KR102140943B1 - Method manufacturing for membrane Supporter coating on TiO₂ - Google Patents

Method manufacturing for membrane Supporter coating on TiO₂ Download PDF

Info

Publication number
KR102140943B1
KR102140943B1 KR1020180088369A KR20180088369A KR102140943B1 KR 102140943 B1 KR102140943 B1 KR 102140943B1 KR 1020180088369 A KR1020180088369 A KR 1020180088369A KR 20180088369 A KR20180088369 A KR 20180088369A KR 102140943 B1 KR102140943 B1 KR 102140943B1
Authority
KR
South Korea
Prior art keywords
titanium dioxide
tio
support
alumina tube
temperature
Prior art date
Application number
KR1020180088369A
Other languages
Korean (ko)
Other versions
KR20200013325A (en
Inventor
육종묵
전오성
김동현
정재칠
Original Assignee
(주)파인텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)파인텍 filed Critical (주)파인텍
Priority to KR1020180088369A priority Critical patent/KR102140943B1/en
Publication of KR20200013325A publication Critical patent/KR20200013325A/en
Application granted granted Critical
Publication of KR102140943B1 publication Critical patent/KR102140943B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0242Coating followed by impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • B01J35/004
    • B01J35/065
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • B01J35/59Membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

본 발명은 이산화티타늄을 이용한 맴브레인 지지체 제조방법에 관한 것이다. 그 구성은 이산화티타늄(TiO2), 물 및 분산제를 혼합하여 현탁액(Slurry)을 제조하는 제 1 단계; 상기 제조된 현탁액(Slurry)에 알루미나 튜브(Alumina tube : Al2O3)를 2 ~ 3회 반복 침지하고, 70℃ 온도에서 6시간 이상 건조하여 알루미나 튜브 외주면을 코팅하는 제 2 단계; 및 제 2 단계가 이루어진 후, 건조된 알루미나 튜브를 800℃ ~ 1200℃ 온도 조건에서 소결하는 제 3 단계;를 포함한다.
이에 따라, 본 발명은 Alumina 지지체와 규격이 비슷하면서 TiO2의 화학 안정성, 저항성에 있어서 TiO2 지지체가 비교 우위에 있음으로 다양한 용매(feed)에서 안정적인 지지체 역할을 수행할 수 있는 효과를 제공한다.
The present invention relates to a method for manufacturing a membrane support using titanium dioxide. The configuration comprises a first step of preparing a suspension by mixing titanium dioxide (TiO 2 ), water and a dispersant; A second step of coating the outer peripheral surface of the alumina tube by repeatedly immersing the alumina tube (Alumina tube: Al 2 O 3 ) 2-3 times in the prepared suspension (Slurry) for 6 hours or more at a temperature of 70° C.; And a third step of sintering the dried alumina tube at a temperature condition of 800° C. to 1200° C. after the second step is performed.
Accordingly, the present invention provides the effect that the TiO 2 support has a comparative advantage in terms of chemical stability and resistance of TiO 2 while having similar specifications to the Alumina support, and thus can serve as a stable support in various feeds.

Description

이산화티타늄을 이용한 맴브레인 지지체 제조방법{Method manufacturing for membrane Supporter coating on TiO₂}Method for manufacturing membrane support using titanium dioxide {Method manufacturing for membrane Supporter coating on TiO₂}

본 발명은 이산화티타늄을 이용한 맴브레인 지지체 제조방법에 관한 것으로, 보다 구체적으로는, 알루미나 튜브를 이산화티타늄(TiO2), 물 및 분산제가 혼합된 현탁액(slurry)에 침지하여 코팅 후 소결공정하여 알루미나 튜브(Al2O3) 지지체 표면에 rutile 구조를 갖는 TiO2층을 형성하여 비대칭(Asymmetric) 구조를 갖는 이산화티타늄을 이용한 맴브레인 지지체 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a membrane support using titanium dioxide, and more specifically, alumina tube by immersing the alumina tube in a suspension mixed with titanium dioxide (TiO 2 ), water and a dispersant, followed by coating and sintering. (Al 2 O 3 ) It relates to a method of manufacturing a membrane support using titanium dioxide having an asymmetric structure by forming a TiO 2 layer having a rutile structure on the surface of the support.

본 발명은 알루미나 튜브(Al2O3)의 표면에 Rutile 구조를 갖는 TiO2 층을 형성하여 Asymmetric 구조를 갖는 이산화티타늄을 이용한 맴브레인 지지체 제조방법에 관한 것이다.The present invention is TiO 2 having a Rutile structure on the surface of the alumina tube (Al 2 O 3 ) It relates to a method of manufacturing a membrane support using titanium dioxide having an asymmetric structure by forming a layer.

최근 환경규제의 강화와 고유가의 장기화 추세로 친환경 소재와 신에너지 소재에 대한 관심이 집중되고 있다.Recently, with the trend of strengthening environmental regulations and prolonging high oil prices, attention has been focused on eco-friendly materials and new energy materials.

이산화 타이타늄(titanium dioxide)은 이산화 티타늄 또는 이산화 티탄이라고도 불리며, 화학식은 TiO2이다. 전이금속인 타이타늄 원자 하나와 산소 원자 2개가 결합된 분자로서 분자량은 79.866g/mol이며, 무미 무취의 흰색 가루로서 타이타늄을 공기 중에 노출시키면 쉽게 산소와 반응하여 이산화 타이타늄 피막을 형성한다Titanium dioxide is also called titanium dioxide or titanium dioxide, and the chemical formula is TiO 2 . As a transition metal, one molecule of titanium and two oxygen atoms are combined. The molecular weight is 79.866g/mol. It is a tasteless, odorless white powder that easily reacts with oxygen to form a titanium dioxide film when exposed to air.

