KR102125965B1 - Hybrid capacitor - Google Patents

Hybrid capacitor Download PDF

Info

Publication number
KR102125965B1
KR102125965B1 KR1020180156257A KR20180156257A KR102125965B1 KR 102125965 B1 KR102125965 B1 KR 102125965B1 KR 1020180156257 A KR1020180156257 A KR 1020180156257A KR 20180156257 A KR20180156257 A KR 20180156257A KR 102125965 B1 KR102125965 B1 KR 102125965B1
Authority
KR
South Korea
Prior art keywords
activated carbon
current collector
carbonate
electrode
mixing
Prior art date
Application number
KR1020180156257A
Other languages
Korean (ko)
Other versions
KR20200069097A (en
Inventor
오영주
윤중락
이종규
최강민
Original Assignee
삼화콘덴서공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼화콘덴서공업 주식회사 filed Critical 삼화콘덴서공업 주식회사
Priority to KR1020180156257A priority Critical patent/KR102125965B1/en
Publication of KR20200069097A publication Critical patent/KR20200069097A/en
Application granted granted Critical
Publication of KR102125965B1 publication Critical patent/KR102125965B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 양극에 고전압 양극소재인 LiNi0.5Mn1.5O4에 희토류나 활성탄을 첨가하여 적용함으로써 희토류나 활성탄에 의해 4.8 V(voltage)이상의 고전압 영역에서 결정내의 Mn3+이온이 전해액과 반응하여 전극표면에 불순물이 형성되는 것을 방지함으로써 경시 변화에 의해 급격하게 용량이 감소하거나 출력특성이 저하되는 것을 방지할 수 있는 하이브리드 커패시터에 관한 것으로, 양극; 양극과 이격되어 배치되는 음극; 및 양극과 음극 사이에 배치되는 분리막를 포함하고, 양극은 제1집전체와 상기 제1집전체의 표면에 형성되는 LNMO 재질 전극을 포함하며, 음극은 제2집전체와 제2집전체의 표면에 형성되는 활성탄 재질 전극을 포함하는 것을 특징으로 한다.According to the present invention, rare earth or activated carbon is added and applied to LiNi 0.5 Mn 1.5 O 4 , a high voltage anode material, to the anode, whereby Mn 3+ ions in the crystal react with an electrolyte in a high voltage region of 4.8 V (voltage) or higher by the rare earth or activated carbon. A hybrid capacitor capable of preventing a capacitor from rapidly decreasing in capacity or deteriorating output characteristics due to change over time by preventing impurities from forming on the surface, comprising: an anode; A cathode spaced apart from the anode; And a separator disposed between the positive electrode and the negative electrode, the positive electrode including an LNMO material electrode formed on the surface of the first current collector and the first current collector, and the negative electrode on the surfaces of the second current collector and the second current collector. It characterized in that it comprises an activated carbon material electrode formed.

Description

하이브리드 커패시터{Hybrid capacitor}Hybrid capacitor {Hybrid capacitor}

본 발명은 하이브리드 커패시터에 관한 것으로, 특히 양극에 고전압 양극소재인 LiNi0.5Mn1.5O4에 희토류나 활성탄을 첨가하여 적용함으로써 희토류나 활성탄에 의해 4.8 V(voltage)이상의 고전압 영역에서 결정내의 Mn3+이온이 전해액과 반응하여 전극표면에 불순물이 형성되는 것을 방지함으로써 경시 변화에 의해 급격하게 용량이 감소하거나 출력특성이 저하되는 것을 방지할 수 있는 하이브리드 커패시터에 관한 것이다.The present invention relates to a hybrid capacitor, in particular by applying rare earth or activated carbon by adding a rare earth or activated carbon to the high voltage anode material LiNi 0.5 Mn 1.5 O 4 to the anode, Mn 3+ in the crystal in the high voltage region of 4.8 V (voltage) or higher by the rare earth or activated carbon The present invention relates to a hybrid capacitor capable of preventing a sudden decrease in capacity or a decrease in output characteristics due to change over time by preventing ions from reacting with an electrolyte to form impurities on the electrode surface.

전기 이중층 커패시터는 전극, 분리막, 전해액 및 케이스로 구성된다. 전기 이중층 커패시터의 전극에 적용되는 전극물질은 전기전도성 및 비표면적이 커야하고, 전기 화학적으로 안정해야 하기 때문에 활성탄(activated carbon)이나 활성탄 섬유가 가장 많이 사용되고 있으며, 관련 기술이 한국등록특허공보 제10-1036378호(특허문헌 1)에 공개되어 있다. The electric double layer capacitor is composed of an electrode, a separator, an electrolyte, and a case. Since the electrode material applied to the electrode of the electric double layer capacitor must have a large electrical conductivity and a specific surface area, and must be electrochemically stable, activated carbon or activated carbon fibers are most frequently used, and the related technology is disclosed in Korean Patent Registration No. -1036378 (Patent Document 1).

한국등록특허공보 제10-1036378호는 전기 이중층 커패시터용 전극과 그의 제조 방법, 및 전기 이중층 커패시터, 및 도전성 접착제에 관한 것으로, 한국등록특허공보 제10-1036378호에 공개된 전기 이중층 커패시터용 전극은 탄소질의 전기 이중층 형성 재료, 도전성을 확보하기 위한 탄소재 및 결착제를 포함하는 구성 소재로 구성된 분극성 다공질 시트가 집전체 상의 한쪽 면 이상에 도전성 중간층을 개입시켜 일체화되어 만들어지고, 도전성 중간층이 유리 전이 온도가 -5 내지 30℃인 스티렌·부타디엔 고무 및 입경이 상이한 2종류 이상의 탄소재를 포함하며, 도전성 중간층의 탄소재로서 카본블랙을 포함하여 구성된다.Korean Registered Patent Publication No. 10-1036378 relates to an electrode for an electric double layer capacitor, a manufacturing method thereof, and an electric double layer capacitor, and a conductive adhesive, and an electrode for an electric double layer capacitor disclosed in Korean Patent Publication No. 10-1036378 A polarizable porous sheet composed of a carbonaceous electric double layer forming material, a carbon material for securing conductivity, and a constituent material comprising a binder is made integrally through one or more conductive intermediate layers on the current collector, and the conductive intermediate layer is glass. It includes styrene-butadiene rubber having a transition temperature of -5 to 30°C and two or more kinds of carbon materials having different particle diameters, and is composed of carbon black as a carbon material of a conductive intermediate layer.

한국등록특허공보 제10-1036378호에 공개된 전기 이중층 커패시터는 에너지밀도를 높이기 위해서 구동전압을 높이는 방법이 있으나 구동전압을 높이는 것은 전해액의 분해가 일어나지 않는 범위로 제한되므로 한계가 있으며, 이를 해결하기 위한 것이 하이브리드 커패시터가 있다. 하이브리드 커패시터는 서로 다른 비대칭 전극 구조를 가지도록 구성된다. 예를 들어, 하이브리드 커패시터의 비대칭 전극 구조는 양극(cathode)의 전극재질을 스피넬계인 LiMn2O4가 사용되며, 음극(anode)의 전극재질로 활성탄이 사용된다. 이러한 종래의 하이브리드 커패시터는 양극(cathode)의 전극재질을 스피넬계인 LiMn2O4가 사용되는 경우에 스피넬구조의 LiMn2O4는 4.0 V(voltage)이상의 전압 영역에서 결정내의 Mn3+이온이 전해액과 반응하여 전극표면에 불순물을 형성함에 의한 경시 변화에 의해 급격하게 용량의 감소하거나 출력특성이 저하될 수 있는 문제점이 있다. The electric double layer capacitor disclosed in Korean Patent Registration No. 10-1036378 has a method of increasing the driving voltage to increase energy density, but increasing the driving voltage is limited to a range in which the decomposition of the electrolyte does not occur, so there is a limitation. There is a hybrid capacitor for that. Hybrid capacitors are configured to have different asymmetric electrode structures. For example, in the asymmetric electrode structure of the hybrid capacitor, the electrode material of the cathode (cathode) is used as a spinel-based LiMn 2 O 4 , and activated carbon is used as the electrode material of the anode (anode). These conventional hybrid capacitor is LiMn 2 O in the spinel structure when the spinel LiMn 2 O 4 is sealed using the electrode material for the positive electrode (cathode) 4 is the Mn 3+ ion in the crystal in the voltage region above 4.0 V (voltage) electrolyte There is a problem in that the capacity may be rapidly decreased or the output characteristics may be deteriorated due to a change over time due to the formation of impurities on the electrode surface by reacting with.

1): 한국등록특허공보 제10-1036378호1): Korean Registered Patent Publication No. 10-1036378

본 발명의 목적은 전술한 문제점을 해결하기 위한 것으로, 양극에 고전압 양극소재인 LiNi0.5Mn1.5O4에 희토류나 활성탄을 첨가하여 적용함으로써 희토류나 활성탄에 의해 4.8 V(voltage)의 고전압 영역에서 결정내의 Mn3+이온이 전해액과 반응하여 전극표면에 불순물이 형성되는 것을 방지함으로써 경시 변화에 의해 급격하게 용량이 감소하거나 출력특성이 저하되는 것을 방지할 수 있는 하이브리드 커패시터를 제공함에 있다. The object of the present invention is to solve the above-mentioned problems, and by applying rare earth or activated carbon to the anode by adding rare earth or activated carbon to LiNi 0.5 Mn 1.5 O 4 as a high voltage cathode material, it is determined in a high voltage region of 4.8 V (voltage) by rare earth or activated carbon. It is to provide a hybrid capacitor capable of preventing a sudden decrease in capacity or a decrease in output characteristics due to change over time by preventing the Mn 3+ ions in the reaction from reacting with an electrolyte to form impurities on the electrode surface.

본 발명의 하이브리드 커패시터는 양극(cathode); 상기 양극과 이격되어 배치되는 음극(anode); 및 상기 양극과 상기 음극 사이에 배치되는 분리막을 포함하고, 상기 양극은 제1집전체와 상기 제1집전체의 표면에 형성되는 LNMO(LiNi0.5Mn1.5O4) 재질 전극을 포함하며, 상기 음극은 제2집전체와 상기 제2집전체의 표면에 형성되는 활성탄 재질 전극을 포함하는 것을 특징으로 한다.The hybrid capacitor of the present invention includes a cathode; A cathode spaced apart from the anode; And a separator disposed between the positive electrode and the negative electrode, wherein the positive electrode includes a first current collector and an LNMO (LiNi 0.5 Mn 1.5 O 4 ) material electrode formed on a surface of the first current collector, and the negative electrode. It characterized in that it comprises a second current collector and an activated carbon material electrode formed on the surface of the second current collector.

본 발명의 하이브리드 커패시터는 양극에 고전압 양극소재인 LiNi0.5Mn1.5O4에 희토류나 활성탄을 첨가하여 적용함으로써 희토류나 활성탄에 의해 4.8 V(voltage)이상의 고전압 영역에서 결정내의 Mn3+이온이 전해액과 반응하여 전극표면에 불순물이 형성되는 것을 방지함으로써 경시 변화에 의해 급격하게 용량이 감소하거나 출력특성이 저하되는 것을 방지할 수 있는 이점이 있다.In the hybrid capacitor of the present invention, rare earth or activated carbon is added and applied to LiNi 0.5 Mn 1.5 O 4 , a high voltage anode material, to the positive electrode, whereby Mn 3+ ions in the crystal in the high voltage region of 4.8 V (voltage) or higher by the rare earth or activated carbon By reacting to prevent the formation of impurities on the electrode surface, there is an advantage that it is possible to prevent the capacity from being rapidly reduced or the output characteristics are deteriorated due to changes over time.

도 1은 본 발명의 하이브리드 커패시터의 단면도,
도 2는 도 1에 도시된 스팀 부활탄의 확대도,
도 3은 도 1에 도시된 화학 부활탄의 확대도.
1 is a cross-sectional view of a hybrid capacitor of the present invention,
Figure 2 is an enlarged view of the steam resurrection grenade shown in Figure 1,
3 is an enlarged view of the chemical resurrection grenade shown in FIG. 1.

이하, 본 발명의 하이브리드 커패시터의 실시예를 첨부된 도면을 참조하여 설명하면 다음과 같다.Hereinafter, an embodiment of the hybrid capacitor of the present invention will be described with reference to the accompanying drawings.

도 1 내지 도 3에서와 같이 본 발명의 하이브리드 커패시터는 양극(cathode)(10), 음극(anode)(20), 분리막(30), 전해액(40) 및 케이스(50)를 포함하여 구성된다. 1 to 3, the hybrid capacitor of the present invention includes an anode 10, a cathode 20, a separator 30, an electrolyte 40, and a case 50.

양극(cathode)(10)은 케이스(50)의 내측에 배치되며, 음극(anode)(20)은 양극(10)과 이격되어 배치된다. 분리막(30)은 양극(10)과 음극(20) 사이에 배치되며, 전해액(40)은 양극(10)과 음극(20)에 함침된 상태로 케이스(50)의 내측에 위치되며 케이스(50)는 본 발명의 하이브리드 커패시터를 전반적으로 지지한다. 여기서, 양극(10)은 제1집전체(11)와 제1집전체(11)의 표면에 형성되는 LNMO(LiNi0.5Mn1.5O4) 재질 전극(12)을 포함하여 구성되며, 음극(20)은 제2집전체(21)와 제2집전체(21)의 표면에 형성되는 활성탄 재질 전극(22)을 포함하여 구성된다. The anode 10 is disposed inside the case 50, and the anode 20 is spaced apart from the anode 10. The separator 30 is disposed between the positive electrode 10 and the negative electrode 20, and the electrolyte solution 40 is positioned inside the case 50 in an impregnated state with the positive electrode 10 and the negative electrode 20, and the case 50 ) Overall supports the hybrid capacitor of the present invention. Here, the positive electrode 10 includes a first current collector 11 and an LNMO (LiNi 0.5 Mn 1.5 O 4 ) material electrode 12 formed on the surface of the first current collector 11 and the negative electrode 20 ) Includes the second current collector 21 and the activated carbon material electrode 22 formed on the surfaces of the second current collector 21.

본 발명의 하이브리드 커패시터의 구성을 상세히 설명하면 다음과 같다. The configuration of the hybrid capacitor of the present invention will be described in detail as follows.

양극(10)은 도 1에서와 같이 케이스(50)의 내측에 배치되며, 제1집전체(11)와 LNMO 재질 전극(12)을 포함하여 구성된다. The anode 10 is disposed inside the case 50 as shown in FIG. 1, and includes a first current collector 11 and an LNMO material electrode 12.

제1집전체(11)는 시트 형상으로 형성되며, 재질은 Al, Cu 및 Ni 중 하나를 선택하여 사용하거나 둘 이상을 혼합하여 사용된다. LNMO 재질 전극(12)은 고전압 양극소재인 LiNi0.5Mn1.5O4(12a), 희토류(12b) 및 활성탄(12c)을 혼합하여 형성된다. LiNi0.5Mn1.5O4(12a)는 보다 구체적으로 LiNi0.5-x/2Mn1.5-x/2O4(0≤x≤0.1)가 사용된다. 이러한 LNMO 재질 전극(12)의 LiNi0.5Mn1.5O4(12a), 희토류(12b) 및 활성탄(12c)을 혼합비는 LiNi0.5Mn1.5O4(12a) 88 내지 94wt%, 희토류(12b) 1 내지 2 wt% 및 활성탄(12c) 5 내지 10 wt%가 되도록 혼합하여 형성된다. 여기서, 희토류(12b)는 Dy(Dysprosium), Y(Yttrium), Eu(Europium) 및 Pr(Praseodymium) 중 하나 이상이 선택되어 첨가되며, 활성탄(12c)은 도 2에 도시된 화학 부활방법을 이용해 비표면적이 1800 내지 2500㎡/g이며 평균입경(D1)이 6 내지 8㎛로 제조된 화학 부활탄(22a)이 사용된다. 양극(10)은 고전압 양극소재인 LiNi0.5Mn1.5O4(12a)에 희토류(12b)나 활성탄(12c)을 첨가함으로써 본 발명의 하이브리드 커패시터는 출력 특성이나 수명 특성을 개선시킬 수 있게 된다. The first current collector 11 is formed in a sheet shape, and the material is used by selecting one of Al, Cu, and Ni, or by mixing two or more. The LNMO material electrode 12 is formed by mixing high voltage anode material LiNi 0.5 Mn 1.5 O 4 (12a), rare earth 12b, and activated carbon 12c. LiNi 0.5 Mn 1.5 O 4 (12a) is more specifically LiNi 0.5-x/2 Mn 1.5-x/2 O 4 (0≤x≤0.1) is used. The mixing ratio of LiNi 0.5 Mn 1.5 O 4 (12a), rare earth 12b, and activated carbon 12c of the LNMO material electrode 12 is 88 to 94 wt% of LiNi 0.5 Mn 1.5 O 4 (12a), rare earth 12b 1 to 2 wt% and 5 to 10 wt% of activated carbon (12c). Here, rare earth (12b) is Dy (Dysprosium), Y (Yttrium), Eu (Europium) and one or more of Pr (Praseodymium) is selected and added, activated carbon (12c) using the chemical resurrection method shown in Figure 2 Chemical activated carbon 22a having a specific surface area of 1800 to 2500 m 2 /g and an average particle diameter (D1) of 6 to 8 μm is used. The positive electrode 10 is a high voltage positive electrode material LiNi 0.5 Mn 1.5 O 4 (12a) by adding a rare earth (12b) or activated carbon (12c) by the hybrid capacitor of the present invention can improve the output characteristics or life characteristics.

음극(anode)(20)은 도 1 내지 도 3에서와 같이 케이스(50)의 내측에서 양극(10)과 이격되어 배치되며, 제2집전체(21)와 제2집전체(21)의 표면에 형성되는 활성탄 재질 전극(22)을 포함하여 구성된다. The anode 20 is disposed spaced apart from the anode 10 inside the case 50, as shown in FIGS. 1 to 3, and the surfaces of the second collector 21 and the second collector 21 It is configured to include an active carbon material electrode 22 formed on.

제2집전체(21)는 시트 형상으로 형성되며, 재질은 Al, Cu 및 Ni 중 하나를 선택하여 사용하거나 둘 이상을 혼합하여 사용된다. 활성탄 재질 전극(22)의 재질은 화학 부활탄(22a)과 스팀 부활탄(22b)을 혼합하여 형성한다. 활성탄 재질 전극(22)의 제조 시 혼합비는 화학 부활탄(22a) 20 내지 80 wt%와 스팀 부활탄(22b) 20 내지 80 wt%를 혼합하여 형성된다. 여기서, 화학 부활탄(22a)은 화학 부활방법을 이용해 비표면적이 1800 내지 2500㎡/g이며 평균입경(D1)이 6 내지 8㎛가 되도록 형성된 것이 사용되며, 스팀 부활탄(22b)은 스팀 부활방법(steam activation)을 이용해 비표면적이 1000 내지 1500㎡/g이며 평균입경(D2)이 10 내지 13㎛가 되도록 형성된 것이 사용함으로써 본 발명의 하이브리드 커패시터의 출력 효율을 개선시킬 수 있다. The second current collector 21 is formed in a sheet shape, and the material is used by selecting one of Al, Cu, and Ni, or by mixing two or more. The material of the activated carbon material electrode 22 is formed by mixing the chemical activated carbon 22a and the steam activated carbon 22b. The mixing ratio of the activated carbon material electrode 22 is formed by mixing 20 to 80 wt% of the chemical activated carbon 22a and 20 to 80 wt% of the steam activated carbon 22b. Here, the chemical activated carbon 22a has a specific surface area of 1800 to 2500 m 2 /g using a chemical activated method and is formed to have an average particle diameter (D1) of 6 to 8 μm, and the steam activated carbon 22b is steam activated By using a method (steam activation) having a specific surface area of 1000 to 1500 m 2 /g and an average particle diameter (D2) of 10 to 13 μm, it is possible to improve the output efficiency of the hybrid capacitor of the present invention.

분리막(30)은 도 1에서와 같이 케이스(50)의 내측에서 분리막(30)은 양극(10)과 음극(20) 사이에 위치되도록 배치되어 양극(10)과 음극(20)이 서로 물리적으로 접촉되는 것을 방지하며, 재질은 공지된 하이브리드 커패시터에 적용되는 재질이 사용된다. The separator 30 is disposed inside the case 50 as shown in FIG. 1 so that the separator 30 is positioned between the positive electrode 10 and the negative electrode 20 so that the positive electrode 10 and the negative electrode 20 are physically connected to each other. It prevents contact, and a material applied to a known hybrid capacitor is used.

전해액(40)은 도 1에서와 같이 하이브리드 커패시터에 포함되며, 유기용매, 염 및 첨가제를 혼합하여 사용함으로써 본 발명의 하이브리드 커패시터에 적용될 수 있도록 한다.The electrolytic solution 40 is included in the hybrid capacitor as shown in FIG. 1, and can be applied to the hybrid capacitor of the present invention by mixing and using an organic solvent, a salt, and an additive.

