KR102138867B1 - Positive material, positive electrode and sodium ion battery containing the same and method of manufacturing thereof - Google Patents
Positive material, positive electrode and sodium ion battery containing the same and method of manufacturing thereof Download PDFInfo
- Publication number
- KR102138867B1 KR102138867B1 KR1020180097460A KR20180097460A KR102138867B1 KR 102138867 B1 KR102138867 B1 KR 102138867B1 KR 1020180097460 A KR1020180097460 A KR 1020180097460A KR 20180097460 A KR20180097460 A KR 20180097460A KR 102138867 B1 KR102138867 B1 KR 102138867B1
- Authority
- KR
- South Korea
- Prior art keywords
- positive electrode
- electrode material
- conductive polymer
- prussian white
- ion battery
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/12—Organic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/58—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/58—After-treatment
- C23C14/5806—Thermal treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/054—Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/60—Selection of substances as active materials, active masses, active liquids of organic compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/60—Selection of substances as active materials, active masses, active liquids of organic compounds
- H01M4/602—Polymers
- H01M4/606—Polymers containing aromatic main chain polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
본 발명은 양극 소재, 그를 포함하는 양극과 나트륨이온전지 및 그의 제조 방법에 관한 것으로, 나트륨이온전지의 전지특성을 향상시키기 위한 것이다. 본 발명은 프러시안 화이트 용액에 전도성 고분자를 투입하고, 전도성 고분자가 투입된 프러시안 화이트 용액에 초음파를 인가하여 분산시킨 후 고온에서 스터링하여 프러시안 화이트 표면에 전도성 고분자를 코팅하고, 프러시안 화이트 용액에서 용매를 제거한 후 진공 건조하여 표면에 전도성 고분자가 코팅된 프러시안 화이트 양극 소재를 제조하는 방법과, 그 제조 방법으로 제조된 양극 소재, 양극 및 나트륨이온전지를 제공한다.The present invention relates to a positive electrode material, a positive electrode and a sodium ion battery comprising the same, and a method for manufacturing the same, to improve battery characteristics of a sodium ion battery. In the present invention, a conductive polymer is added to a Prussian white solution, and ultrasonic waves are applied to the Prussian white solution to which the conductive polymer is added, dispersed, and then stirred at a high temperature to coat the conductive polymer on the Prussian white surface. After removing the solvent, vacuum drying is performed to provide a method for producing a Prussian white positive electrode material coated with a conductive polymer on the surface, and a positive electrode material, a positive electrode, and a sodium ion battery prepared by the method.
Description
본 발명은 나트륨이온전지 및 그의 제조 방법에 관한 것으로, 더욱 상세하게는 양극 소재 표면에 전도성 고분자를 코팅하여 전지 성능을 향상시키는 양극 소재, 그를 포함하는 양극과 나트륨이온전지 및 그의 제조 방법에 관한 것이다. The present invention relates to a sodium ion battery and a method of manufacturing the same, and more particularly, to a positive electrode material that improves battery performance by coating a conductive polymer on the surface of the positive electrode material, a positive electrode and a sodium ion battery comprising the same, and a method of manufacturing the same .
전자제품의 디지털화와 고성능화 등으로 소비자의 요구가 바뀜에 따라 시장요구도 박형, 경량화와 고에너지 밀도에 의한 고용량을 지니는 전지의 개발로 흐름이 바뀌고 있는 상황이다. 또한, 미래의 에너지 및 환경 문제를 대처하기 위하여 하이브리드 전기 자동차나 전기 자동차, 및 연료전지 자동차의 개발이 활발히 진행되고 있는 바, 자동차 전원용으로 전지의 대형화가 요구되고 있다.As consumer demand changes due to the digitization and high performance of electronic products, the market demand is changing with the development of batteries with high capacity due to thinness, light weight, and high energy density. In addition, the development of hybrid electric vehicles, electric vehicles, and fuel cell vehicles has been actively progressed in order to cope with future energy and environmental problems, and thus, it is required to increase the size of batteries for automobile power sources.
소형 경량화 및 고용량으로 충방전 가능한 전지로서 리튬이차전지가 실용화되고 있으며, 소형 비디오 카메라, 휴대전화, 노트퍼스컴 등의 휴대용 전자 및 통신기기 등에 이용되고 있다. 리튬이차전지는 양극, 음극, 전해질로 구성되며, 충전에 의해 양극 소재로부터 나온 리튬이온이 음극 소재에 삽입되고 방전시 다시 탈리되는 등의 양 전극을 왕복하면서 에너지를 전달하는 역할을 하기 때문에 충방전이 가능하다.Lithium secondary batteries have been put into practical use as batteries that can be charged and discharged in a compact, lightweight and high capacity, and are used in portable electronic and communication devices such as small video cameras, cell phones, and notebook computers. The lithium secondary battery is composed of a positive electrode, a negative electrode, and an electrolyte, and it charges and discharges because lithium ions from the positive electrode material are inserted into the negative electrode material by charging and resorption when discharged. This is possible.
한편, 최근에는 리튬 대신에 나트륨을 이용한 나트륨 기반 이차전지(이하 '나트륨이온전지'라 함)의 연구가 다시 재조명 되고 있다. 나트륨은 자원 매장량이 풍부하기 때문에 리튬 대신에 나트륨을 이용한 이차전지를 제작할 수 있다면 이차전지를 낮은 비용으로 제조할 수 있게 된다.Meanwhile, in recent years, research on a sodium-based secondary battery (hereinafter referred to as “sodium ion battery”) using sodium instead of lithium has been reexamined. Sodium is rich in resource reserves, so if a secondary battery using sodium instead of lithium can be manufactured, the secondary battery can be manufactured at a low cost.
하지만 나트륨이온전지는 리튬이차전지와 비교하여 용량, 평균방전전압 및 수명과 같은 전지특성이 현저히 떨어지는 단점을 가지고 있다.However, the sodium ion battery has a disadvantage in that battery characteristics such as capacity, average discharge voltage and lifespan are significantly lower than lithium secondary batteries.
따라서 본 발명의 목적은 전지특성을 향상시킬 수 있는 양극 소재, 그를 포함하는 양극과 나트륨이온전지 및 그의 제조 방법을 제공하는 데 있다.Accordingly, an object of the present invention is to provide a positive electrode material capable of improving battery characteristics, a positive electrode and a sodium ion battery comprising the same, and a method for manufacturing the same.
본 발명의 다른 목적은 나트륨이온전지의 충방전 반응 특성을 개선시킴으로써 나트륨이온전지의 수명 특성을 향상시킬 수 있는 양극 소재, 그를 포함하는 양극과 나트륨이온전지 및 그의 제조 방법을 제공하는 데 있다.Another object of the present invention is to provide a positive electrode material capable of improving the lifespan characteristics of a sodium ion battery by improving the charge and discharge reaction characteristics of the sodium ion battery, a positive electrode and a sodium ion battery comprising the same, and a method for manufacturing the same.
상기 목적을 달성하기 위하여, 본 발명은 프러시안 화이트 용액에 전도성 고분자를 투입하는 단계; 상기 전도성 고분자가 투입된 프러시안 화이트 용액에 초음파를 인가하여 분산시킨 후 고온에서 스터링하여 프러시안 화이트 표면에 전도성 고분자를 코팅하는 단계; 및 상기 프러시안 화이트 용액에서 용매를 제거한 후 진공 건조하여 표면에 전도성 고분자가 코팅된 프러시안 화이트 양극 소재를 제조하는 단계;를 포함하는 나트륨이온전지용 양극 소재의 제조 방법을 제공한다.In order to achieve the above object, the present invention is a step of adding a conductive polymer to the Prussian white solution; Coating the conductive polymer on the Prussian white surface by stirring at high temperature after dispersing by applying ultrasonic waves to the Prussian white solution in which the conductive polymer is added; And removing the solvent from the prussian white solution, followed by vacuum drying to prepare a prussian white positive electrode material coated with a conductive polymer on the surface.
상기 프러시안 화이트는 NaxMnFe(CN)6(1.8≤x≤2.0) 이다.The Prussian white is Na x MnFe(CN) 6 (1.8≤x≤2.0).
상기 전도성 고분자는 PEDOT:PSS, PEDOS, PANI 또는 PProDOT 일 수 있다.The conductive polymer may be PEDOT:PSS, PEDOS, PANI or PProDOT.
상기 제조하는 단계에서, 상기 양극 소재는 프러시안 화이트 95~99wt%와 PEDOT:PSS 1~5wt%를 포함한다.In the manufacturing step, the positive electrode material includes 95 to 99 wt% of Prussian white and 1 to 5 wt% of PEDOT:PSS.
상기 코팅하는 단계는, 70~90℃에서 150~300rpm의 스터링 속도로 3~7시간 동안 수행될 수 있다.The coating step may be performed for 3-7 hours at a stirring rate of 150-300 rpm at 70-90°C.
상기 제조하는 단계에서, 상기 진공 건조는 130~200℃에서 20시간 이상 진행될 수 있다.In the manufacturing step, the vacuum drying may be performed at 130 ~ 200 ℃ for more than 20 hours.
본 발명은 또한, 프러시안 화이트; 및 상기 프러시안 화이트의 표면에 전도성 고분자로 코팅된 코팅층;을 포함하는 나트륨이온전지용 양극 소재를 제공한다.The present invention also provides prussian white; And a coating layer coated with a conductive polymer on the surface of the prussian white.
상기 코팅층은 상기 프러시안 화이트 표면의 적어도 일부에 형성될 수 있다.The coating layer may be formed on at least a portion of the Prussian white surface.
본 발명은 또한, 프러시안 화이트; 및 상기 프러시안 화이트의 표면에 전도성 고분자로 코팅된 코팅층;을 포함하는 나트륨이온전지용 양극 소재를 제공한다.The present invention also provides prussian white; And a coating layer coated with a conductive polymer on the surface of the prussian white.
본 발명은 또한 상기 양극 소재를 포함하는 나트륨이온전지용 양극을 제공한다.The present invention also provides a positive electrode for a sodium ion battery comprising the positive electrode material.
그리고 본 발명은 상기 양극을 포함하는 나트륨이온전지를 제공한다.And the present invention provides a sodium ion battery comprising the positive electrode.
본 발명에 따르면, 표면에 전도성 고분자가 코팅된 프러시안 화이트를 나트륨이온 전지의 양극 소재로 사용함으로써, 나트륨이온전지의 충방전 반응 특성을 개선하고, 이를 통해서 나트륨이온전지의 수명 특성을 향상시킬 수 있다.According to the present invention, by using a prussian white coated with a conductive polymer on the surface as a positive electrode material of a sodium ion battery, it is possible to improve the charge and discharge reaction characteristics of the sodium ion battery, thereby improving the life characteristics of the sodium ion battery. have.
본 발명에 따른 양극 소재는 습식 공정을 통해서 제조가 가능하기 때문에, 양극 소재의 대량 생산이 가능하고 제조 원가를 낮출 수 있는 이점이 있다.Since the positive electrode material according to the present invention can be manufactured through a wet process, mass production of the positive electrode material is possible and there is an advantage of lowering the manufacturing cost.
도 1은 본 발명에 따른 나트륨이온전지용 양극 소재의 제조 방법에 따른 흐름도이다.
도 2는 도 1의 제조 방법으로 제조된 양극 소재를 보여주는 도면이다.
도 3은 실시예 및 비교예에 따른 양극 소재를 보여주는 투과전자현미경(TEM) 사진이다.
도 4는 실시예 및 비교예에 따른 양극 소재를 이용한 나트륨이온전지의 초기 충방전 그래프와 초기 충방전 효율표를 보여주는 도면이다.
도 5는 실시예 및 비교예에 따른 양극 소재를 이용한 나트륨이온전지의 수명특성을 보여주는 그래프이다.1 is a flow chart according to a method of manufacturing a positive electrode material for a sodium ion battery according to the present invention.
FIG. 2 is a view showing a positive electrode material manufactured by the manufacturing method of FIG. 1.
3 is a transmission electron microscope (TEM) photograph showing an anode material according to Examples and Comparative Examples.
4 is a view showing an initial charge and discharge graph and an initial charge and discharge efficiency table of a sodium ion battery using a cathode material according to Examples and Comparative Examples.
5 is a graph showing the life characteristics of a sodium ion battery using a positive electrode material according to Examples and Comparative Examples.
하기의 설명에서는 본 발명의 실시예를 이해하는데 필요한 부분만이 설명되며, 그 이외 부분의 설명은 본 발명의 요지를 흩트리지 않는 범위에서 생략될 것이라는 것을 유의하여야 한다.It should be noted that in the following description, only parts necessary for understanding the embodiments of the present invention are described, and descriptions of other parts will be omitted without detracting from the gist of the present invention.
이하에서 설명되는 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념으로 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 바람직한 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.The terms or words used in the present specification and claims described below should not be construed as being limited to ordinary or lexical meanings, and the inventor is appropriate as a concept of terms to describe his or her invention in the best way. It should be interpreted as a meaning and a concept consistent with the technical idea of the present invention based on the principle that it can be defined as such. Therefore, the configuration shown in the embodiments and drawings described in this specification is only a preferred embodiment of the present invention, and does not represent all of the technical spirit of the present invention, and various equivalents that can replace them at the time of this application It should be understood that there may be and variations.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 보다 상세하게 설명하고자 한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명에 따른 나트륨이온전지용 양극 소재의 제조 방법에 따른 흐름도이다.1 is a flow chart according to a method of manufacturing a cathode material for a sodium ion battery according to the present invention.
도 1을 참조하면, 먼저 S10단계에서 프러시안 화이트 용액에 전도성 고분자를 투입한다. 프러시안 화이트 용액에 투입되는 전도성 고분자는 제조된 양극 소재에 전도성 고분자가 1~5 wt%가 포함될 수 있도록 투입된다.Referring to FIG. 1, first, in step S10, a conductive polymer is introduced into the prussian white solution. The conductive polymer added to the Prussian white solution is added so that the conductive polymer may contain 1 to 5 wt% of the prepared positive electrode material.
이때 프러시안 화이트 용액은 용매에 프러시안 화이트를 스터링(stirring)을 통하여 분산시켜 제조한다. 프러시안 화이트로는 NaxMnFe(CN)6(1.8≤x≤2.0)가 사용될 수 있다. 용매로는 수분이 거의 없는 무수 에탄올이 사용될 수 있다. 그리고 전도성 고분자로는 PEDOT:PSS, PEDOS, PANI, PProDOT 등이 사용될 수 있다.At this time, the Prussian white solution is prepared by dispersing Prussian white in a solvent through stirring. Na x MnFe(CN) 6 (1.8≤x≤2.0) may be used as the prussian white. As the solvent, anhydrous ethanol having little moisture may be used. In addition, PEDOT:PSS, PEDOS, PANI, PProDOT, etc. may be used as the conductive polymer.
다음으로 S20단계에서 전도성 고분자가 투입된 프러시안 화이트 용액에 초음파를 인가하여 분산시킨다.Next, in step S20, ultrasound is applied to and dispersed in the Prussian white solution in which the conductive polymer is added.
이어서 S30단계에서 분산된 전도성 고분자가 투입된 프러시안 화이트 용액을 고온에서 스터링하여 프러시안 화이트 표면에 전도성 고분자를 코팅한다. 이때 코팅은 70~90℃에서 150~300rpm의 스터링 속도로 3~7시간 동안 수행한다. 코팅 온도가 70℃ 미만인 경우, 프러시안 화이트 표면에 코팅되는 전도성 고분자의 양이 부족할 수 있으며, 적정량의 전도성 고분자를 코팅하기 위해서는 스터링 시간이 더 소요될 수 있다. 또한 전도성 고분자의 프러시안 화이트 표면에 대한 부착력이 떨어져, 이후 진공 건조하는 과정에서 프러시안 화이트 표면에서 전도성 고분자가 떨어져 나갈 수 있다.Subsequently, the Prussian white solution containing the conductive polymer dispersed in step S30 is stirred at high temperature to coat the conductive polymer on the Prussian white surface. At this time, the coating is carried out for 3-7 hours at a stirring speed of 150-300 rpm at 70-90°C. When the coating temperature is less than 70°C, the amount of the conductive polymer coated on the Prussian white surface may be insufficient, and a stirring time may be required to coat an appropriate amount of the conductive polymer. In addition, the adhesion of the conductive polymer to the Prussian white surface is lowered, and then, in the process of vacuum drying, the conductive polymer may be separated from the Prussian white surface.
반대로 코팅 온도가 90℃를 초과하는 경우, 프러시안 화이트의 표면에 필요 이상의 전도성 고분자가 코팅되고, 이로 인해 제조되는 양극 소재의 전기화학적 특성이 떨어지는 문제가 발생될 수 있다.Conversely, when the coating temperature exceeds 90°C, a conductive polymer that is more than necessary is coated on the surface of the prussian white, and this may cause a problem that the electrochemical properties of the positive electrode material to be produced are deteriorated.
그리고 S40단계에서 프러시안 화이트 용액에서 용매를 제거한 후 진공 건조하여 표면에 전도성 고분자가 코팅된 프러시안 화이트 양극 소재를 제조한다. 이때 진공 건조는 130~200℃에서 20시간 이상 수행한다. 온도가 130℃ 미만인 경우, 진공 건조에 더 많은 시간이 소요될 수 있다. 온도가 200℃를 초과하는 경우, 진공 건조하는 과정에서 전도성 고분자가 변형되거나 탄화되는 문제가 발생될 수 있다.Then, in step S40, the solvent is removed from the prussian white solution, followed by vacuum drying to prepare a prussian white positive electrode material coated with a conductive polymer. At this time, vacuum drying is performed at 130 to 200°C for 20 hours or more. If the temperature is below 130°C, vacuum drying may take more time. When the temperature exceeds 200°C, a problem may occur in that the conductive polymer is deformed or carbonized in a vacuum drying process.
이후 제조된 양극 소재가 덩어리 형태인 경우, 분쇄하여 분말화할 수 있다.If the prepared cathode material is in the form of a lump, it can be pulverized to powder.
이와 같은 본 발명의 제조 방법으로 제조된 양극 소재는 도 2와 같다. 여기서 도 2는 도 1의 제조 방법으로 제조된 양극 소재를 보여주는 도면이다.The positive electrode material manufactured by the manufacturing method of the present invention is as shown in FIG. 2. Here, FIG. 2 is a view showing a positive electrode material manufactured by the manufacturing method of FIG. 1.
도 2를 참조하면, 본 발명에 따른 양극 소재(100)는 프러시안 화이트(10)와, 프러시안 화이트(10)의 표면에 전도성 고분자로 코팅된 코팅층(20)을 포함한다. 이때 코팅층(20)은 프러시안 화이트(10) 표면의 적어도 일부에 형성될 수 있다.Referring to FIG. 2, the
본 발명의 제조 방법으로 제조된 양극 소재의 전기화학적 특성을 확인하기 위해서, 아래와 같이 실시예 및 비교예에 따른 양극 소재를 제조하였다.In order to confirm the electrochemical properties of the positive electrode material produced by the manufacturing method of the present invention, positive electrode materials according to Examples and Comparative Examples were prepared as follows.
비교예에 따른 양극 소재로는 프러시안 화이트를 사용하였다. 실시예에 따른 양극 소재로는 표면에 PEDOT:PSS가 코팅된 프러시안 화이트를 사용하였다.Prussian white was used as the positive electrode material according to the comparative example. As a positive electrode material according to the embodiment, PEDOT:PSS-coated Prussian white was used on the surface.
실시예에 따른 양극 소재는 프러시안 화이트 95wt%와 PEDOT:PSS 5wt%가 될 수 있도록, PEDOT:PSS를 투입한다. 다음으로 PEDOT:PSS가 투입된 프러시안 화이트 용액에 초음파를 인가하여 분산시킨 후, 80℃에서 200rpm의 스터링 속도로 5시간 동안 스터링하여 프러시안 화이트 표면에 PEDOT:PSS를 코팅한다. 그리고 프러시안 화이트 용액에서 용매를 제거한 후 150℃에서 24시간 동안 진공 건조하여 실시예에 따른 양극 소재를 획득하였다.In the positive electrode material according to the embodiment, PEDOT:PSS is input so that Prussian white may be 95wt% and PEDOT:PSS 5wt%. Next, after applying and dispersing ultrasonic waves to the Prussian white solution in which PEDOT:PSS is added, the PEDOT:PSS is coated on the Prussian white surface by stirring for 5 hours at a stirring speed of 200 rpm at 80°C. Then, the solvent was removed from the Prussian white solution, followed by vacuum drying at 150° C. for 24 hours to obtain a positive electrode material according to the embodiment.
도 3은 실시예 및 비교예에 따른 양극 소재를 보여주는 투과전자현미경(TEM) 사진이다. 여기서 (a)는 비교예에 따른 양극 소재의 사진이고, (b)는 실시예에 따른 양극 소재의 사진이다.3 is a transmission electron microscope (TEM) photograph showing an anode material according to Examples and Comparative Examples. Here, (a) is a photo of the positive electrode material according to the comparative example, (b) is a photo of the positive electrode material according to the embodiment.
도 3을 참조하면, 비교예에 따른 양극 소재와 대비해서 실시예에 따른 양극 소재의 표면에 PEDOT:PSS의 성분인 황(sulfer)이 균일하게 분포하고 있는 것을 확인할 수 있다.Referring to FIG. 3, it can be seen that sulfur, which is a component of PEDOT:PSS, is uniformly distributed on the surface of the positive electrode material according to the embodiment compared to the positive electrode material according to the comparative example.
도 4는 실시예 및 비교예에 따른 양극 소재를 이용한 나트륨이온전지의 초기 충방전 그래프와 초기 충방전 효율표를 보여주는 도면이다. 이때 초기 충방전은 온도 25℃, 전압 2.0~4.0V, 전류 12mA/h에서 측정하였다.4 is a view showing an initial charge and discharge graph and an initial charge and discharge efficiency table of a sodium ion battery using a cathode material according to Examples and Comparative Examples. At this time, the initial charge and discharge were measured at a temperature of 25°C, a voltage of 2.0 to 4.0V, and a current of 12mA/h.
도 4를 참조하면, 비교예 및 실시예에 따른 양극 소재의 초기 충방전 거동이 거의 동일함을 알 수 있다. 즉 프러시안 화이트에 PEDOT:PSS로 코팅하더라도 초기 충방전 특성은 PEDOT:PSS를 코팅하지 않은 프러시안 화이트와 거의 동일한 특성을 나타낸다.Referring to Figure 4, it can be seen that the initial charge and discharge behavior of the positive electrode material according to Comparative Examples and Examples is almost the same. That is, even if PEDOT:PSS is coated on Prussian white, the initial charge/discharge characteristics show almost the same characteristics as Prussian white without PEDOT:PSS coating.
그리고 용량에 있어서는 비교예에 따른 양극 소재가 157mA/g이고, 실시예에 따른 양극 소재가 159mA/g으로 측정되었다. 즉 실시예에 따른 양극 소재의 용량이 소폭 증가한 것을 확인할 수 있다.And in capacity, the positive electrode material according to the comparative example was 157 mA/g, and the positive electrode material according to the example was measured to be 159 mA/g. That is, it can be seen that the capacity of the positive electrode material according to the embodiment slightly increased.
도 5는 실시예 및 비교예에 따른 양극 소재를 이용한 나트륨이온전지의 수명특성을 보여주는 그래프이다. 여기서 수명 특성은 온도 25℃, 전압 2.0~4.0V, 전류 60mA/h에서 80사이클(cycle)을 측정하였다.5 is a graph showing the life characteristics of a sodium ion battery using a positive electrode material according to Examples and Comparative Examples. Here, the life characteristics were measured at 80 cycles at a temperature of 25°C, a voltage of 2.0 to 4.0V, and a current of 60 mA/h.
0.1C(12mA/g)로 2사이클 충방전 이후 0.5C로 수명 특성을 측정한 결과를 비교하면, 실시예에 따른 양극 소재의 용량이 147mAh/g으로 비교예에 따른 양극 소재의 용량 142mAh/g에 비하여 용량이 증가한 것을 확인할 수 있다.When comparing the results of measuring the life characteristics at 0.5C after 2 cycles of charging and discharging at 0.1C (12mA/g), the capacity of the positive electrode material according to the embodiment is 147mAh/g, and the capacity of the positive electrode material according to the comparative example 142mAh/g It can be seen that the capacity was increased compared to.
80사이클 이후의 용량 변화를 확인하였을 때, 실시예에 따른 양극 소재의 용량이 100mAh/g이고, 비교예에 따른 양극 소재의 용량은 68mAh/g으로 측정되었다. 즉 실시예 및 비교예에 따른 양극 소재의 용량 유지율은 각각 67%와 48%으로, 실시예에 따른 양극 소재가 약 20% 정도 높은 용량 유지율을 나타내는 것을 확인할 수 있다.When the capacity change after 80 cycles was confirmed, the capacity of the positive electrode material according to the example was 100 mAh/g, and the capacity of the positive electrode material according to the comparative example was measured as 68 mAh/g. That is, the capacity retention rates of the positive electrode materials according to Examples and Comparative Examples are 67% and 48%, respectively, and it can be seen that the positive electrode materials according to the Examples exhibit a capacity retention rate of about 20%.
이와 같이 본 발명에서는 표면에 전도성 고분자가 코팅된 프러시안 화이트를 나트륨이온 전지의 양극 소재로 사용함으로써, 나트륨이온전지의 충방전 반응 특성을 개선하고, 이를 통해서 나트륨이온전지의 수명 특성을 향상시킬 수 있다.As described above, in the present invention, by using the prussian white coated with a conductive polymer on the surface as a positive electrode material for a sodium ion battery, the charge and discharge reaction characteristics of the sodium ion battery can be improved, thereby improving the lifespan characteristics of the sodium ion battery. have.
본 발명에 따른 양극 소재는 습식 공정을 통해서 제조가 가능하기 때문에, 양극 소재의 대량 생산이 가능하고 제조 원가를 낮출 수 있는 이점이 있다.Since the positive electrode material according to the present invention can be manufactured through a wet process, mass production of the positive electrode material is possible and there is an advantage of lowering the manufacturing cost.
한편, 본 명세서와 도면에 개시된 실시예들은 이해를 돕기 위해 특정 예를 제시한 것에 지나지 않으며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게는 자명한 것이다.On the other hand, the embodiments disclosed in the specification and the drawings are merely presented as specific examples to aid understanding, and are not intended to limit the scope of the present invention. It is obvious to those skilled in the art to which the present invention pertains that other modifications based on the technical idea of the present invention can be implemented in addition to the embodiments disclosed herein.
10 : 프러시안 화이트
20 : 코팅층
100 : 양극 소재10: Prussian white
20: coating layer
100: anode material
Claims (12)
상기 전도성 고분자가 투입된 프러시안 화이트 용액에 초음파를 인가하여 분산시킨 후 고온에서 스터링하여 프러시안 화이트 표면에 전도성 고분자를 코팅하는 단계; 및
상기 프러시안 화이트 용액에서 용매를 제거한 후 진공 건조하여 표면에 전도성 고분자가 코팅된 프러시안 화이트 양극 소재를 제조하는 단계;를 포함하고,
상기 프러시안 화이트는 NaxMnFe(CN)6(1.8≤x≤2.0)이고,
상기 전도성 고분자는 PEDOT:PSS, PEDOS, PANI 또는 PProDOT이고,
상기 코팅하는 단계는 70~90℃에서 150~300rpm의 스터링 속도로 3~7시간 동안 수행하고,
상기 제조하는 단계에서, 상기 진공 건조는 130~200℃에서 20시간 이상 진행하는 것을 특징으로 하는 나트륨이온전지용 양극 소재의 제조 방법.Introducing a conductive polymer into the Prussian white solution;
Coating the conductive polymer on the Prussian white surface by stirring at high temperature after dispersing by applying ultrasonic waves to the Prussian white solution in which the conductive polymer is added; And
It includes; removing the solvent from the Prussian white solution and then vacuum drying to prepare a Prussian white positive electrode material coated with a conductive polymer on the surface;
The Prussian white is Na x MnFe (CN) 6 (1.8≤x≤2.0),
The conductive polymer is PEDOT:PSS, PEDOS, PANI or PProDOT,
The coating step is performed for 3-7 hours at a stirring speed of 150-300 rpm at 70-90°C,
In the manufacturing step, the vacuum drying is a method of manufacturing a positive electrode material for a sodium ion battery, characterized in that proceeds at 130 ~ 200 ℃ for 20 hours or more.
상기 양극 소재는 프러시안 화이트 95~99wt%와 PEDOT:PSS 1~5wt%를 포함하는 것을 특징으로 하는 나트륨이온전지용 양극 소재의 제조 방법.According to claim 1, In the manufacturing step,
The positive electrode material is a method of manufacturing a positive electrode material for a sodium ion battery, characterized in that it comprises a Prussian white 95 ~ 99wt% and PEDOT:PSS 1 ~ 5wt%.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180097460A KR102138867B1 (en) | 2018-08-21 | 2018-08-21 | Positive material, positive electrode and sodium ion battery containing the same and method of manufacturing thereof |
PCT/KR2018/009984 WO2020040338A1 (en) | 2018-08-21 | 2018-08-29 | Positive electrode material, positive electrode and sodium-ion battery comprising same, and preparation method therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180097460A KR102138867B1 (en) | 2018-08-21 | 2018-08-21 | Positive material, positive electrode and sodium ion battery containing the same and method of manufacturing thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20200021732A KR20200021732A (en) | 2020-03-02 |
KR102138867B1 true KR102138867B1 (en) | 2020-07-29 |
Family
ID=69592667
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020180097460A KR102138867B1 (en) | 2018-08-21 | 2018-08-21 | Positive material, positive electrode and sodium ion battery containing the same and method of manufacturing thereof |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102138867B1 (en) |
WO (1) | WO2020040338A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112209409B (en) * | 2020-09-28 | 2022-07-01 | 宇恒电池股份有限公司 | Method for rapidly preparing Prussian white serving as positive electrode material of sodium-ion battery |
KR20240036042A (en) * | 2021-07-16 | 2024-03-19 | 헌트 에너지 엔터프라이시즈, 엘.엘.씨. | Coating of cathode materials for energy storage devices |
DE112022000978T5 (en) * | 2022-08-15 | 2024-04-04 | Guangdong Brunp Recycling Technology Co., Ltd. | METHOD FOR REGULATING THE PARTICLE SIZE OF PRUSSIAN SWEAT |
CN115340106B (en) * | 2022-08-15 | 2024-03-08 | 广东邦普循环科技有限公司 | Prussian white granularity regulating and controlling method |
CN115536043B (en) * | 2022-09-21 | 2024-04-16 | 多氟多新材料股份有限公司 | Preparation method of Prussian Bai Zheng pole material |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101488482B1 (en) * | 2013-03-27 | 2015-02-02 | 국립대학법인 울산과학기술대학교 산학협력단 | Positive electrode active material and method of manufacturing the same, positive electrode and method of manufacturing the same, and electrochemical device having the positive electrode |
KR101993458B1 (en) * | 2015-06-30 | 2019-06-26 | 주식회사 엘지화학 | Electrode active material for natrium battery, method for preparing the same, electrode comprising the same, and natrium battery comprising the electrode |
KR20170098529A (en) | 2016-02-22 | 2017-08-30 | 한국전기연구원 | Prussian white positive electrode active material and a manufacturing method thereof using Taylor vortex |
WO2017160529A1 (en) * | 2016-03-18 | 2017-09-21 | Board Of Regents, The University Of Texas System | Alkali-metal batteries with a dendrite-free anode interfacing an organic liquid electrolyte |
CN107611404B (en) * | 2017-09-14 | 2020-02-21 | 上海汉行科技有限公司 | Prussian white composite material and preparation method and application thereof |
-
2018
- 2018-08-21 KR KR1020180097460A patent/KR102138867B1/en active IP Right Grant
- 2018-08-29 WO PCT/KR2018/009984 patent/WO2020040338A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2020040338A1 (en) | 2020-02-27 |
KR20200021732A (en) | 2020-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102138867B1 (en) | Positive material, positive electrode and sodium ion battery containing the same and method of manufacturing thereof | |
US9647262B2 (en) | Core-shell type anode active material for lithium secondary battery, method for preparing the same and lithium secondary battery comprising the same | |
CN107112500B (en) | Positive active material slurry including rubber-based binder and positive electrode prepared therefrom | |
CN103258990B (en) | Lithium sulfur battery anode material and preparation method thereof | |
EP3758108B1 (en) | Thermally crosslinkable binder aqueous solution for lithium-ion battery, thermally crosslinkable slurry for lithium-ion battery negative electrode, negative electrode for lithium-ion battery, lithium-ion battery negative electrode material, and lithium-ion battery and method for producing the same | |
KR101586015B1 (en) | Anode active material for lithium secondary battery, lithium secondary battery comprising the material, and method of preparing the material | |
KR101684074B1 (en) | A manufacturing method of all-solid battery using wet-dry process | |
EP3203559B1 (en) | Positive electrode active material slurry comprising heterogeneous binders and positive electrode produced from same | |
KR101621519B1 (en) | Anode for lithium secondary battery, lithium secondary battery comprising the anode, and method of preparing the anode | |
KR100899551B1 (en) | High Coulomb Efficiency And Good Cycliability Negative Electrode For Lithium Ion Secondary Battery, Manufacturing Method of Electrode And Lithium Secondary Battery | |
CN102694158A (en) | Silicon-containing lithium cathode, preparation method thereof and lithium sulfur battery with silicon-containing lithium cathode | |
KR20140135512A (en) | Hollow silicon-based particles, preparation method of thereof, and anode active material for lithium secondary battery comprising the same | |
US20210167376A1 (en) | 3d printed battery and method of making same | |
CN100474685C (en) | Polymer lithium ion secondary battery and preparation method thereof | |
KR20150021809A (en) | Lithium transition metal cathode active material, preparation method thereof, and lithium secondary battery comprising the same | |
KR102095969B1 (en) | Process of Manufacturing Secondary Battery Including Pre-wetting Process | |
KR20200063467A (en) | Electrode binder for solid electrolyte-based all solid-state lithium secondary battery, cathode in all solid-state lithium secondary battery comprising the same, and solid electrolyte-based all solid-state lithium secondary battery comprising the same | |
CN107851845B (en) | Battery cell including gel electrolyte component in hole of separator constituting electrode assembly | |
Sun et al. | Biobinder nanocoating for upgrading the assembling structures of high-capacity composite electrodes with a robust polymeric artificial solid electrolyte interphase | |
KR20140103653A (en) | Si/C COMPOSITE, PREPARATION METHOD OF THEREOF, AND ANODE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERY COMPRISING THE SAME | |
Wang et al. | Amide-based interface layer with high toughness in situ building on the li metal anode | |
KR20190064012A (en) | Binder comprising random copolymer, anode for lithium-ion secondary battery comprising the same, lithium-ion secondary battery comprising the anode, and method for polymerizing the copolymer | |
KR101142533B1 (en) | Metal based Zn Negative Active Material and Lithium Secondary Battery Comprising thereof | |
CN107683542B (en) | Negative electrode for secondary battery and secondary battery comprising same | |
TWI681587B (en) | Method for manufacturing fast charging and long life li-s batteries |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
X701 | Decision to grant (after re-examination) | ||
GRNT | Written decision to grant |