이산화티타늄은 화학적으로 안정하고 활성이 크며 기계적 성질이 양호하고, 산화력이 매우 크고, 은폐력이 커서 모든 용매에 녹지 않는 성질이 있고, 굴절귤이 매우 큰 이방성을 나타내고 산란성 커서, 안료나 고분자 충진제, 화장품 첨가제, 광촉매, 촉매 담채 등 다양한 용도로 사용되고 있고, 광촉매로서 이산화티타늄은 그 활용에 있어서 많은 연구가 진행되고 있다. 대기 및 수질정화, 탈취, 항균을 위한 친환경 소재로 각광받고 있으며, 광촉매 이산화티타늄은 공장의 폐수처리 및 대기정화와 같은 대규모 공공사업에서부터 방향성 유기물인 악취나 담배연기의 제거 등 개인 생활에 이르기까지 다양하게 응용되고 있다.Titanium dioxide is chemically stable, highly active, good in mechanical properties, very oxidizing, large in hiding power, insoluble in all solvents, refraction tangerine exhibits very large anisotropy, large scattering properties, large pigment or polymer filler, cosmetics It has been used for various purposes such as additives, photocatalysts, catalyst tints, etc., and titanium dioxide as a photocatalyst has been studied in many ways. It is in the spotlight as an environment-friendly material for air and water purification, deodorization, and antibacterial, and photocatalytic titanium dioxide ranges from large-scale public works such as wastewater treatment and air purification in factories to personal life, such as the removal of odors and tobacco smoke, which are aromatic organic substances. Is being applied.

한편, 첨부된 도 1a에서 도시된 바와 같이 이산화티타늄(TiO2)는 온도 프로파일에 따라 루타일(Rutile), 아나타제(anatase), 브루카이트(bookite)의 3가지 상으로 나타내는데, 효율적인 반도체성 재료로 태양전지, 광전자장치, 전력, 반도체장치, 촉매, 전자장치, 포토닉스, 감지장치, 의학, 리튬-이온배터리, 필터, 반사장치 및 고반사 코팅, 물 분해장치에 활용되고, 아나타제 상은 수많은 분야에 적용될 수 있고, 가장 폭넓게 사용되는 물질이다 하지만 루타일 상이 자연에서 가장 풍부하게 생성된다. 이러한 이유로 가장 풍부한 루타일 형태를 안정적인 아나타네 상으로 변형시키는 공정이 필요하다.On the other hand, as shown in the attached Figure 1a, titanium dioxide (TiO 2 ) is represented by three phases of rutile (Rutile), anatase (anatase), and brookite (bookite) according to the temperature profile, as an efficient semiconductor material Solar cells, optoelectronic devices, power, semiconductor devices, catalysts, electronic devices, photonics, sensing devices, medicine, lithium-ion batteries, filters, reflectors and high-reflective coatings, water decomposition devices, and anatase phases can be applied in numerous fields. It is the most widely used material, but the rutile phase is most abundant in nature. For this reason, a process is needed to transform the most abundant rutile form into a stable anatane phase.

일반적으로 이산화티타늄(TiO2)은 도 1b에서 도시된 바와 같이 Anatase 상의 경우 구상 구조를 띄며, 루타일(Rutile) 상의 경우 막대(bar) 형태의 구조를 나타내는데, 이산화티타늄(TiO2)은 도 1c에서 도시된 바와 같이 소결 온도는 1350℃ 이후로는 T소결 온도가 증가할수록 Dense 구조로 바뀌기 때문에 물 투과도(Water Flux) 성능이 하락하게 되는데, 따라서, 적합한 소결 온도는 Max 1200℃ 일때 적절한 소결온도가 된다.In general, titanium dioxide (TiO 2 ) has a spherical structure in the case of Anatase, as shown in FIG. 1B, and in the case of rutile, shows a bar-shaped structure, and titanium dioxide (TiO 2 ) in FIG. 1C As shown in the sintering temperature after 1350°C, since the T sintering temperature increases, the structure changes to a dense structure, so the water flux performance decreases. Therefore, when the suitable sintering temperature is Max 1200°C, the proper sintering temperature is do.

또한, 이산화티타늄(TiO2)은 XRD 문헌에서 소결 온도별 구조는 도 1d에 도시된 바와 같이 상온에서는 Anatase가 안정하고 온도가 올라가면서 루타일(Rutile) 구조의 비율이 증가하여 1000℃ 이후 순수 루타일(Rutile) 구조를 나타낸다.In addition, titanium dioxide (TiO 2 ) is the structure of each sintering temperature in the XRD literature, as shown in FIG. 1D, the stability of Anatase at room temperature and the temperature increases, the proportion of the Rutile structure increases, and after 1000℃, pure ruta Rutile structure.

이와 같은 응용분야에 사용되는 이산화티타늄 분말은 아나타제와 루타일 상을 가지는 분말로서, 태양광을 통해 분말의 표면에 ㅇOH와 O2-를 생성함으로써 분해 특성을 가지게 된다. 이러한 표면 반응을 광촉매 반응이라 하며 그 효율성을 향상시키기 위한 많은 연구들이 진행되고 있다.Titanium dioxide powder used in such applications is a powder having an anatase and rutile phase, and has decomposition properties by generating OH and O 2 on the surface of the powder through sunlight. This surface reaction is called a photocatalytic reaction and many studies have been conducted to improve its efficiency.

따라서, 본 발명은 이산화티타늄(TiO2)의 Anatase 구조의 파우더(powder)를 입혀 소결(sintering) 과정을 거쳐 소결 후 루타일(Rutile) 구조 생성 여부 확인하여 이산화티타늄(TiO2) 지지체를 제안하고자 한다.Accordingly, the present invention is to propose a titanium dioxide (TiO 2) support to determine whether the titanium dioxide (TiO 2) and then sintered through a powder (powder) of coated with sintering (sintering) process of Anatase structure of rutile (Rutile) structure produced do.

1. 이산화티탄 나노튜브의 제조방법, 이산화티탄 나노튜브,이를 이용한 광전기화학전지, 및 상기 광전기화학전지를이용한 수소 생산방법(PREPARATION METHOD FOR TITANIUM DIOXIDE NANOTUBE, TITANIUM DIOXIDE NANOTUBE, PHOTOELECTROCHEMICAL CELL USING THE SAME, AND HYDROGEN PRODUCTION METHOD USING THE PHOTOELECTROCHEMICAL CELL)(특허공개공보 제10-2009-0080776호)1.Production method of titanium dioxide nanotubes, titanium dioxide nanotubes, photoelectrochemical cells using them, and hydrogen production method using the photoelectrochemical cells (PREPARATION METHOD FOR TITANIUM DIOXIDE NANOTUBE, TITANIUM DIOXIDE NANOTUBE, PHOTOELECTROCHEMICAL CELL USING THE SAME, AND HYDROGEN PRODUCTION METHOD USING THE PHOTOELECTROCHEMICAL CELL) (Patent Publication No. 10-2009-0080776) 2. 주형 합성법을 이용한 나노 구조화된 튜브형의이산화티타늄 광촉매의 제조방법 및 이에 의해 제조된이산화티타늄 광촉매의 용도(METHOD OF PREPARING TUBULAR NANOSTRUCTURED TITANIUMDIOXIDE PHOTOCATALYSTS BY TEMPLATE SYNTHESIS AND USEOF NANOSTRUCTURED PHOTOCATALYSTS PREPARED THEREBY)(특허등록번호 제10-0471688호)2. METHOD OF PREPARING TUBULAR NANOSTRUCTURED TITANIUMDIOXIDE PHOTOCATALYSTS BY TEMPLATE SYNTHESIS AND USEOF NANOSTRUCTURED PHOTOCATALYSTS PREPARED THERE 10-0471688)

본 발명은 상기의 문제점을 해결하기 위한 것으로, 알루미나 튜브를 이산화티타늄(TiO2), 물 및 분산제가 혼합된 현탁액(slurry)에 침지하여 코팅후 소결공정하여 알루미나 튜브(Alumina tube : Al2O3) 지지체 표면에 루타일(rutile) 구조를 갖는 이산화티타늄(TiO2) 층을 형성하여 비대칭(Asymmetric) 구조를 갖는 이산화티타늄을 이용한 맴브레인 지지체 제조방법을 제공하기 위한 것이다.
또한, 본 발명은 알루미나 튜브(Alumina tube : Al2O3)를 이산화티타늄(TiO2)의 Anatase 구조의 powder를 입혀 1000℃ 온도로 소결(sintering) 과정을 거쳐 루타일(Rutile) 구조 생성을 통해 이산화티타늄(TiO2)의 지지체를 형성할 수 있는 이산화티타늄을 이용한 맴브레인 지지체 제조방법을 제공하기 위한 것이다.
The present invention is to solve the above problems, the alumina tube is immersed in a suspension (slurry) in which titanium dioxide (TiO 2 ), water and dispersant are mixed, followed by coating and sintering to alumina tube (Alumina tube: Al 2 O 3) ) It is to provide a method of manufacturing a membrane support using titanium dioxide having an asymmetric structure by forming a titanium dioxide (TiO 2) layer having a rutile structure on the surface of the support.
In addition, the present invention is alumina tube (Alumina tube: Al 2 O 3 ) coated with powder of Anatase structure of titanium dioxide (TiO 2 ) through a sintering (sintering) process at a temperature of 1000 ℃ through the creation of a rutile (Rutile) structure It is to provide a method for manufacturing a membrane support using titanium dioxide, which can form a support of titanium dioxide (TiO 2 ).

삭제delete

그러나 본 발명의 목적들은 상기에 언급된 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the objects of the present invention are not limited to those mentioned above, and other objects not mentioned will be clearly understood by those skilled in the art from the following description.

상기의 목적을 달성하기 위해 본 발명의 실시예에 따른 이산화티타늄을 이용한 맴브레인 지지체 제조방법은, 이산화티타늄(TiO2) 4.95 중량%, 물 94.06 중량% 및 암모늄 폴리메타크릴레이트(Ammonium Polymethacrylate) 수용액의 분산제 0.99 중량%을 혼합하여 현탁액(Slurry)을 제조하는 제 1 단계; 상기 제조된 현탁액(Slurry)에 알루미나 튜브(Alumina tube : Al2O3)를 2 ~ 3회 반복 침지하고, 70℃ 온도에서 6시간 이상 건조하여 알루미나 튜브(Alumina tube : Al2O3) 외주면을 코팅하는 제 2 단계; 제 2 단계가 이루어진 후, 코팅된 알루미나 튜브(Alumina tube : Al2O3)를 1000℃ 온도에서 소결하여 알루미나 튜브(Alumina tube : Al2O3) 지지체 표면에 루타일(Rutile) 구조를 가지고 이산화티타늄(TiO2) 층을 형성하여 비대칭(Asymmetric) 구조를 갖는 지지체로 구성되는 제 3 단계;로 구성되는 것을 특징으로 한다.In order to achieve the above object, a method of manufacturing a membrane support using titanium dioxide according to an embodiment of the present invention, titanium dioxide (TiO 2 ) 4.95% by weight, water 94.06% by weight and aqueous solution of ammonium polymethacrylate (Ammonium Polymethacrylate) A first step of preparing a suspension by mixing 0.99% by weight of a dispersant; An alumina tube (Al 2 O 3 ) is repeatedly immersed 2 to 3 times in the prepared suspension (Slurry), and dried at a temperature of 70° C. for 6 hours or more to form an outer surface of the alumina tube (Al 2 O 3 ). A second step of coating; After the second step is performed, the coated alumina tube (Alumina tube: Al 2 O 3 ) is sintered at a temperature of 1000° C. to have a Rutile structure on the surface of the alumina tube (Al 2 O 3 ) support and is dioxide. It characterized by being composed of; a third step consisting of a support having an asymmetric (Asymmetric) structure by forming a titanium (TiO 2 ) layer.

삭제delete

삭제delete

본 발명의 실시예에 따른 이산화티타늄을 이용한 맴브레인 지지체 제조방법은, 알루미나 튜브(Al2O3)를 이산화티타늄(TiO2)의 Anatase 구조의 powder를 입혀 1000℃ 온도로 소결(sintering) 과정을 거쳐 루타일(Rutile) 구조 생성을 통해 이산화티타늄(TiO2)의 지지체를 형성하여 Alumina 지지체와 규격이 비슷하면서 다양한 용매(feed)에서 안정적인 지지체 역할을 수행할 수 있다.Method for manufacturing a membrane support using titanium dioxide according to an embodiment of the present invention, alumina tube (Al 2 O 3 ) is coated with powder of Anatase structure of titanium dioxide (TiO 2 ) and subjected to a sintering process at a temperature of 1000° C. By forming a support of titanium dioxide (TiO 2 ) through the creation of a rutile structure, it can play a stable support role in various solvents while having similar specifications to the Alumina support.

또한, 본 발명의 실시예 따른 이산화티타늄을 이용한 맴브레인 지지체 제조방법은, Alumina 지지체와 규격이 비슷하면서 TiO2의 화학 안정성, 저항성에 있어서 TiO2 지지체가 비교 우위에 있음으로 다양한 용매(feed)에서 안정적인 지지체 역할을 수행하여 이산화티타늄(TiO2)의 광 촉매 현상을 이용한 맴브레인 역할 수행하여 수처리, 식음료 정제 등 다양한 산업분야에 활용할 수 있는 효과를 제공한다.Further, the membrane substrate manufacturing method using the embodiment of titanium dioxide according to the present invention is stable in various solvents (feed) to the TiO 2 support is in the comparative advantage in chemical stability, resistance and Alumina similar to the support and the standard TiO 2 By acting as a support, it serves as a membrane using a photocatalytic phenomenon of titanium dioxide (TiO 2 ) to provide an effect that can be utilized in various industrial fields such as water treatment and food and beverage purification.

도 1은 이산화티타늄의 물질구조 및 특성을 도시한 사진
도 2는 본 발명의 실시예에 따른 이산화티타늄을 이용한 맴브레인 지지체 제조를 위한 흐름도
도 3은 도 2의 이산화티타늄을 이용한 맴브레인 지지체 제조의 현탁액 제조의 상태도
도 4는 도 2의 이산화티타늄을 이용한 맴브레인 지지체 제조의 침지공정을 도시한 상태도
도 5는 도 2의 이산화티타늄을 이용한 맴브레인 지지체 제조의 소결공정을 통한 상태를 도시한 그래프
도 6은 도 2에 따라 제조된 이산화티타늄을 이용한 맴브레인 지지체의 소결온도에 따른 점막의 치밀성의 결과 사진
도 7은 도 2에 따라 제조된 이산화티타늄을 이용한 맴브레인 지지체의 XRD 분석결과 그래프
도 8은 도 2에 따라 제조된 이산화티타늄을 이용한 맴브레인 지지체의 분석결과
도 9는 도 2에 따라 제조된 이산화티타늄을 이용한 맴브레인 지지체의 SEM
도 10은 본 발명에 따른 이산화티타늄을 이용한 맴브레인 지지체의 구조
도 11은 본 발명에 따른 이산화티타늄을 이용한 맴브레인 지지체의 단면 구조도
1 is a photograph showing the material structure and properties of titanium dioxide
Figure 2 is a flow chart for manufacturing a membrane support using titanium dioxide according to an embodiment of the present invention
Figure 3 is a state diagram of the suspension production of the membrane support preparation using titanium dioxide of Figure 2
Figure 4 is a state diagram showing the immersion process of the membrane support using the titanium dioxide of Figure 2
Figure 5 is a graph showing the state through the sintering process of the membrane support production using titanium dioxide of Figure 2
Figure 6 is a photograph of the results of the denseness of the mucous membrane according to the sintering temperature of the membrane support using titanium dioxide prepared according to Figure 2
7 is a graph of XRD analysis results of the membrane support using titanium dioxide prepared according to FIG. 2;
8 is an analysis result of the membrane support using titanium dioxide prepared according to FIG.
9 is a SEM of the membrane support using titanium dioxide prepared according to FIG.
10 is a structure of a membrane support using titanium dioxide according to the present invention
11 is a cross-sectional structure diagram of a membrane support using titanium dioxide according to the present invention

이하, 본 발명의 바람직한 실시예의 상세한 설명은 첨부된 도면들을 참조하여 설명할 것이다. 하기에서 본 발명을 설명함에 있어서, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다.Hereinafter, a detailed description of a preferred embodiment of the present invention will be described with reference to the accompanying drawings. In the following description of the present invention, if it is determined that a detailed description of related known functions or configurations may unnecessarily obscure the subject matter of the present invention, the detailed description will be omitted.

본 발명의 이산화티타늄을 이용한 맴브레인 지지체는 알루미나 튜브(Al2O3)를 이산화티타늄(TiO2), 물 및 암모늄 폴리메타크릴레이트(Ammonium Polymethacrylate) 수용액의 분산제가 혼합된 현탁액(slurry)에 침지, 코팅하여 1000℃ 온도로 소결공정을 통해 알루미나 튜브(Al2O3) 지지체 표면에 루타일(Rutile) 구조를 가지고 이산화티타늄(TiO2)층을 형성하여 비대칭(Asymmetric) 구조를 갖도록 구성된 것이다.The membrane support using titanium dioxide of the present invention is immersed in an alumina tube (Al 2 O 3 ) in a suspension in which a dispersant in an aqueous solution of titanium dioxide (TiO 2 ), water and ammonium polymethacrylate is mixed, It is configured to have an asymmetric structure by forming a titanium dioxide (TiO 2 ) layer with a rutile structure on the surface of the alumina tube (Al 2 O 3 ) support by coating and sintering at a temperature of 1000°C.

이하, 본 발명에 사용되는 알루미나 튜브(Al2O3 , Aluminium Oxide Alumina)는 화학적으로 땅 껍질에서 실리카(Sillica, SiO2) 다음으로 많은 성분의 하나로서 산업용 소재로 사용되는데, 성분상 알루미나를 80% 이상 함유한 인공광물을 알루미나 세라믹스라 호칭된다. Alumina 99.4% (내열온도 1658℃)는 내약품성이 뛰어나 화학적 침식에 높은 저항을 갖고 있으며, 산과 알칼리, 유기 용매에 거의 영향을 받지 않고, 일반 금속보다 내 마모성이 15 ~ 20배 높고, 일반 금속이 갖고 있는 용융점을 초과하여 Max.1600 ~ 1700℃까지 견디는 특성이 있다.Hereinafter, the alumina tube (Al 2 O 3 , Aluminum Oxide Alumina) used in the present invention is chemically used as an industrial material as one of many components after silica (Sillica, SiO 2 ) in the ground shell. Artificial minerals containing more than% are called alumina ceramics. Alumina 99.4% (heat resistance temperature 1658℃) has excellent chemical resistance, has high resistance to chemical erosion, is hardly affected by acids, alkalis, and organic solvents. It has a characteristic of surpassing the melting point and holding up to Max. 1600~1700℃.

이하, 첨부된 도면을 기초로 본 발명에 따른 이산화티타늄을 이용한 맴브레인 지지체 제조방법을 설명하면 다음과 같다. Hereinafter, a method of manufacturing a membrane support using titanium dioxide according to the present invention based on the accompanying drawings will be described.

먼저, 첨부된 도 2는 본 발명에 따른 이산화티타늄을 이용한 맴브레인 지지체 제조를 위한 개략적인 흐름도이고, 도 3은 도 2의 이산화티타늄을 이용한 맴브레인 지지체 제조의 현탁액 제조의 상태도이며, 도 4는 도 2의 이산화티타늄을 이용한 맴브레인 지지체 제조의 침지공정을 도시한 상태도이고, 도 5는 도 2의 이산화티타늄을 이용한 맴브레인 지지체 제조의 소결공정을 결과를 도시한 그래프를 나타낸다.First, the attached Figure 2 is a schematic flow chart for manufacturing a membrane support using titanium dioxide according to the present invention, Figure 3 is a state diagram of the suspension production of the membrane support preparation using titanium dioxide of Figure 2, Figure 4 is Figure 2 Is a state diagram showing the immersion process of the membrane support production using titanium dioxide, Figure 5 shows a graph showing the results of the sintering process of the membrane support production using titanium dioxide of FIG.

본, 발명에 따른 이산화티타늄을 이용한 맴브레인 지지체의 제조 절차는 ① 현탁액(Slurry) 제조 공정, ② 알루미나 튜브 침지 및 코팅 절차, ③ 소결 절차로 구성된다.The manufacturing procedure of the membrane support using titanium dioxide according to the present invention is composed of ① a suspension manufacturing process, ② alumina tube immersion and coating procedure, ③ sintering procedure.

1. 이산화티타늄을 이용한 맴브레인 지지체 제조1. Fabrication of membrane support using titanium dioxide

① 현탁액(Slurry) 제조 ① Production of suspension

알루미나 튜브(Al2O3) 침지 및 코팅을 통해 맴브레인 지지체를 제조하기 현탁액, slurry를 제조하게 된다.A suspension and slurry are prepared to prepare a membrane support through dipping and coating of an alumina tube (Al 2 O 3 ).

즉, 이산화티타늄(TiO2) 파우더, 물 및 분산제를 일정 혼합하여 제조하게 되는데, 첨부된 도 3에 도시된 바와 같이 (1) 이산화티타늄(TiO2) 4.95 중량%, 물 94.06 중량% 및 분산제 0.99 중량%, (2) 이산화티타늄(TiO2) 2.55 중량%, 물 96.04 중량% 및 분산제 0.51 중량% (3) 이산화티타늄(TiO2) 1.72 중량%, 물 97.94 중량%, 및 분산제 0.34 중량%을 혼합하여 Zirconia Ball과 함께 Ball Milling을 통하여 현탁액을 제조한다. That is, titanium dioxide (TiO 2 ) powder, water, and a dispersant are prepared by mixing, as shown in FIG. 3 (1) titanium dioxide (TiO 2 ) 4.95 wt%, water 94.06 wt% and dispersant 0.99 Weight percent, (2) titanium dioxide (TiO 2 ) 2.55 weight percent, water 96.04 weight percent and dispersant 0.51 weight percent (3) titanium dioxide (TiO 2 ) 1.72 weight percent, water 97.94 weight percent, and dispersant 0.34 weight percent mixed Thus, a suspension is prepared through ball milling together with Zirconia Ball.

Zirconia Ball weight = solution Total weight(TiO2 + Di water + D.A)Zirconia Ball weight = solution Total weight (TiO 2 + Di water + DA)

상기 분산제는 Ammonium polymethacrylate 수용액을 사용한다.The dispersant is an aqueous solution of Ammonium polymethacrylate.

상기의 이산화티타늄, 물, 분산제의 용량을 각각 가변적으로 적용, 혼합하여 제조된 현탁액(slurry)을 통해 코팅되고 가공된 알루미나 튜브(Alumina tube : Al2O3)의 소결시 그 치밀성을 확인하여 맴브레인 지지체의 물 투과도 등을 확인할 수 있다.The capacity of the titanium dioxide, water, and dispersant is variablely applied and mixed, and the density of the alumina tube (Al 2 O 3 ) coated and processed through a slurry prepared by sintering is checked and the membrane is sintered. Water permeability of the support can be confirmed.

② 알루미나 튜브 침지 및 코팅 절차② Alumina tube immersion and coating procedure

상기의 (1) 이산화티타늄(TiO2) 4.95 중량%, 물 94.06 중량% 및 분산제 0.99 중량%, (2) 이산화티타늄(TiO2) 2.55 중량%, 물 96.04 중량% 및 분산제 0.51 중량% (3) 이산화티타늄(TiO2) 1.72 중량%, 물 97.94 중량%, 및 분산제 0.34 중량%의 배합비로 혼합하여 Zirconia Ball과 함께 Ball Milling을 통하여 제조된 현탁액(Slurry)에 알루미나 튜브(Alumina tube : Al2O3)를 2 ~ 3회 반복 침지하고, 그 외주면을 코팅하고 상온에서 6시간 이상 건조한다.(1) Titanium dioxide (TiO 2 ) 4.95 wt%, water 94.06 wt% and dispersant 0.99 wt%, (2) titanium dioxide (TiO 2 ) 2.55 wt%, water 96.04 wt% and dispersant 0.51 wt% (3) Titanium dioxide (TiO 2 ) 1.72% by weight, 97.94% by weight of water, and 0.34% by weight of a dispersant are mixed at a mixing ratio of Zirconia Ball and alumina tube (Alumina tube: Al 2 O 3 ) in a suspension prepared through ball milling ) Is repeatedly immersed 2-3 times, the outer circumferential surface is coated and dried at room temperature for 6 hours or more.

즉, 첨부된 도 4와 같이 알루미나 튜브(Alumina tube : Al2O3)를 이산화티타늄(TiO2) slurry가 담긴 용기에 깊게 넣어다 빼는 공정을 3회 반복하고 70℃ 온도에서 6시간 이상 건조하면 알루미나 튜브 외주면이 코팅된다.That is, if the alumina tube (Alumina tube: Al 2 O 3 ) is deeply inserted into a container containing titanium dioxide (TiO 2 ) slurry as shown in FIG. 4 and repeated 3 times and dried at 70° C. for 6 hours or more The outer surface of the alumina tube is coated.

③ 소결 공정③ Sintering process

상기 침지 및 코팅 공정을 통해 건조된 알루미나 튜브를 800℃ ~ 1200℃ 온도 조건에서 소결하여 온도 최적화 완료 후 대면적 적용이 되도록 한다. The alumina tube dried through the immersion and coating process is sintered at a temperature condition of 800°C to 1200°C to apply a large area after temperature optimization is completed.

④ 맴브레인 지지체 확인 ④ Check the membrane support

첨부된 도 2와 같이 본 발명에 따른 이산화티타늄을 이용한 맴브레인 지지체의 전체 제조 공정을 통해 맴브레인 지지체는 현탁액(Slurry) 제조, 알루미나 튜브 침지 및 코팅, 소결공정으로 제조된다.As shown in the accompanying Figure 2, the membrane support is prepared by a suspension (Slurry) production, alumina tube immersion and coating, sintering process through the entire manufacturing process of the membrane support using titanium dioxide according to the present invention.

상기의 절차에 의해 생성된 이산화티타늄이 코팅된 맴브레인 지지체를 SEM, XRD을 통해 미세 구조 및 치밀성은 첨부된 도 3 내지 도 5와 같이 그 결과를 확인할 수 있다.The titanium dioxide-coated membrane support produced by the above procedure can be confirmed through SEM and XRD, as shown in FIGS. 3 to 5, as shown in FIGS. 3 to 5.

1) SEM 특성1) SEM characteristics

상기 SEM의 현탁액의 구성 및 소결온도에 따라 막 표면, 평탄도 및 치밀성이 변화하게 되는데, 현탁액 제조시 이산화티타늄(TiO2) 4.95 중량%, 물 94.06 중량% 및 분산제 0.99 중량%으로 혼합된 농도의 경우 가장 좋은 상태로 확인되었고, 상기 농도에 따라 첨부된 도 6에 도시된 바와 같이 800℃ ~ 1200℃까지 온도를 증가시켰을 때, 점점 막 표면이 치밀한 구조로 변화를 확인하였고, 1000℃ 온도 조건에서 평탄도가 가장 뛰어났으며, 균열(crack) 발생도 가장 적어 가장 적합한 온도 조건임을 확인하였다, 한편, 저온(800℃) 에서는 평탄도가 하락되었고, 고온(1200℃)에서는 TiO2의 과도한 치밀성(dense)으로 물 투과도 확보가 어려울 것으로 확인하였다.Of the concentration of mixed as there is to the surface, flatness and denseness change layer, depending on the configuration and the sintering temperature of the SEM suspension, a suspension of titanium dioxide (TiO 2) 4.95% by weight of the preparation, water 94.06 wt.%, And dispersing agent 0.99% by weight The case was confirmed to be the best condition, and when the temperature was increased from 800° C. to 1200° C. as shown in FIG. 6 attached according to the concentration, the film surface was gradually changed to a dense structure, and at 1000° C. temperature conditions The flatness was the best, and cracking was the least, so it was confirmed that it was the most suitable temperature condition. On the other hand, the flatness fell at low temperature (800℃), and the excessive density of TiO 2 at high temperature (1200℃) ( dense), it was confirmed that it would be difficult to secure water permeability.

2) XRD 특성 2) XRD characteristics

XRD(X-Ray Diffraction)은 X-ray 회절을 이용하여 어떠한 물질의 구조를 확인하는 것으로, 본 발명에 따른 맴브레인 지지체에 대해 충남대(대전 소재)에 분석을 의뢰하였고, XPERT-PRO (Diffractometer)의 측정장치를 TiO2의 루타일(Rutile) 구조의 Peak 값을 확인하였다.XRD (X-Ray Diffraction) is to confirm the structure of any material using X-ray diffraction, and requested the analysis of the membrane support according to the present invention to Chungnam National University (Daejeon), XPERT-PRO (Diffractometer) The measuring device confirmed the peak value of the TiO 2 rutile structure.

첨부된 도 7은 이산화티타늄을 이용한 맴브레인 지지체의 XRD 분석결과 도시한 그래프로서, 이산화티타늄(TiO2) 4.95 중량%, 물 94.06 중량% 및 분산제 0.99 중량%으로 혼합된 현탁액에 침지 및 소결절차를 통해 형성된 맴브레인 지지체는 소결온도 900℃ ~ 1200℃까지 루타일(Rutile) 구조의 Peak를 확인하였고, 800℃ 소결 온도에서는 TiO2 Peak가 발견되지 않았다. (Al: Al2O3 (Support) R : TiO2 (Rutile) )Attached Figure 7 is a graph showing the results of XRD analysis of the membrane support using titanium dioxide, titanium dioxide (TiO 2 ) 4.95% by weight, 94.06% by weight of water and 0.99% by weight of a dispersant through immersion and sintering procedures The formed membrane support confirmed the peak of the Rutile structure from the sintering temperature of 900°C to 1200°C, and TiO 2 Peak was not found at the 800°C sintering temperature. (Al: Al 2 O 3 (Support) R: TiO 2 (Rutile))

2. 실험결과2. Experimental results

상기의 절차에 의해 생성된 이산화티타늄이 코팅된 맴브레인 지지체에 대하여 기공률(Porosity), 압축강도(Compressive Strength) 및 투과률(Water flux)을 가천대에 분석 의뢰하여 그 결과를 첨부된 도 8과 같이 확인하였다.The titanium dioxide-coated membrane support produced by the above procedure was requested to analyze porosity, compressive strength, and water flux to a gachon band, and the results were attached as shown in FIG. 8. Confirmed.

도 8a에 제시된 바와 같이 소결온도(sintering Temp)에 따라 이산화티타늄(TiO2)의 기공률과 알루미나 튜브(Al2O3)의 기공률을 확인하였다.As shown in FIG. 8A, the porosity of titanium dioxide (TiO 2 ) and the porosity of the alumina tube (Al 2 O 3 ) were confirmed according to the sintering temperature.

즉, 기공률(Porosity)은 TiO2 소결 온도에 따른 Porosity 차이는 오차 범위 내로 적었음. 또한, Al2O3 지지체와의 차이는 없음을 확인하였다.That is, the porosity of the porosity difference according to the TiO 2 sintering temperature was small within the error range. In addition, it was confirmed that there is no difference from the Al 2 O 3 support.

또한, 압축강도(Compressive Strength)의 경우 도 8b와 같이 소결 온도의 변화에도 불구하고 평균 10.13kgf으로 오차 범위로 차이는 없었고, 투과률(Water flux)은 첨부된 도 8c와 같이 소결온도 1100℃, 1200℃ 소결 온도의 경우 치밀한(Dense) TiO2 층으로 인해 온도 증가에 따라 물 투과도가 약 100kg/m2hr씩 감소함을 확인하였다.In addition, in the case of compressive strength, despite the change in the sintering temperature as shown in FIG. 8B, there was no difference in the error range with an average of 10.13 kgf, and the transmittance (Water flux) was 1100°C, as shown in FIG. Dense TiO 2 for 1200℃ sintering temperature It was confirmed that the water permeability decreased by about 100 kg/m 2 hr as the temperature increased due to the layer.

결론적으로, 본 발명에 따른 이산화티타늄을 이용한 맴브레인 지지체는 도 9에 도시된 바와 같이 이산화티타늄(TiO2) 4.95 중량%, 물 94.06 중량% 및 분산제 0.99 중량%으로 혼합된 현탁액(Slurry)를 통해 침지되고 1000℃의 온도로 소결절차를 통해 형성될 때 TiO2 무게 분율이 4.95%인 조건에서 가장 평탄도 특성이 우수한 것을 도출하였다.In conclusion, the membrane support using titanium dioxide according to the present invention is immersed through a suspension (Slurry) mixed with 4.95% by weight of titanium dioxide (TiO 2 ), 94.06% by weight of water and 0.99% by weight of dispersant as shown in FIG. When it was formed through a sintering procedure at a temperature of 1000° C., it was derived that the TiO 2 weight fraction was excellent in the condition that the weight fraction was 4.95%.

상기의 절차에 의해 생성된 이산화티타늄을 이용한 맴브레인 지지체는 도 10 및 도 11과 같이 Symmetric 구조의 Al2O3 지지체 표면에 루타일(Rutile) 구조를 갖는 TiO2 층이 형성된 Asymmetric 구조를 갖는 지지체가 구성되고,Membrane support using titanium dioxide produced by the above procedure has a support having an Asymmetric structure in which TiO 2 layer having a Rutile structure is formed on the surface of the Al 2 O 3 support of Symmetric structure as shown in FIGS. 10 and 11. Composed,

소결 온도 1000℃ 및 TiO2 분율 4.95%일때 표면의 평탄도가 가장 우수하고, 기공률(Porosity), 압축강도(Compressive Strength) 및 투과률(Water flux)의 분석 결과, Symmetric Al2O3 지지체 성능과 사실상 차이가 거의 없음을 확인하였고, 이에 대면적에 적용하기 위해 730mm 길이(0.02m2)의 지지체 표면에 TiO2 층을 형성하여 Al2O3 지지체와 성능 비교시 차이가 없었음을 확인하였다.When the sintering temperature is 1000℃ and the TiO 2 fraction is 4.95%, the flatness of the surface is the best, and as a result of analysis of porosity, compressive strength, and water flux, Symmetric Al 2 O 3 support performance and It was confirmed that there was virtually no difference, and TiO 2 was applied to the surface of the support having a length of 730 mm (0.02 m 2 ) for application to a large area. It was confirmed that there was no difference in performance comparison with the Al 2 O 3 support by forming a layer.

따라서, 본 발명의 이산화티타늄이 코팅된 맴브레인 지지체는 Alumina 지지체와 Spec이 비슷하면서 TiO2의 화학 안정성(Stability), 저항성 (Resistance)에 있어서 TiO2 지지체가 더 비교 우위에 있으며, 다양한 용매(feed)에서 안정적인 지지체 역할을 수행할 수 있다.Thus, the titanium dioxide-coated membrane support of the present invention is in the TiO 2 support is further competitive advantage in chemical stability (Stability), resistance (Resistance) of as similar to the Alumina substrate and the Spec TiO 2, various solvents (feed) It can serve as a stable support.

이상과 같이, 본 명세서와 도면에는 본 발명의 바람직한 실시예에 대하여 개시하였으며, 비록 특정 용어들이 사용되었으나, 이는 단지 본 발명의 기술 내용을 쉽게 설명하고 발명의 이해를 돕기 위한 일반적인 의미에서 사용된 것이지, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예 외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.As described above, in the present specification and drawings, preferred embodiments of the present invention have been disclosed, and although specific terms are used, they are merely used in a general sense to easily describe the technical contents of the present invention and to help understand the invention. , It is not intended to limit the scope of the present invention. It is obvious to those skilled in the art to which the present invention pertains that other modifications based on the technical spirit of the present invention can be implemented in addition to the embodiments disclosed herein.

Claims (3)

이산화티타늄(TiO2) 4.95 중량%, 물 94.06 중량% 및 암모늄 폴리메타크릴레이트(Ammonium Polymethacrylate) 수용액의 분산제 0.99 중량%을 혼합하여 현탁액(Slurry)을 제조하는 제 1 단계;
상기 제조된 현탁액(Slurry)에 알루미나 튜브(Alumina tube : Al2O3)를 2 ~ 3회 반복 침지하고, 70℃ 온도에서 6시간 이상 건조하여 알루미나 튜브(Alumina tube : Al2O3) 외주면을 코팅하는 제 2 단계;
제 2 단계가 이루어진 후, 코팅된 알루미나 튜브(Alumina tube : Al2O3)를 1000℃ 온도에서 소결하여 알루미나 튜브(Alumina tube : Al2O3) 지지체 표면에 루타일(Rutile) 구조를 가지고 이산화티타늄(TiO2) 층을 형성하여 비대칭(Asymmetric) 구조를 갖는 지지체로 구성되는 제 3 단계;를 포함하여 구성되는 것을 특징으로 이산화티타늄을 이용한 맴브레인 지지체 제조방법.
A first step of preparing a suspension by mixing 4.95% by weight of titanium dioxide (TiO 2 ), 94.06% by weight of water and 0.99% by weight of a dispersant in an aqueous solution of ammonium polymethacrylate;
An alumina tube (Al 2 O 3 ) is repeatedly immersed 2 to 3 times in the prepared suspension (Slurry), and dried at a temperature of 70° C. for 6 hours or more to form an outer surface of the alumina tube (Al 2 O 3 ). A second step of coating;
After the second step is performed, the coated alumina tube (Alumina tube: Al 2 O 3 ) is sintered at a temperature of 1000° C. to have a Rutile structure on the surface of the alumina tube (Al 2 O 3 ) support and is dioxide. Method of manufacturing a membrane support using titanium dioxide, characterized in that it comprises a; a third step consisting of a support having an asymmetric (Asymmetric) structure by forming a titanium (TiO 2 ) layer.
삭제delete 삭제delete
KR1020180088369A 2018-07-30 2018-07-30 Method manufacturing for membrane Supporter coating on TiO₂ KR102140943B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180088369A KR102140943B1 (en) 2018-07-30 2018-07-30 Method manufacturing for membrane Supporter coating on TiO₂

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180088369A KR102140943B1 (en) 2018-07-30 2018-07-30 Method manufacturing for membrane Supporter coating on TiO₂

Publications (2)

Publication Number Publication Date
KR20200013325A KR20200013325A (en) 2020-02-07
KR102140943B1 true KR102140943B1 (en) 2020-08-04

Family

ID=69569986

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180088369A KR102140943B1 (en) 2018-07-30 2018-07-30 Method manufacturing for membrane Supporter coating on TiO₂

Country Status (1)

Country Link
KR (1) KR102140943B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2600103B2 (en) 1993-12-09 1997-04-16 工業技術院長 Photocatalytic filter and method for producing the same
JP2002253973A (en) 2001-03-01 2002-09-10 Kazuo Miyatani Photocatalytic body and manufacturing method thereof and application thereof
KR101668694B1 (en) 2016-01-21 2016-10-24 한양대학교 에리카산학협력단 Inorganic hollow beads coated photocatalyst for a water treatment and method for manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100364729B1 (en) * 2000-01-19 2002-12-18 엘지전자 주식회사 Method for preparing Titanium dioxide film on polymer substrate
KR101550614B1 (en) * 2014-02-11 2015-09-08 현대자동차 주식회사 Catalyst carrier for purification of exhausted gas, method for preparing the same, and catalyst for purification of exhausted gas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2600103B2 (en) 1993-12-09 1997-04-16 工業技術院長 Photocatalytic filter and method for producing the same
JP2002253973A (en) 2001-03-01 2002-09-10 Kazuo Miyatani Photocatalytic body and manufacturing method thereof and application thereof
KR101668694B1 (en) 2016-01-21 2016-10-24 한양대학교 에리카산학협력단 Inorganic hollow beads coated photocatalyst for a water treatment and method for manufacturing the same

Also Published As

Publication number Publication date
KR20200013325A (en) 2020-02-07

Similar Documents

Publication Publication Date Title
Joo et al. Tailored synthesis of mesoporous TiO 2 hollow nanostructures for catalytic applications
Chandrasekaran et al. Highly-ordered maghemite/reduced graphene oxide nanocomposites for high-performance photoelectrochemical water splitting
Bao et al. Hierarchical flower-like hollow SiO2@ TiO2 spheres with enhanced thermal insulation and ultraviolet resistance performances for building coating
Francisco et al. Inhibition of the anatase− rutile phase transformation with addition of CeO2 to CuO− TiO2 system: Raman spectroscopy, X-ray diffraction, and textural studies
Liu et al. Hierarchically macro-/mesoporous Ti− Si oxides photonic crystal with highly efficient photocatalytic capability
Wei et al. Preparation, characterization and photocatalytic activities of boron-and cerium-codoped TiO2
WO2006064799A1 (en) Composite metal oxide photocatalyst exhibiting responsibility to visible light
Mokhtarifar et al. Heterostructured TiO2/SiO2/γ-Fe2O3/rGO coating with highly efficient visible-light-induced self-cleaning properties for metallic artifacts
Lin et al. Anatase TiO 2 nanotube powder film with high crystallinity for enhanced photocatalytic performance
Tariq et al. Comparative study of Ag, Sn or Zn doped TiO2 thin films for photocatalytic degradation of methylene blue and methyl orange
CN100358625C (en) Prepn process of nanometer crystal titania aerogel with high photocatalysis activity
Lin et al. Synthesis and enhanced visible-light responsive of C, N, S-tridoped TiO2 hollow spheres
Periyat et al. A review on high temperature stable anatase TiO2 photocatalysts
Yoon et al. Photocatalytic performance of highly transparent and mesoporous molybdenum-doped titania films fabricated by templating cellulose nanocrystals
Chun Chen et al. A review on production, characterization, and photocatalytic applications of TiO2 nanoparticles and nanotubes
Borlaf et al. Synthesis and Characterization of Anatase‐Structured Titania Hollow Spheres Doped with Erbium (III)
Zhang et al. Synthesis of mesoporous TiO2-Al2 O3 binary oxides photocatalyst by sol-gel method using PEG1000 as template
Smitha et al. Hydrophobic, photoactive titania–alumina nanocrystallites and coatings by an aqueous sol–gel process
Su et al. Preparation and characterization of high-surface-area titanium dioxide by sol-gel process
CN105817241B (en) A kind of preparation method of phosphotungstic acid copper titanium dioxide core shell structural nano material
CN102343259A (en) Method for preparing titanium dioxide nanofilm at low temperature
KR102140943B1 (en) Method manufacturing for membrane Supporter coating on TiO₂
Aruna et al. Photocatalytic behavior of titania coatings fabricated by suspension and solution precursor plasma spray processes
JP5290554B2 (en) Composite oxide, semiconductor photoelectrode and photocatalyst using the same
Nadarajan et al. Effect of calcination temperature on metal oxides and their photocatalytic activity

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant