KR102121746B1 - Microorganism for producing poly-3-hydroxybutyrate, method for producing the same, and method for producing poly-3-hydroxybutyrate using the same - Google Patents
Microorganism for producing poly-3-hydroxybutyrate, method for producing the same, and method for producing poly-3-hydroxybutyrate using the same Download PDFInfo
- Publication number
- KR102121746B1 KR102121746B1 KR1020190029431A KR20190029431A KR102121746B1 KR 102121746 B1 KR102121746 B1 KR 102121746B1 KR 1020190029431 A KR1020190029431 A KR 1020190029431A KR 20190029431 A KR20190029431 A KR 20190029431A KR 102121746 B1 KR102121746 B1 KR 102121746B1
- Authority
- KR
- South Korea
- Prior art keywords
- gene
- microorganism
- phb
- producing
- threonine
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0006—Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1025—Acyltransferases (2.3)
- C12N9/1029—Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/12—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
- C12N9/1205—Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/88—Lyases (4.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/62—Carboxylic acid esters
- C12P7/625—Polyesters of hydroxy carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y101/00—Oxidoreductases acting on the CH-OH group of donors (1.1)
- C12Y101/01—Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
- C12Y101/01003—Homoserine dehydrogenase (1.1.1.3)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y101/00—Oxidoreductases acting on the CH-OH group of donors (1.1)
- C12Y101/01—Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
- C12Y101/01036—Acetoacetyl-CoA reductase (1.1.1.36)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y203/00—Acyltransferases (2.3)
- C12Y203/01—Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y203/00—Acyltransferases (2.3)
- C12Y203/01—Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
- C12Y203/01016—Acetyl-CoA C-acyltransferase (2.3.1.16)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y207/00—Transferases transferring phosphorus-containing groups (2.7)
- C12Y207/01—Phosphotransferases with an alcohol group as acceptor (2.7.1)
- C12Y207/01039—Homoserine kinase (2.7.1.39)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y402/00—Carbon-oxygen lyases (4.2)
- C12Y402/03—Carbon-oxygen lyases (4.2) acting on phosphates (4.2.3)
- C12Y402/03001—Threonine synthase (4.2.3.1)
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
본 발명은 폴리하이드록시부티레이트(poly-3-hydroxybutyrate; PHB) 생산용 미생물, 이의 제조 방법 및 이를 이용한 폴리하이드록시부티레이트 생산 방법에 관한 것으로서, 더욱 상세하게는 트레오닌(threonine) 합성 유전자 및 폴리하이드록시알카노에이트(Poly hydroxyalkanoate; 이하 PHA) 합성 유전자를 이용한 재조합 대장균에 의한 고농도의 PHB 생산 방법에 관한 것이다.The present invention relates to a microorganism for producing polyhydroxybutyrate (poly-3-hydroxybutyrate; PHB), a method for manufacturing the same, and a method for producing polyhydroxybutyrate using the same, more specifically, a threonine synthetic gene and polyhydroxy The present invention relates to a method for producing high concentration of PHB by recombinant E. coli using a polyhydroxyalkanoate (PHA) synthetic gene.
석유화학 기반의 플라스틱은 현대사회에서 인류의 삶의 질을 향상시키는 중요한 필수품으로써 강도, 내구성, 가공성, 경제성 등 우수한 특성을 가지고 있고 거의 모든 산업에서 활용되고 있다. 그러나 이러한 우수한 특성에도 불구하고 환경에서 난분해성 플라스틱의 축적은 세계적인 문제가 되었다.Petrochemical-based plastics are important necessities to improve the quality of life of mankind in modern society, and have excellent properties such as strength, durability, processability, and economic efficiency, and are used in almost all industries. However, despite these excellent properties, the accumulation of non-degradable plastics in the environment has become a global problem.
플라스틱 폐기물 처리에 있어서 해결 방안으로는 소각, 재활용 및 생물학적 분해가 있으나 이러한 방법들은 대부분 잠재적인 문제를 야기할 수 있다. 이러한 석유화학 유래 플라스틱을 대체하기 위하여 생분해성이 높은 바이오플라스틱의 연구가 진행되어 왔으며, 이는 전분, 셀룰로오스, 젖산(Lactic acid), 글리콜산(Glycolic acid)을 중합한 플라스틱, 미생물에 의해 합성되는 폴리하이드록시알카노에이트(Poly hydroxy alkanoate; 이하 PHA)를 대상으로 하고 있다.Solutions for plastic waste disposal include incineration, recycling and biodegradation, but most of these methods can cause potential problems. In order to replace such petrochemical-derived plastics, research on bioplastics with high biodegradability has been conducted, which is a polymer synthesized by starch, cellulose, lactic acid, and glycolic acid, and polysynthesized by microorganisms. It targets hydroxy alkanoate (hereinafter referred to as PHA).
이들 중 PHA는 100% 생분해성 고분자로서 다양한 미생물에 의해 합성되고, 이는 합성플라스틱과 유사한 물성을 가지고 있으며, 호기적 조건에서 물과 이산화탄소로 완전히 분해되기 때문에 플라스틱의 대체재로 각광받고 있다.Among them, PHA is a 100% biodegradable polymer, which is synthesized by various microorganisms, which has properties similar to synthetic plastics, and because it is completely decomposed into water and carbon dioxide under aerobic conditions, it is spotlighted as a substitute for plastics.
폴리하이드록시부티레이트(poly-3-hydroxybutyrate; 이하 PHB)는 최초로 발견된 PHA이며 가장 광범위하게 연구되고 있는 바이오 플라스틱이다. PHB는 다양한 미생물에 의해 탄소원 및 에너지원으로 축적되는 세포 저장물질이며, 3-하이드록시에시드(3HB)로 구성된 폴리에스테르의 일종이다.Polyhydroxybutyrate (PHB) is the first PHA found and the most widely studied bioplastic. PHB is a cell storage material that is accumulated as a carbon source and energy source by various microorganisms, and is a type of polyester composed of 3-hydroxy acid (3HB).
PHB는 기존의 석유화학 플라스틱을 대체할 생분해성 플라스틱으로 각광받고 있지만 높은 생산 단가 때문에 상용화가 제한되고 있고, 기존의 석유화학 플라스틱에 비해 경제성이 떨어지는 편이다. 이러한 PHB의 생산단가를 낮추기 위해서 많은 연구가 진행되어 왔지만 아직까지 상업화는 힘든 실정이다.PHB is in the spotlight as a biodegradable plastic to replace the existing petrochemical plastics, but its commercialization is limited due to its high production cost, and its economy is less than that of conventional petrochemical plastics. Many studies have been conducted to lower the production cost of PHB, but commercialization is still difficult.
이에 본 발명자들은 대장균 유래 트레오닌(threonine) 합성 유전자 thrABC와 폴리하이드록시알카노에이트(Poly hydroxyalkanoate; 이하 PHA) 합성 유전자를 대장균에 도입하여 높은 농도의 폴리하이드록시부티레이트(poly-3-hydroxybutyrate; 이하 PHB)를 생산하는 것을 확인하였다.Accordingly, the present inventors introduced the thrABine- derived threonine synthetic gene thrABC and the polyhydroxyalkanoate (PHA) synthetic gene into E. coli, and have high concentrations of polyhydroxybutyrate (PHB). ).
이에, 본 발명의 목적은 트레오닌 합성 유전자 및 PHA 합성 유전자를 도입하여 형질전환된 PHB 생산용 미생물을 제공하는 것이다.Accordingly, an object of the present invention is to provide a microorganism for producing PHB transformed by introducing a threonine synthetic gene and a PHA synthetic gene.
본 발명의 다른 목적은 트레오닌 합성 유전자 및 PHA 합성 유전자를 도입하여 미생물을 형질전환하는 재조합 미생물 제조 단계를 포함하는 PHB 생산용 미생물 제조 방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing a microorganism for producing PHB comprising a recombinant microorganism producing step of transforming a microorganism by introducing a threonine synthetic gene and a PHA synthetic gene.
본 발명의 또 다른 목적은 다음 단계를 포함하는 PHB 생산 방법을 제공하는 것이다:Another object of the present invention is to provide a PHB production method comprising the following steps:
트레오닌 합성 유전자 및 PHA 합성 유전자를 도입하여 미생물을 형질전환하는 재조합 미생물 제조 단계; 및Recombinant microorganism production step of transforming microorganisms by introducing threonine synthesis gene and PHA synthesis gene; And
상기 재조합 미생물을 배양하는 배양 단계.Culture step of culturing the recombinant microorganism.
본 발명의 또 다른 목적은 트레오닌 합성 유전자 및 PHA 합성 유전자를 도입하여 형질전환된 재조합 미생물의 PHB 생산 용도에 관한 것이다.Another object of the present invention relates to the use of PHB production of recombinant microorganisms transformed by introducing threonine synthesis gene and PHA synthesis gene.
본 발명은 폴리하이드록시부티레이트(poly-3-hydroxybutyrate; PHB) 생산용 미생물, 이의 제조 방법 및 이를 이용한 폴리하이드록시부티레이트 생산 방법에 관한 것으로, 본 발명에 따른 재조합 미생물은 고농도의 PHB를 생산할 수 있다. The present invention relates to a microorganism for producing polyhydroxybutyrate (poly-3-hydroxybutyrate; PHB), a method for manufacturing the same, and a method for producing polyhydroxybutyrate using the same, and the recombinant microorganism according to the present invention can produce high concentration of PHB .
본 발명자들은 트레오닌(threonine) 합성 유전자 및 폴리하이드록시알카노에이트(Poly hydroxyalkanoate; 이하 PHA) 합성 유전자를 이용한 재조합 대장균을 제조함으로써, 상기 재조합 대장균으로부터 고농도의 PHB가 생산됨을 확인하였다.The present inventors confirmed that a high concentration of PHB was produced from the recombinant E. coli by preparing recombinant E. coli using the threonine synthetic gene and the polyhydroxyalkanoate (hereinafter referred to as PHA) synthetic gene.
이하 본 발명을 더욱 자세히 설명하고자 한다.Hereinafter, the present invention will be described in more detail.
본 발명의 일 양태는 트레오닌 합성 유전자 및 PHA 합성 유전자를 도입하여 형질전환된 PHB 생산용 미생물이다.One aspect of the present invention is a microorganism for producing PHB transformed by introducing a threonine synthesis gene and a PHA synthesis gene.
본 명세서상의 용어 "트레오닌 합성 유전자"는 트레오닌을 합성하는 데 있어서 하나 내지 수 개의 유전자로 구성되고 동일한 조절작용을 받아 동시에 발현하는 유전학적 조절단위를 의미한다.The term "threonine synthetic gene" in the present specification means a genetic regulatory unit composed of one to several genes in synthesizing threonine and simultaneously expressing the same regulatory action.
본 명세서상의 용어 "PHA 합성 유전자"는 PHA를 합성하는 데 있어서 하나 내지 수 개의 유전자로 구성되고 동일한 조절작용을 받아 동시에 발현하는 유전학적 조절단위를 의미한다.The term "PHA synthetic gene" in the present specification means a genetic regulatory unit composed of one to several genes in synthesizing PHA and simultaneously expressing the same regulatory action.
상기 트레오닌 합성 유전자는 호모세린 탈수소효소(homoserine dehydrogenase; 이하 thrA)를 코딩하는 유전자, 호모세린 키나아제(homoserine kinase; 이하 thrB)를 코딩하는 유전자 및 트레오닌 합성효소(threonine synthase; 이하 thrC)를 코딩하는 유전자를 포함하는 것일 수 있으나, 이에 한정되는 것은 아니다.The threonine synthesis gene is a gene encoding a homoserine dehydrogenase (hereinafter referred to as thrA), a gene encoding a homoserine kinase (hereinafter referred to as thrB), and a gene encoding a threonine synthase (hereinafter referred to as thrC). It may be to include, but is not limited to this.
상기 트레오닌 합성 유전자는 대장균(Escherichia coli)에서 유래한 것일 수 있고, 서열번호 3으로 표시되는 염기서열로 이루어진 것일 수 있으나, 이에 한정되는 것은 아니다.The threonine synthesis gene may be derived from Escherichia coli , and may be composed of a nucleotide sequence represented by SEQ ID NO: 3, but is not limited thereto.
상기 PHA 합성 유전자는 베타-케토티올레이즈(beta-ketothiolase; 이하 phaA)를 코딩하는 유전자, 아세토아세틸-CoA 환원효소(acetoacetyl-CoA reductase; 이하 phaB)를 코딩하는 유전자 및 PHB-합성효소(PHB-synthase; 이하 phaC)를 코딩하는 유전자를 포함하는 것일 수 있으나, 이에 한정되는 것은 아니다.The PHA synthetic gene is a gene encoding beta-ketothiolase (hereinafter referred to as phaA), a gene encoding acetoacetyl-CoA reductase (hereinafter referred to as phaB), and a PHB-synthetase (PHB) -synthase; phaC) may include a gene encoding, but is not limited thereto.
상기 PHA 합성 유전자는 랄스토니아 유트로파(Ralstonia eutropha)에서 유래한 것일 수 있으나, 이에 한정되는 것은 아니다.The PHA synthetic gene may be derived from Ralstonia eutropha , but is not limited thereto.
상기 형질전환은 미생물에 트레오닌 합성 유전자 및 PHA 합성 유전자를 함께 포함하는 벡터를 도입하여 수행되는 것일 수 있고, 또는 트레오닌 합성 유전자를 포함하는 벡터 및 PHA 합성 유전자를 포함하는 벡터를 각각 도입하여 수행되는 것일 수 있다.The transformation may be performed by introducing a vector containing a threonine synthetic gene and a PHA synthetic gene into a microorganism, or a vector comprising a threonine synthetic gene and a vector containing the PHA synthetic gene, respectively. Can be.
상기 용어 "벡터(vector)"는 숙주 세포에서 목적 유전자를 발현시키기 위한 수단을 의미한다. 예를 들어, 플라스미드 벡터, 코즈미드 벡터 및 박테리오파아지 벡터, 아데노바이러스 벡터, 레트로바이러스 벡터 및 아데노연관 바이러스 벡터와 같은 바이러스 벡터를 포함한다. 재조합 벡터로 사용될 수 있는 벡터는 당업계에서 종종 사용되는 플라스미드 (예를 들면, pSC101, pGV1106, pACYC177, ColE1, pKT230, pME290, pBR322, pUC8/9, pUC6, pBD9, pHC79, pIJ61, pLAFR1, pHV14, pGEX 시리즈, pET 시리즈 및 pUC19 등), 파지 (예를 들면, λgt4λB, λ-Charon, λ△z1 및 M13 등) 또는 바이러스 (예를 들면, SV40 등)를 조작하여 제작될 수 있으나 이에 제한되지 않는다.The term "vector" means a means for expressing a gene of interest in a host cell. For example, viral vectors such as plasmid vectors, cosmid vectors and bacteriophage vectors, adenovirus vectors, retroviral vectors and adeno-associated virus vectors. Vectors that can be used as recombinant vectors are plasmids often used in the art (e.g., pSC101, pGV1106, pACYC177, ColE1, pKT230, pME290, pBR322, pUC8/9, pUC6, pBD9, pHC79, pIJ61, pLAFR1, pHV14, pGEX series, pET series and pUC19, etc.), phages (e.g., λgt4λB, λ-Charon, λΔz1 and M13, etc.) or viruses (e.g., SV40, etc.) can be engineered, but not limited to. .
상기 재조합 벡터는, 전형적으로 클로닝을 위한 벡터 또는 발현을 위한 벡터로서 구축될 수 있다. 상기 발현용 벡터는 당업계에서 식물, 동물 또는 미생물에서 외래의 단백질을 발현하는 데 사용되는 통상의 것을 사용할 수 있다. 상기 재조합 벡터는 당업계에 공지된 다양한 방법을 통해 구축될 수 있다.The recombinant vector can typically be constructed as a vector for cloning or for expression. The expression vector can be used in the art, conventional ones used to express foreign proteins in plants, animals or microorganisms. The recombinant vector can be constructed through various methods known in the art.
상기 재조합 벡터는 원핵 세포 또는 진핵 세포를 숙주로 하여 구축될 수 있다. 예를 들어, 사용되는 벡터가 발현 벡터이고, 원핵 세포를 숙주로 하는 경우에는, 전사를 진행시킬 수 있는 강력한 프로모터 (예를 들어, pLλ 프로모터, CMV 프로모터, trp 프로모터, lac 프로모터, tac 프로모터, T7 프로모터 등), 해독의 개시를 위한 라이보좀 결합 자리 및 전사/해독 종결 서열을 포함하는 것이 일반적이다. 진핵 세포를 숙주로 하는 경우에는, 벡터에 포함되는 진핵 세포에서 작동하는 복제원점은 f1 복제원점, SV40 복제원점, pMB1 복제원점, 아데노 복제원점, AAV 복제원점 및 BBV 복제원점 등을 포함하나, 이에 한정되는 것은 아니다. 또한, 포유동물 세포의 게놈으로부터 유래된 프로모터 (예를 들어, 메탈로티오닌 프로모터) 또는 포유동물 바이러스로부터 유래된 프로모터 (예를 들어, 아데노바이러스 후기 프로모터, 백시니아 바이러스 7.5K 프로모터, SV40 프로모터, 사이토메갈로바이러스 프로모터 및 HSV의 tk 프로모터)가 이용될 수 있으며, 전사 종결 서열로서 폴리아데닐화 서열을 일반적으로 갖는다.The recombinant vector can be constructed using prokaryotic or eukaryotic cells as hosts. For example, when the vector to be used is an expression vector, and a prokaryotic cell is a host, a strong promoter (eg, pL λ promoter, CMV promoter, trp promoter, lac promoter, tac promoter) capable of progressing transcription, T7 promoter, etc.), a ribosome binding site for initiation of translation and a transcription/detox termination sequence. When eukaryotic cells are used as hosts, replication origins that operate in eukaryotic cells included in vectors include f1 replication origin, SV40 replication origin, pMB1 replication origin, adeno replication origin, AAV replication origin, and BBV replication origin, etc. It is not limited. In addition, a promoter derived from the genome of a mammalian cell (eg, a metallothionine promoter) or a promoter derived from a mammalian virus (eg, adenovirus late promoter, vaccinia virus 7.5K promoter, SV40 promoter, Cytomegalovirus promoter and HSV's tk promoter) can be used and generally have a polyadenylation sequence as the transcription termination sequence.
본 발명의 일 예에서, 재조합 벡터를 숙주세포에 삽입함으로써 형질전환체를 만들 수 있으며, 상기 형질전환체는 상기 재조합 벡터를 적절한 숙주 세포에 도입시킴으로써 얻어진 것일 수 있다. 재조합 벡터를 숙주세포에 도입하는 방법으로는 전기천공법을 이용할 수 있으나 이에 한정되는 것은 아니다.In one example of the present invention, a transformant can be made by inserting a recombinant vector into a host cell, and the transformant may be obtained by introducing the recombinant vector into an appropriate host cell. Electroporation may be used as a method for introducing the recombinant vector into the host cell, but is not limited thereto.
상기 숙주세포는 상기 발현벡터를 안정되면서 연속적으로 클로닝 또는 발현시킬 수 있는 세포로서 당업계에 공지된 어떠한 숙주 세포도 이용할 수 있다.The host cell is a cell capable of continuously cloning or expressing the expression vector while being stable, and any host cell known in the art can be used.
본 발명에서 사용된 숙주세포로는 대장균, 효모, 동물세포, 식물세포, 또는 곤충세포 등을 포함할 수 있으며, 원핵세포로는, 예를 들어, E. coli JM109, E. coli BL21, E. coli RR1, E. coli LE392, E. coli B, E. coli X 1776, E. coli W3110, 바실러스 서브틸리스, 바실러스 츄린겐시스와 같은 바실러스 속 균주, 그리고 살모넬라 티피무리움, 세라티아 마르세슨스 및 다양한 슈도모나스 종과 같은 장내균과 균주 등이 있으며, 진핵 세포에 형질 전환시키는 경우에는 숙주 세포로서, 효모(Saccharomyce cerevisiae), 곤충 세포, 식물 세포 및 동물 세포, 예를 들어, Sp2/0, CHO(Chinese hamster ovary) K1, CHO DG44, PER.C6, W138, BHK, COS7, 293, HepG2, Huh7, 3T3, RIN, MDCK 세포주 등이 이용될 수 있으나, 이에 제한되는 것은 아니다. Host cells used in the present invention may include E. coli, yeast, animal cells, plant cells, or insect cells, and prokaryotic cells include, for example, E. coli JM109, E. coli BL21, E. Bacillus strains such as coli RR1, E. coli LE392, E. coli B, E. coli X 1776, E. coli W3110, Bacillus subtilis, Bacillus thuringiensis, and Salmonella typhimurium, Serratia marcesons and Intestinal bacteria and strains such as various Pseudomonas species, and when transformed into eukaryotic cells, as host cells, yeast (Saccharomyce cerevisiae), insect cells, plant cells and animal cells, such as Sp2/0, CHO (Chinese hamster ovary) K1, CHO DG44, PER.C6, W138, BHK, COS7, 293, HepG2, Huh7, 3T3, RIN, MDCK cell line, etc. may be used, but are not limited thereto.
상기 폴리뉴클레오타이드 또는 이를 포함하는 재조합 벡터의 숙주 세포 내로의 운반(도입)은, 당업계에 널리 알려진 운반 방법을 사용할 수 있다. 상기 운반 방법은 예를 들어, 숙주 세포가 원핵 세포인 경우, CaCl2 방법 또는 전기 천공 방법 등을 사용할 수 있고, 숙주 세포가 진핵 세포인 경우에는, 미세 주입법, 칼슘 포스페이트 침전법, 전기 천공법, 리포좀매개 형질감염법 및 유전자 밤바드먼트 등을 사용할 수 있으나, 이에 한정하지는 않는다.The transport (introduction) of the polynucleotide or a recombinant vector containing the same into the host cell may use a transport method well known in the art. For the transport method, for example, when the host cell is a prokaryotic cell, a CaCl 2 method or an electroporation method can be used. When the host cell is a eukaryotic cell, a micro-injection method, a calcium phosphate precipitation method, an electroporation method, Liposomal mediated transfection and gene bombardment may be used, but are not limited thereto.
상기 형질 전환된 숙주 세포를 선별하는 방법은 선택 표지에 의해 발현되는 표현형을 이용하여, 당업계에 널리 알려진 방법에 따라 용이하게 실시할 수 있다. 예를 들어, 상기 선택 표지가 특정 항생제 내성 유전자인 경우에는, 상기 항생제가 함유된 배지에서 형질전환체를 배양함으로써 형질전환체를 용이하게 선별할 수 있다.The method for selecting the transformed host cell can be easily performed according to a method well known in the art using a phenotype expressed by a selection label. For example, when the selection marker is a specific antibiotic resistance gene, the transformant can be easily selected by culturing the transformant in a medium containing the antibiotic.
상기 미생물은 대장균(Escherichia coli; 이하 E. coli), 슈도모나스 속(Pseudomonas), 랄스토니아 속(Ralstonia) 또는 알칼리제네스 속(Alcaligenes)인 것일 수 있고, 예를 들어, E. coli XL1-Blue인 것이 바람직하나, 이에 한정되는 것은 아니다.Wherein the microorganism is Escherichia coli; can be a (Escherichia coli hereinafter E. coli), Pseudomonas species (Pseudomonas), LAL Stony O in (Ralstonia) or alkali in jeneseu (Alcaligenes), for example, the E. coli XL1-Blue It is preferred, but is not limited thereto.
본 발명의 다른 양태는 트레오닌 합성 유전자 및 PHA 합성 유전자를 도입하여 미생물을 형질전환하는 재조합 미생물 제조 단계를 포함하는 PHB 생산용 미생물 제조 방법이다.Another aspect of the present invention is a method for producing a microorganism for PHB production comprising a step of producing a recombinant microorganism transforming a microorganism by introducing a threonine synthetic gene and a PHA synthetic gene.
상기 트레오닌 합성 유전자는 thrA를 코딩하는 유전자, thrB를 코딩하는 유전자 및 thrC를 코딩하는 유전자를 포함하는 것일 수 있으나, 이에 한정되는 것은 아니다.The threonine synthetic gene may include a gene encoding thrA, a gene encoding thrB, and a gene encoding thrC, but is not limited thereto.
상기 트레오닌 합성 유전자는 대장균에서 유래한 것일 수 있고, 서열번호 3으로 표시되는 염기서열로 이루어진 것일 수 있으나, 이에 한정되는 것은 아니다.The threonine synthesis gene may be derived from E. coli, and may be composed of a nucleotide sequence represented by SEQ ID NO: 3, but is not limited thereto.
상기 PHA 합성 유전자는 phaA를 코딩하는 유전자, phaB를 코딩하는 유전자 및 phaC를 코딩하는 유전자를 포함하는 것일 수 있으나, 이에 한정되는 것은 아니다.The PHA synthetic gene may include a gene encoding phaA, a gene encoding phaB, and a gene encoding phaC, but is not limited thereto.
상기 PHA 합성 유전자는 랄스토니아 유트로파에서 유래한 것일 수 있으나, 이에 한정되는 것은 아니다.The PHA synthetic gene may be derived from Ralstonia eutropha, but is not limited thereto.
상기 형질전환은 미생물에 트레오닌 합성 유전자 및 PHA 합성 유전자를 함께 포함하는 벡터를 도입하여 수행되는 것일 수 있고, 또는 트레오닌 합성 유전자를 포함하는 벡터 및 PHA 합성 유전자를 포함하는 벡터를 각각 도입하여 수행되는 것일 수 있다.The transformation may be performed by introducing a vector containing a threonine synthetic gene and a PHA synthetic gene into a microorganism, or a vector comprising a threonine synthetic gene and a vector containing the PHA synthetic gene, respectively. Can be.
상기 미생물은 대장균인 것일 수 있고, 예를 들어, E. coli XL1-Blue인 것이 바람직하나, 이에 한정되는 것은 아니다.The microorganism may be E. coli , for example, E. coli XL1-Blue is preferred, but is not limited thereto.
본 발명의 또 다른 양태는 다음 단계를 포함하는 PHB 생산 방법이다:Another aspect of the invention is a method for producing PHB comprising the following steps:
트레오닌 합성 유전자 및 PHA 합성 유전자를 도입하여 미생물을 형질전환하는 재조합 미생물 제조 단계; 및Recombinant microorganism production step of transforming microorganisms by introducing threonine synthesis gene and PHA synthesis gene; And
상기 재조합 미생물을 배양하는 배양 단계.Culture step of culturing the recombinant microorganism.
상기 트레오닌 합성 유전자는 thrA를 코딩하는 유전자, thrB를 코딩하는 유전자 및 thrC를 코딩하는 유전자를 포함하는 것일 수 있으나, 이에 한정되는 것은 아니다.The threonine synthetic gene may include a gene encoding thrA, a gene encoding thrB, and a gene encoding thrC, but is not limited thereto.
상기 트레오닌 합성 유전자는 대장균에서 유래한 것일 수 있고, 서열번호 3으로 표시되는 염기서열로 이루어진 것일 수 있으나, 이에 한정되는 것은 아니다.The threonine synthesis gene may be derived from E. coli, and may be composed of a nucleotide sequence represented by SEQ ID NO: 3, but is not limited thereto.
상기 PHA 합성 유전자는 phaA를 코딩하는 유전자, phaB를 코딩하는 유전자 및 phaC를 코딩하는 유전자를 포함하는 것일 수 있으나, 이에 한정되는 것은 아니다.The PHA synthetic gene may include a gene encoding phaA, a gene encoding phaB, and a gene encoding phaC, but is not limited thereto.
상기 PHA 합성 유전자는 랄스토니아 유트로파에서 유래한 것일 수 있으나, 이에 한정되는 것은 아니다.The PHA synthetic gene may be derived from Ralstonia eutropha, but is not limited thereto.
상기 형질전환은 미생물에 트레오닌 합성 유전자 및 PHA 합성 유전자를 함께 포함하는 벡터를 도입하여 수행되는 것일 수 있고, 또한 트레오닌 합성 유전자를 포함하는 벡터 및 PHA 합성 유전자를 포함하는 벡터를 각각 도입하여 수행되는 것일 수 있다.The transformation may be performed by introducing a vector containing a threonine synthesis gene and a PHA synthesis gene into a microorganism, and also a vector comprising a threonine synthesis gene and a vector containing a PHA synthesis gene, respectively. Can be.
상기 미생물은 대장균인 것일 수 있고, 예를 들어, E. coli XL1-Blue인 것이 바람직하나, 이에 한정되는 것은 아니다.The microorganism may be E. coli , for example, E. coli XL1-Blue is preferred, but is not limited thereto.
상기 배양 단계는 탄소원을 포함하는 배지에서 수행되는 것일 수 있고, 상기 탄소원은 글루코스(glucose), 프럭토스(fructose) 또는 수크로스(sucrose)인 것일 수 있고, 예를 들어, 글루코스인 것일 수 있으나, 이에 한정되는 것은 아니다. 상기 배지는 글루코스를 15 내지 25 g/L 포함하는 LB(Luria Bertani) 배지에서 수행되는 것일 수 있으나, 이에 한정되는 것은 아니다.The culturing step may be performed in a medium containing a carbon source, and the carbon source may be glucose, fructose or sucrose, for example, glucose, It is not limited to this. The medium may be performed in LB (Luria Bertani) medium containing 15 to 25 g/L of glucose, but is not limited thereto.
상기 배양 단계는 호기성 조건에서 수행되는 것일 수 있으나, 이에 한정되는 것은 아니다.The culturing step may be performed under aerobic conditions, but is not limited thereto.
상기 배양 단계는 20 내지 35℃, 20 내지 32℃, 24 내지 35℃, 24 내지 32℃ 또는 26 내지 35℃에서 수행되는 것일 수 있고, 예를 들어, 26 내지 32℃에서 수행되는 것일 수 있으나, 이에 한정되는 것은 아니다.The culture step may be performed at 20 to 35°C, 20 to 32°C, 24 to 35°C, 24 to 32°C, or 26 to 35°C, for example, may be performed at 26 to 32°C, It is not limited to this.
상기 방법은 재조합 미생물을 배양한 배양액으로부터 PHB를 회수하는 회수 단계를 추가적으로 포함하는 것일 수 있다.The method may further include a recovery step of recovering PHB from a culture medium in which recombinant microorganisms have been cultured.
본 발명은 폴리하이드록시부티레이트(poly-3-hydroxybutyrate; PHB) 생산용 미생물, 이의 제조 방법 및 이를 이용한 폴리하이드록시부티레이트 생산 방법에 관한 것으로서, 상기 방법에 따르면 높은 농도의 폴리하이드록시부티레이트(poly-3-hydroxybutyrate; 이하 PHB)를 생산할 수 있으므로, 이를 효과적으로 플라스틱 대체제로서의 바이오플라스틱 생산에 이용할 수 있다.The present invention relates to a microorganism for producing polyhydroxybutyrate (poly-3-hydroxybutyrate; PHB), a method for manufacturing the same, and a method for producing polyhydroxybutyrate using the same, according to the above method, a high concentration of polyhydroxybutyrate (poly- Since 3-hydroxybutyrate (PHB) can be produced, it can be effectively used for bioplastic production as a plastic substitute.
또한 본 발명에 따르면 바이오플라스틱의 상업화에 있어 생산 단가를 낮출 수 있다.In addition, according to the present invention, the production cost can be lowered in the commercialization of bioplastics.
도 1은 대장균 유래의 트레오닌 합성 유전자를 포함하는 pRadgro 벡터 맵(vector map)을 나타내는 모식도이다.
도 2는 랄스토니아 유트로파(Ralstonia eutropha) 유래의 폴리하이드록시 알카노에이트(Poly hydroxy alkanoate; 이하 PHA) 합성 유전자를 포함하는 pKM212-MCS 벡터 맵을 나타내는 모식도이다.
도 3a는 트레오닌 합성 유전자와 PHA 합성 유전자로 형질전환한 재조합 대장균 및 PHA 합성 유전자만으로 형질전환한 재조합 대장균의 건조 균체의 농도를 비교한 그래프이다.
도 3b는 트레오닌 합성 유전자와 PHA 합성 유전자로 형질전환한 재조합 대장균 및 PHA 합성 유전자만으로 형질전환한 재조합 대장균의 글루코스 소모량을 비교한 그래프이다.
도 3c는 트레오닌 합성 유전자와 PHA 합성 유전자로 형질전환한 재조합 대장균 및 PHA 합성 유전자만으로 형질전환한 재조합 대장균의 PHB 농도를 비교한 그래프이다.
도 3d는 트레오닌 합성 유전자와 PHA 합성 유전자로 형질전환한 재조합 대장균 및 PHA 합성 유전자만으로 형질전환한 재조합 대장균의 세포 내 PHB 함량을 비교한 그래프이다.1 is a schematic diagram showing a pRadgro vector map including a threonine synthetic gene derived from E. coli.
Figure 2 is a schematic diagram showing a pKM212-MCS vector map containing polyhydroxy alkanoate (hereinafter referred to as PHA) synthetic gene derived from Ralstonia eutropha .
Figure 3a is a graph comparing the concentration of dry cells of recombinant E. coli transformed with threonine synthetic gene and PHA synthetic gene and recombinant E. coli transformed with PHA synthetic gene only.
3B is a graph comparing glucose consumption of recombinant E. coli transformed with threonine synthetic gene and PHA synthetic gene and recombinant E. coli transformed with PHA synthetic gene only.
3C is a graph comparing PHB concentrations of recombinant E. coli transformed with threonine synthetic gene and PHA synthetic gene and recombinant E. coli transformed with PHA synthetic gene only.
3D is a graph comparing the intracellular PHB content of recombinant E. coli transformed with threonine synthetic gene and PHA synthetic gene and recombinant E. coli transformed with PHA synthetic gene only.
이하, 본 발명을 하기의 실시예에 의하여 더욱 상세히 설명한다. 그러나 이들 실시예는 본 발명을 예시하기 위한 것일 뿐이며, 본 발명의 범위가 이들 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail by the following examples. However, these examples are only for illustrating the present invention, and the scope of the present invention is not limited by these examples.
본 명세서 전체에 걸쳐, 특정 물질의 농도를 나타내기 위하여 사용되는 "%"는 별도의 언급이 없는 경우, 고체/고체는 (중량/중량)%, 고체/액체는 (중량/부피)%, 그리고 액체/액체는 (부피/부피)%이다.Throughout this specification, "%" used to indicate the concentration of a specific substance, unless otherwise specified, solids/solids (weight/weight)%, solids/liquids (weight/volume)%, and The liquid/liquid is (volume/volume)%.
실시예 1: 트레오닌(Threonine) 합성 유전자의 클로닝Example 1: Cloning of the threonine synthetic gene
트레오닌(Threonine) 합성 유전자 thrABC를 클로닝하기 위하여 서열번호 1 및 2로 표시되는 염기서열로 이루어진 프라이머(primer)를 이용하였다. 서열번호 3으로 표시되는 대장균(Escherichia coli) 유래의 트레오닌 합성 유전자를 클로닝하기 위한 프라이머의 염기서열은 하기 표 1과 같다.In order to clone the threonine (Threonine) synthetic gene thrABC , a primer consisting of nucleotide sequences represented by SEQ ID NOs: 1 and 2 was used. The base sequence of the primer for cloning the threonine synthesis gene derived from Escherichia coli represented by SEQ ID NO: 3 is shown in Table 1 below.
정방향 프라이머의 'TCT AGA'는 XbaⅠ 제한효소(NEB, Ipswitch, MA, USA)가 인식하는 절단 부위이고, 역방향 프라이머에서 'GTC GAC'는 SalⅠ 제한효소(NEB, Ipswitch, MA, USA) 가 인식하는 절단 부위이다. 준비한 프라이머 세트를 사용하여 대장균 게놈 DNA를 주형가닥으로 하고 중합효소연쇄반응(polymerase chain reaction, PCR)을 통해 유전자 증폭을 실시하였다.'TCT AGA' of the forward primer is a cleavage site recognized by Xba I restriction enzymes (NEB, Ipswitch, MA, USA), and'GTC GAC' in the reverse primer is Sal I restriction enzyme (NEB, Ipswitch, MA, USA) It is a recognized cutting site. Using the prepared primer set, E. coli genomic DNA was used as a template strand, and gene amplification was performed through polymerase chain reaction (PCR).
증폭된 유전자를 pRadgro 벡터(D. Appukuttan et al., Applied and Environmental Microbiology 82(4) (2016) 1154-1166)에 라이게이션(ligation)하기 위하여 플라스미드와 트레오닌 합성 유전자를 각각 XbaⅠ 및 SalⅠ 제한효소로 절단한 후 리가아제(ligase)를 처리하였다. 이렇게 재조합한 플라스미드를 도 1과 같이 pRadgro-thrABC라 명명하였고, 형질전환용 숙주인 대장균 XL1-Blue에 전기천공법을 이용하여 형질전환을 수행하였다. 비교 실험을 위하여 대조군으로서 pRadgro 벡터를 대장균 XL1-Blue에 형질전환하였다.Plasmid and threonine synthesis genes were restricted to Xba I and Sal I respectively to ligate the amplified gene to the pRadgro vector (D. Appukuttan et al., Applied and Environmental Microbiology 82(4) (2016) 1154-1166) After digestion with an enzyme, ligase was treated. The recombinant plasmid was named pRadgro- thrABC as shown in FIG. 1, and transformation was performed using electroporation on Escherichia coli XL1-Blue, a host for transformation. For comparison, pRadgro vector was transformed into E. coli XL1-Blue as a control.
실시예 2: 형질전환체의 제조Example 2: Preparation of transformants
도 2와 같은 랄스토니아 유트로파(Ralstonia eutropha) 유래 PHA 합성 유전자인 베타-케토티올레이즈(beta-ketothiolase; 이하 phaA)를 코딩하는 유전자, 아세토아세틸-CoA 환원효소(acetoacetyl-CoA reductase; 이하 phaB)를 코딩하는 유전자 및 PHB-합성효소(PHB-synthase; 이하 phaC)를 코딩하는 유전자를 포함하는 pKM212-MCS 벡터(S.J. Park et al. ,Metabolic Engineering 20 (2013) 20-28)를 분양받아 대장균 XL1-Blue에 전기천공법을 이용하여 형질전환하였고, 형질전환된 대장균은 50 ug/ml 카나마이신(kanamycin) 항생제가 포함된 LB(Luria Bertani, LB; BD, Franklin Lakes, NJ, New Jersey, USA) 배지 플레이트(plate)에서 선별하였다.A gene encoding beta-ketothiolase (hereinafter referred to as phaA), a PHA synthetic gene derived from Ralstonia eutropha , as shown in FIG. 2, acetoacetyl-CoA reductase; Pre-sale of pKM212-MCS vector (SJ Park et al., Metabolic Engineering 20 (2013) 20-28) containing a gene encoding phaB) and a gene encoding PHB-synthase (hereinafter phaC) E. coli XL1-Blue was transformed using electroporation, and the transformed E. coli LB (Luria Bertani, LB; BD, Franklin Lakes, NJ, New Jersey, containing 50 ug/ml kanamycin antibiotic) USA) medium plates.
다음, 선별된 재조합 대장균에 트레오닌 합성 유전자를 포함한 pRadgro 벡터를 전기천공법으로 형질전환하였고, 형질전환 여부는 50 ug/ml 카나마이신과 100 ug/ml 암피실린(ampicillin) 항생제가 포함된 LB 배지 플레이트에서 확인하였다. 비교 실험을 위하여 pRadgro 벡터를 대장균 XL1-Blue에 형질전환하였고, 형질전환 여부는 50 ug/ml 카나마이신과 100 ug/ml 암피실린 항생제가 포함된 LB 배지 플레이트에서 확인하였다.Next, the pRadgro vector containing the threonine synthesis gene was transformed into the selected recombinant E. coli by electroporation, and the transformation was confirmed on an LB medium plate containing 50 ug/ml kanamycin and 100 ug/ml ampicillin antibiotic. Did. For comparative experiments, the pRadgro vector was transformed into E. coli XL1-Blue, and the transformation was confirmed on an LB medium plate containing 50 ug/ml kanamycin and 100 ug/ml ampicillin antibiotic.
실시예 3: 폴리하이드록시부티레이트의 회수 및 분석Example 3: Recovery and analysis of polyhydroxybutyrate
상기 형질전환된 대장균을 이용하여 높은 농도의 PHB를 생산하기 위하여 50 ug/ml 카나마이신과 100 ug/ml 암피실린 항생제가 포함된 LB 배지에서 30℃ 조건으로 18시간 동안 전배양하였다. 그 후, 전배양한 재조합 대장균을 20 g/l 글루코스(glucose)와 0.8 g/L MgSO4(황산)와 50 ug/ml 카나마이신 100 ug/ml 암피실린 항생제가 포함된 30 ml LB 배지에 접종하고 호기적 조건에서 배양하였다(30℃, 250 rpm, 48 hr).In order to produce a high concentration of PHB using the transformed E. coli, 50 ug/ml kanamycin and 100 ug/ml ampicillin antibiotic were pre-incubated for 18 hours at 30°C in LB medium. Subsequently, the pre-cultured recombinant E. coli was inoculated in 30 ml LB medium containing 20 g/l glucose, 0.8 g/L MgSO 4 (sulfuric acid) and 50 ug/ml kanamycin 100 ug/ml ampicillin antibiotic. Incubated under miracle conditions (30°C, 250 rpm, 48 hr).
다음, 세포를 회수하여 건조균체 농도, 글루코스 소모량 및 PHB의 농도 및 함량을 측정하였다.Next, the cells were recovered to measure the concentration of dry cells, consumption of glucose, and concentration and content of PHB.
건조균체의 농도는 배양액 5 ml을 회수하고 원심분리하여 미리 무게를 잰 마이크로튜브에 넣고 80℃의 드라이 오븐(Dry oven)에서 24시간 동안 건조시킨 후 무게를 재어 측정하였다.The concentration of the dried cells was measured by collecting 5 ml of the culture solution, centrifuging it, putting it in a pre-weighed microtube, drying it in a dry oven at 80° C. for 24 hours, and weighing it.
글루코스의 소모량은 일정량의 배양액을 취한 후 원심분리하여 얻은 상등액을 0.22 um 여과지로 거른 후, 여과된 여과액을 고성능 액체크로마토그래피(high performance liquid chromatography; 이하 HPLC)를 이용하여 분석하였다.The consumption amount of glucose was filtered by centrifuging the supernatant obtained by centrifugation, and then the filtered filtrate was analyzed using high performance liquid chromatography (HPLC).
PHB의 농도 및 함량은 상기 건조시킨 세포 침전물을 5%(v/v) 황산과 클로로포름(Chloroform)을 이용하여 98℃ 중탕기에서 3시간 동안 반응시킴으로써 PHB를 추출한 후, 가스크로마토그래피(Gas chromatography)를 이용하여 분석하였다.The concentration and content of PHB were extracted by reacting the dried cell precipitate with 5% (v/v) sulfuric acid and chloroform in a water bath at 98°C for 3 hours, and then extracting the PHB, followed by gas chromatography. Analysis.
그 결과, 도 3a 및 3b에서 확인할 수 있듯이, 48시간 동안 배양한 후 트레오닌 합성 유전자가 포함된 벡터를 포함한 재조합 대장균에서, 글루코스 소모량은 유의한 차이가 없었으나 건조균체 농도는 약 4.31% 증가하였다.As a result, as can be seen in Figures 3a and 3b, in cultured for 48 hours, in recombinant E. coli containing a vector containing a threonine synthesis gene, glucose consumption was not significantly different, but the dry cell concentration increased by about 4.31%.
도 3c 및 3d에서 확인할 수 있듯이, PHB의 생산량은 약 12.94% 증가하는 것을 확인하였으며, 세포 내의 PHB의 함량 역시 약 8.33% 증가하는 것을 확인하였다.As can be seen in Figure 3c and 3d, it was confirmed that the production of PHB is increased by about 12.94%, and the content of PHB in the cells was also increased by about 8.33%.
<110> Industry-University Cooperation Foundation Chonnam University <120> Microorganism for producing poly-3-hydroxybutyrate, method for producing the same, and method for producing poly-3-hydroxybutyrate using the same <130> PN190043 <160> 3 <170> KoPatentIn 3.0 <210> 1 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> thrABC forward primer <400> 1 attatctaga gcatgcgagt gttgaag 27 <210> 2 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> thrABC reverse primer <400> 2 attagtcgac gataatgaat agattttact gatg 34 <210> 3 <211> 4715 <212> DNA <213> Escherichia coli <400> 3 tatctagagc atgcgagtgt tgaagttcgg cggtacatca gtggcaaatg cagaacgttt 60 tctgcgtgtt gccgatattc tggaaagcaa tgccaggcag gggcaggtgg ccaccgtcct 120 ctctgccccc gccaaaatca ccaaccacct ggtggcgatg attgaaaaaa ccattagcgg 180 ccaggatgct ttacccaata tcagcgatgc cgaacgtatt tttgccgaac ttttgacggg 240 actcgccgcc gcccagccgg ggttcccgct ggcgcaattg aaaactttcg tcgatcagga 300 atttgcccaa ataaaacatg tcctgcatgg cattagtttg ttggggcagt gcccggatag 360 catcaacgct gcgctgattt gccgtggcga gaaaatgtcg atcgccatta tggccggcgt 420 attagaagcg cgcggtcaca acgttactgt tatcgatccg gtcgaaaaac tgctggcagt 480 ggggcattac ctcgaatcta ccgtcgatat tgctgagtcc acccgccgta ttgcggcaag 540 ccgcattccg gctgatcaca tggtgctgat ggcaggtttc accgccggta atgaaaaagg 600 cgaactggtg gtgcttggac gcaacggttc cgactactct gctgcggtgc tggctgcctg 660 tttacgcgcc gattgttgcg agatttggac ggacgttgac ggggtctata cctgcgaccc 720 gcgtcaggtg cccgatgcga ggttgttgaa gtcgatgtcc taccaggaag cgatggagct 780 ttcctacttc ggcgctaaag ttcttcaccc ccgcaccatt acccccatcg cccagttcca 840 gatcccttgc ctgattaaaa ataccggaaa tcctcaagca ccaggtacgc tcattggtgc 900 cagccgtgat gaagacgaat taccggtcaa gggcatttcc aatctgaata acatggcaat 960 gttcagcgtt tctggtccgg ggatgaaagg gatggtcggc atggcggcgc gcgtctttgc 1020 agcgatgtca cgcgcccgta tttccgtggt gctgattacg caatcatctt ccgaatacag 1080 catcagtttc tgcgttccac aaagcgactg tgtgcgagct gaacgggcaa tgcaggaaga 1140 gttctacctg gaactgaaag aaggcttact ggagccgctg gcagtgacgg aacggctggc 1200 cattatctcg gtggtaggtg atggtatgcg caccttgcgt gggatctcgg cgaaattctt 1260 tgccgcactg gcccgcgcca atatcaacat tgtcgccatt gctcagggat cttctgaacg 1320 ctcaatctct gtcgtggtaa ataacgatga tgcgaccact ggcgtgcgcg ttactcatca 1380 gatgctgttc aataccgatc aggttatcga agtgtttgtg attggcgtcg gtggcgttgg 1440 cggtgcgctg ctggagcaac tgaagcgtca gcaaagctgg ctgaagaata aacatatcga 1500 cttacgtgtc tgcggtgttg ccaactcgaa ggctctgctc accaatgtac atggccttaa 1560 tctggaaaac tggcaggaag aactggcgca agccaaagag ccgtttaatc tcgggcgctt 1620 aattcgcctc gtgaaagaat atcatctgct gaacccggtc attgttgact gcacttccag 1680 ccaggcagtg gcggatcaat atgccgactt cctgcgcgaa ggtttccacg ttgtcacgcc 1740 gaacaaaaag gccaacacct cgtcgatgga ttactaccat cagttgcgtt atgcggcgga 1800 aaaatcgcgg cgtaaattcc tctatgacac caacgttggg gctggattac cggttattga 1860 gaacctgcaa aatctgctca atgcaggtga tgaattgatg aagttctccg gcattctttc 1920 tggttcgctt tcttatatct tcggcaagtt agacgaaggc atgagtttct ccgaggcgac 1980 cacgctggcg cgggaaatgg gttataccga accggacccg cgagatgatc tttctggtat 2040 ggatgtggcg cgtaaactat tgattctcgc tcgtgaaacg ggacgtgaac tggagctggc 2100 ggatattgaa attgaacctg tgctgcccgc agagtttaac gccgagggtg atgttgccgc 2160 ttttatggcg aatctgtcac aactcgacga tctctttgcc gcgcgcgtgg cgaaggcccg 2220 tgatgaagga aaagttttgc gctatgttgg caatattgat gaagatggcg tctgccgcgt 2280 gaagattgcc gaagtggatg gtaatgatcc gctgttcaaa gtgaaaaatg gcgaaaacgc 2340 cctggccttc tatagccact attatcagcc gctgccgttg gtactgcgcg gatatggtgc 2400 gggcaatgac gttacagctg ccggtgtctt tgctgatctg ctacgtaccc tctcatggaa 2460 gttaggagtc tgacatggtt aaagtttatg ccccggcttc cagtgccaat atgagcgtcg 2520 ggtttgatgt gctcggggcg gcggtgacac ctgttgatgg tgcattgctc ggagatgtag 2580 tcacggttga ggcggcagag acattcagtc tcaacaacct cggacgcttt gccgataagc 2640 tgccgtcaga accacgggaa aatatcgttt atcagtgctg ggagcgtttt tgccaggaac 2700 tgggtaagca aattccagtg gcgatgaccc tggaaaagaa tatgccgatc ggttcgggct 2760 taggctccag tgcctgttcg gtggtcgcgg cgctgatggc gatgaatgaa cactgcggca 2820 agccgcttaa tgacactcgt ttgctggctt tgatgggcga gctggaaggc cgtatctccg 2880 gcagcattca ttacgacaac gtggcaccgt gttttctcgg tggtatgcag ttgatgatcg 2940 aagaaaacga catcatcagc cagcaagtgc cagggtttga tgagtggctg tgggtgctgg 3000 cgtatccggg gattaaagtc tcgacggcag aagccagggc tattttaccg gcgcagtatc 3060 gccgccagga ttgcattgcg cacgggcgac atctggcagg cttcattcac gcctgctatt 3120 cccgtcagcc tgagcttgcc gcgaagctga tgaaagatgt tatcgctgaa ccctaccgtg 3180 aacggttact gccaggcttc cggcaggcgc ggcaggcggt cgcggaaatc ggcgcggtag 3240 cgagcggtat ctccggctcc ggcccgacct tgttcgctct gtgtgacaag ccggaaaccg 3300 cccagcgcgt tgccgactgg ttgggtaaga actacctgca aaatcaggaa ggttttgttc 3360 atatttgccg gctggatacg gcgggcgcac gagtactgga aaactaaatg aaactctaca 3420 atctgaaaga tcacaacgag caggtcagct ttgcgcaagc cgtaacccag gggttgggca 3480 aaaatcaggg gctgtttttt ccgcacgacc tgccggaatt cagcctgact gaaattgatg 3540 agatgctgaa gctggatttt gtcacccgca gtgcgaagat cctctcggcg tttattggtg 3600 atgaaatccc acaggaaatc ctggaagagc gcgtgcgcgc ggcgtttgcc ttcccggctc 3660 cggtcgccaa tgttgaaagc gatgtcggtt gtctggaatt gttccacggg ccaacgctgg 3720 catttaaaga tttcggcggt cgctttatgg cacaaatgct gacccatatt gcgggtgata 3780 agccagtgac cattctgacc gcgacctccg gtgataccgg agcggcagtg gctcatgctt 3840 tctacggttt accgaatgtg aaagtggtta tcctctatcc acgaggcaaa atcagtccac 3900 tgcaagaaaa actgttctgt acattgggcg gcaatatcga aactgttgcc atcgacggcg 3960 atttcgatgc ctgtcaggcg ctggtgaagc aggcgtttga tgatgaagaa ctgaaagtgg 4020 cgctagggtt aaactcggct aactcgatta acatcagccg tttgctggcg cagatttgct 4080 actactttga agctgttgcg cagctgccgc aggagacgcg caaccagctg gttgtctcgg 4140 tgccaagcgg aaacttcggc gatttgacgg cgggtctgct ggcgaagtca ctcggtctgc 4200 cggtgaaacg ttttattgct gcgaccaacg tgaacgatac cgtgccacgt ttcctgcacg 4260 acggtcagtg gtcacccaaa gcgactcagg cgacgttatc caacgcgatg gacgtgagtc 4320 agccgaacaa ctggccgcgt gtggaagagt tgttccgccg caaaatctgg caactgaaag 4380 agctgggtta tgcagccgtg gatgatgaaa ccacgcaaca gacaatgcgt gagttaaaag 4440 aactgggcta cacttcggag ccgcacgctg ccgtagctta tcgtgcgctg cgtgatcagt 4500 tgaatccagg cgaatatggc ttgttcctcg gcaccgcgca tccggcgaaa tttaaagaga 4560 gcgtggaagc gattctcggt gaaacgttgg atctgccaaa agagctggca gaacgtgctg 4620 atttaccctt gctttcacat aatctgcccg ccgattttgc tgcgttgcgt aaattgatga 4680 tgaatcatca gtaaaatcta ttcattatcg tcgac 4715 <110> Industry-University Cooperation Foundation Chonnam University <120> Microorganism for producing poly-3-hydroxybutyrate, method for producing the same, and method for producing poly-3-hydroxybutyrate using the same <130> PN190043 <160> 3 <170> KoPatentIn 3.0 <210> 1 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> thrABC forward primer <400> 1 attatctaga gcatgcgagt gttgaag 27 <210> 2 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> thrABC reverse primer <400> 2 attagtcgac gataatgaat agattttact gatg 34 <210> 3 <211> 4715 <212> DNA <213> Escherichia coli <400> 3 tatctagagc atgcgagtgt tgaagttcgg cggtacatca gtggcaaatg cagaacgttt 60 tctgcgtgtt gccgatattc tggaaagcaa tgccaggcag gggcaggtgg ccaccgtcct 120 ctctgccccc gccaaaatca ccaaccacct ggtggcgatg attgaaaaaa ccattagcgg 180 ccaggatgct ttacccaata tcagcgatgc cgaacgtatt tttgccgaac ttttgacggg 240 actcgccgcc gcccagccgg ggttcccgct ggcgcaattg aaaactttcg tcgatcagga 300 atttgcccaa ataaaacatg tcctgcatgg cattagtttg ttggggcagt gcccggatag 360 catcaacgct gcgctgattt gccgtggcga gaaaatgtcg atcgccatta tggccggcgt 420 attagaagcg cgcggtcaca acgttactgt tatcgatccg gtcgaaaaac tgctggcagt 480 ggggcattac ctcgaatcta ccgtcgatat tgctgagtcc acccgccgta ttgcggcaag 540 ccgcattccg gctgatcaca tggtgctgat ggcaggtttc accgccggta atgaaaaagg 600 cgaactggtg gtgcttggac gcaacggttc cgactactct gctgcggtgc tggctgcctg 660 tttacgcgcc gattgttgcg agatttggac ggacgttgac ggggtctata cctgcgaccc 720 gcgtcaggtg cccgatgcga ggttgttgaa gtcgatgtcc taccaggaag cgatggagct 780 ttcctacttc ggcgctaaag ttcttcaccc ccgcaccatt acccccatcg cccagttcca 840 gatcccttgc ctgattaaaa ataccggaaa tcctcaagca ccaggtacgc tcattggtgc 900 cagccgtgat gaagacgaat taccggtcaa gggcatttcc aatctgaata acatggcaat 960 gttcagcgtt tctggtccgg ggatgaaagg gatggtcggc atggcggcgc gcgtctttgc 1020 agcgatgtca cgcgcccgta tttccgtggt gctgattacg caatcatctt ccgaatacag 1080 catcagtttc tgcgttccac aaagcgactg tgtgcgagct gaacgggcaa tgcaggaaga 1140 gttctacctg gaactgaaag aaggcttact ggagccgctg gcagtgacgg aacggctggc 1200 cattatctcg gtggtaggtg atggtatgcg caccttgcgt gggatctcgg cgaaattctt 1260 tgccgcactg gcccgcgcca atatcaacat tgtcgccatt gctcagggat cttctgaacg 1320 ctcaatctct gtcgtggtaa ataacgatga tgcgaccact ggcgtgcgcg ttactcatca 1380 gatgctgttc aataccgatc aggttatcga agtgtttgtg attggcgtcg gtggcgttgg 1440 cggtgcgctg ctggagcaac tgaagcgtca gcaaagctgg ctgaagaata aacatatcga 1500 cttacgtgtc tgcggtgttg ccaactcgaa ggctctgctc accaatgtac atggccttaa 1560 tctggaaaac tggcaggaag aactggcgca agccaaagag ccgtttaatc tcgggcgctt 1620 aattcgcctc gtgaaagaat atcatctgct gaacccggtc attgttgact gcacttccag 1680 ccaggcagtg gcggatcaat atgccgactt cctgcgcgaa ggtttccacg ttgtcacgcc 1740 gaacaaaaag gccaacacct cgtcgatgga ttactaccat cagttgcgtt atgcggcgga 1800 aaaatcgcgg cgtaaattcc tctatgacac caacgttggg gctggattac cggttattga 1860 gaacctgcaa aatctgctca atgcaggtga tgaattgatg aagttctccg gcattctttc 1920 tggttcgctt tcttatatct tcggcaagtt agacgaaggc atgagtttct ccgaggcgac 1980 cacgctggcg cgggaaatgg gttataccga accggacccg cgagatgatc tttctggtat 2040 ggatgtggcg cgtaaactat tgattctcgc tcgtgaaacg ggacgtgaac tggagctggc 2100 ggatattgaa attgaacctg tgctgcccgc agagtttaac gccgagggtg atgttgccgc 2160 ttttatggcg aatctgtcac aactcgacga tctctttgcc gcgcgcgtgg cgaaggcccg 2220 tgatgaagga aaagttttgc gctatgttgg caatattgat gaagatggcg tctgccgcgt 2280 gaagattgcc gaagtggatg gtaatgatcc gctgttcaaa gtgaaaaatg gcgaaaacgc 2340 cctggccttc tatagccact attatcagcc gctgccgttg gtactgcgcg gatatggtgc 2400 gggcaatgac gttacagctg ccggtgtctt tgctgatctg ctacgtaccc tctcatggaa 2460 gttaggagtc tgacatggtt aaagtttatg ccccggcttc cagtgccaat atgagcgtcg 2520 ggtttgatgt gctcggggcg gcggtgacac ctgttgatgg tgcattgctc ggagatgtag 2580 tcacggttga ggcggcagag acattcagtc tcaacaacct cggacgcttt gccgataagc 2640 tgccgtcaga accacgggaa aatatcgttt atcagtgctg ggagcgtttt tgccaggaac 2700 tgggtaagca aattccagtg gcgatgaccc tggaaaagaa tatgccgatc ggttcgggct 2760 taggctccag tgcctgttcg gtggtcgcgg cgctgatggc gatgaatgaa cactgcggca 2820 agccgcttaa tgacactcgt ttgctggctt tgatgggcga gctggaaggc cgtatctccg 2880 gcagcattca ttacgacaac gtggcaccgt gttttctcgg tggtatgcag ttgatgatcg 2940 aagaaaacga catcatcagc cagcaagtgc cagggtttga tgagtggctg tgggtgctgg 3000 cgtatccggg gattaaagtc tcgacggcag aagccagggc tattttaccg gcgcagtatc 3060 gccgccagga ttgcattgcg cacgggcgac atctggcagg cttcattcac gcctgctatt 3120 cccgtcagcc tgagcttgcc gcgaagctga tgaaagatgt tatcgctgaa ccctaccgtg 3180 aacggttact gccaggcttc cggcaggcgc ggcaggcggt cgcggaaatc ggcgcggtag 3240 cgagcggtat ctccggctcc ggcccgacct tgttcgctct gtgtgacaag ccggaaaccg 3300 cccagcgcgt tgccgactgg ttgggtaaga actacctgca aaatcaggaa ggttttgttc 3360 atatttgccg gctggatacg gcgggcgcac gagtactgga aaactaaatg aaactctaca 3420 atctgaaaga tcacaacgag caggtcagct ttgcgcaagc cgtaacccag gggttgggca 3480 aaaatcaggg gctgtttttt ccgcacgacc tgccggaatt cagcctgact gaaattgatg 3540 agatgctgaa gctggatttt gtcacccgca gtgcgaagat cctctcggcg tttattggtg 3600 atgaaatccc acaggaaatc ctggaagagc gcgtgcgcgc ggcgtttgcc ttcccggctc 3660 cggtcgccaa tgttgaaagc gatgtcggtt gtctggaatt gttccacggg ccaacgctgg 3720 catttaaaga tttcggcggt cgctttatgg cacaaatgct gacccatatt gcgggtgata 3780 agccagtgac cattctgacc gcgacctccg gtgataccgg agcggcagtg gctcatgctt 3840 tctacggttt accgaatgtg aaagtggtta tcctctatcc acgaggcaaa atcagtccac 3900 tgcaagaaaa actgttctgt acattgggcg gcaatatcga aactgttgcc atcgacggcg 3960 atttcgatgc ctgtcaggcg ctggtgaagc aggcgtttga tgatgaagaa ctgaaagtgg 4020 cgctagggtt aaactcggct aactcgatta acatcagccg tttgctggcg cagatttgct 4080 actactttga agctgttgcg cagctgccgc aggagacgcg caaccagctg gttgtctcgg 4140 tgccaagcgg aaacttcggc gatttgacgg cgggtctgct ggcgaagtca ctcggtctgc 4200 cggtgaaacg ttttattgct gcgaccaacg tgaacgatac cgtgccacgt ttcctgcacg 4260 acggtcagtg gtcacccaaa gcgactcagg cgacgttatc caacgcgatg gacgtgagtc 4320 agccgaacaa ctggccgcgt gtggaagagt tgttccgccg caaaatctgg caactgaaag 4380 agctgggtta tgcagccgtg gatgatgaaa ccacgcaaca gacaatgcgt gagttaaaag 4440 aactgggcta cacttcggag ccgcacgctg ccgtagctta tcgtgcgctg cgtgatcagt 4500 tgaatccagg cgaatatggc ttgttcctcg gcaccgcgca tccggcgaaa tttaaagaga 4560 gcgtggaagc gattctcggt gaaacgttgg atctgccaaa agagctggca gaacgtgctg 4620 atttaccctt gctttcacat aatctgcccg ccgattttgc tgcgttgcgt aaattgatga 4680 tgaatcatca gtaaaatcta ttcattatcg tcgac 4715
Claims (16)
서열번호 3으로 표시되는 염기서열로 이루어진 트레오닌(threonine) 합성 유전자 및 폴리하이드록시알카노에이트(Poly hydroxy alkanoate; 이하 PHA) 합성 유전자를 도입하여 미생물을 형질전환하는 재조합 미생물 제조 단계; 및
상기 재조합 미생물을 배양하는 배양 단계.A polyhydroxybutyrate (PHB) production method comprising the following steps:
A recombinant microorganism manufacturing step of transforming microorganisms by introducing a threonine synthetic gene and a polyhydroxy alkanoate (hereinafter referred to as PHA) synthetic gene consisting of the nucleotide sequence represented by SEQ ID NO: 3; And
Culture step of culturing the recombinant microorganism.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190029431A KR102121746B1 (en) | 2019-03-14 | 2019-03-14 | Microorganism for producing poly-3-hydroxybutyrate, method for producing the same, and method for producing poly-3-hydroxybutyrate using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190029431A KR102121746B1 (en) | 2019-03-14 | 2019-03-14 | Microorganism for producing poly-3-hydroxybutyrate, method for producing the same, and method for producing poly-3-hydroxybutyrate using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
KR102121746B1 true KR102121746B1 (en) | 2020-06-12 |
Family
ID=71088225
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020190029431A KR102121746B1 (en) | 2019-03-14 | 2019-03-14 | Microorganism for producing poly-3-hydroxybutyrate, method for producing the same, and method for producing poly-3-hydroxybutyrate using the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102121746B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210152260A (en) * | 2020-06-08 | 2021-12-15 | 전남대학교산학협력단 | Recombinant microorganism for polyhydroxybutyrate production with PAMC22784_DRH632 gene derived from Bacillus sp. PAMC22784_DRH632 and method for production of polyhydroxybutyrate using the same |
KR20210152262A (en) * | 2020-06-08 | 2021-12-15 | 전남대학교산학협력단 | Recombinant microorganism for polyhydroxybutyrate production with PAMC23412_DRH1601 gene derived from Bacillus sp. PAMC23412_DRH1601 and method for production of polyhydroxybutyrate using the same |
KR20210152261A (en) * | 2020-06-08 | 2021-12-15 | 전남대학교산학협력단 | Recombinant microorganism for polyhydroxybutyrate production with PAMC23324_DRH577 gene derived from Bacillus pumilus PAMC23324_DRH577 and method for production of polyhydroxybutyrate using the same |
-
2019
- 2019-03-14 KR KR1020190029431A patent/KR102121746B1/en active IP Right Grant
Non-Patent Citations (1)
Title |
---|
CURR OPIN BIOTECHNOL., VOL.29, PP.24-33(2014.03.13)* * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210152260A (en) * | 2020-06-08 | 2021-12-15 | 전남대학교산학협력단 | Recombinant microorganism for polyhydroxybutyrate production with PAMC22784_DRH632 gene derived from Bacillus sp. PAMC22784_DRH632 and method for production of polyhydroxybutyrate using the same |
KR20210152262A (en) * | 2020-06-08 | 2021-12-15 | 전남대학교산학협력단 | Recombinant microorganism for polyhydroxybutyrate production with PAMC23412_DRH1601 gene derived from Bacillus sp. PAMC23412_DRH1601 and method for production of polyhydroxybutyrate using the same |
KR20210152261A (en) * | 2020-06-08 | 2021-12-15 | 전남대학교산학협력단 | Recombinant microorganism for polyhydroxybutyrate production with PAMC23324_DRH577 gene derived from Bacillus pumilus PAMC23324_DRH577 and method for production of polyhydroxybutyrate using the same |
KR102408178B1 (en) | 2020-06-08 | 2022-06-13 | 전남대학교산학협력단 | Recombinant microorganism for polyhydroxybutyrate production with PAMC23412_DRH1601 gene derived from Bacillus sp. PAMC23412_DRH1601 and method for production of polyhydroxybutyrate using the same |
KR102408177B1 (en) | 2020-06-08 | 2022-06-13 | 전남대학교산학협력단 | Recombinant microorganism for polyhydroxybutyrate production with PAMC22784_DRH632 gene derived from Bacillus sp. PAMC22784_DRH632 and method for production of polyhydroxybutyrate using the same |
KR102408174B1 (en) | 2020-06-08 | 2022-06-13 | 전남대학교산학협력단 | Recombinant microorganism for polyhydroxybutyrate production with PAMC23324_DRH577 gene derived from Bacillus pumilus PAMC23324_DRH577 and method for production of polyhydroxybutyrate using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102121746B1 (en) | Microorganism for producing poly-3-hydroxybutyrate, method for producing the same, and method for producing poly-3-hydroxybutyrate using the same | |
Zhou et al. | Production of 3-hydroxypropionate homopolymer and poly (3-hydroxypropionate-co-4-hydroxybutyrate) copolymer by recombinant Escherichia coli | |
JP5626735B2 (en) | Recombinant Ralstonia eutropha having ability to produce polylactic acid or polylactic acid copolymer and method for producing polylactic acid or polylactic acid copolymer using the same | |
KR101114912B1 (en) | Method for Preparing Polylactate and its Copolymer Using Mutant Microorganism with Improved Productivity of Polylactate and its Copolymer | |
US11339398B2 (en) | Acid-resistant yeast with suppressed ethanol production pathway and method for producing lactic acid using same | |
US20130017583A1 (en) | Methods for producing polyhydroxyalkanoate copolymer with high medium chain length monomer content | |
US11692208B2 (en) | Production of chemicals from renewable sources | |
US20150064760A1 (en) | Modified microorganism and methods of using same for producing butadiene and 1-propanol and/or 1,2-propanediol | |
CN116970659B (en) | Method for producing polyhydroxyalkanoate | |
KR102067342B1 (en) | Escherichia coli for producing polyhydroxybutyrate, method for producing the same, and method for producing polyhydroxybutyrate | |
CN116240155A (en) | Recombinant bacterium for producing poly (hydroxy fatty acid-co-lactic acid) and application thereof | |
JP5268064B2 (en) | Plasmid, transformant, and method for producing 3-carboxymuconolactone | |
CN111363713A (en) | Construction method and application of genetic engineering escherichia coli for improving content of lactic acid component in polyhydroxybutyrate lactate | |
CN112126609B (en) | Recombinant bacterium for producing polyhydroxybutyrate by using ethanol and construction method and application thereof | |
KR102408178B1 (en) | Recombinant microorganism for polyhydroxybutyrate production with PAMC23412_DRH1601 gene derived from Bacillus sp. PAMC23412_DRH1601 and method for production of polyhydroxybutyrate using the same | |
WO2023225582A2 (en) | Recombinant bacterial cells and methods for producing poly(3-hydroxybutyrate-co-3-hydroxyvalerate) | |
Pillai et al. | Synthetic biology and metabolic engineering approaches for improved production and recovery of bacterial polyhydroxyalkanoates | |
CN113563435B (en) | Protein for promoting production of poly-3-hydroxybutyrate from ralstonia eutropha and application thereof | |
KR102331270B1 (en) | Transformed microorganism producing polyhydroxyalkanoate | |
KR20110033265A (en) | Method for polymerising glycolic acid with microorganisms | |
KR100447532B1 (en) | (R)-Hydroxycarboxylic Acid Producing Recombinant Microorganism and Process for Preparing (R)-Hydroxycarboxylic Acid Using the Same | |
KR102408174B1 (en) | Recombinant microorganism for polyhydroxybutyrate production with PAMC23324_DRH577 gene derived from Bacillus pumilus PAMC23324_DRH577 and method for production of polyhydroxybutyrate using the same | |
KR102408177B1 (en) | Recombinant microorganism for polyhydroxybutyrate production with PAMC22784_DRH632 gene derived from Bacillus sp. PAMC22784_DRH632 and method for production of polyhydroxybutyrate using the same | |
US20110086398A1 (en) | Cellular production of hydroxyvalerates from levulinate | |
CN106801063B (en) | Construction method of engineering escherichia coli with changed form, engineering escherichia coli and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |