KR102120822B1 - Analytical method for the simultaneous determination of trimethylamine N-oxide and its related compounds in dried blood spots - Google Patents

Analytical method for the simultaneous determination of trimethylamine N-oxide and its related compounds in dried blood spots Download PDF

Info

Publication number
KR102120822B1
KR102120822B1 KR1020190033497A KR20190033497A KR102120822B1 KR 102120822 B1 KR102120822 B1 KR 102120822B1 KR 1020190033497 A KR1020190033497 A KR 1020190033497A KR 20190033497 A KR20190033497 A KR 20190033497A KR 102120822 B1 KR102120822 B1 KR 102120822B1
Authority
KR
South Korea
Prior art keywords
blood
trimethylamine
dbs
filter paper
quantitative analysis
Prior art date
Application number
KR1020190033497A
Other languages
Korean (ko)
Inventor
한상범
조현덕
Original Assignee
중앙대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 중앙대학교 산학협력단 filed Critical 중앙대학교 산학협력단
Priority to KR1020190033497A priority Critical patent/KR102120822B1/en
Application granted granted Critical
Publication of KR102120822B1 publication Critical patent/KR102120822B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4044Concentrating samples by chemical techniques; Digestion; Chemical decomposition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N2030/042Standards
    • G01N2030/045Standards internal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8813Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/884Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample organic compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2430/00Assays, e.g. immunoassays or enzyme assays, involving synthetic organic compounds as analytes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/32Cardiovascular disorders

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Hematology (AREA)
  • Ecology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

The present invention relates to a simultaneous quantitative analysis method for a trimethylamine oxide-based compound in dried blood spots. The method includes: (a) a step of performing hydrochloric acid treatment on dried blood spot (DBS) filter paper; (b) a step of dripping blood on the DBS filter paper; (c) a step of obtaining a supernatant by adding an internal standard solution and an elution solvent to the blood-dripped DBS filter paper, causing a reaction therebetween, and then performing centrifugation; (d) a step of adding ethyl bromoacetate (EtBAc) to the obtained supernatant and causing a reaction therebetween; and (e) a step of analyzing the reactant obtained in step (d). Simultaneous quantitative analysis of endogenous compounds for cardiovascular diseases can be performed with the present invention, which is expected to be useful for diagnosis and analysis of various cardiovascular diseases based on excellent detection sensitivity, linearity, recovery rate, repeatability, and stability.

Description

건조점적혈액 중 트리메틸아민산화물계 화합물의 동시 정량분석 방법{Analytical method for the simultaneous determination of trimethylamine N-oxide and its related compounds in dried blood spots}{Analytical method for the simultaneous determination of trimethylamine N-oxide and its related compounds in dried blood spots}

본 발명은 건조점적혈액 중 심혈관계 질환 화합물의 동시 정량분석 방법에 관한 것으로, 구체적으로는 건조점적혈액 중 트리메틸아민산화물계 화합물의 동시 정량분석 방법에 관한 것이다.The present invention relates to a method for simultaneous quantitative analysis of a cardiovascular disease compound in dry drop blood, and specifically to a method for simultaneous quantitative analysis of a trimethylamine oxide compound in dry drop blood.

최근 트리메틸아민 N-옥사이드(trimethylamine N-oxide; TMAO)와 죽상동맥경화증 (atherosclerosis)의 관련성에 대한 연구가 발표된 이후 (2011년) 지금까지 TMAO 및 TMAO 대사에 관련된 다양한 화합물이 질병 기전에 관여하는 것으로 알려졌다. 또한, 심근경색 (myocardial infarction), 뇌졸중 (stroke), 혈전증 (thromobosis), 심부전 (heart failure), 심방세동 (atrial fibrillation)과 같은 부정맥 (arrhythmia) 등 다양한 심혈관계 질환이 이들 화합물과 밀접한 관련이 있는 것으로 새로이 밝혀지고 있다. Since a recent study on the relationship between trimethylamine N -oxide (TMAO) and atherosclerosis was published (2011), various compounds related to TMAO and TMAO metabolism have been involved in disease mechanisms. It is said that. In addition, various cardiovascular diseases such as myocardial infarction, stroke, thromobosis, heart failure, arrhythmia such as atrial fibrillation are closely related to these compounds. It is revealed newly.

따라서 TMAO와 TMAO 대사에 관련된 주변 화합물인 트리메틸아민(trimethylamine; TMA), 카르니틴(carnitine; CAR), 콜린(choline; CHL), 베타인(betaine; BET), γ-부틸로베타인(γ-butyrobetaine; GBB), 트리메틸리신(trimethyllysine; TML), 호모시스테인(homocysteine; HCY), 디메틸글리신(dimethylglycine; DMG) 등이 심혈관계 질환과 관련이 있는 잠재적 바이오마커 (potential biomarker)로 보고되고 있으며, 특히, 이들의 대사에 인체 내 효소뿐만 아니라 장내 미생물 (gut microbiome)이 관여한다는 연구결과가 발표되면서 이들 화합물에 대한 관심도가 높아지고 있다.Therefore, TMAO and TMAO metabolic compounds trimethylamine (TMA), carnitine (car), choline (CHL), betaine (betaine; BET), γ-butylrobetaine (γ-butyrobetaine) ; GBB), trimethyllysine (TML), homocysteine (HCY), dimethylglycine (DMG), etc., have been reported as potential biomarkers associated with cardiovascular disease. Interest in these compounds is increasing as research results have been published that not only enzymes in the human body but also gut microbiome are involved in metabolism of human body.

이에, TMAO와 TMAO 대사에 관련된 다양한 화합물의 동시 분석법의 수요 또한 점차 커질 것이며, 이와 관련된 지속적인 연구가 필요한 실정이다.Accordingly, the demand for simultaneous analysis of various compounds related to TMAO and TMAO metabolism will also gradually increase, and there is a need for continuous research related to this.

건조점적혈액(dried blood spots; DBS)은 규격화된 여과지에 혈액을 소량 점적하여 건조 시킨 형태의 시료로, 기존의 혈장이나 혈액 등의 고전적인 생체시료에 비해 시료 채취 과정이 편리하고, 경제적이며, 시료의 보관이나 운송이 용이하다는 장점을 가지고 있다. Dry blood spots (DBS) are samples that are dried by dropping a small amount of blood on standardized filter paper, and the sampling process is more convenient and economical compared to conventional biological samples such as plasma or blood. It has the advantage of easy storage and transportation of samples.

현재 분석기술의 급속한 발전으로 DBS를 이용한 신생아 스크리닝 (newborn screening), 혈중 약물농도 모니터링 (therapeutic drug monitoring, TDM) 및 다양한 질병의 진단까지 DBS의 임상 적용 범위는 점차 넓어지고 있는 추세이다. 특히, 심혈관계 질환과 같은 대사성 질환을 진단할 때는 지속적인 모니터링이 필요하므로, 피험자가 직접 시료를 채취할 수 있는 DBS가 기존 시료 채취법보다 유용하게 사용될 수 있다.With the rapid development of current analytical technology, the scope of clinical application of DBS is gradually expanding from newborn screening using DBS, monitoring of blood drug concentration (TDM) and diagnosis of various diseases. In particular, since continuous monitoring is required when diagnosing metabolic diseases such as cardiovascular diseases, DBS capable of directly collecting a sample may be more useful than a conventional sampling method.

그러나 DBS는 시료의 양이 적기 때문에 분석감도가 낮고, 대상성분이 모두 내인성 물질로서 공시료 (blank matrix)를 확보하기 어려우며, TMAO 관련 화합물인 trimethylamine(TMA)은 휘발성으로 인해 LC-ESI (electrospray ionization)-MS 이온화 또는 DBS 제작 과정에서 손실되어 시험법 개발이 용이하지 않았다.However, DBS has low analytical sensitivity due to the small amount of sample, and it is difficult to secure a blank matrix as the target component is an endogenous substance, and trimethylamine (TMA), a TMAO-related compound, is LC-ESI (electrospray ionization) due to volatility. )-MS Ionization or loss in the process of DBS production was not easy to develop the test method.

따라서 TMAO 및 TMAO 대사에 관련된 다양한 화합물을 동시 정량분석할 수 있으며, 휘발성 화합물에 대한 검출감도 또한 뛰어난 분석방법에 대한 연구가 필요한 실정이다.Therefore, it is possible to simultaneously quantitatively analyze various compounds related to TMAO and TMAO metabolism, and there is a need for research on analytical methods excellent in detection sensitivity for volatile compounds.

1. 대한민국 등록특허 제10-1505064호1. Republic of Korea Registered Patent No. 10-1505064

본 발명의 목적은 트리메틸아민 N-옥사이드(trimethylamine N-oxide; TMAO) 및 TMAO 대사에 관련된 다양한 화합물을 동시 정량분석할 수 있으며, 휘발성 화합물에 대한 검출감도 또한 뛰어난 심혈관계 관련 화합물의 동시 정량분석 방법을 제공하는 데에 있다.The object of the present invention is trimethylamine N-oxide (trimethylamine N -oxide; TMAO) and TMAO metabolism can be analyzed simultaneously for a variety of compounds, and the detection sensitivity for volatile compounds also excellent cardiovascular compounds simultaneous quantitative analysis method To provide.

상기 목적을 달성하기 위하여, 본 발명은 (a) 건조점적혈액(dried blood spots; DBS) 여과지를 염산 처리하는 단계; (b) 상기 DBS 여과지에 혈액을 점적하는 단계; (c) 상기 혈액이 점적된 DBS 여과지에 내부 표준물질(internal standard solution) 및 용출 용매를 첨가하여 반응시킨 후 원심분리하여 상등액을 수득하는 단계; (d) 상기 수득된 상등액에 에틸 브로모아세테이트(ethyl bromoacetate;EtBAc)를 첨가하여 반응시키는 단계; 및 (e) 상기 (d) 단계에서 수득된 반응물을 분석하는 단계;를 포함하는 혈액 내 트리메틸아민산화물계 화합물의 동시 정량분석 방법을 제공한다.In order to achieve the above object, the present invention comprises the steps of: (a) drying blood spots (DBS) filter paper hydrochloric acid treatment; (b) dripping blood onto the DBS filter paper; (c) reacting by adding an internal standard solution and an elution solvent to the blood-dropped DBS filter paper, followed by centrifugation to obtain a supernatant; (d) reacting by adding ethyl bromoacetate (EtBAc) to the obtained supernatant; And (e) analyzing the reactants obtained in the step (d); provides a method for simultaneous quantitative analysis of trimethylamine oxide compounds in the blood.

본 발명에 따른 혈액 내 트리메틸아민산화물계 화합물의 동시 정량분석 방법은 건조점적혈액(dried blood spots; DBS)을 분석대상으로 사용함으로써, 기존의 혈장이나 혈액 등의 고전적인 생체시료에 비해 시료 채취 과정이 편리하고, 경제적이며, 시료의 보관이나 운송이 용이하다.The method of simultaneous quantitative analysis of trimethylamine oxide-based compounds in blood according to the present invention uses dry blood spots (DBS) as an analysis object, thereby sampling the sample compared to a conventional biological sample such as plasma or blood. This is convenient, economical, and easy to store or transport samples.

또한, 본 발명에 따른 혈액 내 트리메틸아민산화물계 화합물의 동시 정량분석 방법은 혈액 점적 전 염산을 이용함으로써 휘발성 물질의 휘발을 저지하였으며, 화학적 유도체화 방법을 도입하여 화합물의 검출 감도 또한 향상시켰다.In addition, the simultaneous quantitative analysis method of trimethylamine oxide compounds in blood according to the present invention prevented volatilization of volatile substances by using hydrochloric acid before blood dripping, and also introduced chemical derivatization methods to improve the detection sensitivity of compounds.

또한, 트리메틸아민산화물계 화합물은 심혈관계 질환 내인성 화합물로서, 이와 관련된 화합물 9종 (트리메틸아민 N-옥사이드(trimethylamine N-oxide; TMAO), 트리메틸아민(trimethylamine; TMA), 카르니틴(carnitine; CAR), 콜린(choline; CHL), 베타인(betaine; BET), γ-부틸로베타인(γ-butyrobetaine; GBB), 트리메틸리신(trimethyllysine; TML), 호모시스테인(homocysteine; HCY), 디메틸글리신(dimethylglycine; DMG))의 동시 정량분석이 가능하며, 직선성, 회수율, 반복성 및 안정성도 우수하여 다양한 심혈관계 질환 진단 및 분석에 유용하게 활용될 수 있을 것이다.In addition, the trimethylamine oxide-based compound is an endogenous compound for cardiovascular diseases, and 9 related compounds (trimethylamine N -oxide (TMAO), trimethylamine (TMA), carnitine (Car); Choline (CHL), Betaine (BET), γ-butyrobetaine (GBB), trimethyllysine (TML), homocysteine (HCY), dimethylglycine (DMG) )) can be used for simultaneous quantitative analysis, and it can be useful for diagnosis and analysis of various cardiovascular diseases because of its excellent linearity, recovery rate, repeatability, and stability.

도 1은 분석 대상성분 9종 모두 가장 우수한 검출감도를 보이는 1.0 mol/L의 농도에서 각 유도체화 시약 6종의 반응 비교를 나타낸 도면이다.
도 2는 Whatman 903 protein saver card 건조혈액점적(DBS) 여과지에서 염산농도에 따른 트리메틸아민의 회수율 효과를 나타낸 도면이다.
도 3은 내인성 물질에 대한 안정동위원소 표지 화합물(surrogate analyte; SA) 및 내부 표준물질의 LC-HRMS 크로마토그램; (a) HCY-d4 0.3 μmol/L, (b) DMG-d6 0.3 μmol/L, (c) BET-d9 0.15 μmol/L, (d) GBB-d9 0.06 μmol/L, (e) CAR-d3 0.3 μmol/L, (f) TMA-d9 0.03 μmol/L, (g) CHL-d9 0.075 μmol/L, (h) TML-d9 0.3 μmol/L, (i) TMAO-d9 0.6 μmol/L and (j) COT-d3 (IS)을 나타낸 도면이다.
도 4는 (A) HCY-d4, (B) DMG-d6 and (C) BET-d9의 직선성 (linearity)을 나타낸 도면이다.
도 5는 (A) GBB-d9, (B) CAR-d3 and (C) TMA-d9의 직선성을 나타낸 도면이다.
도 6은 (A) CHL-d9, (B) TML-d9 and (C) TMAO-d9의 직선성을 나타낸 도면이다.
도 7은 (A) 9종 실제 내인성 물질(authentic analyte; AA), (B) 9종 내인성 물질에 대한 안정동위원소 표지화합물(surrogate analyte; SA)의 표준용액 안정성 결과를 나타낸 도면이다.
도 8은 9종 내인성 물질에 대한 안정동위원소 표지 화합물(surrogate analyte; SA)의 자동 샘플러(autosampler) 안정성 결과를 나타낸 도면이다.
도 9는 9종 내인성 물질에 대한 안정동위원소 표지 화합물(surrogate analyte; SA)의 단기간 안정성 결과를 나타낸 도면이다.
도 10은 9종 내인성 물질에 대한 안정동위원소 표지 화합물(surrogate analyte; SA)의 장기간 안정성 결과를 나타낸 도면이다.
1 is a view showing a comparison of the reaction of each of the six derivatization reagents at a concentration of 1.0 mol/L, which shows the best detection sensitivity in all nine components to be analyzed.
2 is a view showing the effect of recovery of trimethylamine according to the concentration of hydrochloric acid in a Whatman 903 protein saver card dry blood drop (DBS) filter paper.
FIG. 3 is an LC-HRMS chromatogram of a stable isotope labeled compound (surrogate analyte; SA) and an internal standard for endogenous substances; (a) HCY-d 4 0.3 μmol/L, (b) DMG-d 6 0.3 μmol/L, (c) BET-d 9 0.15 μmol/L, (d) GBB-d 9 0.06 μmol/L, (e ) CAR-d 3 0.3 μmol/L, (f) TMA-d 9 0.03 μmol/L, (g) CHL-d 9 0.075 μmol/L, (h) TML-d 9 0.3 μmol/L, (i) TMAO It is a diagram showing -d 9 0.6 μmol/L and (j) COT-d 3 (IS).
4 is a diagram showing the linearity of (A) HCY-d 4 , (B) DMG-d 6 and (C) BET-d 9 .
5 is a diagram showing the linearity of (A) GBB-d 9 , (B) CAR-d 3 and (C) TMA-d 9 .
6 is a diagram showing the linearity of (A) CHL-d 9 , (B) TML-d 9 and (C) TMAO-d 9 .
FIG. 7 is a diagram showing the results of the stability of a standard solution of (A) 9 kinds of real endogenous substances (authentic analyte; AA), and (B) 9 kinds of endogenous substances.
8 is a view showing the results of an autosampler stability of a stable isotope-labeled compound (surrogate analyte; SA) for 9 endogenous substances.
FIG. 9 is a diagram showing short-term stability results of a stable isotope-labeled compound (surrogate analyte; SA) for nine endogenous substances.
FIG. 10 is a diagram showing long-term stability results of a stable isotope-labeled compound (surrogate analyte; SA) for 9 endogenous substances.

이하에서는 본 발명을 구체적으로 설명한다.Hereinafter, the present invention will be described in detail.

본 발명자들은 건조점적혈액(DBS) 전처리로서 혈액 점적 전 염산 전처리 통한 휘발 방지 및 에틸 브로모아세테이트(ethyl bromoacetate;EtBAc) 처리를 통한 화학적 유도체화 방법을 도입하여 검출감도를 향상시켰으며, 내인성 물질에 대한 안정동위원소 표지 화합물(surrogate analyte; SA)을 이용하여 미량의 내인성 물질까지 정확하게 동시 정량분석이 가능할 뿐만 아니라 직선성, 회수율, 반복성 및 안정성도 우수하여 심근경색 (myocardial infarction), 뇌졸중 (stroke), 혈전증 (thromobosis), 심부전 (heart failure), 심방세동 (atrial fibrillation)과 같은 부정맥 (arrhythmia) 등 다양한 심혈관계 질환 진단 및 분석에 유용하게 활용될 수 있음을 밝혀내어 본 발명을 완성하였다.The present inventors have introduced a chemical derivatization method through prevention of volatilization through pretreatment of hydrochloric acid and treatment with ethyl bromoacetate (EtBAc) as a pretreatment of dry drop blood (DBS), to improve detection sensitivity. Using the Korean stable isotope-labeled compound (surrogate analyte; SA), it is possible to accurately and simultaneously quantitatively analyze even a small amount of endogenous substances, as well as excellent linearity, recovery, repeatability and stability, resulting in myocardial infarction, stroke , Thrombosis (thromobosis), heart failure (heart failure), atrial fibrillation (atrial fibrillation) such as arrhythmia (arrhythmia) has been found to be useful in the diagnosis and analysis of various cardiovascular diseases, and completed the present invention.

본 발명은 (a) 건조점적혈액(dried blood spots; DBS) 여과지를 염산 처리하는 단계; (b) 상기 DBS 여과지에 혈액을 점적하는 단계; (c) 상기 혈액이 점적된 DBS 여과지에 내부 표준물질(internal standard solution) 및 용출 용매를 첨가하여 반응시킨 후 원심분리하여 상등액을 수득하는 단계; (d) 상기 수득된 상등액에 에틸 브로모아세테이트(ethyl bromoacetate;EtBAc)를 첨가하여 반응시키는 단계; 및 (e) 상기 (d) 단계에서 수득된 반응물을 분석하는 단계; 를 포함하는 혈액 내 트리메틸아민산화물계 화합물의 동시 정량분석 방법을 제공한다.The present invention comprises the steps of (a) hydrochloric acid treatment of filtered blood spots (DBS) filter paper; (b) dripping blood onto the DBS filter paper; (c) reacting by adding an internal standard solution and an elution solvent to the blood-dropped DBS filter paper, followed by centrifugation to obtain a supernatant; (d) reacting by adding ethyl bromoacetate (EtBAc) to the obtained supernatant; And (e) analyzing the reactants obtained in step (d); It provides a method for simultaneous quantitative analysis of trimethylamine oxide compounds in the blood containing.

이때, 트리메틸아민산화물계 화합물은 트리메틸아민 N-옥사이드(trimethylamine N-oxide; TMAO), 트리메틸아민(trimethylamine; TMA), 카르니틴(carnitine; CAR), 콜린(choline; CHL), 베타인(betaine; BET), γ-부틸로베타인(γ-butyrobetaine; GBB), 트리메틸리신(trimethyllysine; TML), 호모시스테인(homocysteine; HCY), 디메틸글리신(dimethylglycine; DMG) 일 수 있으나, 이에 제한되는 것은 아니다.At this time, the trimethylamine oxide-based compound is trimethylamine N-oxide (trimethylamine N -oxide; TMAO), trimethylamine (trimethylamine; TMA), carnitine (carnitine; CAR), choline (choline; CHL), betaine (betaine; BET) ), γ-butyrobetaine (GBB), trimethyllysine (TML), homocysteine (HCY), dimethylglycine (DMG), but is not limited thereto.

또한, 상기 건조점적혈액(dried blood spots; DBS) 여과지를 염산 처리하는 단계는 염산을 0.1 내지 1.0 mol/L의 농도로 처리할 수 있으나, 바람직하게는 0.5 mol/L의 농도로 처리할 수 있다.In addition, the step of treating the dried blood spots (DBS) filter paper with hydrochloric acid may be treated with hydrochloric acid at a concentration of 0.1 to 1.0 mol/L, but preferably with a concentration of 0.5 mol/L. .

이러한 염산 처리는 산-염기 중화반응을 이용하기 위한 것으로, TMA는 분자 그 자체로는 염기성인 휘발성 성분이지만 염산인 산과 반응하게 되면 염을 생성하여 상온에서도 고상으로 존재할 수 있어 휘발성이 저지되는 것이다.The hydrochloric acid treatment is intended to use an acid-base neutralization reaction, and TMA is a basic volatile component in itself, but when reacted with an acid that is hydrochloric acid, salts are generated and may exist in a solid phase even at room temperature, thereby preventing volatility.

또한, 상기 에틸 브로모아세테이트(ethyl bromoacetate;EtBAc)를 첨가하여 반응시키는 단계는 EtBAc를 0.75 내지 1.5 mol/L의 농도로 처리할 수 있으나, 바람직하게는 1.0 mol/L의 농도로 처리할 수 있다.In addition, the step of reacting by adding ethyl bromoacetate (EtBAc) may treat EtBAc at a concentration of 0.75 to 1.5 mol/L, but may preferably be treated at a concentration of 1.0 mol/L. .

이러한 에틸 브로모아세테이트(ethyl bromoacetate;EtBAc) 처리는 화학적 유도체화 반응을 이용하여 검출감도를 증가시킬 수 있다.The treatment of ethyl bromoacetate (EtBAc) can increase the detection sensitivity using a chemical derivatization reaction.

이때, 상기와 같은 여과지 처리 및 유도체화 화합물 처리 조건을 벗어나면 건조점적혈액(dried blood spots; DBS) 중 휘발성 화합물이 휘발되어 회수율이 떨어지거나, 유도체화 반응이 제대로 이루어지지 않아 검출감도가 떨어질 수 있으며, 사용한 화합물 대비 회수율 및 검출감도의 효과가 좋지 않아 경제적이지 못한 문제가 야기될 수도 있다. At this time, if the filter paper treatment and derivatization compound treatment conditions are exceeded, the volatile compounds in the dried blood spots (DBS) volatilize, resulting in a low recovery rate, or the derivatization reaction is not properly performed, resulting in poor detection sensitivity. In addition, the effect of the recovery rate and detection sensitivity compared to the used compound is not good, which may cause uneconomical problems.

또한, 상기 혈액이 점적된 DBS 여과지에 내부 표준물질(internal standard solution) 및 용출 용매를 첨가하는 단계는 다이티오트레이톨(dithiothreitol;DTT) 환원제를 더 포함할 수 있으며, 바람직하게는 5 mmol/L의 농도로 포함될 수 있으나, 이에 제한되는 것은 아니다.In addition, the step of adding an internal standard solution and an elution solvent to the blood-dropped DBS filter paper may further include a dithiothreitol (DTT) reducing agent, preferably 5 mmol/L. It may be included as a concentration, but is not limited thereto.

또한, 상기 반응물을 분석하는 단계는 크로마토그래피/질량분석기로 분석하는 것을 특징으로 하며, 바람직하게는 액체크로마토그래피-고해상도질량분석기(liquid chromatography-high resolution mass spectrometry; LC-HRMS)가 이용될 수 있으나, 이에 제한되는 것은 아니다.In addition, the step of analyzing the reactant is characterized by analyzing by chromatography/mass spectrometry, and preferably, liquid chromatography-high resolution mass spectrometry (LC-HRMS) may be used. , But is not limited thereto.

또한, 상기 분석방법은 검출감도를 2배 내지 86배 향상시키는 것을 특징으로 한다.In addition, the analysis method is characterized by improving the detection sensitivity by 2 to 86 times.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for explaining the present invention in more detail, according to the gist of the present invention, the scope of the present invention is not limited by these examples to those skilled in the art to which the present invention pertains. It will be obvious.

<참고예> 시약 및 기기<Reference example> Reagents and equipment

실제 내인성 물질(authentic analyte; AA)인 트리메틸아민 N-옥사이드(trimethylamine N-oxide; TMAO), 트리메틸아민 염산염(trimethylamine hydrochloride; TMA·HCl), 카르니틴(carnitine; CAR), 콜린 염화물(choline chloride; CHL·Cl), 베타인(betaine; BET), γ-부틸로베타인 염산염(γ-butyrobetaine hydrochloride; GBB·HCl), 트리메틸리신 염산염(trimethyllysine hydrochloride; TML·HCl), 호모시스테인(homocysteine; HCY), 디메틸글리신(dimethylglycine; DMG) 표준품은 Sigma-Aldrich사(St. Louis, MO, USA)로부터, 내인성 물질에 대한 안정동위원소 표지 화합물(surrogate analyte; SA)인 트리메틸아민 N-옥사이드-d9(trimethylamine N-oxide-d9; TMAO-d9), 트리메틸아민-d9 염산염(trimethylamine-d9 hydrochloride; TMA-d9·HCl), 카르니틴-d3 염산염(carnitine-d3 hydrochloride; CAR-d3·HCl), 콜린-d9 염화물(choline-d9 chloride; CHL-d9·Cl), 베타인-d9 염화물(betaine-d9 chloride; BET-d9·Cl), γ-부틸로베타인-d9 염산염(γ-butyrobetaine-d9 chloride;GBB-d9·Cl), 트리메틸리신-d9(trimethyllysine-d9; TML-d9), 호모시스테인-d4(homocysteine-d4; HCY-d4), 디메틸글리신-d6 염산염(dimethylglycine-d6 hydrochloride; DMG-d6·HCl) 표준품은 CDN Isotopes사(Quebec, Canada)로부터 각각 구입하였다. 내부표준물질 (internal standard, IS)로 사용한 코티닌-d3(cotinine-d3; COT-d3) 표준품은 Sigma-Aldrich사로부터 구입하였다. 메틸 브로모아세테이트(methyl bromoacetate; MeBAc), 에틸 브로모아세테이트(ethyl bromoacetate; EtBAc), 이소프로필 브로모아세테이트(isopropyl bromoacetate; iPrBAc), 3차-부틸 브로모아세테이트(tert-butyl bromoacetate; tBuBAc), 페닐 브로모아세테이트(phenyl bromoacetate; PhBAc), 벤질 브로모아세테이트(benzyl bromoacetate; BzBAc)와 탄산나트륨(sodium carbonate), 중탄산나트륨(sodium bicarbonate), 수산화암모늄 용액(ammonium hydroxide solution), 염산(hydrochloric acid, PBS(phosphate-buffered saline) 및 다이티오트레이톨(dithiothreitol)은 Sigma-Aldrich사로부터 구입하였고, 물(water), 메탄올(methanol), 아세토니트릴(acetonitrile) 및 포름산(formic acid), 아세트산(acetic acid), 아세트산 암모늄(ammonium acetate), 포름산 암모늄(ammonium formate)은 Thermo Fisher Scientific사 (Fair Lawn, NJ, USA)의 LC-MS급을 사용하였다. 기타 모든 시약은 특급 혹은 분석용을 구입하여 사용하였다.Actual endogenous substance (authentic analyte; AA) of trimethylamine N - oxide (trimethylamine N -oxide; TMAO), trimethylamine hydrochloride (trimethylamine hydrochloride; TMA · HCl) , carnitine (carnitine; CAR), choline chloride (choline chloride; CHL Cl), betaine (BET), γ-butyrobetaine hydrochloride (GBBHCl), trimethyllysine hydrochloride (TMLHCl), homocysteine (HCY), dimethyl glycine (dimethylglycine; DMG) standard was Sigma-Aldrich Corporation (St. Louis, MO, USA) from the stabilizing labeled compound for an endogenous substance (surrogate analyte; SA) of trimethylamine N - oxide -d 9 (trimethylamine N -oxide-d 9 ; TMAO-d 9), trimethylamine hydrochloride -d 9 (trimethylamine-d 9 hydrochloride; TMA -d 9 · HCl), 3 -d carnitine hydrochloride (carnitine-d 3 hydrochloride; CAR -d 3 · HCl), choline -d 9 chloride (choline-d 9 chloride; CHL -d 9 · Cl), betaine -d 9 chloride (betaine-d 9 chloride; BET -d 9 · Cl), γ- butyl -d 9 betaine hydrochloride (γ -butyrobetaine-d 9 chloride; GBB- d 9 · Cl), trimethyl lysine -d 9 (trimethyllysine-d 9; TML-d 9), homocysteine -d 4 (homocysteine-d 4; HCY-d 4), dimethylglycine -d 6 hydrochloride (dimethylglycine-d 6 hydrochloride; DMG -d 6 · HCl) were obtained from each standard CDN Isotopes Inc. (Quebec, Canada). Cotinine -d 3 was used as the internal standard (internal standard, IS) (cotinine -d 3; COT-d 3) standard was purchased from Sigma-Aldrich Company. Methyl bromoacetate (MeBAc), ethyl bromoacetate (EtBAc), isopropyl bromoacetate (iPrBAc), tert -butyl bromoacetate (tBuBAc), Phenyl bromoacetate (PhBAc), benzyl bromoacetate (BzBAc) and sodium carbonate, sodium bicarbonate, ammonium hydroxide solution, hydrochloric acid, PBS (phosphate-buffered saline) and dithiothreitol were purchased from Sigma-Aldrich, water, methanol, acetonitrile and formic acid, acetic acid , Ammonium acetate, ammonium formate was used by LC-MS class of Thermo Fisher Scientific (Fair Lawn, NJ, USA) All other reagents were purchased by express or analysis.

<< 실시예Example 1> DBS의 전처리 방법 1> DBS pre-treatment method

DBS 여과지인 와트만 903 (Whatman 903) 프로틴 세이버 카드(protein saver card)의 홀마다 0.5 mol/L 염산 (hydrochloric acid) 용액 40 μL를 점적하고 상온에서 2시간 건조한 후, 혈액 30 μL를 점적하고 다시 상온에서 2시간 건조하였다. 말린 여과지를 직경 6 mm 규격의 펀처(puncher)로 펀칭(punching)하여 만든 DBS disc를 1.5 mL 마이크로튜브(microtube)에 넣었다. 내부표준용액 (COT-d3, 1 μg/mL) 10 μL와 20 mmol/L 포름산 암모늄(ammonium formate) (pH 9.0) 용출 용매(Elution Solvent) 370 μL, 5 mmol/L 다이티올트레이톨(dithiothreitol; DTT) 환원제 20 μL를 각각 가하여 10분간 교반(agitation)하고 상온에서 20분간 방치한 후 13,000 rpm으로 3분간 원심분리하여 상징액(supernatant) 200 μL를 다른 1.5 mL 마이크로튜브(microtube)로 옮겼다. 여기에 1.0 mol/L 에틸 브로모아세테이트(ethyl bromoacetate;EtBAc) 용액 100 μL를 가하여 5분간 교반하고 80˚C의 항온수조(water-bath)에서 1시간 동안 유도체화 반응을 진행한 후 마이크로튜브(microtube)를 항온수조(water-bath)에서 꺼냈다. 반응이 끝난 용액에 30 mmol/L 포름산(formic acid) (아세토니트릴(acetonitrile)에 용해) 200 μL를 가하고 5분간 교반한 후 13,000 rpm에서 5분간 원심분리하여 상징액을 아세토니트릴(acetonitrile)과 1:4 비율 (상징액/acetonitrile, v/v)로 혼합하였다. 이를 실린지 필터(syringe filter) (0.2 μm, PTFE)로 여과한 후 LC-HRMS로 주입하였다. 40 μL of 0.5 mol/L hydrochloric acid solution is added to each hole of the DBS filter paper Whatman 903 protein saver card, dried at room temperature for 2 hours, and 30 μL of blood is added dropwise and again It was dried at room temperature for 2 hours. DBS discs made by punching dried filter paper with a 6 mm diameter puncher were placed in a 1.5 mL microtube. Internal standard solution (COT-d 3 , 1 μg/mL) 10 μL and 20 mmol/L ammonium formate (pH 9.0) Elution Solvent 370 μL, 5 mmol/L dithiothreitol ; DTT) 20 μL of reducing agent was added for 10 minutes, agitation was performed, and the mixture was left at room temperature for 20 minutes, and then centrifuged at 13,000 rpm for 3 minutes, and 200 μL of supernatant was transferred to another 1.5 mL microtube. To this, 100 μL of a 1.0 mol/L ethyl bromoacetate (EtBAc) solution was added, stirred for 5 minutes, and derivatized in an 80°C water-bath for 1 hour, followed by microtube ( The microtube) was taken out of the water-bath. After the reaction was completed, 200 mmol of 30 mmol/L formic acid (dissolved in acetonitrile) was added and stirred for 5 minutes, followed by centrifugation at 13,000 rpm for 5 minutes to remove the supernatant from acetonitrile and 1: Mix at 4 ratios (supernatant/acetonitrile, v/v). It was filtered through a syringe filter (0.2 μm, PTFE) and injected into LC-HRMS.

<< 실시예Example 2> LC- 2> LC- HRMSHRMS 분석 analysis

분석대상성분 9종을 최적의 감도로 원활하게 분리할 수 있는 LC 조건 확립하였다. 대상성분 모두 극성의 화합물이므로 2가지 종류의 HILIC 고정상 (zwitterion, bare silica) 총 3종을 비교하였다. 먼저, 양쪽성 이온 (zwitterion) 타입의 SeQuant ZIC-HILIC column (100 mm × 2.1 mm i.d., 3.5 μm particle size), Obelisc R column (150 mm × 2.1 mm i.d., 5 μm particle size)과 실리카 (bare silica) 타입의 Acquity UPLC BEH HILIC column (100 mm × 2.1 mm i.d., 1.7 μm particle size)을 각각 선정하여 각 컬럼(column)별로 최적의 이동상 조건을 확립하여 비교하였다. 그 결과 Obelisc R column은 HCY의 peak broadness 현상으로 인해 대상 고정상에서 제외하였고, ZIC-HILIC column과 Acquity UPLC BEH HILIC column 중 전반적으로 분석감도 및 peak sharpness가 더 우수한 ZIC-HILIC column을 대상 고정상으로 최종 선정하였다. 이동상의 첨가제로는 포름산 암모늄(ammonium formate)과 아세트산 암모늄(ammonium acetate)을 비교하였다. 두 첨가제 모두 농도는 2 mmol/L, pH는 3.0으로 각각 조정하여 시험한 결과, 더 양호한 peak shape을 보인 포름산 암모늄(ammonium formate)을 이동상 첨가제로 최종 선정하였다. 이외에 기울기 용리 조건과 컬럼(column) 온도 등을 조정하여 대상성분 9종을 원활하게 분리할 수 있는 최적의 LC 조건을 확립하였다. Established LC conditions that can smoothly separate 9 types of components to be analyzed with optimal sensitivity. Since the target components are all polar compounds, three types of HILIC fixed phase (zwitterion, bare silica) were compared. First, zwitterion type SeQuant ZIC-HILIC column (100 mm × 2.1 mm id, 3.5 μm particle size), Obelisc R column (150 mm × 2.1 mm id, 5 μm particle size) and silica (bare silica) ) Type of Acquity UPLC BEH HILIC column (100 mm × 2.1 mm id, 1.7 μm particle size) was selected, and the optimal mobile phase conditions were established and compared for each column. As a result, the Obelisc R column was excluded from the target stationary phase due to the peak broadness phenomenon of HCY, and the ZIC-HILIC column with better overall analysis sensitivity and peak sharpness among the ZIC-HILIC column and Acquity UPLC BEH HILIC column was finally selected as the target stationary phase. Did. As a mobile phase additive, ammonium formate and ammonium acetate were compared. As a result of testing by adjusting the concentration of both additives to 2 mmol/L and the pH to 3.0 respectively, ammonium formate showing a better peak shape was finally selected as a mobile phase additive. In addition, by adjusting the gradient elution conditions and column temperature, optimal LC conditions for smoothly separating 9 target components were established.

본 시험에서는 HRMS로 Thermo Fisher Scientific사의 Q-Exactive를 이용하여 대상성분 9종을 분석하였다. Q-Exactive는 quadrupole과 고해상도 질량 분석기(high resolution mass analyzer)인 orbitrap이 결합된 하이브리드(hybrid)형의 질량 분광기(mass spectrometer)로서 다양한 물질들을 고속으로 스캐닝(scanning) 하면서 각 물질의 정확한 질량(accurate mass)을 고분해능 (high resolution)으로 측정할 뿐만 아니라 quadrupole을 통한 정량적인 분석도 가능하다. 따라서 혈액과 같은 복잡한 시료로부터 목적성분을 고선택성으로 정확하게 정량할 수 있는 장점이 있다. 각 성분에 대한 검출이온의 원소조성(elemental composition) 및 이론적 질량(theoretical mass)은 하기 표 1과 같으며, 확립한 최종 MS 분석 조건은 표 2와 같다.In this test, 9 types of target components were analyzed using Q-Exactive of Thermo Fisher Scientific by HRMS. Q-Exactive is a hybrid type mass spectrometer that combines quadrupole and orbitrap, a high resolution mass analyzer, and scans a variety of materials at high speed while accurate each material accurately. The mass can be measured with high resolution, as well as quantitative analysis using a quadrupole. Therefore, there is an advantage in that the target component can be accurately quantified with high selectivity from a complex sample such as blood. The elemental composition and the theoretical mass of the detection ion for each component are shown in Table 1 below, and the established final MS analysis conditions are shown in Table 2.

Figure 112019030285765-pat00001
Figure 112019030285765-pat00001

Figure 112019030285765-pat00002
Figure 112019030285765-pat00002

<< 실험예Experimental Example 1> 1> 유도체화Derivatization 시약의 선정 Selection of reagents

본 발명에서 선정한 유도체화 시약 메틸 브로모아세테이트(methyl bromoacetate; MeBAc), 에틸 브로모아세테이트(ethyl bromoacetate; EtBAc), 이소프로필 브로모아세테이트(isopropyl bromoacetate; iPrBAc), 3차-부틸 브로모아세테이트(tert-butyl bromoacetate; tBuBAc), 페닐 브로모아세테이트(phenyl bromoacetate; PhBAc), 벤질 브로모아세테이트(benzyl bromoacetate; BzBAc)는 브로모아세트산(bromoacetic acid)의 알킬 에스테르(alkyl ester) 화합물이다. 해당 유도체화 시약은 1차(primary), 2차(secondary), 3차(tertiary) 아민(amine)에 효과적으로 반응할 뿐만 아니라 반응 조건에 따라 카복실산 그룹(carboxylic acid group)에도 반응할 것으로 생각된다. 따라서 분자 내 화학구조에 primary, secondary amine을 지니거나 amine과 carboxylic acid group을 모두 지닐 경우, 다중 유도체화 반응이 진행될 수 있다. 유도체화 반응은 유도체화 시약의 종류뿐만 아니라 그 농도에 의해서도 영향을 받을 수 있다. 특히 다중 유도체화 반응의 경우 시약의 농도가 반응성에 큰 영향을 미칠 수 있으므로 각 유도체화 시약별로 0.05, 0.1, 0.5, 1.0 mol/L의 농도로 제조하여 성분별 최적의 유도체를 선정하고자 하였다.Derivatization reagents selected from the present invention methyl bromoacetate (MeBAc), ethyl bromoacetate (EtBAc), isopropyl bromoacetate (iPrBAc), tert -butyl bromoacetate ( tert -Butyl bromoacetate (tBuBAc), phenyl bromoacetate (PhBAc), and benzyl bromoacetate (BzBAc) are alkyl ester compounds of bromoacetic acid. This derivatization reagent is thought to react effectively to primary, secondary, and tertiary amines as well as to carboxylic acid groups depending on the reaction conditions. Therefore, multiple primary derivatization reactions can occur if the chemical structure of the molecule has both primary and secondary amines or both amine and carboxylic acid groups. The derivatization reaction can be influenced not only by the type of derivatization reagent, but also by its concentration. In particular, in the case of multiple derivatization reactions, the concentration of reagents can have a great influence on reactivity, so it was intended to select the optimum derivatives for each component by preparing them at concentrations of 0.05, 0.1, 0.5, 1.0 mol/L for each derivatization reagent.

유도체 생성물은 LC-HRMS로 full scan mode (scan range m/z 50~700, resolving power 70,000)를 이용하여 분석하였다. LC-HRMS 크로마토그램의 백그라운드 노이즈(background noise)를 제거하여 검출되는 피크의 MS spectrum과 정확한 질량(exact mass)를 통해 원소조성(elemental composition) 및 질량 오류(mass error)를 확인하여 성분별로 생성되는 각각의 유도체를 확인하였다.The derivative product was analyzed using LC-HRMS using a full scan mode (scan range m/z 50~700, resolving power 70,000). Generated by each component by checking the elemental composition and mass error through the MS spectrum of the peak detected by removing the background noise of the LC-HRMS chromatogram and the exact mass. Each derivative was identified.

분석대상성분 9종 (HCY, DMG, BET, GBB, CAR, TMA, CHL, TML, TMAO) 각각의 표준용액 (50 μmol/L)을 이용하여 유도체화 시약과 그 농도에 따른 반응 양상을 살펴보았다. 다중 유도체화 반응을 통해 다양한 유도체가 생성될 경우, 유도체 생성물의 형태 ('M+Deriv', 'M+2Deriv'형 등)별로 MS 검출감도가 가장 우수한 것을 각 형태의 대표화합물로 선별하여, 그 중 가장 감도가 우수한 유도체를 최종 분석물질로 선정하였다.Derivatization reagents and reaction patterns according to their concentrations were examined using standard solutions (50 μmol/L) of each of 9 types of analysis targets (HCY, DMG, BET, GBB, CAR, TMA, CHL, TML, TMAO). . When various derivatives are produced through multiple derivatization reactions, the most sensitive MS detection sensitivity for each type of derivative product ('M+Deriv','M+2Deriv' type, etc.) is selected as a representative compound for each type, and The most sensitive derivative was selected as the final analyte.

유도체화 시약별로 대상성분 9종의 반응 결과를 종합하면, 9종의 성분들은 유도체화 시약이 1.0 mol/L일 때 MS 검출감도가 가장 좋았다. 따라서 각 유도체화 시약에서 분석대상성분 9종 모두 가장 우수한 검출감도를 보이는 1.0 mol/L의 농도에서 반응 시약 6종을 최종 비교하였다 (도 1).Summarizing the reaction results of 9 target components for each derivatization reagent, the 9 components had the best MS detection sensitivity when the derivatization reagent was 1.0 mol/L. Therefore, in each derivatization reagent, all of the 9 analyte components were compared at the concentration of 1.0 mol/L, which shows the best detection sensitivity, and 6 reaction reagents were finally compared (FIG. 1).

전반적인 MS 감도 향상성은 EtBAc, iPrBAc, MeBAc, tBuBAc, BzBAc, PhBAc 순으로 확인되었다. 따라서 분석대상성분 9종의 유도체화 시약으로 EtBAc를 최종 선정하였다.Overall MS sensitivity enhancement was confirmed in the order of EtBAc, iPrBAc, MeBAc, tBuBAc, BzBAc, PhBAc. Therefore, EtBAc was finally selected as a derivatization reagent for 9 components to be analyzed.

<< 실험예Experimental Example 2> 여과지 중 염산 2> Hydrochloric acid in filter paper 점적Drip 검토(On-spot Reaction) Review (On-spot Reaction)

DBS에서 특이적으로 TMA이 휘발 되어 회수율이 낮아지는 현상을 해결하고자 여과지에 혈액을 점적하기 전에 염산 용액을 미리 처리하였다. 이에 필요한 최적의 염산 농도를 확인하고자 서로 다른 농도인 0.001, 0.05, 0.01, 0.05, 0.1, 0.5, 1.0 mol/L의 염산 수용액을 제조하여 비교 시험하였다. DBS 여과지로는 와트만 903 (Whatman 903) 프로틴 세이버 카드(protein saver card)를 사용하였다.In order to solve the phenomenon in which the recovery of TMA is volatilized in DBS specifically, the hydrochloric acid solution was previously treated before dripping blood on filter paper. In order to confirm the optimum hydrochloric acid concentration required for this, aqueous hydrochloric acid solutions of 0.001, 0.05, 0.01, 0.05, 0.1, 0.5, and 1.0 mol/L having different concentrations were prepared and compared. As a DBS filter paper, a Whatman 903 protein saver card was used.

그 결과 염산 수용액의 농도가 증가할수록 TMA 회수율이 점차 개선되었으며, 0.5 mol/L의 농도를 처리했을 때 약 100%에 가까운 회수율을 보였다 (도 2). 결론적으로 TMA-염산 중화반응을 통해 DBS 중 TMA의 손실을 방지할 수 있었으며, 염산 0.5 mol/L에서 최적의 효율을 나타냄을 알 수 있었다.As a result, as the concentration of the hydrochloric acid aqueous solution increased, the TMA recovery rate gradually improved, and when the concentration of 0.5 mol/L was treated, the recovery rate was about 100% (FIG. 2). In conclusion, the TMA-hydrochloric acid neutralization reaction prevented the loss of TMA in DBS, and it was found that the optimum efficiency was exhibited at 0.5 mol/L hydrochloric acid.

<< 실험예Experimental Example 3> 검출감도 3> Sensitivity

상기 실시예 1과 같이 최적화된 유도체화 반응 조건을 통해 대상성분 9종 중 반응에 참여하는 7종 (HCY, DMG, BET, GBB, CAR, TMA, TML)의 MS 검출감도 향상 정도를 살펴보았다. 혈액 중 분석 대상성분의 SA(surrogate analyte)을 이용하여 20 μmol/L의 DBS를 제작한 후 유도체화 반응을 진행하여 생성된 유도체의 피크면적과 유도체화 반응을 진행하지 않은 원물질의 피크 면적 간의 비율 (유도체/원물질)로 확인하였다. 결과는 총 3회 반복 시험하여 도출된 평균값으로 제시하였다.Through the optimized derivatization reaction conditions as in Example 1, the degree of MS detection sensitivity improvement of 7 (HCY, DMG, BET, GBB, CAR, TMA, TML) participating in the reaction among the 9 target components was examined. 20 μmol/L DBS was prepared using SA (surrogate analyte) of the analyte in blood, and then the derivatization reaction was performed to determine the peak area of the resulting derivative and the peak area of the raw material that did not undergo the derivatization reaction. It was confirmed by the ratio (derivative/raw material). The results are presented as the average value derived from a total of 3 repeated tests.

그 결과, HCY는 유도체화를 통해 새로이 검출할 수 있었으며, 나머지는 성분별로 약 1.6-86.3배 검출감도가 향상됨을 알 수 있었다 (표 3). 특히 TMA는 원물질에 비해 80배 이상 감도가 향상되었는데, 이는 염산 처리 및 유도체화 반응으로 도입된 작용기로 인해 TMA의 휘발성이 감소하여 ESI(electrospray ionization) 이온화의 탈용매화(desolvation) 과정 중 손실되는 TMA의 양을 최소화 할 수 있었기 때문으로 추정된다. 또한, 분자 구조적으로 ESI 이온화 효율이 높아진 점도 중요한 요소 중 하나일 것이다.As a result, it was found that HCY could be newly detected through derivatization, and the rest was improved by about 1.6-86.3-fold detection sensitivity for each component (Table 3). In particular, TMA has improved sensitivity more than 80 times compared to the raw material, which is reduced during the desolvation process of electrospray ionization (ESI) ionization due to reduced volatility of TMA due to the functional groups introduced by hydrochloric acid treatment and derivatization reaction. It is estimated that the amount of TMA could be minimized. In addition, the increased molecular structure ESI ionization efficiency is another important factor.

Figure 112019030285765-pat00003
Figure 112019030285765-pat00003

<< 실험예Experimental Example 4> 선택성(Selectivity) 4> Selectivity

본 시험의 분석대상성분은 모두 내인성 물질이므로 각 성분의 안정동위원소 표지 화합물인 대용성분을 이용하여 분석법 검증을 수행하였다. 혈액 공시료 (blank whole blood)와 대상성분 9종의 안정동위원소 표지 화합물 (HCY-d4, DMG-d6, BET-d9, GBB-d9, CAR-d3, TMA-d9, CHL-d9, TML-d9, TMAO-d9)을 첨가한 혈액으로 DBS를 제조하였으며, 대상시료로 실제 혈액 6가지를 임의로 선정하여 시험하였다. 그 결과 도 3과 같이 혈액 공시료로 제조한 DBS의 LC-HRMS 크로마토그램에서 목적성분의 머무름 시간 (retention time) 주변에 간섭 피크가 검출되지 않음을 확인하였다. 또한, 대상성분의 SA(surrogate analyte) 9종과 내부표준물질을 첨가한 DBS 분석 결과에서도 다른 간섭성분의 영향을 받지 않고 목적성분 10종 모두 원활히 분리됨을 확인하였다.Since the components to be analyzed in this test are all endogenous substances, the method validation was performed using surrogate components that are stable isotope-labeled compounds of each component. Stable isotope-labeled compounds (HCY-d 4 , DMG-d 6 , BET-d 9 , GBB-d 9 , CAR-d 3 , TMA-d 9 , of blank whole blood and 9 target components) DBS was prepared from blood added with CHL-d 9 , TML-d 9 , and TMAO-d 9 ), and 6 kinds of actual blood were selected and tested as target samples. As a result, it was confirmed that an interference peak was not detected around the retention time of the target component in the LC-HRMS chromatogram of DBS prepared with a blood sample as shown in FIG. 3. In addition, it was confirmed from the results of DBS analysis in which 9 types of SA (surrogate analyte) of the target component and an internal standard were added, all 10 target components were separated smoothly without being affected by other interference components.