유기용매는 Acetonitrile(ACN), Ethylene carbonate(EC), Propylene carbonate(PC), Dimethyl carbonate(DMC), Diethyl carbonate(DEC), Ethylmethyl carbonate(EMC), 1,2-dimethoxyethane(DME), γ-buthrolactone(GBL), Methyl formate(MF), Methyl propionate(MP) 중 셋 이상을 선택한 후 혼합하여 사용된다. 여기서, 유기용매는 Acetonitrile(ACN), Ethylene carbonate(EC), Propylene carbonate(PC), Dimethyl carbonate(DMC), Diethyl carbonate(DEC), Ethylmethyl carbonate(EMC), 1,2-dimethoxyethane(DME), γ-buthrolactone(GBL), Methyl formate(MF), Methyl propionate(MP) 중 선택된 셋 이상의 유기용매가 각각 동일한 wt%의 비율로 혼합되하여 사용된다. Organic solvents are Acetonitrile (ACN), Ethylene carbonate (EC), Propylene carbonate (PC), Dimethyl carbonate (DMC), Diethyl carbonate (DEC), Ethylmethyl carbonate (EMC), 1,2-dimethoxyethane (DME), γ-buthrolactone It is used after selecting three or more of (GBL), Methyl formate (MF), and Methyl propionate (MP). Here, the organic solvent is Acetonitrile (ACN), Ethylene carbonate (EC), Propylene carbonate (PC), Dimethyl carbonate (DMC), Diethyl carbonate (DEC), Ethylmethyl carbonate (EMC), 1,2-dimethoxyethane (DME), γ Three or more organic solvents selected from -buthrolactone (GBL), Methyl formate (MF), and Methyl propionate (MP) are used by mixing at the same wt% ratio.

염은 리튬염과 비리튬염을 혼합하여 사용하며, 리튬염은 LiBF4, LiPF6, LiClO4, LiAsF6, LiAlCl4, LiCF3SO3, LiN(SO2CF3)2, LiC(SO2CF3)3, LiBOB(LiBOB : Lithium bis(oxalato)borate) 중 하나 이상 선택하여 사용된다. 비리튬염은 TEABF4(Tetraethylammonium tetrafluoroborate), TEMABF4(triethylmethylammonium tetrafluorborate) 및 SBPBF4(spiro-(1,1′)-bipyrrolidium tetrafluoroborate) 중 하나 이상 선택하여 사용된다. 염에 포함되는 리튬염은 0.8 내지 2M(molarity)인 것을 사용하며, 비리튬염은 0.1 내지 0.5M(molarity)인 것이 사용된다. The salt is a mixture of a lithium salt and a non-lithium salt, and the lithium salt is LiBF 4 , LiPF 6 , LiClO 4 , LiAsF 6 , LiAlCl 4 , LiCF 3 SO 3 , LiN(SO 2 CF3)2, LiC(SO2CF3)3 , LiBOB (LiBOB: Lithium bis(oxalato)borate). The non-lithium salt is used by selecting one or more of Tetraethylammonium tetrafluoroborate (TEABF4), triethylmethylammonium tetrafluorborate (TEMABF4) and spiro-(1,1′)-bipyrrolidium tetrafluoroborate (SBPBF4). The lithium salt contained in the salt is used in the 0.8 to 2M (molarity), the non-lithium salt is used to be 0.1 to 0.5M (molarity).

첨가제는 VC(Vinylene Carbonate), VEC(Vinyl ethylene carbonate) 및 FEC(Fluoroethylene carbonate) 중 하나 이상 선택하여 사용된다.The additive is selected from one or more of VC (Vinylene Carbonate), VEC (Vinyl ethylene carbonate) and FEC (Fluoroethylene carbonate).

이러한 본 발명의 하이브리드 커패시터의 전기적인 시험을 위해 먼저, 표 1과 같이 다양한 실시예의 LNMO 재질 전극(12)과 활성탄 재질 전극(22)을 각각 제조하였다. For the electrical test of the hybrid capacitor of the present invention, first, as shown in Table 1, the LNMO material electrode 12 and the activated carbon material electrode 22 of various embodiments were manufactured, respectively.


LNMO 재질 전극(wt%)LNMO material electrode (wt%) 활성탄 재질 전극(wt%)Activated carbon material electrode (wt%)
LiNi0.5Mn1.5O4 LiNi 0.5 Mn 1.5 O 4 희토류Rare earth 활성탄Activated carbon 화학 부활탄[비표면적 (1500㎡/g),입경(㎛)]Chemical activated carbon [specific surface area (1500㎡/g), particle diameter (㎛)] 스팀부활탄[비표면적 (1500㎡/g),입경(㎛)]Steam revitalized coal [specific surface area (1500㎡/g), particle diameter (㎛)] 실시예1Example 1 8888 22 1010 80[1800,6]80[1800,6] 20[1000,10]20[1000,10] 실시예2Example 2 9494 1One 55 실시예3Example 3 8888 22 1010 20(2500,8)20(2500,8) 80(1500,13]80(1500,13) 실시예4Example 4 9494 1One 55

표 1에서와 같이 LNMO 재질 전극(12)과 활성탄 재질 전극(22)은 실시예 1 내지 4로 제조하였다. LNMO 재질 전극(12)은 표 1에서와 같이 실시예1 및 실시예3은 각각 LiNi0.5Mn1.5O4(12a) 88 wt%, 희토류(12b) 2 wt% 및 활성탄(12c) 10 wt%가 되도록 혼합하여 형성하였고, 실시예2 및 실시예4는 각각 LiNi0.5Mn1.5O4(12a) 94wt%, 희토류(12b) 1 wt% 및 활성탄(12c) 5 wt%가 되도록 혼합하여 형성하였다. 표 1에 기재된 희토류(12b)와 활성탄(12c) 중 희토류(12b)는 Dy(Dysprosium), Y(Yttrium), Eu(Europium) 및 Pr(Praseodymium) 중 하나 이상이 선택되어 첨가되는 것으로, 실시예 1 내지 4는 각각 희토류(12b)로 Dy(Dysprosium) 하나를 선택하여 사용하였다. 활성탄(12c)은 평균입경(D1)이 작은 화학 부활탄(22a)이 사용하였으며, 실시예1 내지 4에서와 같이 비표면적과 평균입경(D1)은 활성탄 재질 전극(22)에 적용된 화학 부활탄(22a)과 같이 동일하게 적용하였다.As shown in Table 1, the LNMO material electrode 12 and the activated carbon material electrode 22 were manufactured in Examples 1 to 4. As shown in Table 1, the LNMO material electrode 12 has 88 wt% of LiNi 0.5 Mn 1.5 O 4 (12a), 2 wt% of rare earth (12b) and 10 wt% of activated carbon (12c), respectively, as shown in Table 1. It was formed by mixing as much as possible, and Example 2 and Example 4 were formed to be mixed such that LiNi 0.5 Mn 1.5 O 4 (12a) 94 wt%, rare earth (12b) 1 wt%, and activated carbon (12c) 5 wt%, respectively. Among the rare earths 12b and activated carbons 12c listed in Table 1, rare earths 12b are selected and added to one or more of Dy (Dysprosium), Y (Yttrium), Eu (Europium), and Pr (Praseodymium). 1 to 4, each of the rare earth (12b) was used to select one Dy (Dysprosium). As the activated carbon 12c, chemical activated carbon 22a having a small average particle diameter D1 was used, and as in Examples 1 to 4, the specific surface area and average particle diameter D1 were chemical activated carbon applied to the electrode 22 of the activated carbon material. The same was applied as in (22a).

활성탄 재질 전극(22)은 실시예1 및 실시예2는 각각 화학 부활탄(22a) 20 wt%와 스팀 부활탄(22b) 80 wt%를 혼합하여 형성하였으며, 화학 부활탄(22a)의 비표면적은 1800㎡/g이고 평균입경(D1)은 6㎛인 것이 사용되었고 스팀 부활탄(22b)의 비표면적은 1000㎡/g이고 평균입경(D2)은 10㎛인 것이 사용되었다. 활성탄 재질 전극(22)은 실시예3 및 실시예4는 각각 화학 부활탄(22a) 80 wt%와 스팀 부활탄(22b) 20 wt%를 혼합하여 형성하였으며, 화학 부활탄(22a)의 비표면적은 2500㎡/g이고 평균입경(D1)은 8㎛인 것이 사용되었고 스팀 부활탄(22b)의 비표면적은 1500㎡/g이고 평균입경(D2)은 13㎛인 것이 사용되었다. The activated carbon material electrode 22 was formed by mixing 20 wt% of the chemical activated carbon 22a and 80 wt% of the steam activated carbon 22b in Examples 1 and 2, respectively, and the specific surface area of the chemical activated carbon 22a. Silver was 1800 m 2 /g, the average particle diameter (D1) of 6 µm was used, and the specific surface area of the steam resurrection coal 22b was 1000 m 2 /g and the average particle diameter (D2) of 10 µm was used. The activated carbon material electrode 22 was formed by mixing 80 wt% of the chemical activated carbon 22a and 20 wt% of the steam activated carbon 22b in Examples 3 and 4, respectively, and the specific surface area of the chemical activated carbon 22a. Silver was 2500 m 2 /g, the average particle diameter (D1) of 8 µm was used, and the specific surface area of the steam activated carbon 22b was 1500 m 2 /g and the average particle diameter (D2) of 13 µm was used.

표 1에서와 같이 LNMO 재질 전극(12)과 활성탄 재질 전극(22)이 각각 실시예1 내지 실시예4로 준비되면 각각을 이용해 본 발명의 하이브리드 커패시터를 제조하였다. When the LNMO material electrode 12 and the activated carbon material electrode 22 were prepared in Examples 1 to 4, respectively, as shown in Table 1, hybrid capacitors of the present invention were manufactured using each.

실시예1 내지 실시예4에 따른 하이브리드 커패시터의 제조는 먼저, 표 1에서와 같이 실시예1 내지 실시예4로 제조된 LNMO 재질 전극(12)이 준비되면 LNMO 재질 전극(12)에 바인더와 도전제를 혼합한 후 제1집전체(11)의 표면에 도포하여 양극(10)을 제조하였다. 여기서, 바인더는 PVDF(polyvinylidene difluoride), PTFE(polytetrafluoroethylene), SBR(styrene butadiene rubber) 및 CMC(carboxymethylcellulose) 중 하나를 선택하여 사용하였으며, 도전제는 슈퍼-피(Super-P), 케쳔블랙(ketjen black) 및 카본블랙(carbon black) 중 하나를 선택하여 사용하였다. Preparation of the hybrid capacitors according to Examples 1 to 4, first, as shown in Table 1, when the LNMO material electrode 12 prepared in Examples 1 to 4 is prepared, the LNMO material electrode 12 has a binder and a conductivity After mixing the agent, it was applied to the surface of the first current collector 11 to prepare an anode 10. Here, the binder was selected from one of polyvinylidene difluoride (PVDF), polytetrafluoroethylene (PTFE), styrene butadiene rubber (SBR) and carboxymethylcellulose (CMC). black) and carbon black were used.

LNMO 재질 전극(12), 바인더 및 도전제의 혼합비는 LNMO 재질 전극(12) 86 내지 88 wt%, 바인더 6 내지 7 wt% 및 도전제 6 내지 7 wt%를 혼합하였다. 예를 들어, 실시예1 및 실시예2인 경우에 각각 LNMO 재질 전극(12) 86 wt%, 바인더 7 wt% 및 도전제 7 wt%를 혼합하였으며, 실시예3 및 실시예4인 경우에 각각 LNMO 재질 전극(12) 88 wt%, 바인더 6 wt% 및 도전제 6 wt%를 혼합하였다.The mixing ratio of the LNMO material electrode 12, the binder, and the conducting agent was 86 to 88 wt% of the LNMO material electrode 12, 6 to 7 wt% of the binder, and 6 to 7 wt% of the conducting agent. For example, in the case of Examples 1 and 2, 86 wt% of the LNMO material electrode 12, 7 wt% of the binder, and 7 wt% of the conductive agent were mixed, respectively, and in the case of Examples 3 and 4, respectively. 88 wt% of the LNMO material electrode 12, 6 wt% of the binder, and 6 wt% of the conductive agent were mixed.

실시예1 내지 실시예4에 따른 양극(10)이 제조되면 실시예1 내지 실시예4에 따른 활성탄 재질 전극(22)을 이용해 음극(20)을 제조하였다. 음극(20)은 활성탄 재질 전극(22)에 바인더와 도전제를 혼합한 후 제2집전체(21)의 표면에 도포하여 제조하였다. 여기서, 바인더와 도전제는 각각 양극(10)과 동일하게 적용, 즉, 바인더는 PVDF(polyvinylidene difluoride), PTFE(polytetrafluoroethylene), SBR(styrene butadiene rubber) 및 CMC(carboxymethylcellulose) 중 하나를 선택하여 사용하였으며, 도전제는 슈퍼-피(Super-P), 케쳔블랙(ketjen black) 및 카본블랙(carbon black) 중 하나를 선택하여 사용하였다. When the positive electrode 10 according to Examples 1 to 4 was manufactured, a negative electrode 20 was manufactured using the activated carbon material electrode 22 according to Examples 1 to 4. The negative electrode 20 was prepared by mixing a binder and a conductive agent on the active carbon material electrode 22 and then applying it to the surface of the second current collector 21. Here, the binder and the conductive agent are respectively applied in the same manner as the positive electrode 10, that is, the binder was selected from PVDF (polyvinylidene difluoride), PTFE (polytetrafluoroethylene), SBR (styrene butadiene rubber) and CMC (carboxymethylcellulose). , Conductive agent was used to select one of super-P (Super-P), Ketjen black (carbon) and carbon black (carbon black).

활성탄 재질 전극(22), 바인더 및 도전제의 혼합비는 양극(10)과 동일하게 활성탄 재질 전극(22) 86 내지 88 wt%, 바인더 6 내지 7 wt% 및 도전제 6 내지 7 wt%를 혼합하였다. 예를 들어, 실시예1 및 실시예2인 경우에 각각 활성탄 재질 전극(22) 86 wt%, 바인더 7 wt% 및 도전제 7 wt%를 혼합하였으며, 실시예3 및 실시예4인 경우에 각각 활성탄 재질 전극(22) 88 wt%, 바인더 6 wt% 및 도전제 6 wt%를 혼합하였다.The mixing ratio of the activated carbon material electrode 22, the binder, and the conductive agent was 86 to 88 wt% of the activated carbon material electrode 22, 6 to 7 wt% of the binder, and 6 to 7 wt% of the conductive agent as in the positive electrode 10. . For example, in the case of Examples 1 and 2, 86 wt% of the activated carbon material electrode 22, 7 wt% of the binder, and 7 wt% of the conductive agent were mixed, respectively, in the case of Examples 3 and 4 88 wt% of the activated carbon material electrode 22, 6 wt% of the binder, and 6 wt% of the conductive agent were mixed.

양극(10)과 음극(20)이 제조되어 준비되면 양극(10)과 음극(20) 사이에 분리막(30)을 개재시킨 상태에서 양극(10)과 음극(20)은 도 1에서와 같이 전해액(40)에 함침된 후 케이스(50)의 내측에 수납되어 조립된다. 양극(10)과 음극(20)을 케이스(50)의 내측에 조립 시 양극(10)과 음극(20)은 각각의 단자(13,23)가 양극(10)의 제1집전체(11)와 음극(20)의 제2집전체(21)에 연결된 상태에서 케이스(50)의 외부로 노출되도록 조립된다. 여기서, 분리막(30)의 공지된 하이브리드 커패시터(도시 않음)에 적용되는 분리막이 적용됨으로 설명을 생략한다. When the positive electrode 10 and the negative electrode 20 are prepared and prepared, the positive electrode 10 and the negative electrode 20 are electrolytic solutions as shown in FIG. 1 with a separator 30 interposed between the positive electrode 10 and the negative electrode 20. After being impregnated into 40, it is housed inside the case 50 and assembled. When assembling the positive electrode 10 and the negative electrode 20 to the inside of the case 50, the positive electrode 10 and the negative electrode 20 have respective terminals 13 and 23 having a first current collector 11 of the positive electrode 10. It is assembled to be exposed to the outside of the case 50 while being connected to the second current collector 21 of the negative electrode 20. Here, a description of the separator 30 applied to the known hybrid capacitor (not shown) of the separator 30 is applied, so that description is omitted.

전해액(40)은 도 1에서와 같이 하이브리드 커패시터에 포함되며, 유기용매, 염 및 첨가제를 혼합하여 사용함으로써 본 발명의 하이브리드 커패시터에 적용될 수 있도록 한다. 유기용매는 Ethylene carbonate(EC), Dimethyl carbonate(DMC) 및 Ethylmethyl carbonate(EMC)가 각각 1:1:1로 동일한 wt%의 비율이 되도록 혼합하여 사용하였고, 염은 리튬염은 LiBF4,를 사용하였으며, 비리튬염은 TEABF4(Tetraethylammonium tetrafluoroborate)를 선택하였으며, 첨가제는 VC(Vinylene Carbonate)를 선택하였으며, 실시예1 및 2의 경우에 리튬염은 0.8M(molarity)인 것을 사용하며 비리튬염은 0.5M(molarity)인 것이 사용되었으며, 실시예3 및 실시예4는 각각 리튬염은 2M인 것을 사용하며, 비리튬염은 0.1M인 것을 사용하였다. The electrolytic solution 40 is included in the hybrid capacitor as shown in FIG. 1, and can be applied to the hybrid capacitor of the present invention by mixing and using an organic solvent, a salt, and an additive. As the organic solvent, Ethylene carbonate (EC), Dimethyl carbonate (DMC), and Ethylmethyl carbonate (EMC) were mixed in a ratio of 1:1 to 1:1, respectively, and lithium salt was used as LiBF 4 , as the salt. TEABF4 (Tetraethylammonium tetrafluoroborate) was selected as the non-lithium salt, and VC (Vinylene Carbonate) was selected as the additive, and in Examples 1 and 2, the lithium salt was 0.8M (molarity) and the non-lithium salt was 0.5M (molarity) was used, and in Example 3 and Example 4, the lithium salt was 2M, and the non-lithium salt was 0.1M.

실시예1 내지 실시예4에 따른 하이브리드 커패시터는 각각 양극(10)과 음극(20)의 두께와 표면적이 동일하게 제조되었으며, 실시예1 내지 실시예4에 따른 하이브리드 커패시터가 제조되면 비교예에 따른 하이브리드 커패시터를 제조하였다. 비교예에 따른 하이브리드 커패시터는 양극은 전극재질로 공지된 LiMn2O4를 사용하였으며 음극의 전극재질은 공지된 활성탄을 적용하였으며, 양극과 음극의 두께와 표면적은 실시예1 내지 실시예4에 따른 하이브리드 커패시터의 양극(10)과 음극(20)과 동일하게 제조하였다. The hybrid capacitors according to Examples 1 to 4 were manufactured to have the same thickness and surface area of the positive electrode 10 and the negative electrode 20, respectively, and when the hybrid capacitors according to Examples 1 to 4 were manufactured, according to the comparative example Hybrid capacitors were prepared. In the hybrid capacitor according to the comparative example, the positive electrode used LiMn 2 O 4 known as the electrode material, and the electrode material of the negative electrode applied known activated carbon, and the thickness and surface area of the positive electrode and the negative electrode according to Examples 1 to 4 It was manufactured in the same manner as the anode 10 and the cathode 20 of the hybrid capacitor.

실시예1 내지 실시예4에 따른 하이브리드 커패시터와 비교예에 따른 하이브리드 커패시터가 제조되면 각각에 대한 전기적인 특성을 시험하였으며, 그 결과가 표 2에 도시되어 있다. When the hybrid capacitors according to Examples 1 to 4 and the hybrid capacitors according to the Comparative Examples were manufactured, electrical characteristics of each were tested, and the results are shown in Table 2.


에너지밀도(Wh/L)Energy density (Wh/L) 출력효율(%)Output efficiency (%)
1C1C 15C15C 1C1C 15C15C 실시예1Example 1 1212 10.910.9 100100 9191 실시예2Example 2 1414 11.911.9 100100 8585 실시예3Example 3 88 6.86.8 100100 8686 실시예4Example 4 1010 8.18.1 100100 8181 비교예Comparative example 1010 7.57.5 100100 7575

표 2에서와 같이 실시예 1 내지 실시예 4 및 비교예에 따른 에너지 밀도와 출력효율을 검사한 결과 중 에너지 밀도는 실시예 1인 경우에 1C에서 15 Wh/L이고 15C에서 10.9 Wh/L로 측정되었다. 실시예 2는 1C(씨)에서 14 Wh/L이고 15C에서 11.9 Wh/L로 측정되었으며, 실시예 3은 1C에서 8 Wh/L이고 15C에서 6.8 Wh/L로 측정되었다. 실시예 4는 1C에서 10 Wh/L이고 15C에서 8.1 Wh/L로 측정되었으며, 비교예는 1C에서 10 Wh/L이고 15C에서 7.7 Wh/L로 측정되었다. As shown in Table 2, among the results of examining the energy densities and output efficiencies according to Examples 1 to 4 and Comparative Examples, the energy density was 15 Wh/L at 1C and 10.9 Wh/L at 15C in Example 1 Was measured. Example 2 was 14 Wh/L at 1C (seed) and 11.9 Wh/L at 15C, Example 3 was 8 Wh/L at 1C and 6.8 Wh/L at 15C. Example 4 was measured at 10 Wh/L at 1C and 8.1 Wh/L at 15C, and comparative example was measured at 10 Wh/L at 1C and 7.7 Wh/L at 15C.

출력효율은 실시예 1인 경우에 1C에서 100%이고 15C에서 91%로 측정되었으며, 실시예 2는 1C에서 100%이고 15C에서 85%로 측정되었다. 실시예 3은 1C에서 100%이고 15C에서 86%로 측정되었고, 실시예 4는 1C에서 100%이고 15C에서 81%로 측정되었으며, 비교예는 1C에서 100%이고 15C에서 75%로 측정되었다. 여기서, 1C(씨) 방전조건은 C-rate(씨-레이트) = 1인 방전조건을 나타내는 것으로 방전전류가 전지의 정격용량과 같다는 것을 나타내며, 에너지 밀도와 출력효율의 검사 내지 측정은 공지된 검사 장비를 이용함으로 상세한 설명을 생략한다. In the case of Example 1, the output efficiency was 100% at 1C and 91% at 15C, and Example 2 was 100% at 1C and 85% at 15C. Example 3 was 100% at 1C and 86% at 15C, Example 4 was 100% at 1C and 81% at 15C, Comparative Example was 100% at 1C and 75% at 15C. Here, the 1C (seed) discharge condition indicates a discharge condition with C-rate = 1, indicating that the discharge current is equal to the rated capacity of the battery, and inspection or measurement of energy density and output efficiency is a known inspection. Detailed description is omitted by using equipment.

실시예 1 내지 실시예 4 및 비교예에 따른 에너지 밀도와 출력효율을 검사한 결과와 같이 실시예 1 내지 실시예 4에 따른 하이브리드 커패시터는 15C에서 감소하는 비율이 비교예보다 작음을 알 수 있다. 즉, 본 발명의 하이브리드 커패시터는 양극(10)에 LiNi0.5Mn1.5O4(12a), 희토류(12b) 및 활성탄(12c)을 혼합하여 형성되는 LNMO 재질 전극(12)을 적용하고, 음극(20)에 화학 부활탄(22a)과 스팀 부활탄(22b)을 혼합하여 형성된 활성탄 재질 전극(22)을 적용함으로써 15C에서 에너지 밀도 즉, 경시 변화에 의한 급격한 용량 감소를 방지하고 출력효율을 유지함으로써 장시간 수명 특성을 개선시킬 수 있게 된다.As a result of examining the energy density and output efficiency according to Examples 1 to 4 and Comparative Examples, it can be seen that the hybrid capacitors according to Examples 1 to 4 have a decreasing rate at 15C lower than that of the comparative example. That is, the hybrid capacitor of the present invention is applied to the electrode 10 of the LNMO material formed by mixing LiNi 0.5 Mn 1.5 O 4 (12a), rare earth (12b) and activated carbon (12c) to the anode 10, the cathode (20) ) By applying the activated carbon material electrode 22 formed by mixing the chemical activated carbon 22a and the steam activated carbon 22b to prevent energy density at 15C, i.e., a rapid decrease in capacity due to change over time, and maintain output efficiency for a long time It is possible to improve the life characteristics.

본 발명의 하이브리드 커패시터는 커패시터나 배터리 제조 산업 분야에 적용할 수 있다.The hybrid capacitor of the present invention can be applied to the capacitor or battery manufacturing industry.

10: 양극
20: 음극
30: 분리막
40: 전해액
50: 케이스
10: anode
20: cathode
30: separator
40: electrolyte
50: case

Claims (7)

양극(cathode);
상기 양극과 이격되어 배치되는 음극(anode); 및
상기 양극과 상기 음극 사이에 배치되는 분리막를 포함하고,
상기 양극은 제1집전체와 상기 제1집전체의 표면에 형성되는 LNMO(LiNi0.5Mn1.5O4) 재질 전극을 포함하며, 상기 음극은 제2집전체와 상기 제2집전체의 표면에 형성되는 활성탄 재질 전극을 포함하고,
상기 LNMO(LiNi0.5Mn1.5O4) 재질 전극은 LiNi0.5Mn1.5O4 88 내지 94wt%, 희토류 1 내지 2 wt% 및 활성탄 5 내지 10 wt%를 혼합하여 형성되며, 상기 희토류는 Dy(Dysprosium), Y(Yttrium), Eu(Europium) 및 Pr(Praseodymium) 중 하나 이상이 선택되어 첨가되며, 상기 활성탄은 화학 부활방법을 이용해 비표면적이 1800 내지 2500㎡/g이며 평균입경이 6 내지 8㎛로 제조된 화학 부활탄이 사용되며,
상기 활성탄 재질 전극은 화학 부활탄 20 내지 80 wt%와 스팀 부활탄 20 내지 80 wt%를 혼합하여 형성되며, 상기 화학 부활탄과 상기 스팀 부활탄 중 상기 화학 부활탄은 화학 부활방법을 이용해 비표면적이 1800 내지 2500㎡/g이며 평균입경이 6 내지 8㎛가 되도록 형성된 것이 사용되며, 상기 스팀 부활탄은 스팀 부활방법(steam activation)을 이용해 비표면적이 1000 내지 1500㎡/g이며 평균입경이 10 내지 13㎛가 되도록 형성된 것이 사용되는 하이브리드 커패시터.
A cathode;
A cathode spaced apart from the anode; And
And a separator disposed between the anode and the cathode,
The positive electrode includes a first current collector and an LNMO (LiNi 0.5 Mn 1.5 O 4 ) material electrode formed on the surface of the first current collector, and the negative electrode is formed on the surface of the second current collector and the second current collector. Comprising an activated carbon material electrode,
The LNMO (LiNi 0.5 Mn 1.5 O 4 ) material electrode is formed by mixing LiNi 0.5 Mn 1.5 O 4 88 to 94 wt%, rare earth 1 to 2 wt%, and activated carbon 5 to 10 wt%, and the rare earth is Dy (Dysprosium) , Y (Yttrium), Eu (Europium) and one or more of Pr (Praseodymium) are selected and added, and the activated carbon has a specific surface area of 1800 to 2500 m 2 /g and an average particle size of 6 to 8 μm using a chemical revitalization method. The manufactured chemical resurrection grenade is used,
The activated carbon material electrode is formed by mixing 20 to 80 wt% of chemical activated carbon and 20 to 80 wt% of steam activated carbon, and the chemical activated carbon among the chemical activated carbon and the steam activated carbon has a specific surface area using a chemical activation method. This is 1800 to 2500 m2/g, and an average particle diameter of 6 to 8 m is used, and the steam activated carbon has a specific surface area of 1000 to 1500 m2/g using a steam activation method and an average particle size of 10. Hybrid capacitors used to be formed to be 13 µm.
삭제delete 삭제delete 삭제delete 제1항에 있어서,
상기 제1집전체와 상기 제2집전체의 각각의 재질은 Al, Cu 및 Ni 중 하나를 선택하여 사용하거나 둘 이상을 혼합하여 사용되는 하이브리드 커패시터.
According to claim 1,
The first current collector and the second current collector are hybrid capacitors used by selecting one of Al, Cu, and Ni, or by mixing two or more of them.
제1항에 있어서,
상기 하이브리드 커패시터는 전해액이 포함되고,
상기 전해액은 유기용매, 염 및 첨가제를 혼합하여 사용하며, 상기 유기용매는 Acetonitrile(ACN), Ethylene carbonate(EC), Propylene carbonate(PC), Dimethyl carbonate(DMC), Diethyl carbonate(DEC), Ethylmethyl carbonate(EMC), 1,2-dimethoxyethane(DME), γ-buthrolactone(GBL), Methyl formate(MF), Methyl propionate(MP) 중 셋 이상을 선택한 후 혼합하여 사용되며, 상기 염은 리튬염과 비리튬염을 혼합하여 사용하며, 상기 리튬염은 LiBF4, LiPF6, LiClO4, LiAsF6, LiAlCl4, LiCF3SO3, LiN(SO2CF3)2, LiC(SO2CF3)3, LiBOB(LiBOB : Lithium bis(oxalato)borate) 중 하나 이상 선택하여 사용하며, 상기 비리튬염은 TEABF4(Tetraethylammonium tetrafluoroborate), TEMABF4(triethylmethylammonium tetrafluorborate) 및 SBPBF4(spiro-(1,1′)-bipyrrolidium tetrafluoroborate) 중 하나 이상 선택하여 사용하며, 상기 첨가제는 VC(Vinylene Carbonate), VEC(Vinyl ethylene carbonate) 및 FEC(Fluoroethylene carbonate) 중 하나 이상 선택하여 사용하는 하이브리드 커패시터.
According to claim 1,
The hybrid capacitor contains an electrolyte,
The electrolyte is used by mixing an organic solvent, a salt and an additive, and the organic solvent is Acetonitrile (ACN), Ethylene carbonate (EC), Propylene carbonate (PC), Dimethyl carbonate (DMC), Diethyl carbonate (DEC), Ethylmethyl carbonate (EMC), 1,2-dimethoxyethane (DME), γ-buthrolactone (GBL), Methyl formate (MF), Methyl propionate (MP) is used after mixing three or more selected, the salt is lithium salt and non-lithium Salt is used by mixing, and the lithium salt is LiBF 4 , LiPF 6 , LiClO 4 , LiAsF 6 , LiAlCl 4 , LiCF 3 SO 3 , LiN(SO 2 CF3)2, LiC(SO2CF3)3, LiBOB(LiBOB: Lithium One or more of bis(oxalato)borate) is used, and the non-lithium salt is selected from one or more of TEABF4 (Tetraethylammonium tetrafluoroborate), TEMABF4 (triethylmethylammonium tetrafluorborate) and SBPBF4 (spiro-(1,1′)-bipyrrolidium tetrafluoroborate) Used, the additive is a VC (Vinylene Carbonate), VEC (Vinyl ethylene carbonate) and FEC (Fluoroethylene carbonate) selected from one or more of the hybrid capacitor used.
제6항에 있어서,
상기 유기용매과 상기 리튬염과 상기 비리튬염 중 상기 유기용매는 Acetonitrile(ACN), Ethylene carbonate(EC), Propylene carbonate(PC), Dimethyl carbonate(DMC), Diethyl carbonate(DEC), Ethylmethyl carbonate(EMC), 1,2-dimethoxyethane(DME), γ-buthrolactone(GBL), Methyl formate(MF), Methyl propionate(MP) 중 선택된 셋 이상의 유기용매가 각각 동일한 wt%의 비율로 혼합되하여 사용되며, 상기 리튬염은 0.8 내지 2M(molarity)인 것을 사용하며, 상기 비리튬염은 0.1 내지 0.5M(molarity)인 것이 사용되는 하이브리드 커패시터.
The method of claim 6,
Among the organic solvent, the lithium salt, and the non-lithium salt, the organic solvent is Acetonitrile (ACN), Ethylene carbonate (EC), Propylene carbonate (PC), Dimethyl carbonate (DMC), Diethyl carbonate (DEC), Ethylmethyl carbonate (EMC). , 1,2-dimethoxyethane (DME), γ-buthrolactone (GBL), Methyl formate (MF), Methyl propionate (MP), three or more organic solvents selected from each other are used in a proportion of the same wt%, the lithium The salt is 0.8 to 2M (molarity) is used, and the non-lithium salt is a hybrid capacitor in which 0.1 to 0.5M (molarity) is used.
KR1020180156257A 2018-12-06 2018-12-06 Hybrid capacitor KR102125965B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180156257A KR102125965B1 (en) 2018-12-06 2018-12-06 Hybrid capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180156257A KR102125965B1 (en) 2018-12-06 2018-12-06 Hybrid capacitor

Publications (2)

Publication Number Publication Date
KR20200069097A KR20200069097A (en) 2020-06-16
KR102125965B1 true KR102125965B1 (en) 2020-06-23

Family

ID=71138224

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180156257A KR102125965B1 (en) 2018-12-06 2018-12-06 Hybrid capacitor

Country Status (1)

Country Link
KR (1) KR102125965B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101760671B1 (en) * 2016-02-26 2017-07-24 재단법인 한국탄소융합기술원 Hybrid capacitor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101036378B1 (en) 2003-10-10 2011-05-23 히다치 훈마츠 야킨 가부시키가이샤 Electrode for electric double layer capacitor, method for producing same, electric double layer capacitor, and conductive adhesive
JP2012256582A (en) * 2011-02-18 2012-12-27 Sumitomo Electric Ind Ltd Manufacturing method of electrode for electrochemical element
EP2973631A2 (en) * 2013-03-15 2016-01-20 Esionic Corp. Methods of enhancing electrochemical double layer capacitor (edlc) performance and edlc devices formed therefrom
KR20170125229A (en) * 2016-05-04 2017-11-14 삼화콘덴서공업주식회사 Energy storage capacitor with composite electrode structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101760671B1 (en) * 2016-02-26 2017-07-24 재단법인 한국탄소융합기술원 Hybrid capacitor

Also Published As

Publication number Publication date
KR20200069097A (en) 2020-06-16

Similar Documents

Publication Publication Date Title
Plitz et al. The design of alternative nonaqueous high power chemistries
KR101735202B1 (en) Cathod active material slurry comprising rubber based binder and cathode electrode produced by the same
CN101162791B (en) Battery
KR101822695B1 (en) Electrode having dual layer structure, method for preparing thereof and lithium secondary battery comprising the same
KR102284480B1 (en) Organic/inorganic composite electrolyte, electrode-electrolyte assembly and lithium secondary battery containing the same, and manufacturing method of the electrode-electrolyte assembly
KR20190008100A (en) Additive for nonaqueous electrolyte, nonaqueous electrolyte for lithium secondary battery comprising the same, and lithium secondary battery
EP2238643B1 (en) Pouch-type lithium secondary battery
EP3474351B1 (en) Anode comprising electrode protective layer and lithium secondary battery employing same
KR101789408B1 (en) Lithium ion secondary battery
EP3444871B1 (en) Negative electrode for lithium-metal secondary battery and lithium metal secondary battery including the same
KR20140001114A (en) Non-aqueous electrolyte secondary battery and its manufacturing method
KR20200092202A (en) Lithium secondary battery
KR102207527B1 (en) Anode comprising electrode protective layer and lithium secondary battery comprising the same
KR20160047310A (en) Lithium secondary battery
KR102014579B1 (en) Negative electrode active material for lithium secondary battery, method of preparing the same, and lithium secondary battery comprising the same
EP3098822B1 (en) Energy storage device
KR20160133242A (en) Electrode having dual layer structure, method for preparing thereof and lithium secondary battery comprising the same
KR101394743B1 (en) Lithium-ion capacitor and manufacturing method of therof
KR102125965B1 (en) Hybrid capacitor
KR102233337B1 (en) Secondary battery
KR20190063931A (en) Non-aqueous electrolyte for secondary battery and secondary battery comprising the same
KR101579940B1 (en) Manufacturing method of lithium secondary battery and lithium secondary battery formed therefrom
KR102303569B1 (en) Positive electrode for rechargeable lithium battery and rechargeable lithium battery including the same
KR102021895B1 (en) Three-Electrode Coin Cell with Low Overpotential
CN110476291B (en) Nonaqueous electrolyte secondary battery and method for manufacturing same

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant