency, but the motor efficiency is calculated by using the value provided by the manufacturer or by using a value commonly used in industry. do.

실제 펌프 운전시 모터 효율은 모터 제작 공정, 펌프의 사용시간 경과에 따른 모터의 열화, 모터의 유지보수나 정비 결과 등에 따라 달라질 수 있으므로, 모터의 효율을 가정하고 모터의 축동력을 산출하는 경우 많은 오차를 포함하게 되므로 모터의 축동력을 정확하게 산출할 수 없는 문제점을 가지고 있다.In actual pump operation, the motor efficiency may vary depending on the manufacturing process of the motor, deterioration of the motor over the course of the pump's usage time, and results of maintenance or maintenance of the motor, so assuming the efficiency of the motor and calculating the axial power of the motor, many errors Since it includes, there is a problem that can not accurately calculate the axial power of the motor.

이를 해결하기 위해 펌프운전에 따른 실제 모터의 축동력을 산출할 수 있으며, 실제 모터의 축동력은 측정한 모터 토크(kN·m) x 측정 모터 회전수(rad/sec)에 의해 산출한다. 이러한 실제 모터의 축동력을 산출하기 위해서는 모터 회전축과 펌프 회전축 사이에 토크 센서를 장착하고, 모터 회전축 또는 펌프 회전축에 회전 속도 측정 센서를 장착하여, 직접 펌프 모터의 출력 토크와 회전 속도를 측정한 후, 모터의 출력 토크와 회전 속도를 곱하여 정확하게 계산할 수 있다. To solve this, the axial power of the actual motor according to the pump operation can be calculated, and the axial power of the actual motor is calculated by the measured motor torque (kN·m) x the measured motor rotational speed (rad/sec). In order to calculate the axial power of the actual motor, a torque sensor is mounted between the motor rotational axis and the pump rotational axis, and a rotational speed measurement sensor is mounted on the motor rotational axis or pump rotational axis to directly measure the output torque and rotational speed of the pump motor, It can be calculated accurately by multiplying the motor's output torque and rotation speed.

대한민국 공개특허공보 제10-2009-0081832호 "전동펌프 성능 시험장치"(공개일자 : 2009.07.29)에는 모니터부를 이용하여 전동펌프의 모터를 제어하여 전동펌프를 구동시키고, 이 후 유체센서, 모터센서, 펌프내의 회전자의 회전토크 검출을 위한 토크센서와 회전자의 회전율을 검출하는 알피엠센서 등을 이용하여 전동펌프의 구동에 따른 유체의 이송량, 압력, 온도, 펌프의 회전자의 토크, 회전수를 검출하여 전동펌프의 동작상태 데이터로서 신호처리부를 통해 수신하는 전동펌프 성능 시험장치가 개시되어 있다.In the Republic of Korea Patent Publication No. 10-2009-0081832 "electric pump performance test device" (published date: July 29, 2009) to control the motor of the electric pump using the monitor unit to drive the electric pump, and then the fluid sensor, motor Using the sensor, a torque sensor for detecting the rotational torque of the rotor in the pump, and an LP sensor that detects the rotational rate of the rotor, the amount of fluid transport, pressure, temperature, torque, rotation of the rotor of the pump Disclosed is an electric pump performance test apparatus that detects a number and receives it as a signal of an operation state of an electric pump through a signal processor.

상기 종래기술은 모터의 토크를 직접 측정하여 실제 모터의 축동력을 산출하기 위해서는 모터 회전축과 펌프 회전축 사이에 토크 센서를 장착하여야 하나, 이러한 토크 센서는 고가이고, 베드에 안착되어 있는 모터와 펌프 사이에 토크 센서를 장착할 수 있도록 공간을 확보하기 위해 펌프의 설계를 변경할 필요가 있으며, 모터 회전축, 토크 센서 회전축 및 펌프 회전축의 중심이 일치하도록 설치 작업을 수행해야 한다.In the prior art, in order to directly calculate the torque of the motor and calculate the axial power of the actual motor, a torque sensor must be installed between the motor rotational shaft and the pump rotational shaft, but such a torque sensor is expensive and between the motor mounted on the bed and the pump. It is necessary to change the design of the pump in order to secure space so that the torque sensor can be mounted, and the installation work must be performed so that the centers of the motor rotation axis, the torque sensor rotation axis, and the pump rotation axis coincide.

또한, 토크 센서의 정확도를 유지하기 위해서는 주기적으로 교정해야 하는데, 매교정시 마다 토크 센서의 분리, 재설치 및 축 중심 맞추기 작업을 반복해야 하므로, 이와 같은 작업은 비용과 인력이 많이 투입되어야 하기 때문에 펌프의 성능을 시험하기 위해 토크 센서를 현장의 펌프에 설치하는 것은 현실적으로는 불가능하다.Also, in order to maintain the accuracy of the torque sensor, it needs to be periodically calibrated. Since each operation requires the separation, reinstallation and centering of the torque sensor, the pump needs to be costly and labor intensive. It is practically impossible to install a torque sensor on a field pump to test its performance.

대한민국 공개특허공보 제10-2009-0081832호 "전동펌프 성능 시험장치"(공개일자 : 2009.07.29)Republic of Korea Patent Publication No. 10-2009-0081832 "electric pump performance test device" (published date: 2009.07.29)

본 발명의 목적은 펌프 모터에 공급되는 순시 전압 측정값과, 순시 전류 측정값과, 모터 권선의 저항값을 이용하여 검출한 모터의 출력 토크와, 모터 회전축 또는 펌프 회전축에 회전속도센서를 장착하여 측정한 측정 회전 속도를 이용하여 모터의 축동력을 산출하여 모터 회전축과 펌프 회전축의 설계변경 없이 모터의 축동력과 펌프 효율 계산의 정확도를 개선할 수 있는 펌프 효율 산출방법을 제공하는 데 그 목적이 있다. The object of the present invention is to mount the rotational speed sensor to the motor output shaft of the motor detected using the instantaneous voltage measurement value supplied to the pump motor, the instantaneous current measurement value, the resistance value of the motor winding, and the motor rotational shaft or pump rotational axis. The purpose of the present invention is to provide a pump efficiency calculation method that can improve the accuracy of calculation of the shaft power and pump efficiency of a motor without changing the design of the motor shaft and the pump shaft by calculating the shaft power of the motor using the measured measured rotational speed.

상기의 목적을 달성하기 위하여 본 발명의 펌프 효율 산출방법은, 모터로 기동되는 펌프의 펌프 효율 산출방법에 있어서, 상기 펌프의 운전 정지시 상기 모터 권선의 평균 저항과, 상기 펌프의 흡입구 높이와 흡입구 직경과, 상기 펌프의 토출구 높이와 토출구 직경을 측정하는 펌프기동전 측정단계; 상기 펌프의 운전 동작시 상기 펌프의 후단측으로 유체가 토출되는 토출유량과, 상기 펌프 전단의 전단유체압력과 전단유체온도와, 상기 펌프 후단의 후단유체압력과 후단유체온도와, 상기 모터에 공급되는 순시 전압과 순시 전류와, 상기 모터의 모터회전속도를 측정하는 펌프운전중 측정단계; 상기 전단유체압력과 전단유체온도에 의해 상기 펌프 전단의 전단유체밀도를 산출하고, 상기 후단유체압력과 후단유체온도에 의해 상기 펌프 후단의 후단유체밀도를 산출하는 유체밀도 산출단계; 상기 토출유량과, 전단유체밀도와, 후단유체밀도에 의해 상기 펌프로 유입되는 유입유량을 산출하는 유입유량 산출단계; 상기 유입유량과 토출유량과, 흡입구 직경과, 토출구 직경에 의해 상기 펌프 흡입구의 흡입구 유체속도와, 상기 펌프 토출구의 토출구 유체속도를 산출하는 유체속도 산출단계; 상기 전단유체밀도와, 후단유체밀도와, 전단유체압력과, 후단유체압력과, 흡입구 높이와, 토출구 높이와, 흡입구 유체속도와, 토출구 유체속도와 중력가속도에 의해 상기 펌프의 펌프양정을 산출하는 펌프양정 산출단계; 상기 후단유체밀도와, 토출유량과, 펌프양정과 중력가속도에 의해 상기 펌프의 펌프 수동력을 산출하는 펌프수동력 산출단계; 상기 모터 권선의 평균 저항과, 상기 모터에 공급되는 순시 전압과 순시 전류에 의해 모터출력토크를 산출하는 모터출력토크 산출단계; 상기 모터출력토크와 모터회전속도에 의해 상기 모터의 모터 축동력을 산출하는 모터축동력 산출단계; 및 상기 펌프 수동력과 모터 축동력에 의해 상기 펌프의 펌프 효율을 산출하는 펌프효율 산출단계를 구비한 것을 특징으로 한다. In order to achieve the above object, the pump efficiency calculation method of the present invention is a method for calculating the pump efficiency of a pump started by a motor, wherein the average resistance of the motor winding when the pump is stopped and the suction port height and the suction port of the pump Before the start of the pump measuring the diameter, the discharge port height and the diameter of the discharge port of the pump; The discharge flow rate at which the fluid is discharged to the rear end of the pump during the operation of the pump, the shear fluid pressure and the shear fluid temperature at the front end of the pump, the rear end fluid pressure and the rear end fluid temperature at the rear end of the pump, and supplied to the motor A measurement step during the pump operation to measure the instantaneous voltage, the instantaneous current, and the motor rotation speed of the motor; A fluid density calculation step of calculating a shear fluid density at the front end of the pump based on the shear fluid pressure and the shear fluid temperature, and calculating a rear fluid density at the rear end of the pump based on the rear fluid pressure and the rear fluid temperature; An inflow flow rate calculating step of calculating an inflow flow rate into the pump by the discharge flow rate, the shear fluid density, and the downstream fluid density; A fluid velocity calculating step of calculating the inlet fluid velocity of the pump inlet and the outlet fluid velocity of the pump outlet by the inlet flow rate, discharge flow rate, inlet diameter, and outlet diameter; Calculating the pump lift of the pump by the shear fluid density, the rear fluid density, the shear fluid pressure, the downstream fluid pressure, the inlet height, the outlet height, the inlet fluid velocity, the outlet fluid velocity and the gravitational acceleration Pump head calculation step; A pump manual power calculating step of calculating the pump manual force of the pump by the rear stage fluid density, discharge flow rate, pump lift and gravity acceleration; A motor output torque calculating step of calculating the motor output torque by the average resistance of the motor winding, and the instantaneous voltage and instantaneous current supplied to the motor; A motor shaft power calculating step of calculating the motor shaft power of the motor according to the motor output torque and the motor rotation speed; And it characterized in that it comprises a pump efficiency calculating step of calculating the pump efficiency of the pump by the pump manual force and the motor shaft power.

본 발명의 펌프 효율 산출방법은 펌프의 설계를 변경하지 않고 모터의 출력 토크를 검출하여, 방법을 적용하여 검출한 모터의 출력 토크를 이용함으로써, 펌프 효율 산출의 정확도를 높일 수 있으며, 이로 인해 펌프 제작, 펌프 설치, 펌프 시운전, 펌프 유지보수 등의 과정에서 펌프의 효율뿐만 아니라 모터의 상태를 정확하게 판단할 수 있게 되므로, 모터와 펌프의 유지보수 시점을 사용자가 정확하게 판단할 수 있다. In the pump efficiency calculation method of the present invention, the output torque of the motor is detected without changing the design of the pump, and the output torque of the motor detected by applying the method can be used to increase the accuracy of the pump efficiency calculation. In the process of manufacturing, pump installation, pump commissioning, and pump maintenance, the efficiency of the pump as well as the state of the motor can be accurately determined, so that the user can accurately determine the maintenance timing of the motor and pump.

도 1은 본 발명의 펌프 효율 산출방법을 도시한 순서도이고,
도 2는 본 발명의 펌프 효율 산출방법을 설명하기 위한 각 센서들의 위치를 나타낸 펌프의 구성도이다.
1 is a flow chart showing a method for calculating the pump efficiency of the present invention,
2 is a configuration diagram of the pump showing the position of each sensor for explaining the pump efficiency calculation method of the present invention.

이하, 첨부된 도면을 참조하여 본 발명의 펌프 효율 산출방법을 상세히 설명하고자 한다.Hereinafter, a method for calculating the pump efficiency of the present invention will be described in detail with reference to the accompanying drawings.

도 1 및 도 2에 도시된 바와 같이, 본 발명의 펌프 효율 산출방법은, 펌프(10)의 운전 정지시 모터(20) 권선의 평균 저항(R)과, 펌프(10)의 흡입구 높이(h1)와 흡입구 직경(D1)과, 펌프(10)의 토출구 높이(h2)와 토출구 직경(D2)을 측정하는 펌프기동전 측정단계(S10)와, 펌프(10)의 운전 동작시 펌프(10)의 후단측으로 유체가 토출되는 토출유량(Q2)과, 펌프(10) 전단의 전단유체압력(P1)과 전단유체온도(T1)와, 펌프(10) 후단의 후단유체압력(P2)과 후단유체온도(T2)와, 모터(20)에 공급되는 순시 전압(V1, V2, V3)과 순시 전류(C1, C2, C3)와, 모터(20)의 모터회전속도(w)를 측정하는 펌프운전중 측정단계(S20)와, 전단유체압력(P1)과 전단유체온도(T1)에 의해 펌프(10) 전단의 전단유체밀도(ρ1)를 산출하고, 후단유체압력(P2)과 후단유체온도(T2)에 의해 펌프(10) 후단의 후단유체밀도(ρ2)를 산출하는 유체밀도 산출단계(S30)와, 토출유량(Q2)과, 전단유체밀도(ρ1)와, 후단유체밀도(ρ2)에 의해 펌프(10)로 유입되는 유입유량(Q1)을 산출하는 유입유량 산출단계(S40)와, 유입유량(Q1)과 토출유량(Q2)과, 흡입구 직경(D1)과, 토출구 직경(D2)에 의해 펌프(10) 흡입구의 흡입구 유체속도(Vin)와, 펌프(10) 토출구의 토출구 유체속도(Vout)를 산출하는 유체속도 산출단계(S50)와, 전단유체밀도(ρ1)와, 후단유체밀도(ρ2)와, 전단유체압력(P1)과, 후단유체압력(P2)과, 흡입구 높이(h1)와, 토출구 높이(h2)와, 흡입구 유체속도(Vin)와, 토출구 유체속도(Vout)와 중력가속도(g)에 의해 펌프(10)의 펌프양정(H)을 산출하는 펌프양정 산출단계(S60)와, 후단유체밀도(ρ2)와, 토출유량(Q2)과, 펌프양정(H)과 중력가속도(g)에 의해 펌프(10)의 펌프 수동력(Pwr_H)을 산출하는 펌프수동력 산출단계(S70)와, 모터(20) 권선의 평균 저항(R)과, 모터(20)에 공급되는 순시 전압(V1, V2, V3)과 순시 전류(C1, C2, C3)에 의해 모터출력토크(Tq)를 산출하는 모터출력토크 산출단계(S80)와, 모터출력토크(Tq)와 모터회전속도(w)에 의해 모터(10)의 모터 축동력(Pwr_M)을 산출하는 모터축동력 산출단계(S90)와, 펌프 수동력(Pwr_H)과 모터 축동력(Pwr_M)에 의해 펌프(10)의 펌프 효율(η_P)을 산출하는 펌프효율 산출단계(S100)로 구성된다.1 and 2, the pump efficiency calculation method of the present invention, the average resistance (R) of the winding of the motor 20 when the pump 10 is stopped, and the inlet height h1 of the pump 10 ) And the inlet diameter (D1), the discharge port height (h2) and the outlet diameter (D2) of the pump (10) before the start of the pump measuring step (S10), and the operation of the pump (10) of the pump (10) The discharge flow rate (Q2) through which the fluid is discharged to the rear end, the shear fluid pressure (P1) and the shear fluid temperature (T1) at the front end of the pump 10, the rear end fluid pressure (P2) and the rear fluid temperature at the rear end of the pump (10) (T2), the instantaneous voltage (V1, V2, V3) supplied to the motor 20 and the instantaneous current (C1, C2, C3), and the pump operation to measure the motor rotation speed (w) of the motor 20 The shear fluid density (ρ1) of the front end of the pump (10) is calculated by the measurement step (S20), the shear fluid pressure (P1), and the shear fluid temperature (T1), and the downstream fluid pressure (P2) and the downstream fluid temperature (T2) ) By the fluid density calculation step (S30) for calculating the rear end fluid density (ρ2) at the rear end of the pump (10), the discharge flow rate (Q2), the shear fluid density (ρ1), and the rear end fluid density (ρ2). The inflow flow rate calculation step (S40) for calculating the inflow flow rate Q1 flowing into the pump 10, the inflow flow rate Q1, the discharge flow rate Q2, the inlet diameter D1, and the outlet diameter D2 The fluid velocity calculation step (S50) for calculating the inlet fluid velocity (Vin) of the pump 10 inlet and the outlet fluid velocity (Vout) of the pump (10) outlet, the shear fluid density (ρ1), and the downstream fluid density (ρ2), shear fluid pressure (P1), rear fluid pressure (P2), inlet height (h1), outlet height (h2), inlet fluid velocity (Vin), outlet fluid velocity (Vout), A pump head calculation step (S60) for calculating the pump head (H) of the pump 10 by gravity acceleration (g), the rear end fluid density (ρ2), the discharge flow rate (Q2), and the pump head (H) The pump manual force calculation step (S70) for calculating the pump manual force (Pwr_H) of the pump 10 by the gravitational acceleration (g), the average resistance (R) of the winding of the motor 20, and the motor (2) Motor output torque calculation step (S80) and motor output torque (Tq) for calculating motor output torque (Tq) by instantaneous voltage (V1, V2, V3) and instantaneous current (C1, C2, C3) supplied to 0) ) And motor rotation speed (w) to calculate the motor shaft power (Pwr_M) of the motor shaft 10 (S90) and the pump manual force (Pwr_H) and the motor shaft power (Pwr_M) pump 10 It consists of a pump efficiency calculation step (S100) for calculating the pump efficiency (η_P).

상기의 구성에 따른 본 발명인 펌프 효율 산출방법의 동작은 다음과 같다.The operation of the method for calculating the pump efficiency according to the present invention is as follows.

도 1에 도시된 바와 같이, 펌프기동전 측정단계(S10)는 펌프(10)의 운전 정지시 모터(20) 권선의 평균 저항(R)과, 펌프(10)의 흡입구 높이(h1)와 흡입구 직경(D1)과, 펌프(10)의 토출구 높이(h2)와 토출구 직경(D2)을 측정한다.As shown in Fig. 1, the measurement step (S10) before starting the pump is the average resistance (R) of the winding of the motor 20 when the pump 10 is stopped, the inlet height (h1) and the inlet diameter of the pump (10) (D1), the discharge port height (h2) and the discharge port diameter (D2) of the pump 10 are measured.

펌프운전중 측정단계(S20)는 모터(10)에 3상의 교류전압을 인가하여 모터(10)를 기동시켜 펌프(10)가 운전 동작을 하게 되면, 펌프(10)의 후단측으로 유체가 토출되는 토출유량(Q2)과, 펌프(10) 전단의 전단유체압력(P1)과 전단유체온도(T1)와, 펌프(10) 후단의 후단유체압력(P2)과 후단유체온도(T2)와, 모터(20)에 공급되는 순시 전압(V1, V2, V3)과 순시 전류(C1, C2, C3)와, 모터(20)의 모터회전속도(w)를 측정한다. During the pump operation, the measurement step (S20) starts the motor 10 by applying an AC voltage of 3 phase to the motor 10, and when the pump 10 operates, fluid is discharged to the rear end of the pump 10. Discharge flow rate (Q2), shear fluid pressure (P1) and shear fluid temperature (T1) at the front end of the pump (10), rear end fluid pressure (P2) and rear end fluid temperature (T2) at the rear end of the pump (10), and motor The instantaneous voltages (V1, V2, V3), instantaneous currents (C1, C2, C3) supplied to (20), and the motor rotation speed (w) of the motor 20 are measured.

펌프운전중 측정단계(S20)는, 도 2에 도시된 바와 같이, 펌프(10)와 유체가 저장된 탱크(30) 사이의 배관측, 즉 펌프(10)의 전단에는 배관을 통해 펌프(10) 전단으로 유입되는 유체의 압력과 온도를 검출하기 위한 압력센서와 온도센서를 장착하여 펌프(10)의 운전 동작시 압력센서와 온도센서에 의해 펌프(10) 전단의 유체압력인 전단유체압력(P1)과 유체 온도인 전단유체온도(T1)를 검출한다.During the pump operation, the measurement step (S20), as shown in Figure 2, the pump 10 and the pipe side between the tank 30 in which the fluid is stored, that is, the front end of the pump 10, the pump 10 through the pipe Equipped with a pressure sensor and a temperature sensor for detecting the pressure and temperature of the fluid flowing into the front end, the shear fluid pressure (P1), which is the fluid pressure before the pump 10 by the pressure sensor and the temperature sensor during the operation of the pump 10 ) And the fluid temperature, shear fluid temperature (T1).

상기와 동일한 방법으로 펌프(20) 후단에 압력센서와 온도센서를 장착하여 펌프(10)의 운전 동작시 펌프(20) 후단의 후단유체압력(P2)과 후단유체온도(T2)를 검출한다.In the same manner as above, a pressure sensor and a temperature sensor are mounted on the rear end of the pump 20 to detect the rear end fluid pressure P2 and the rear end fluid temperature T2 at the rear end of the pump 20 during the operation of the pump 10.

또한, 펌프(20)의 후단의 배관측에 유량센서(Q)를 장착하여 유량센서(Q)에 의해 펌프(10)의 운전 동작시 펌프(10)의 후단측으로 유체가 토출되는 토출유량(Q2)을 검출하고, 모터(10)에는 3상의 교류전압이 인가되어 모터(10)가 기동되므로, 펌프(10)의 운전 동작시 3상의 교류전압의 순시치인 순시 전압(V1, V2, V3)과 각각의 순시 전압(V1, V2, V3)에 의한 순시 전류(C1, C2, C3)를 검출한다.In addition, by installing a flow sensor (Q) on the piping side of the rear end of the pump 20, the discharge flow rate (Q2) through which the fluid is discharged to the rear end side of the pump (10) during the operation of the pump (10) by the flow sensor (Q) ) Is detected, and an AC voltage of three phases is applied to the motor 10, so that the motor 10 is started, and the instantaneous voltages V1, V2, and V3, which are instantaneous values of the three phase AC voltages when the pump 10 is operated. Instantaneous currents C1, C2, and C3 are detected by respective instantaneous voltages V1, V2, and V3.

또한, 모터(20)의 회전축 또는 펌프(10)의 회전축에는 회전속도 센서를 장착하여 펌프(10)의 운전 동작시 모터(20)의 모터회전속도(w)를 검출한다.In addition, a rotational speed sensor is mounted on the rotational axis of the motor 20 or the rotational axis of the pump 10 to detect the motor rotational speed w of the motor 20 during the operation of the pump 10.

유체밀도 산출단계(S30)는 전단유체압력(P1)과 전단유체온도(T1)를 이용하여 열역학적 상태량 표에 따라 펌프(10) 전단의 전단유체밀도(ρ1)를 산출하고, 후단유체압력(P2)과 후단유체온도(T2)를 사용하여 펌프(10) 후단의 후단유체밀도(ρ2)를 산출한다.The fluid density calculation step (S30) calculates the shear fluid density (ρ1) of the front end of the pump 10 according to the thermodynamic state quantity table using the shear fluid pressure (P1) and the shear fluid temperature (T1), and the downstream fluid pressure (P2) ) And the rear end fluid temperature (T2) are used to calculate the rear end fluid density (ρ2) at the rear end of the pump (10).

유입유량(Q1)은 토출유량(Q2) × (후단유체밀도(ρ2)/ 전단유체밀도(ρ1)) 이므로, 유입유량 산출단계(S40)는 토출유량(Q2)과, 전단유체밀도(ρ1)와, 후단유체밀도(ρ2)에 의해 펌프(10)로 유입되는 유입유량(Q1)을 산출한다. Since the inflow flow rate (Q1) is the discharge flow rate (Q2) × (rear flow density (ρ2)/ shear flow density (ρ1)), the inflow flow calculation step (S40) is the discharge flow rate (Q2) and the shear flow density (ρ1) Wow, the influent flow rate Q1 flowing into the pump 10 is calculated by the rear end fluid density ρ2.

토출구 유체속도(Vout)는 토출유량(Q2)/(π x 토출구 직경(D2)²/ 4)이고, 흡입구 유체속도(Vin)는 유입유량(Q1)/(π x 유입구 직경(D1)²/ 4)이므로, 유체속도 산출단계(S50)는 펌프(10) 흡입구의 흡입구 유체속도(Vin)와, 펌프(10) 토출구의 토출구 유체속도(Vout)를 각각 산출한다.The outlet fluid velocity (Vout) is the discharge flow rate (Q2)/(π x the outlet diameter (D2)²/4), and the inlet fluid velocity (Vin) is the inlet flow rate (Q1)/(π x the inlet diameter (D1)²/ Since it is 4), the fluid speed calculating step S50 calculates the inlet fluid velocity Vin of the pump 10 inlet and the outlet fluid velocity Vout of the pump 10 outlet, respectively.

펌프양정(H)은 P2 / (ρ2 × g)- P1 / (ρ1 × g) + (h2-h1) + (Vin²+Vout²) / (2 × g)이므로, 펌프양정 산출단계(S60)는 전단유체밀도(ρ1)와, 후단유체밀도(ρ2)와, 전단유체압력(P1)과, 후단유체압력(P2)과, 흡입구 높이(h1)와, 토출구 높이(h2)와, 흡입구 유체속도(Vin)와, 토출구 유체속도(Vout)와 중력가속도(g)에 의해 펌프(10)의 펌프양정(H)을 산출한다. Since the pump head (H) is P2 / (ρ2 × g)-P1 / (ρ1 × g) + (h2-h1) + (Vin²+Vout²) / (2 × g), the pump head calculation step (S60) is the shear Fluid density (ρ1), rear end fluid density (ρ2), front end fluid pressure (P1), rear end fluid pressure (P2), inlet height (h1), outlet height (h2), and inlet fluid velocity (Vin) ), and the pump head (H) of the pump 10 is calculated by the discharge port fluid velocity (Vout) and the gravitational acceleration (g).

펌프 수동력(Pwr_H)은 ρ2 × g × Q2 × H이므로, 펌프수동력 산출단계(S70)는 후단유체밀도(ρ2), 토출유량(Q2), 펌프양정(H), 중력가속도(g)에 의해 펌프(10)의 펌프 수동력(Pwr_H)을 산출한다.Since the pump manual force (Pwr_H) is ρ2 × g × Q2 × H, the pump manual force calculation step (S70) is applied to the rear end fluid density (ρ2), discharge flow rate (Q2), pump lift (H), and gravity acceleration (g). By this, the pump manual force Pwr_H of the pump 10 is calculated.

모터출력토크 산출단계(S80)는 모터(20) 권선의 평균 저항(R)과, 모터(20)에 공급되는 순시 전압(V1, V2, V3)과 순시 전류(C1, C2, C3)에 의해 모터출력토크(Tq)를 산출한다.The motor output torque calculation step S80 is performed by the average resistance R of the windings of the motor 20, the instantaneous voltages V1, V2, and V3 supplied to the motor 20 and the instantaneous currents C1, C2, and C3. Calculate the motor output torque (Tq).

모터 축동력(Pwr_M)은 모터출력토크(Tq)×모터회전속도(w)이므로, 모터축동력 산출단계(S90)는 모터 축동력(Pwr_M)을 산출한다.Since the motor shaft power Pwr_M is the motor output torque Tq×motor rotation speed w, the motor shaft power calculation step S90 calculates the motor shaft power Pwr_M.

펌프 효율(η_P)은 (펌프 수동력(Pwr_H)/모터 축동력(Pwr_M))×100 이므로, 펌프효율 산출단계(S100)는 펌프 효율(η_P)을 산출한다.Since the pump efficiency (η_P) is (pump manual force (Pwr_H)/motor shaft power (Pwr_M))×100, the pump efficiency calculation step (S100) calculates the pump efficiency (η_P).

상기와 같은 방법에 의해 본 발명의 펌프 효율 산출방법은 펌프의 설계를 변경하지 않고 모터출력토크 산출단계(S80)에서 모터(20)의 모터출력토크(Tq)를 검출하고, 검출된 모터출력토크(Tq)에 의해 펌프효율 산출단계(S100)에서 펌프 효율(η_P)을 산출함에 따라 펌프 효율 산출의 정확도를 높일 수 있다. The pump efficiency calculation method of the present invention by the above method does not change the design of the pump, detects the motor output torque (Tq) of the motor 20 in the motor output torque calculation step (S80), and detects the detected motor output torque. As the pump efficiency η_P is calculated in the pump efficiency calculation step S100 by (Tq), the accuracy of the pump efficiency calculation can be increased.

이와 같이 정확하게 산출된 펌프 효율(η_P)에 근거하여 펌프 제작, 펌프 설치, 펌프 시운전, 펌프 유지보수 등의 과정에서 펌프의 효율뿐만 아니라 모터의 상태를 정확하게 판단할 수 있어 모터와 펌프의 유지보수 시점을 사용자가 정확하게 판단할 수 있다. Based on the accurately calculated pump efficiency (η_P), it is possible to accurately determine the state of the motor as well as the efficiency of the pump in the process of pump manufacturing, pump installation, pump commissioning, and pump maintenance. The user can accurately judge.

Claims (1)

모터(20)로 기동되는 펌프(10)의 펌프 효율 산출방법에 있어서,
상기 펌프(10)의 운전 정지시 상기 모터(20) 권선의 평균 저항(R)과, 상기 펌프(10)의 흡입구 높이(h1)와 흡입구 직경(D1)과, 상기 펌프(10)의 토출구 높이(h2)와 토출구 직경(D2)을 측정하는 펌프기동전 측정단계(S10);
상기 펌프(10)의 운전 동작시 상기 펌프(10)의 후단측으로 유체가 토출되는 토출유량(Q2)과, 상기 펌프(10) 전단의 전단유체압력(P1)과 전단유체온도(T1)와, 상기 펌프(10) 후단의 후단유체압력(P2)과 후단유체온도(T2)와, 상기 모터(20)에 공급되는 순시 전압(V1, V2, V3)과 순시 전류(C1, C2, C3)와, 상기 모터(20)의 모터회전속도(w)를 측정하는 펌프운전중 측정단계(S20);
상기 전단유체압력(P1)과 전단유체온도(T1)에 의해 상기 펌프(10) 전단의 전단유체밀도(ρ1)를 산출하고, 상기 후단유체압력(P2)과 후단유체온도(T2)에 의해 상기 펌프(10) 후단의 후단유체밀도(ρ2)를 산출하는 유체밀도 산출단계(S30);
상기 토출유량(Q2)과, 전단유체밀도(ρ1)와, 후단유체밀도(ρ2)에 의해 상기 펌프(10)로 유입되는 유입유량(Q1)을 산출하는 유입유량 산출단계(S40);
상기 유입유량(Q1)과 토출유량(Q2)과, 흡입구 직경(D1)과, 토출구 직경(D2)에 의해 상기 펌프(10) 흡입구의 흡입구 유체속도(Vin)와, 상기 펌프(10) 토출구의 토출구 유체속도(Vout)를 산출하는 유체속도 산출단계(S50);
상기 전단유체밀도(ρ1)와, 후단유체밀도(ρ2)와, 전단유체압력(P1)과, 후단유체압력(P2)과, 흡입구 높이(h1)와, 토출구 높이(h2)와, 흡입구 유체속도(Vin)와, 토출구 유체속도(Vout)와 중력가속도(g)에 의해 상기 펌프(10)의 펌프양정(H)을 산출하는 펌프양정 산출단계(S60);
상기 후단유체밀도(ρ2)와, 토출유량(Q2)과, 펌프양정(H)과 중력가속도(g)에 의해 상기 펌프(10)의 펌프 수동력(Pwr_H)을 산출하는 펌프수동력 산출단계(S70);
상기 모터(20) 권선의 평균 저항(R)과, 상기 모터(20)에 공급되는 순시 전압(V1, V2, V3)과 순시 전류(C1, C2, C3)에 의해 모터출력토크(Tq)를 산출하는 모터출력토크 산출단계(S80);
상기 모터출력토크(Tq)와 모터회전속도(w)에 의해 상기 모터(10)의 모터 축동력(Pwr_M)을 산출하는 모터축동력 산출단계(S90); 및
상기 펌프 수동력(Pwr_H)과 모터 축동력(Pwr_M)에 의해 상기 펌프(10)의 펌프 효율(η_P)을 산출하는 펌프효율 산출단계(S100)를 구비한 것을 특징으로 하는 펌프 효율 산출방법.
In the pump efficiency calculation method of the pump (10) started by the motor (20),
When the pump 10 is stopped, the average resistance R of the windings of the motor 20, the inlet height h1 and the inlet diameter D1 of the pump 10, and the outlet height of the pump 10 (h2) and the measuring step (S10) before starting the pump to measure the outlet diameter (D2);
A discharge flow rate (Q2) through which fluid is discharged to the rear end side of the pump (10) during the operation of the pump (10), a shear fluid pressure (P1) and a shear fluid temperature (T1) at the front end of the pump (10), The rear end fluid pressure (P2) and the rear end fluid temperature (T2) at the rear end of the pump (10), the instantaneous voltage (V1, V2, V3) and the instantaneous current (C1, C2, C3) supplied to the motor (20) , During the pump operation to measure the motor rotational speed (w) of the motor 20 (S20);
The shear fluid density (ρ1) of the front end of the pump (10) is calculated based on the shear fluid pressure (P1) and the shear fluid temperature (T1). A fluid density calculating step (S30) for calculating the rear end fluid density (ρ2) at the rear end of the pump 10;
An inflow flow rate calculating step (S40) for calculating the inflow flow rate Q1 flowing into the pump 10 by the discharge flow rate Q2, the shear fluid density r2, and the downstream fluid density r2;
The inlet flow rate (V1) of the inlet of the pump (10) and the outlet of the pump (10) by the inlet flow rate (Q1), the discharge flow rate (Q2), the inlet diameter (D1), and the outlet diameter (D2) A fluid speed calculating step (S50) for calculating the discharge fluid velocity (Vout);
The shear fluid density (ρ1), the rear fluid density (ρ2), the shear fluid pressure (P1), the rear fluid pressure (P2), the inlet height (h1), the outlet height (h2), and the inlet fluid velocity A pump lift calculation step (S60) for calculating the pump lift (H) of the pump (10) by (Vin), the outlet fluid velocity (Vout) and the gravitational acceleration (g);
Pump manual power calculation step for calculating the pump manual force (Pwr_H) of the pump 10 by the rear stage fluid density (ρ2), discharge flow rate (Q2), pump lift (H) and gravity acceleration (g) S70);
The motor output torque Tq is determined by the average resistance R of the windings of the motor 20, the instantaneous voltages V1, V2, and V3 and the instantaneous currents C1, C2, and C3 supplied to the motor 20. Calculating motor output torque step (S80);
A motor shaft power calculating step (S90) of calculating the motor shaft power (Pwr_M) of the motor 10 by the motor output torque (Tq) and the motor rotation speed (w); And
And a pump efficiency calculating step (S100) for calculating the pump efficiency (η_P) of the pump 10 by the pump manual force (Pwr_H) and the motor shaft power (Pwr_M).
KR1020160126072A 2016-09-30 2016-09-30 pump efficiency measuring method KR102141888B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160126072A KR102141888B1 (en) 2016-09-30 2016-09-30 pump efficiency measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160126072A KR102141888B1 (en) 2016-09-30 2016-09-30 pump efficiency measuring method

Publications (2)

Publication Number Publication Date
KR20180036037A KR20180036037A (en) 2018-04-09
KR102141888B1 true KR102141888B1 (en) 2020-08-06

Family

ID=61977761

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160126072A KR102141888B1 (en) 2016-09-30 2016-09-30 pump efficiency measuring method

Country Status (1)

Country Link
KR (1) KR102141888B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230080547A (en) 2021-11-30 2023-06-07 주식회사 필드솔루션 Predict metohd to efficiency of pump
KR20240045505A (en) 2022-09-30 2024-04-08 주식회사 필드솔루션 System including an edge computer that calculates the pump flow rate using artificial intelligence
KR20240045504A (en) 2022-09-30 2024-04-08 주식회사 필드솔루션 Method for detecting pump flow rate based on artificial intelligence

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111695311B (en) * 2020-06-15 2023-12-05 哈尔滨电气动力装备有限公司 Degradation function analysis method for cavitation-associated portion of nuclear main pump under two-phase working condition
CN114165471A (en) * 2021-12-15 2022-03-11 上海交通大学 Densely distributed light wind-making device and implementation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101434919B1 (en) 2013-03-27 2014-08-28 주식회사 에스티 System and method for operation efficiency analysys based on wsn for the pumping equipment in industry manufacturing process

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090081832A (en) 2008-01-25 2009-07-29 주식회사 재원엠앤에스 Pump performance test apparatus
US11976661B2 (en) * 2011-04-19 2024-05-07 Flowserve Management Company System and method for evaluating the performance of a pump
KR101353051B1 (en) * 2012-06-29 2014-01-17 목포해양대학교 산학협력단 pump efficiency measuring system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101434919B1 (en) 2013-03-27 2014-08-28 주식회사 에스티 System and method for operation efficiency analysys based on wsn for the pumping equipment in industry manufacturing process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230080547A (en) 2021-11-30 2023-06-07 주식회사 필드솔루션 Predict metohd to efficiency of pump
KR20240045505A (en) 2022-09-30 2024-04-08 주식회사 필드솔루션 System including an edge computer that calculates the pump flow rate using artificial intelligence
KR20240045504A (en) 2022-09-30 2024-04-08 주식회사 필드솔루션 Method for detecting pump flow rate based on artificial intelligence

Also Published As

Publication number Publication date
KR20180036037A (en) 2018-04-09

Similar Documents

Publication Publication Date Title
KR102141888B1 (en) pump efficiency measuring method
CN102077461B (en) For identifying the method for the load state of pump
US8763464B2 (en) Method and apparatus for determining an operating point of a work machine
EP1772960B1 (en) Load monitor
JP2011185190A (en) Control device integrated type motor pump
CN101627532A (en) Control method and motorstarter device
KR102518183B1 (en) Motor control method
CN102540076A (en) Method for measuring time constant of rotor of asynchronous machine
SE1150548A1 (en) Method for controlling at least part of a pump station
KR20050095073A (en) Motor lock error judgment method using current magnitude of washing machine
AU2018226492B2 (en) Power-loss ridethrough system and method
JP2018529098A (en) A device with a canned motor for measuring the flow-through process of a measuring fluid
JP2007040135A (en) Variable speed water supply device
CN108575115B (en) Motor system
JP6759392B2 (en) Water supply device
CN109058120B (en) Small power centrifugal pump
JP2016073157A (en) Motor with position sensor and gas compression device using the same
US9168682B2 (en) Medium supply appartus
KR101353051B1 (en) pump efficiency measuring system
JP7254331B2 (en) pumping equipment
KR20150102628A (en) Pump system using brushless dc motor, and method thereof
EP3182577B1 (en) Electrical machine assembly, electrical energy generation system and method for controlling the electrical machine assembly
JP2009244217A (en) Control device of compressor and control device of electrically-operated motor
JP2017036677A (en) Air compressor
CN113217504A (en) Hydraulic system main pump volumetric efficiency detection system

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right