<< 실험예Experimental Example 5> 응답계수(Response Factor) 5> Response Factor

내인성 물질은 공시료 (blank matrix)를 확보할 수 없으므로 분석법 개발 과정 또는 대상성분의 정량에 어려움이 있다. 본 발명에서는 이를 극복하기 위해 SA(surrogate analyte)법을 도입하였다. SA법은 실제성분 AA(authentic analyte)와 화학적 성질이 동일한 안정동위원소 표지 화합물을 SA로 이용하여 검량선을 작성한 후 실제 생체시료 중에서 목적하는 내인성 물질을 정량하는 방법이다. 이는 AA(authentic analyte)와 SA(surrogate analyte)의 화학적 성질이 동일하기 때문에 머무름 시간 등의 크로마토그래피적 경향성, 피크면적으로 대표되는 MS 검출반응성, 추출 및 유도체화 반응 등이 이론적으로 거의 같다는 점을 기초로 한다. 하지만, 두 그룹 간의 MS 검출반응이 동일하다면 큰 문제가 없지만, MS 검출반응이 다를 경우 이에 대한 보정이 필요하며, 이 보정 상수를 '응답 계수 (response factor; RF)'라고 한다. 본 시험에서는 표준용액과 실제 DBS 공시료를 전처리한 후 표준용액을 첨가한 용액 (matrix-matched standard, MMS)을 이용하여 응답 계수를 확인하였다.Since the endogenous substance cannot secure a blank matrix, it is difficult to develop an analytical method or quantify the target component. In the present invention, a surrogate analyte (SA) method was introduced to overcome this. The SA method is a method for quantifying a desired endogenous substance in an actual biosample after preparing a calibration curve using a stable isotope-labeled compound having the same chemical properties as the actual component AA (authentic analyte) as SA. This is because the chemistry of the authentic analyte (AA) and the surrogate analyte (SA) is the same, so the chromatographic tendency such as retention time, the MS detection reactivity represented by the peak area, and the extraction and derivatization reaction are theoretically the same. It is based. However, if the MS detection response between the two groups is the same, there is no problem, but if the MS detection response is different, correction is necessary, and this correction constant is called a'response factor (RF)'. In this test, the response coefficient was confirmed by using a solution (matrix-matched standard, MMS) to which a standard solution was added after the standard solution and the actual DBS sample were pretreated.

먼저, 분석대상성분 9종의 실제 성분 (authentic analyte; HCY, DMG, BET, GBB, CAR, TMA, CHL, TML, TMAO)과 해당 성분 각각의 안정동위원소 표지 화합물 (surrogate analyte; HCY-d4, DMG-d6, BET-d9, GBB-d9, CAR-d3, TMA-d9, CHL-d9, TML-d9, TMAO-d9)의 표준용액을 동일한 농도로 조제하여 0.2-100 μmol/L 구간에서 MS 검출반응을 확인하여 RF 값을 산출하였다. RF 값이 1일 경우 AA와 SA의 MS 검출반응이 동일함을 뜻하고, 1보다 클 경우 SA의 검출반응이 더 크며, 1보다 작을 경우 AA의 검출반응이 더 큰 것으로 해석할 수 있다. 최종적으로 RF 값이 1을 기준으로 5% (0.95-1.05)를 벗어나는 성분은 하기 식 1에 따라 RF 값으로 보정한 후 정량하고자 하였다.First, the actual components (authentic analyte; HCY, DMG, BET, GBB, CAR, TMA, CHL, TML, TMAO) of the 9 components to be analyzed and the stable isotope labeling compound (surrogate analyte; HCY-d 4 ) of each of the components , DMG-d 6 , BET-d 9 , GBB-d 9 , CAR-d 3 , TMA-d 9 , CHL-d 9 , TML-d 9 , TMAO-d 9 ) The RF value was calculated by confirming the MS detection reaction in the 0.2-100 μmol/L section. When the RF value is 1, it means that the detection reaction of AA and SA is the same, when it is greater than 1, the detection reaction of SA is greater, and when it is less than 1, it can be interpreted that the detection reaction of AA is greater. Finally, the component whose RF value deviated from 5% (0.95-1.05) based on 1 was tried to quantify after being corrected to the RF value according to the following Equation 1.

[식 1][Equation 1]

Figure 112019030285765-pat00004
Figure 112019030285765-pat00004

그 결과 9종 성분의 RF 값 모두 농도에 따라 큰 차이 없이 일관성 있는 결과를 보였다. 다만, 성분에 따라 RF 값에 일부 차이가 발생하였는데, AA(authentic analyte)와 SA(surrogate analyte) 간의 MS 검출반응이 가장 큰, 즉 RF 값이 1에서 가장 떨어져 있는 성분은 HCY로서, 0.79의 RF 값을 나타냈다. 나머지 성분들은 0.88-1.03의 RF 값을 보여 두 그룹 간의 MS 검출반응에 큰 차이는 없었다. As a result, all the RF values of the 9 components showed consistent results without significant differences depending on the concentration. However, some differences occurred in the RF values depending on the components.The MS detection reaction between the authentic analyte (AA) and the surrogate analyte (SA) is the largest, that is, the component with the lowest RF value at 1 is HCY. The value was shown. The remaining components showed an RF value of 0.88-1.03, so there was no significant difference in the MS detection response between the two groups.

또한, 실제 DBS 시료에도 적용하여 기질 (matrix)의 영향이 있는지도 확인하였다. AA(Authentic analyte)는 실제 혈액 중에 존재하기 때문에 이와 뚜렷하게 구별될 수 있는 고농도의 25, 100 μmol/L에서 시험하였으며, AA를 첨가한 시료의 피크면적비와 공시료 피크면적비의 차로 결과를 산출하였다. 그 결과 MMS 시료에서도 농도에 따라 RF값에 차이는 발생하지 않았고, 성분별로 0.77-1.06의 RF값을 나타냈다. 이를 표준용액과 비교했을 때 그 차이는 -4.5-4.5%로 RF 결과에 기질이 미치는 영향은 거의 없음을 확인하였다. 최종적으로 MMS에서 RF값이 5% (0.95-1.05)를 벗어나는 HCY, BET, CAR, TMA, TML, TMAO는 각각의 RF값 0.77, 0.86, 1.06, 0.88, 0.85, 0.92를 보정하여 정량하였다.In addition, it was also applied to an actual DBS sample to confirm that there was an effect of the matrix. Since AA (Authentic analyte) is present in actual blood, it was tested at a high concentration of 25, 100 μmol/L that can be clearly distinguished from this, and the difference between the peak area ratio of the sample added with AA and the peak area ratio of the blank was calculated. As a result, even in the MMS sample, no difference occurred in the RF value according to the concentration, and an RF value of 0.77-1.06 was shown for each component. When compared with the standard solution, the difference was -4.5-4.5%, which confirmed that the substrate had little effect on the RF results. Finally, HCY, BET, CAR, TMA, TML, TMAO in which the RF value out of 5% (0.95-1.05) in MMS was corrected and corrected for each RF value 0.77, 0.86, 1.06, 0.88, 0.85, 0.92.

<< 실험예Experimental Example 6> 6> 평행성Parallelism 검정(Parallelism Assessment) Test (Parallelism Assessment)

SA(surrogate analyte)를 이용하여 실제 시료 중에 함유되어 있는 AA(authentic analyte)을 정확하게 정량할 수 있는지 평가하고자 평행성 검정 시험을 수행하였다. 혈액에 AA를 첨가하여 제조한 DBS로 검량선을 작성하고, 이와 동일한 혈액에 물 (공시료)과 authentic analyte (QC 시료)를 각가 첨가하여 제조한 DBS를 분석한 후 미리 작성한 검량선에 대입하여, AA의 기저 농도 (endogenous concentration)와 측정 농도 (calculated concentration)를 각각 산출하였다. 이때, 상기 실험예 3에서 구한 각 성분별 RF값을 보정계수로 활용하였다. 즉, 검출된 피크면적비에 각 성분의 RF값을 각각 곱한 후 검량선에 대입하여 정확한 AA(authentic analyte)의 농도를 구하였다. 이를 6회 반복 수행하여 결과의 정확성과 정밀성을 평가하였다. 정확성은 QC 시료에서 측정된 농도 (calculated concentration)를 이론 농도 (theoretical concentration: endogenous concentration과 spiked concentration의 합)로 나눈 값의 백분율로 측정하였고, 정밀성은 각 농도별로 6회 반복 시험에 대한 상대표준편차로 확인하였다. A parallelity test was performed to evaluate whether the authentic analyte (AA) contained in the actual sample can be accurately quantified using a surrogate analyte (SA). Prepare a calibration curve with DBS prepared by adding AA to the blood, analyze the DBS prepared by adding water (sample) and authentic analyte (QC sample) to the same blood, and substitute the previously prepared calibration curve and enter AA The endogenous concentration and calculated concentration of were calculated respectively. At this time, the RF value for each component obtained in Experimental Example 3 was used as a correction factor. That is, the detected peak area ratio was multiplied by the RF value of each component, and then substituted into a calibration curve to obtain an accurate concentration of AA (authentic analyte). This was repeated 6 times to evaluate the accuracy and precision of the results. Accuracy was measured as a percentage of the calculated concentration in the QC sample divided by the theoretical concentration (the sum of the endogenous concentration and the spiked concentration), and the precision was the relative standard deviation for 6 replicates for each concentration. It was confirmed by.

그 결과 대상성분 9종에 대한 정확성은 86.7-109.7%, 정밀성은 4.7-11.0%를 나타내 허용 범위를 만족하였다. As a result, the accuracy for the 9 target components was 86.7-109.7%, and the precision was 4.7-11.0%, which satisfied the allowable range.

<< 실험예Experimental Example 7> 7> 직선성Linearity (Linearity) (Linearity)

직선성을 입증하기 위해 혈액 공시료에 적정 농도가 되도록 분석대상성분 9종의 SA(surrogate analyte) 표준용액을 첨가하고, 이를 이용하여 기지 농도의 검량선용 DBS를 조제한 다음 전처리하여 분석하였다. 혈액 중 각 분석대상성분의 농도 범위 (HCY-d4 및 DMG-d6 0.1-50 μmol/L, BET-d9 0.05-100 μmol/L, GBB-d9 0.02-20 μmol/L, CAR-d3 0.1-100 μmol/L, TMA-d9 0.01-20 μmol/L, CHL-d9 0.025-50 μmol/L, TML-d9 0.1-20 μmol/L, TMAO-d9 0.2-100 μmol/L)에서 모든 성분이 상관계수 (coefficient of correlation, R 2 ) 0.99 이상의 양호한 직선성을 보였다 (도 4 내지 6).In order to prove the linearity, a standard solution of 9 (surrogate analyte) of the target component was added to the blood sample to obtain an appropriate concentration, and DBS for a calibration curve of a known concentration was prepared and analyzed by pretreatment. Concentration range of each analyte in blood (HCY-d 4 and DMG-d 6 0.1-50 μmol/L, BET-d 9 0.05-100 μmol/L, GBB-d 9 0.02-20 μmol/L, CAR- d 3 0.1-100 μmol/L, TMA-d 9 0.01-20 μmol/L, CHL-d 9 0.025-50 μmol/L, TML-d 9 0.1-20 μmol/L, TMAO-d 9 0.2-100 μmol /L), all components showed good linearity of coefficient of correlation ( R 2 ) of 0.99 or more (FIGS. 4 to 6 ).

<< 실험예Experimental Example 8> 최저정량한계(Lower Limit of Quantification; 8> Lower Limit of Quantification; LLOQLLOQ ))

최저정량한계는 개발된 시험법으로 정확하게 정량할 수 있는 목적성분의 최소 농도를 의미한다. 본 시험법에서는 LC-MS 크로마토그램 상에서 신호 대 잡음 비 (S/N ratio)가 10 이상이고, 정확성은 80-120%, 정밀성은 상대표준편차로 20% 이하를 만족하는 농도로 설정하였다. 분석대상성분 9종의 SA(surrogate analyte)의 최저정량한계는 HCY-d4, DMG-d6, CAR-d3, TML-d9 0.1 μmol/L, BET-d9 0.05 μmol/L, GBB-d9 0.02 μmol/L, TMA-d9 0.01 μmol/L, CHL-d9 0.025 μmol/L, TMAO-d9 0.2 μmol/L로 측정되었고, 해당 농도를 각 성분의 검량선에서 가장 낮은 농도로 설정하였다.The minimum quantitative limit means the minimum concentration of the target component that can be accurately quantified using the developed test method. In this test method, the signal-to-noise ratio (S/N ratio) on the LC-MS chromatogram was 10 or more, and the accuracy was set to a concentration that satisfies 20% or less with 80-120% accuracy and relative standard deviation. The minimum limit of quantification for the SA (surrogate analyte) of the 9 components to be analyzed is HCY-d 4 , DMG-d 6 , CAR-d 3 , TML-d 9 0.1 μmol/L, BET-d 9 0.05 μmol/L, GBB -d 9 0.02 μmol/L, TMA-d 9 0.01 μmol/L, CHL-d 9 0.025 μmol/L, TMAO-d 9 0.2 μmol/L were measured, and the concentration was adjusted to the lowest concentration in the calibration curve for each component. Was set.

<< 실험예Experimental Example 9> 회수율(Recovery) 9> Recovery

회수율은 혈액 공시료에 기지농도의 표준용액을 첨가하여 전처리한 시료 (A)와 혈액 공시료를 전처리한 후 대응되는 농도의 표준용액을 첨가한 시료 (B) 각각의 피크면적비 비율 (A/B)의 백분율로 구하였다. 회수율을 확인하기 위하여 각 성분별로 검량선 범위 내의 3가지 농도 (저, 중, 고농도)에서 각각 6회 반복 시험하였다.The recovery rate is the peak area ratio ratio (A/B) of each sample (A) pre-treated by adding a standard concentration of a known concentration to the blood sample and sample (B) pre-treated with a corresponding concentration of the standard solution. ). In order to confirm the recovery rate, each component was repeatedly tested six times at three concentrations (low, medium, and high concentration) within the calibration curve range.

그 결과 목적성분 9종의 회수율은 72.3-94.6%로 나타났고, 모든 시험에서 상대표준편차 10.9% 이내의 양호한 재현성을 보였다.As a result, the recovery rate of 9 target components was found to be 72.3-94.6%, and all tests showed good reproducibility within 10.9% of the relative standard deviation.

<< 실험예Experimental Example 10> 반복성(Reproducibility) 10> Reproducibility

반복성을 검증하기 위하여 분석 대상성분 9종의 SA(surrogate analyte) 표준용액을 LC-HRMS에 6회 반복주입하여 시험하였으며, 각 성분별 피크면적비의 상대표준편차로 확인하였다. 그 결과 모든 성분에서 1.8-4.1%의 상대표준편차를 보여 기기 재현성이 양호함을 확인하였다.In order to verify the repeatability, a standard solution of 9 kinds of analyzed components (surrogate analyte) was repeatedly injected into LC-HRMS 6 times, and it was confirmed by the relative standard deviation of the peak area ratio for each component. As a result, the relative standard deviation of 1.8-4.1% was observed for all components, confirming that the device reproducibility was good.

<< 실험예Experimental Example 11> 안정성(Stability) 11> Stability

목적성분 9종의 안정성을 평가하기 위하여 표준용액 안정성(standard solution stability), 자동 샘플러 안정성(autosampler stability), 단기간 안정성(short-term stability), 장기간 안정성(long-term stability)으로 구분하여 총 4가지 항목에 대한 시험을 수행하였다. 안정성 시험별로 분석대상성분의 최초 피크면적비를 기준으로 각 일자 (시간)에 따른 피크면적비의 증감 여부를 백분율로 표기하여 시험 결과를 확인하였다.In order to evaluate the stability of 9 types of target components, there are four types, standard solution stability, autosampler stability, short-term stability, and long-term stability. Tests were performed on the items. For each stability test, the test result was confirmed by indicating whether the peak area ratio increased or decreased according to each day (time) based on the initial peak area ratio of the analyzed component.

먼저, 표준용액 자체의 안정성을 확인하기 위한 표준용액 안정성(standard solution stability) 시험 결과, 92.9-105.8%의 안정성을 보였다 (도 7). 둘째, 분석시간이 길어질 때 그 시간동안 전처리한 시료가 자동 샘플러(autosampler) 내에서 안정한지 확인하기 위한 자동 샘플러 안정성(autosampler stability) 시험 결과, 95.4-103.2%의 안정성을 보였다 (도 8). 셋째, DBS는 우편 배달 등을 통한 시료 전달도 가능하므로 이러한 시료 운송 기간동안 상온에 노출될 경우를 고려한 단기간 안정성(short-term stability)를 확인하였다. 그 결과 92.6-105.1%의 안정성을 보였다 (도 9). 넷째, DBS 시료가 장기간 안정한지 확인하고자 장기간 안정성(long-term stability) 시험을 실시한 결과, 92.2-105.4%의 안정성을 확인하였다 (도 10). 따라서 분석 시간, 시료 운송 및 시료 보관 등에 따른 대상성분의 안정성은 전반적으로 큰 문제가 없음을 확인하였다.First, as a result of a standard solution stability test to confirm the stability of the standard solution itself, it showed a stability of 92.9-105.8% (FIG. 7). Second, when the analysis time was long, as a result of an autosampler stability test to confirm that the sample pre-treated during that time was stable in an autosampler, it showed a stability of 95.4-103.2% (FIG. 8). Third, since DBS can also deliver samples through postal delivery, it was confirmed that short-term stability was taken into account when exposed to room temperature during these samples. As a result, it showed a stability of 92.6-105.1% (Fig. 9). Fourth, as a result of conducting a long-term stability test to confirm that the DBS sample is stable for a long period of time, a stability of 92.2-105.4% was confirmed (FIG. 10 ). Therefore, it was confirmed that the stability of the target component according to the analysis time, sample transport, and sample storage did not have a large problem overall.

결론적으로 본 발명은 DBS 전처리로서 혈액 점적 전 염산 전처리 통한 휘발 방지 및 에틸 브로모아세테이트(ethyl bromoacetate;EtBAc)처리를 통한 화학적 유도체화 방법을 도입하여 검출감도를 향상시켰으며, SA(surrogate analyte)법을 이용하여 미량의 내인성 물질까지 정확하게 동시 정량분석할 수 있는 시험법을 개발하였다.In conclusion, the present invention introduced a chemical derivatization method through prevention of volatilization through pretreatment of hydrochloric acid and treatment with ethyl bromoacetate (EtBAc) as a pretreatment for blood droplets as a DBS pretreatment, and improved detection sensitivity, and surrogate analyte (SA) method. A test method was developed to accurately and simultaneously quantitatively analyze even a small amount of endogenous substances using.

따라서 본 발명에 따른 TMAO 대사에 관련된 다양한 화합물의 분석방법을 통해 심근경색 (myocardial infarction), 뇌졸중 (stroke), 혈전증 (thromobosis), 심부전 (heart failure), 심방세동 (atrial fibrillation)과 같은 부정맥 (arrhythmia) 등 다양한 심혈관계 질환 진단 및 분석에 유용하게 활용될 수 있을 것이다.Accordingly, arrhythmia such as myocardial infarction, stroke, thromobosis, heart failure, atrial fibrillation, etc. through an analysis method of various compounds related to TMAO metabolism according to the present invention ) It can be useful for diagnosis and analysis of various cardiovascular diseases.

Claims (7)

(a) 건조점적혈액(dried blood spots; DBS) 여과지를 염산 처리하는 단계;
(b) 상기 DBS 여과지에 혈액을 점적하는 단계;
(c) 상기 혈액이 점적된 DBS 여과지에 내부 표준물질(internal standard solution) 및 용출 용매를 첨가하여 반응시킨 후 원심분리하여 상등액을 수득하는 단계;
(d) 상기 수득된 상등액에 에틸 브로모아세테이트(ethyl bromoacetate;EtBAc)를 첨가하여 반응시키는 단계; 및
(e) 상기 (d) 단계에서 수득된 반응물을 분석하는 단계; 를 포함하는 혈액 내 트리메틸아민산화물계 화합물의 동시 정량분석 방법.
(a) hydrochloric acid treatment of filtered blood spots (DBS) filter paper;
(b) dripping blood onto the DBS filter paper;
(c) reacting by adding an internal standard solution and an elution solvent to the blood-dropped DBS filter paper, followed by centrifugation to obtain a supernatant;
(d) reacting by adding ethyl bromoacetate (EtBAc) to the obtained supernatant; And
(e) analyzing the reactants obtained in step (d); Simultaneous quantitative analysis method of trimethylamine oxide compounds in the blood containing.
제 1항에 있어서,
트리메틸아민산화물계 화합물은,
트리메틸아민 N-옥사이드(trimethylamine N-oxide; TMAO), 트리메틸아민(trimethylamine; TMA), 카르니틴(carnitine; CAR), 콜린(choline; CHL), 베타인(betaine; BET), γ-부틸로베타인(γ-butyrobetaine; GBB), 트리메틸리신(trimethyllysine; TML), 호모시스테인(homocysteine; HCY), 디메틸글리신(dimethylglycine; DMG)인 것을 특징으로 하는 혈액 내 트리메틸아민산화물계 화합물의 동시 정량분석 방법.
According to claim 1,
The trimethylamine oxide-based compound,
Beta in; (BET betaine), γ- butyl trimethylamine N- oxide (trimethylamine N -oxide; TMAO), trimethylamine (trimethylamine; TMA), carnitine (carnitine;; CAR), choline (choline CHL), betaine (γ-butyrobetaine; GBB), trimethyllysine (TML), homocysteine (HCY), dimethylglycine (dimethylglycine; DMG) method for simultaneous quantitative analysis of trimethylamine oxide compounds in the blood.
제 1항에 있어서,
건조점적혈액(dried blood spots; DBS) 여과지를 염산 처리하는 단계는,
염산을 0.1 내지 1.0 mol/L의 농도로 처리하는 것을 특징으로 하는 혈액 내 트리메틸아민산화물계 화합물의 동시 정량분석 방법.
According to claim 1,
The step of hydrochloric acid treatment of the filtered blood spots (DBS) filter paper,
Method for simultaneous quantitative analysis of trimethylamine oxide compounds in blood, characterized in that hydrochloric acid is treated at a concentration of 0.1 to 1.0 mol/L.
제 1항에 있어서,
에틸 브로모아세테이트(ethyl bromoacetate;EtBAc)를 첨가하여 반응시키는 단계는,
EtBAc를 0.75 내지 1.5 mol/L의 농도로 처리하는 것을 특징으로 하는 혈액 내 트리메틸아민산화물계 화합물의 동시 정량분석 방법.
According to claim 1,
The step of reacting by adding ethyl bromoacetate (EtBAc),
Method for simultaneous quantitative analysis of trimethylamine oxide compounds in blood, characterized in that EtBAc is treated at a concentration of 0.75 to 1.5 mol/L.
제 1항에 있어서,
혈액이 점적된 DBS 여과지에 내부 표준물질(internal standard solution) 및 용출 용매를 첨가하는 단계는,
다이티오트레이톨(dithiothreitol;DTT) 환원제를 더 포함하는 것을 특징으로 하는 혈액 내 트리메틸아민산화물계 화합물의 동시 정량분석 방법.
According to claim 1,
The step of adding an internal standard solution and an elution solvent to the blood-dried DBS filter paper,
Method for simultaneous quantitative analysis of trimethylamine oxide compounds in the blood, further comprising a dithiothreitol (DTT) reducing agent.
제 1항에 있어서,
반응물을 분석하는 단계는,
크로마토그래피/질량분석기로 분석하는 것을 특징으로 하는 혈액 내 트리메틸아민산화물계 화합물의 동시 정량분석 방법.
According to claim 1,
The step of analyzing the reactants is,
Method for simultaneous quantitative analysis of trimethylamine oxide compounds in blood, characterized by analyzing by chromatography/mass spectrometry.
제 1항에 있어서,
분석방법은,
검출감도를 2배 내지 86배 향상시키는 것을 특징으로 하는 혈액 내 트리메틸아민산화물계 화합물의 동시 정량분석 방법.
According to claim 1,
As for the analysis method,
Method for simultaneous quantitative analysis of trimethylamine oxide-based compounds in blood, which improves the detection sensitivity by 2 to 86 times.
KR1020190033497A 2019-03-25 2019-03-25 Analytical method for the simultaneous determination of trimethylamine N-oxide and its related compounds in dried blood spots KR102120822B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190033497A KR102120822B1 (en) 2019-03-25 2019-03-25 Analytical method for the simultaneous determination of trimethylamine N-oxide and its related compounds in dried blood spots

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190033497A KR102120822B1 (en) 2019-03-25 2019-03-25 Analytical method for the simultaneous determination of trimethylamine N-oxide and its related compounds in dried blood spots

Publications (1)

Publication Number Publication Date
KR102120822B1 true KR102120822B1 (en) 2020-06-09

Family

ID=71081993

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190033497A KR102120822B1 (en) 2019-03-25 2019-03-25 Analytical method for the simultaneous determination of trimethylamine N-oxide and its related compounds in dried blood spots

Country Status (1)

Country Link
KR (1) KR102120822B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113866285A (en) * 2020-06-30 2021-12-31 上海透景生命科技股份有限公司 Biomarker for diabetes diagnosis and application thereof
CN114264767B (en) * 2020-09-16 2024-07-09 上海脉示生物技术有限公司 Biomarkers for diabetes diagnosis and uses thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010047748A (en) * 1999-11-23 2001-06-15 박호군 A method of analyzing a concentration of homocysteine in plasma
JP2005537022A (en) * 2002-09-03 2005-12-08 アンチキャンサー インコーポレーテッド Homocysteine assay applicable to screening
KR100773878B1 (en) * 2007-01-25 2007-11-07 한국과학기술연구원 Method for analysis of homocysteine in plasma using gas chromatography-mass spectrometry
JP2014520265A (en) * 2011-06-16 2014-08-21 ベイラー リサーチ インスティテュート Analysis of total homocysteine and methylmalonic acid in plasma obtained from a plasma separation device (PSD) by LC-MS / MS
KR101505064B1 (en) 2013-05-07 2015-03-30 한국과학기술연구원 Discrimination of sitosterolemia in a dried blood spot
WO2016098757A1 (en) * 2014-12-15 2016-06-23 積水メディカル株式会社 Method for detecting amino acids or acylcarnitine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010047748A (en) * 1999-11-23 2001-06-15 박호군 A method of analyzing a concentration of homocysteine in plasma
JP2005537022A (en) * 2002-09-03 2005-12-08 アンチキャンサー インコーポレーテッド Homocysteine assay applicable to screening
KR100773878B1 (en) * 2007-01-25 2007-11-07 한국과학기술연구원 Method for analysis of homocysteine in plasma using gas chromatography-mass spectrometry
JP2014520265A (en) * 2011-06-16 2014-08-21 ベイラー リサーチ インスティテュート Analysis of total homocysteine and methylmalonic acid in plasma obtained from a plasma separation device (PSD) by LC-MS / MS
KR101505064B1 (en) 2013-05-07 2015-03-30 한국과학기술연구원 Discrimination of sitosterolemia in a dried blood spot
WO2016098757A1 (en) * 2014-12-15 2016-06-23 積水メディカル株式会社 Method for detecting amino acids or acylcarnitine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113866285A (en) * 2020-06-30 2021-12-31 上海透景生命科技股份有限公司 Biomarker for diabetes diagnosis and application thereof
CN114264767B (en) * 2020-09-16 2024-07-09 上海脉示生物技术有限公司 Biomarkers for diabetes diagnosis and uses thereof

Similar Documents

Publication Publication Date Title
Kambhampati et al. Accurate and efficient amino acid analysis for protein quantification using hydrophilic interaction chromatography coupled tandem mass spectrometry
JP5030586B2 (en) Method and apparatus for analyzing amino-functional compounds
Han et al. Metabolomic analysis of key central carbon metabolism carboxylic acids as their 3‐nitrophenylhydrazones by UPLC/ESI‐MS
EP3139171B1 (en) Novel methods and kits for detecting of urea cycle disorders using mass spectrometry
Tsikas et al. Mass spectrometry and 3‐nitrotyrosine: strategies, controversies, and our current perspective
Warth et al. LC-MS/MS-based multibiomarker approaches for the assessment of human exposure to mycotoxins
Trufelli et al. Profiling of non-esterified fatty acids in human plasma using liquid chromatography-electron ionization mass spectrometry
JP2020517929A (en) Mass spectrometric method for detecting and quantifying organic acid metabolites
Božović et al. Quantitative mass spectrometry-based assay development and validation: from small molecules to proteins
Nagy et al. Direct tandem mass spectrometric analysis of amino acids in dried blood spots without chemical derivatization for neonatal screening
US20060094122A1 (en) Method for determination of arginine, methylated arginines and derivatives thereof
Boxler et al. Analytical considerations for (un)‐targeted metabolomic studies with special focus on forensic applications
Dias et al. Analytical methods to monitor dopamine metabolism in plasma: Moving forward with improved diagnosis and treatment of neurological disorders
Guo et al. A rapid, sensitive, and widely applicable method for quantitative analysis of underivatized amino acids in different biological matrices by UHPLC‐MS/MS
Chung et al. Analysis of catecholamine and their metabolites in mice brain by liquid chromatography-mass spectrometry using sulfonated mixed-mode copolymer column
Ferré et al. Separation and determination of cysteine enantiomers in plasma after derivatization with 4-fluoro-7-nitrobenzofurazan
Campbell et al. Separating chiral isomers of amphetamine and methamphetamine using chemical derivatization and differential mobility spectrometry
Pucciarini et al. Optimized one-pot derivatization and enantioseparation of cysteine: Application to the study of a dietary supplement
KR102120822B1 (en) Analytical method for the simultaneous determination of trimethylamine N-oxide and its related compounds in dried blood spots
Sugimoto et al. Method development for the determination of D-and L-isomers of leucine in human plasma by high-performance liquid chromatography tandem mass spectrometry and its application to animal plasma samples
Bunz et al. The selective determination of sulfates, sulfonates and phosphates in urine by CE‐MS
Ribeiro et al. An LC–MS/MS method for the simultaneous determination of 6‐cyanodopamine, 6‐nitrodopamine, 6‐nitrodopa, 6‐nitroadrenaline and 6‐bromodopamine in human plasma and its clinical application in patients with chronic kidney disease
He et al. A UPLC-MRM-MS method for comprehensive profiling of Amadori compound-modified phosphatidylethanolamines in human plasma
CN116858949A (en) Qualitative and quantitative analysis method for sphingolipid metabolites based on liquid chromatography-mass spectrometry technology
Berton et al. Determination of nitrotyrosine in Arabidopsis thaliana cell cultures with a mixed-mode solid-phase extraction cleanup followed by liquid chromatography time-of-flight mass spectrometry

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant