KR102119692B1 - 3D hull bending template production system based on FDM - Google Patents

3D hull bending template production system based on FDM Download PDF

Info

Publication number
KR102119692B1
KR102119692B1 KR1020180097405A KR20180097405A KR102119692B1 KR 102119692 B1 KR102119692 B1 KR 102119692B1 KR 1020180097405 A KR1020180097405 A KR 1020180097405A KR 20180097405 A KR20180097405 A KR 20180097405A KR 102119692 B1 KR102119692 B1 KR 102119692B1
Authority
KR
South Korea
Prior art keywords
curved
production
information
hull
fdm
Prior art date
Application number
KR1020180097405A
Other languages
Korean (ko)
Other versions
KR20200023698A (en
Inventor
박성재
Original Assignee
박성재
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박성재 filed Critical 박성재
Priority to KR1020180097405A priority Critical patent/KR102119692B1/en
Publication of KR20200023698A publication Critical patent/KR20200023698A/en
Application granted granted Critical
Publication of KR102119692B1 publication Critical patent/KR102119692B1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B71/00Designing vessels; Predicting their performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B73/00Building or assembling vessels or marine structures, e.g. hulls or offshore platforms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Ocean & Marine Engineering (AREA)
  • Optics & Photonics (AREA)
  • Combustion & Propulsion (AREA)
  • Computational Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Automation & Control Theory (AREA)

Abstract

본 발명은 선박 건조시 필수적으로 제작되는 곡판의 곡면 완성도 평가를 위한 곡형(bending template)의 제작이 선체 설계정보를 기반으로 생성되는 3D 곡형 모델의 3D 프린팅을 통해 수행되는 FDM 기반 선체 3D 곡형 제작시스템을 제공한다. 이와 같은 본 발명에 따른 FDM 기반 선체 3D 곡형 제작시스템을 통해 현도장(現圖場)에서 곡형의 2D 제작도면이 작도되어 성형되는 것과 달리 선체 설계정보가 확보되어 있는 조선소 설계부서나 3D 곡형제작 관리서비스 제공업체의 설계정보 관리용 단말기와 3D 곡형제작 관리서버를 통해 3D 곡형 모델의 3D 프린팅 정보가 생성되어 3D 프린터에 의한 FDM(Fused Deposition Modeling) 방식으로 플라스틱 재질의 3D 곡형이 제작됨으로써 곡형의 정밀도가 높아져 곡판 제작효율 및 완성도가 증대되고, 곡형제작 프로세스가 간소화되면서 제작공기가 단축되며, 종래 곡형제작과정에서의 복잡한 정보전달이 조선소 설계부서나 3D 곡형제작 관리서비스 제공업체로 일원화되면서 정보의 중복이나 오류가 최소화되는 한편, 웹서버로 구현되는 3D 곡형제작 관리서버와 통신하는 3D 프린터를 통해 곡형이 제작되는 구조임에 따라 현도장 인력이 극소수이거나 없는 복수의 클라이언트측 중소 조선소에서도 고품질의 곡판을 제작할 수 있다.The present invention is an FDM-based hull 3D curved production system that is performed through 3D printing of a 3D curved model in which the production of a bending template for evaluating the completeness of the curved surface of a curved board that is essential when building a ship is generated based on hull design information Gives Unlike the 2D production drawings of curved shapes created and molded at the current painting site through the FDM-based hull 3D curved production system according to the present invention, the shipyard design department or 3D curved production management with hull design information secured The 3D printing information of the 3D curved model is generated through the service provider's design information management terminal and the 3D curved production management server, and 3D curved plastic material is produced by the FDM (Fused Deposition Modeling) method by the 3D printer. As the production efficiency and completeness of the curved plate increases, the production process is shortened by simplifying the process of manufacturing a curved sheet, and the complicated information transmission in the conventional curved sheet manufacturing process is unified as a shipyard design department or a 3D curved manufacturing management service provider. In addition, since errors are minimized and the structure is produced through a 3D printer that communicates with a 3D curved production management server implemented as a web server, high-quality curved plates can be produced even in multiple client-side small and medium-sized shipyards with few or no on-site workers. Can be produced.

Description

FDM 기반 선체 3D 곡형 제작시스템{3D hull bending template production system based on FDM}FDM-based hull 3D curved production system{3D hull bending template production system based on FDM}

본 발명은 선박 건조시 필수적으로 제작되는 곡판의 곡면 완성도 평가를 위한 곡형(bending template)의 제작이 선체 설계정보를 기반으로 생성되는 3D 곡형 모델의 3D 프린팅을 통해 수행되는 FDM 기반 선체 3D 곡형 제작시스템에 관한 것으로, 좀더 구체적으로는 현도장(現圖場)에서 곡형의 2D 제작도면이 작도되어 성형되는 것과 달리 선체 설계정보가 확보되어 있는 조선소 설계부서나 3D 곡형제작 관리서비스 제공업체의 설계정보 관리용 단말기와 3D 곡형제작 관리서버를 통해 3D 곡형 모델의 3D 프린팅 정보가 생성되어 3D 프린터에 의한 FDM(Fused Deposition Modeling) 방식으로 플라스틱 재질의 3D 곡형이 제작됨으로써 곡형의 정밀도가 높아져 곡판 제작효율 및 완성도가 증대되고, 곡형제작 프로세스가 간소화되면서 제작공기가 단축되며, 종래 곡형제작과정에서의 복잡한 정보전달이 조선소 설계부서나 3D 곡형제작 관리서비스 제공업체로 일원화되면서 정보의 중복이나 오류가 최소화되는 한편, 웹서버로 구현되는 3D 곡형제작 관리서버와 통신하는 3D 프린터를 통해 곡형이 제작되는 구조임에 따라 현도장 인력이 극소수이거나 없는 복수의 클라이언트측 중소 조선소에서도 고품질의 곡판을 제작할 수 있는 FDM 기반 선체 3D 곡형 제작시스템에 관한 것이다.The present invention is an FDM-based hull 3D curved production system that is performed through 3D printing of a 3D curved model in which the production of a bending template for evaluating the completeness of the curved surface of a curved board that is essential when building a ship is generated based on hull design information More specifically, the design information management of shipyard design departments or 3D curved production management service providers that have hull design information secured, unlike the fact that 2D production drawings of curved shapes are drawn and molded in the prefecture. 3D printing information of the 3D curved model is generated through the dragon terminal and the 3D curved production management server, and the 3D curved plastic material is manufactured by the FDM (Fused Deposition Modeling) method by the 3D printer, thereby increasing the precision of the curved sheet, thereby improving the efficiency and completeness of the curved plate production. Is increased, the production process is shortened by simplifying the process of manufacturing a curved piece, and the duplication of information or errors is minimized as complex information delivery in the conventional curved piece manufacturing process is unified into a shipyard design department or a 3D curved production management service provider. FDM-based hull 3D capable of producing high-quality curved plates in small and medium-sized shipyards with few or no on-site workers, as the structure is produced through a 3D printer that communicates with a 3D curved production management server implemented as a web server. It relates to a music production system.

선박의 일반적인 건조공정을 개략적으로 살펴보면 다음과 같다. 모델링 프로그램 등을 이용한 선체의 설계, 설계에 의한 생산 제품별 적정 소재의 강재를 확보하는 적치(積置), 설계된 형상에 따라 소재를 절단하고 접합하는 조립, 도크의 탑재 전 블록 상태에 이루어지는 선행의장(Pre-Outfitting), 부식 등의 방지를 위한 도장(Block & Hull Painting), 도크에서 블록의 용접을 통해 선박을 건조하는 탑재(Erection), 도크에 물을 채워 선박을 바다로 띄우는 진수(Launching), 안벽 내에서 배관 및 전선류의 연결 및 각종 의장품을 설치하고 마무리하는 안벽의장, 해상에서 선박의 성능을 최종적으로 테스트 하는 시운전(Sea Trial), 그리고 선박의 인도전 선박에 이름을 부여하고 선주에게 인도하는 명명식(Naming Ceremony)과 인도(Delivery) 등으로 이루어진다.The general construction process of a ship is as follows. Design of the hull using modeling programs, mounting to secure the steel of appropriate material for each product produced by the design, assembly to cut and join the material according to the designed shape, and prior design made in the block state before the dock is mounted (Pre-Outfitting), Block & Hull Painting to prevent corrosion, Erection to dry the ship through welding of blocks in the dock, Launching to fill the dock with water and float the ship to the sea , Connecting the piping and electric wires in the quay wall, and installing and finishing various equipments, sea trial to finally test the performance of the ship at sea (sea trial), and giving the ship a name before giving it to the ship owner It consists of Naming Ceremony and Delivery.

이 경우, 선체의 조립은 강판 등의 판재와 형강류 등의 각종 소재를 가공 후 결합하여 소규모의 블록을 제작하는 소조립 공정, 소조립된 블록을 수개씩 모아 결합시키는 중조립 공정 및, 중조립된 블록을 다시 모아 결합시키는 대조립 공정 등을 거쳐 구현된다. 특히, 블록의 제작은 작업 정반(作業定盤) 상에서 배열과 조립 등에 의한 라인화된 공정을 순차적으로 거침으로써 최종적인 선박의 완성으로 귀결된다.In this case, the assembly of the hull is a small assembling process for manufacturing a small-scale block by processing and combining various materials such as steel sheets and sheet materials such as steel sheets, a medium assembling process for assembling and joining small assembled blocks one by one, and a medium assembling process. It is realized through a control grain process, etc., in which blocks are collected and combined again. In particular, the production of blocks results in the completion of the final ship by sequentially going through a lined process by arrangement and assembly on the work surface.

한편 선박 건조시 도 1에서와 같이 선수부위와 선미부위의 곡률이 큰 곡판이 제작되어야 하고, 이는 선체에서 중요도가 매우 높고 제작이 매우 어렵다. 이에 따라 곡판의 제작은 곡면 완성도 평가를 필수적으로 거치면서 진행되는데, 이를 위해 곡형(bending template)이 제작된다. 곡형은 도 2의 (a)에서와 같이 낱개로 나루어진 2차원 곡형이나 도 2의 (b)에서와 같이 입체로 제작되는 3차원 곡형으로 구현될 수 있는데, 종래에는 현도장(現圖場)에서 곡형의 2D 제작도면이 작도되어 성형된 후 곡가공 공장의 성형팀으로 전달되었다.On the other hand, when building a ship, a curved plate having a large curvature between the bow and stern should be manufactured, as shown in Fig. 1, which is very important in the hull and very difficult to manufacture. Accordingly, the production of the curved plate is progressed through the evaluation of the completion of the curved surface, and for this, a bending template is produced. The curved form may be implemented as a two-dimensional curved piece divided as shown in (a) of FIG. 2 or a three-dimensional curved piece manufactured in three-dimensional form as shown in (b) of FIG. After the 2D production drawing of the curved form was drawn and molded, it was transferred to the forming team of the curved processing plant.

여기서 곡형과 관련된 기술로는 대한민국 등록특허공보 등록번호 제10-1605116호 "선박 건조시 곡형 블록의 제작 공법", 등록번호 제10-1246185호 "곡형 부재의 가공 완성도 평가 방법 및 그 시스템". 등록번호 제10-0913848호 "곡형 부재 가공 완성도 평가 시스템 및 그 방법" 등이 안출되어 있다.Here, as the technology related to the curved shape, the Republic of Korea Registered Patent Publication No. 10-1605116 "The manufacturing method of the curved block when the ship is built", the registration number 10-1246185 "The process of evaluating the completeness of the curved member and its system". Registration No. 10-0913848 "Curved member processing completeness evaluation system and method" have been devised.

그러나 종래에는 현도장(現圖場)에서 작업자들에 의해 수작업으로 곡형의 2D 제작도면이 작도되어 성형되는 것이어서 곡형의 정밀도가 떨어지고, 3D 형상도면은 제작되지 않게 되는 한계이 있었으며, 이에 따라 곡판의 제작효율과 완성도가 떨어지는 문제점이 있었다. 또한 도 2와 도 3에서와 같이 종래 AS-IS 프로세스로 진행되는 곡형제작 프로세스가 복잡하여 제작공기가 늘어나게 되며, 곡형제작과정에서의 복잡한 정보전달구조로 인하여 정보의 중복이나 오류가 발생되는 경우가 종종 발생하였다.However, in the prior art, since the 2D production drawings of the curves were manually drawn and molded by the workers in the field, the precision of the curves was deteriorated, and the 3D shape drawings were not produced. There was a problem of poor efficiency and completeness. Also, as shown in Figs. 2 and 3, the production process is increased due to the complicated production process of the curved form that proceeds with the conventional AS-IS process. Often occurred.

그리고 현도장 인력이 극소수이거나 없는 중소 조선소에서는 고기량의 전문인력 확보의 부담이 발생하였으며, 고품질의 곡판을 제작하기 어려운 여건이었다.In addition, in small and medium-sized shipyards with few or no on-site workers, there was a burden of securing professional manpower for meat, and it was difficult to produce high-quality grain.

대한민국 등록특허공보 등록번호 제10-1605116호 "선박 건조시 곡형 블록의 제작 공법"Republic of Korea Registered Patent Publication No. 10-1605116 "How to manufacture a curved block when building a ship" 대한민국 등록특허공보 등록번호 제10-1246185호 "곡형 부재의 가공 완성도 평가 방법 및 그 시스템"Republic of Korea Registered Patent Publication No. 10-1246185 "Method for evaluating the processing completeness of a curved member and its system" 대한민국 등록특허공보 등록번호 제10-0913848호 "곡형 부재 가공 완성도 평가 시스템 및 그 방법"Republic of Korea Patent Registration No. 10-0913848 "Curved member processing completeness evaluation system and method"

따라서 본 발명은 이와 같은 종래 기술의 문제점을 개선하여, 선체 설계정보가 확보되어 있는 조선소 설계부서나 3D 곡형제작 관리서비스 제공업체의 설계정보 관리용 단말기와 3D 곡형제작 관리서버를 통해 3D 곡형 모델의 3D 프린팅 정보가 생성되어 3D 프린터에 의한 FDM(Fused Deposition Modeling) 방식으로 플라스틱 재질의 3D 곡형이 제작되도록 함으로써 곡형의 정밀도가 높아져 곡판 제작효율 및 완성도가 증대될 수 있고, 곡형제작 프로세스가 간소화되면서 제작공기가 단축될 수 있으며, 종래 곡형제작과정에서의 복잡한 정보전달이 조선소 설계부서나 3D 곡형제작 관리서비스 제공업체로 일원화되면서 정보의 중복이나 오류가 최소화될 수 있는 새로운 형태의 FDM 기반 선체 3D 곡형 제작시스템을 제공하는 것을 목적으로 한다.Therefore, the present invention improves the problems of the prior art, and the ship design department or the 3D curved production management service provider's design information management terminal and the 3D curved production management server, which have hull design information secured, provide a 3D curved model. 3D printing information is generated and 3D curved plastic material is produced by FDM (Fused Deposition Modeling) by a 3D printer, thereby increasing the precision of the curved form, increasing the efficiency and completeness of the curved sheet, and simplifying the curved sheet manufacturing process. Production of new FDM-based hull 3D curves that can shorten the air and minimize the duplication or error of information as the complex information transmission in the conventional curve production process is unified as a shipyard design department or a 3D curve production management service provider. It aims to provide a system.

또한 본 발명은 웹서버로 구현되는 3D 곡형제작 관리서버와 통신하는 3D 프린터를 통해 곡형이 제작되도록 함으로써 현도장 인력이 극소수이거나 없는 복수의 클라이언트측 중소 조선소에서도 고품질의 곡판을 제작할 수 있는 새로운 형태의 FDM 기반 선체 3D 곡형 제작시스템을 제공하는 것을 목적으로 한다.In addition, the present invention is a new form that can produce a high-quality curved plate even in a plurality of client-side small and medium-sized shipyards with few or no on-site workers by allowing the curved form to be produced through a 3D printer communicating with a 3D curved production management server implemented as a web server. It aims to provide an FDM based hull 3D curved production system.

상술한 목적을 달성하기 위한 본 발명의 특징에 의하면, 선체 설계정보(1)가 저장되어 있으며, 곡가공 공장의 곡형제작 요청정보에 대응하는 3D 곡형 모델(2)이 상기 선체 설계정보(1)를 기반으로 생성되고, 상기 3D 곡형 모델(2)로부터 3D 프린팅 정보(3)를 산출하며,3D 곡형(4)의 현장 제작을 위한 2D 곡형 제작도면(5)과 2D 곡형 제작요소 정보(6)를 상기 선체 설계정보(1)를 기반으로 생성하는 설계정보 관리용 단말기(100); 상기 설계정보 관리용 단말기(100)와 연동되어 3D 프린팅 정보(3)와 상기 2D 곡형 제작도면(5)과 2D 곡형 제작요소 정보(6)를 전달받고, 3D 프린팅 정보(3)를 외부로 전송하는 3D 곡형제작 관리서버(200); 곡가공 공장이 구비되는 클라이언트측 조선소에 배치되어 상기 3D 곡형제작 관리서버(200)와 통신하여 상기 3D 곡형제작 관리서버(200)로부터 3D 프린팅 정보(3)를 전송받아 상기 3D 프린팅 정보(3)에 따라 3D 곡형(4)을 제작하는 3D 프린터(300); 곡가공 공장이 구비되는 클라이언트측 조선소에 배치되어 상기 2D 곡형 제작도면(5)과 2D 곡형 제작요소 정보(6)를 수신하는 클라이언트측 단말기(400);를 포함하는 것을 특징으로 하는 FDM 기반 선체 3D 곡형 제작시스템.을 제공한다.
According to a feature of the present invention for achieving the above object, the hull design information (1) is stored, and a 3D curved model (2) corresponding to the request for information on the production of a curved processing plant, the hull design information (1) Is generated based on, calculates 3D printing information (3) from the 3D curved model (2), 2D curved production drawings (5) and 2D curved production element information (6) for field production of 3D curved (4) A design information management terminal 100 for generating a design based on the hull design information 1; The 3D printing information 3 and the 2D curved production drawing 5 and the 2D curved production element information 6 are connected to the design information management terminal 100 and the 3D printing information 3 is transmitted to the outside. 3D music production management server 200; The 3D printing information (3) is received from the 3D music production management server (200) by communicating with the 3D music production management server (200) disposed in a client-side shipyard where a music processing factory is provided. 3D printer 300 for producing a 3D curved shape 4 according to; FDM-based hull 3D, characterized in that it comprises; a client-side terminal 400 that is arranged in a client-side shipyard equipped with a curved processing plant and receives the 2D curved production drawings 5 and 2D curved production element information 6; Provide a curved production system.

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

본 발명에 의한 FDM 기반 선체 3D 곡형 제작시스템에 의하면, 곡형의 정밀도가 높아져 곡판 제작효율 및 완성도가 증대되고, 곡형제작 프로세스가 간소화되면서 제작공기가 단축되며, 종래 곡형제작과정에서의 복잡한 정보전달이 조선소 설계부서나 3D 곡형제작 관리서비스 제공업체로 일원화되면서 정보의 중복이나 오류가 최소화되는 한편, 웹서버로 구현되는 3D 곡형제작 관리서버와 통신하는 3D 프린터를 통해 곡형이 제작되는 구조임에 따라 현도장 인력이 극소수이거나 없는 복수의 클라이언트측 중소 조선소에서도 고품질의 곡판을 제작할 수 있는 효과가 있다.According to the FDM-based hull 3D curved production system according to the present invention, the precision of the curved shape is increased, the efficiency and completeness of the curved plate is increased, and the production process is simplified and the production air is shortened. As it is unified as a shipyard design department or a 3D curved production management service provider, duplication or error of information is minimized, and as a result, the curved shape is produced through a 3D printer that communicates with a 3D curved production management server implemented as a web server. It has the effect of producing high-quality curved plates even in small and medium-sized shipyards of a plurality of client-sides with few or no painting personnel.

도 1은 선체에서 곡률이 큰 후판의 특징과 분포를 보여주기 위한 도면;
도 2의 (a)와 (b)는 조선소에서 현재 사용되는 2차원 곡형과 3차원 곡형의 예시도;
도 3과 도 4는 종래의 곡형 제작과정을 보여주기 위한 도면;
도 5는 본 발명에 따른 FDM 기반 선체 3D 곡형 제작시스템의 구성 블록도;
도 6은 본 발명의 실시예에 따른 FDM 기반 선체 3D 곡형 제작시스템의 구성 블록도;
도 7의 (a)와 (b)는 본 발명의 실시예에 따른 FDM 기반 선체 3D 곡형 제작시스템의 구성요소 배치장소 예시도;
도 8은 본 발명의 실시예에 따른 FDM 기반 선체 3D 곡형 제작시스템의 비즈니스모델 예시도;
도 9는 본 발명의 실시예에 따른 FDM 기반 선체 3D 곡형 제작시스템의 3D 곡형제작 관리서버가 복수의 클라이언트측 조선소와 통신하는 웹서버로 기능하는 것을 보여주기 위한 도면;
도 10과 도 11은 본 발명의 실시예에 따른 설계정보 관리용 단말기에 구비되는 3D 프린팅정보 산출 알고리즘의 구성 블록도;
도 12는 본 발명의 실시예에 따른 설계정보 관리용 단말기에 구비되는 3D 프린팅정보 산출 알고리즘에 의해 생성되는 곡형부위 모델정보를 보여주기 위한 도면이다.
1 is a view for showing the characteristics and distribution of the plate with a large curvature in the hull;
2(a) and 2(b) are exemplary diagrams of two-dimensional and three-dimensional curves currently used in shipyards;
3 and 4 are diagrams for showing a conventional process of manufacturing a curve;
5 is a block diagram of an FDM-based hull 3D curved production system according to the present invention;
6 is a block diagram of an FDM-based hull 3D curved production system according to an embodiment of the present invention;
7(a) and 7(b) are diagrams illustrating arrangement locations of components of an FDM-based hull 3D curved production system according to an embodiment of the present invention;
8 is an exemplary business model of an FDM-based hull 3D curved production system according to an embodiment of the present invention;
9 is a view for showing that the 3D curved production management server of the FDM based hull 3D curved production system according to an embodiment of the present invention functions as a web server communicating with a plurality of client-side shipyards;
10 and 11 are block diagrams of a 3D printing information calculation algorithm provided in a design information management terminal according to an embodiment of the present invention;
12 is a view for showing curved part model information generated by a 3D printing information calculation algorithm provided in a design information management terminal according to an embodiment of the present invention.

이하, 본 발명의 실시예를 첨부된 도면 도 5 내지 도 12에 의거하여 상세히 설명한다. 한편, 도면과 상세한 설명에서 일반적인 선박제조공정에서의 곡판과 곡형, 2D 곡형, 3D 곡형, 곡형 제작도면, 곡형 제작기술, 3D 프린터, FDM(Fused Deposition Modeling), 플라스틱 필라멘트, 웹서버 등으로부터 이 분야의 종사자들이 용이하게 알 수 있는 구성 및 작용에 대한 도시 및 언급은 간략히 하거나 생략하였다. 특히 도면의 도시 및 상세한 설명에 있어서 본 발명의 기술적 특징과 직접적으로 연관되지 않는 요소의 구체적인 기술적 구성 및 작용에 대한 상세한 설명 및 도시는 생략하고, 본 발명과 관련되는 기술적 구성만을 간략하게 도시하거나 설명하였다.Hereinafter, embodiments of the present invention will be described in detail based on the accompanying drawings FIGS. 5 to 12. On the other hand, in the drawings and detailed description, in the general shipbuilding process, this field is from curved plate and curved, 2D curved, 3D curved, curved manufacturing drawing, curved manufacturing technology, 3D printer, FDM (Fused Deposition Modeling), plastic filament, web server, etc. Figures and references to constructions and actions readily understood by practitioners of the company have been simplified or omitted. In particular, in the illustration and detailed description of the drawings, detailed descriptions and illustrations of elements that are not directly related to the technical features of the present invention are omitted, and only the technical configurations related to the present invention are briefly illustrated or described. Did.

도 5는 본 발명에 따른 FDM 기반 선체 3D 곡형 제작시스템의 구성 블록도이다.5 is a block diagram of a FDM-based hull 3D curved production system according to the present invention.

도 5를 참조하면, 본 발명에 따른 FDM 기반 선체 3D 곡형 제작시스템은 설계정보 관리용 단말기(100), 3D 곡형제작 관리서버(200), 3D 프린터(300)를 포함하는 구성으로 이루어진다.Referring to FIG. 5, the FDM-based hull 3D curved production system according to the present invention comprises a configuration information management terminal 100, a 3D curved production management server 200, and a 3D printer 300.

설계정보 관리용 단말기(100)는 선체 설계정보(1)가 저장되어 있는 단말기로서, 곡가공 공장의 곡형제작 요청정보에 대응하는 3D 곡형 모델(2)이 선체 설계정보(1)를 기반으로 생성되고, 3D 곡형 모델(2)로부터 3D 프린팅 정보(3)를 산출한다. 3D 곡형 모델(2)의 생성을 위한 3D 모델링은 조선선박 설계프로그램인 Tribon의 Line Data를 활용하여 라이노(Rhino) 프로그램에서 수행될 수 있다.The design information management terminal 100 is a terminal in which the hull design information 1 is stored, and a 3D curved model 2 corresponding to the request for information on the production of a curve at a grain processing plant is generated based on the hull design information 1 Then, 3D printing information 3 is calculated from the 3D curved model 2. 3D modeling for the creation of the 3D curved model 2 can be performed in the Rhino program by utilizing Line data of Tribon, a shipbuilding design program.

여기서 곡가공 공장이 위치한 조선소의 설계팀에 설계정보 관리용 단말기(100)가 구비될 수 있다. 이와 달리 3D 곡형제작 관리 서비스 제공업체에 설계정보 관리용 단말기(100)가 구비될 수도 있는데, 3D 곡형제작 관리 서비스 제공업체는 곡가공 공장이 위치한 조선소의 설계팀으로부터 선체 설계정보(1)를 제공받을 수 있다.Here, a terminal 100 for managing design information may be provided in the design team of the shipyard where the grain processing plant is located. Alternatively, a 3D curved production management service provider may be equipped with a terminal 100 for design information management, but the 3D curved production management service provider may receive hull design information (1) from the design team of the shipyard where the grain processing plant is located. Can be.

3D 곡형제작 관리서버(200)는 설계정보 관리용 단말기(100)와 연동되어 3D 프린팅 정보(3)를 전달받는 서버로서, 3D 프린팅 정보(3)를 3D 프린터(300)로 전송하게 된다. 3D 곡형제작 관리서버(200)는 설계정보 관리용 단말기(100)와 내부 네트워크로 연결된 서버일 수도 있고, 설계정보 관리용 단말기(100)와 인터넷망으로 연결된 웹서버일 수도 있다.The 3D music production management server 200 is a server that receives the 3D printing information 3 in connection with the design information management terminal 100 and transmits the 3D printing information 3 to the 3D printer 300. The 3D music production management server 200 may be a server connected to the design information management terminal 100 and an internal network, or may be a web server connected to the design information management terminal 100 and an Internet network.

3D 프린터(300)는 3D 곡형제작 관리서버(200)와 통신하여 3D 곡형제작 관리서버(200)로부터 3D 프린팅 정보(3)를 전송받는 것으로, 3D 프린팅 정보(3)에 따라 3D 곡형(4)을 제작하게 된다. 3D 곡형(4)은 플라스틱 필라멘트 소재를 사용한 FDM(Fused Deposition Modeling)으로 제작된 3D 플라스틱 곡형일 수 있다. 여기서 3D 프린터(300)는 곡가공 공장이나 곡가공 공장에 근접한 장소에 설치될 수 있다.The 3D printer 300 communicates with the 3D music production management server 200 to receive 3D printing information 3 from the 3D music production management server 200, and according to the 3D printing information 3, the 3D music 4 Will produce. The 3D curved shape 4 may be a 3D plastic curved shape produced by Fused Deposition Modeling (FDM) using a plastic filament material. Here, the 3D printer 300 may be installed in a curved processing factory or a place close to the curved processing factory.

도 6은 본 발명의 실시예에 따른 FDM 기반 선체 3D 곡형 제작시스템의 구성 블록도이고, 도 7의 (a)와 (b)는 본 발명의 실시예에 따른 FDM 기반 선체 3D 곡형 제작시스템의 구성요소 배치장소 예시도이며, 도 8은 본 발명의 실시예에 따른 FDM 기반 선체 3D 곡형 제작시스템의 비즈니스모델 예시도이고, 도 9는 본 발명의 실시예에 따른 FDM 기반 선체 3D 곡형 제작시스템의 3D 곡형제작 관리서버가 복수의 클라이언트측 조선소와 통신하는 웹서버로 기능하는 것을 보여주기 위한 도면이다.6 is a block diagram of an FDM-based hull 3D curved production system according to an embodiment of the present invention, and FIGS. 7A and 7B are configurations of an FDM-based hull 3D curved production system according to an embodiment of the present invention. Element arrangement place is an exemplary view, Figure 8 is an FDM-based hull 3D curved fabrication system business model illustration according to an embodiment of the present invention, Figure 9 is an FDM-based hull 3D curved fabrication system according to an embodiment of the present invention It is a diagram to show that the music production management server functions as a web server communicating with a plurality of client-side shipyards.

도 6 내지 도 9를 참조하면, 본 발명의 실시예에 따른 FDM 기반 선체 3D 곡형 제작시스템의 설계정보 관리용 단말기(100)는 3D 곡형 모델(2)과 3D 프린팅 정보(3) 이외에 3D 곡형(4)의 현장 제작을 위한 2D 곡형 제작도면(5)과 2D 곡형 제작요소 정보(6)를 선체 설계정보(1)를 기반으로 생성하고, 2D 곡형 제작도면(5)과 2D 곡형 제작요소 정보(6)를 3D 곡형제작 관리서버(200)로 전달하게 된다. 이는 3D 프린터에 의한 곡형제작이 안정화단계에 이르기까지 검증을 위해 기존 제작도를 병행 제공하기 위함이다. 여기서 2D 곡형 제작요소 정보(6)는 도 8에서와 같이 E-BOM의 형태로 생성되어 3D 곡형제작 관리서버(200)로 전달될 수 있다.Referring to FIGS. 6 to 9, the terminal 100 for managing design information of the FDM-based hull 3D curved production system according to an embodiment of the present invention includes 3D curved models (3) in addition to the 3D curved model 2 and 3D printing information 3 2D curved production drawings (5) and 2D curved production element information (6) for on-site production are generated based on hull design information (1), and 2D curved production drawings (5) and 2D curved production element information ( 6) is delivered to the 3D music production management server 200. This is to provide the existing production drawings for verification, until the production of the curved form by the 3D printer reaches the stabilization stage. Here, the 2D curved production element information 6 may be generated in the form of an E-BOM as shown in FIG. 8 and transmitted to the 3D curved production management server 200.

본 발명의 실시예에 따른 3D 곡형제작 관리서버(200)는 3D 프린팅 정보(3) 및 2D 곡형 제작도면(5)과 2D 곡형 제작요소 정보(6)를 3D 프린터(300)와 클라이언트측 단말기(400)로 전송하게 된다. 클라이언트측 단말기(400)는 곡가공 공장이 구비되는 클라이언트측 조선소에 배치되는 단말기로서, 3D 곡형제작 관리서버(200)와 통신하여 2D 곡형 제작도면(5)과 2D 곡형 제작요소 정보(6)를 수신하게 된다.The 3D curved production management server 200 according to an embodiment of the present invention includes 3D printing information 3 and 2D curved production drawings 5 and 2D curved production element information 6 with a 3D printer 300 and a client-side terminal ( 400). The client-side terminal 400 is a terminal disposed in a client-side shipyard equipped with a grain processing plant, and communicates with the 3D curved production management server 200 to provide 2D curved production drawings 5 and 2D curved production element information 6. Will receive.

3D 프린터(300)도 곡가공 공장이 구비되는 클라이언트측 조선소에 배치되는 것으로, 3D 곡형제작 관리서버(200)로부터 3D 프린팅 정보(3)만을 전송받아 3D 곡형(4)을 출력하게 된다. The 3D printer 300 is also disposed at a client-side shipyard equipped with a music processing plant, and receives only 3D printing information 3 from the 3D music production management server 200 to output the 3D music 4.

여기서 설계정보 관리용 단말기(100)와 3D 곡형제작 관리서버(200)는 도 7의 (a)에서와 같이 클라이언트측 조선소 자체 내부에 배치되어 조선소 자체의 업무효율 향상을 도모하는 것일 수 있다.Here, the design information management terminal 100 and the 3D music production management server 200 may be arranged inside the client-side shipyard itself, as shown in FIG. 7(a), to improve the work efficiency of the shipyard itself.

이와 달리 설계정보 관리용 단말기(100)와 3D 곡형제작 관리서버(200)는 도 7의 (b)에서와 같이 3D 곡형제작 관리서비스 제공업체에 배치되어 원격지에 위치한 하나 이상의 클라이언트측 조선소에 배치된 3D 프린터(300)나 클라이언트측 단말기(400)와 통신하는 것으로, 현도장 인력이 극소수이거나 없는 복수의 클라이언트측 중소 조선소의 업무효율 향상을 도모하는 것일 수도 있다. 여기서 3D 곡형제작 관리서비스 제공업체에 배치되는 3D 곡형제작 관리서버(200)는 웹서버로 구현될 수 있다.On the other hand, the design information management terminal 100 and the 3D music production management server 200 are disposed in a 3D music production management service provider as shown in FIG. 7(b) and disposed at one or more client-side shipyards located at remote locations. By communicating with the 3D printer 300 or the client-side terminal 400, it may be to improve the work efficiency of a plurality of client-side small and medium-sized shipyards with few or no on-site workers. Here, the 3D music production management server 200 disposed in the 3D music production management service provider may be implemented as a web server.

한편 본 발명의 실시예에 다른 3D 프린터(300)는 플라스틱 필라멘트 소재를 사용한 FDM(Fused Deposition Modeling)으로 3D 플라스틱 곡형을 제작하게 된다.On the other hand, the 3D printer 300 according to the embodiment of the present invention is to produce a 3D plastic curved shape by using Fused Deposition Modeling (FDM) using a plastic filament material.

도 10과 도 11은 본 발명의 실시예에 따른 설계정보 관리용 단말기에 구비되는 3D 프린팅정보 산출 알고리즘의 구성 블록도이고, 도 12는 본 발명의 실시예에 따른 설계정보 관리용 단말기에 구비되는 3D 프린팅정보 산출 알고리즘에 의해 생성되는 곡형부위 모델정보를 보여주기 위한 도면이다.10 and 11 are block diagrams of a 3D printing information calculation algorithm provided in a design information management terminal according to an embodiment of the present invention, and FIG. 12 is provided in a design information management terminal according to an embodiment of the present invention This diagram is for showing model information of a curved region generated by a 3D printing information calculation algorithm.

도 10 내지 도 12를 참조하면, 본 발명의 실시예에 따른 설계정보 관리용 단말기(100)는 3D 프린팅정보 산출알고리즘(110)을 통해 3D 프린팅 정보(3)를 산출한다. 여기서 본 발명의 실시예에 따른 3D 프린팅정보 산출알고리즘(110)은 3D 기준면 산출용 프로세스모듈(111), 3D 초기형상 산출용 프로세스모듈(112), 곡형 2D 제작정보 산출용 프로세스모듈(113), 곡형 3D 상세정보 산출용 프로세스모듈(114), 3D 프린팅용 G-CODE 변환 프로세스모듈(115)을 구비하여 3D 프린팅 정보(3)를 산출하게 된다.10 to 12, the design information management terminal 100 according to an embodiment of the present invention calculates 3D printing information 3 through the 3D printing information calculation algorithm 110. Here, the 3D printing information calculation algorithm 110 according to an embodiment of the present invention includes a process module 111 for calculating a 3D reference plane, a process module 112 for calculating a 3D initial shape, and a process module 113 for calculating curved 2D production information, The 3D printing information 3 is calculated by providing a process module 114 for calculating the curved 3D detailed information and a G-CODE conversion process module 115 for 3D printing.

3D 기준면 산출용 프로세스모듈(111)은 곡면을 3차원으로 가시화하고, 가시화된 곡면 위 포인트 군(群)을 추출한 다음, 최소자승법을 이용하여 3D 기준면을 산출하는 프로세스모듈이다. 3D 초기형상 산출용 프로세스모듈(112)은 곡면의 경계곡선이 단일 평면에 위치하는 경우 경계평면을 통하여 3차원 초기 형상을 산출하고, 곡면이 경계곡선이 단일 평면에 위치하지 않은 경우 경계곡면을 통하여 3차원 곡형의 초기형상을 산출하는 프로세스모듈이다. 곡형 2D 제작정보 산출용 프로세스모듈(113)은 경계 곡형부위의 2차원 제작정보를 산출하고, 내측 곡형부위의 형상과 2차원 제작정보를 산출하는 프로세스모듈이다. 곡형 3D 상세정보 산출용 프로세스모듈(114)은 각 곡형부위의 3차원 상세정보에 해당되는 위치정보, 교차정보, 방향정보를 산출하여 3D 곡형 모델(2)을 완성하는 프로세스모듈이다. 3D 프린팅용 G-CODE 변환 프로세스모듈(115)은 3D 곡형 모델(2)에서 추출된 STL 파일을 G-CODE로 변환하는 프로세스모듈이다.The process module 111 for calculating a 3D reference surface is a process module that visualizes a curved surface in three dimensions, extracts a group of points on the visible surface, and then calculates a 3D reference surface using a least squares method. The process module 112 for calculating the 3D initial shape calculates the 3D initial shape through the boundary plane when the boundary curve of the curved surface is located on a single plane, and through the boundary surface when the curved surface is not located on a single plane. It is a process module that calculates the initial shape of a 3D curve. The process module 113 for calculating curved 2D production information is a process module that calculates two-dimensional production information of a boundary curved portion, and calculates shape and two-dimensional production information of an inner curved portion. The process module 114 for calculating the curved 3D detailed information is a process module that completes the 3D curved model 2 by calculating location information, crossing information, and direction information corresponding to 3D detailed information of each curved portion. The G-CODE conversion process module 115 for 3D printing is a process module that converts the STL file extracted from the 3D curved model 2 into G-CODE.

상기와 같이 구성된 본 발명의 실시예에 따른 FDM 기반 선체 3D 곡형 제작시스템은 선체 설계정보(1)가 확보되어 있는 조선소 설계부서나 3D 곡형제작 관리서비스 제공업체의 설계정보 관리용 단말기(100)와 3D 곡형제작 관리서버(200)를 통해 3D 곡형 모델(2)의 3D 프린팅 정보(3)가 생성되어 3D 프린터(300)에 의한 FDM(Fused Deposition Modeling) 방식으로 플라스틱 재질의 3D 곡형(4)이 제작되도록 하므로, 곡형의 정밀도가 높아져 곡판 제작효율 및 완성도가 증대될 수 있고, 곡형제작 프로세스가 간소화되면서 제작공기가 단축될 수 있으며, 종래 곡형제작과정에서의 복잡한 정보전달이 조선소 설계부서나 3D 곡형제작 관리서비스 제공업체로 일원화되면서 정보의 중복이나 오류가 최소화될 수 있다. The FDM-based hull 3D curved production system according to the embodiment of the present invention configured as described above includes a terminal 100 for design information management of a shipyard design department or a 3D curved production management service provider having hull design information 1 secured. The 3D printing information 3 of the 3D curved model 2 is generated through the 3D curved production management server 200 so that the 3D curved 4 of plastic material is generated by the FDM (Fused Deposition Modeling) method by the 3D printer 300. Since it can be manufactured, the precision of the curve can be increased to increase the efficiency and completeness of the production of the plate, and the production process can be shortened as the process of manufacturing the curve is simplified. As it is unified as a production management service provider, duplication of information or errors can be minimized.

또한 본 발명의 실시예에 따른 FDM 기반 선체 3D 곡형 제작시스템은 웹서버로 구현되는 3D 곡형제작 관리서버(200)와 통신하는 3D 프린터(300)를 통해 곡형이 제작되도록 하므로, 현도장 인력이 극소수이거나 없는 복수의 클라이언트측 중소 조선소에서도 고품질의 곡판을 제작할 수 있게 된다.In addition, since the FDM-based hull 3D curved production system according to an embodiment of the present invention allows the curved production to be performed through a 3D printer 300 communicating with a 3D curved production management server 200 implemented as a web server, the number of people in the field is minimal. It is possible to produce high-quality curved plates in small and medium-sized shipyards with or without multiple clients.

상술한 바와 같은, 본 발명의 실시예에 따른 FDM 기반 선체 3D 곡형 제작시스템을 상기한 설명 및 도면에 따라 도시하였지만, 이는 예를 들어 설명한 것에 불과하며 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 변화 및 변경이 가능하다는 것을 이 분야의 통상적인 기술자들은 잘 이해할 수 있을 것이다.As described above, although the FDM-based hull 3D curved production system according to an embodiment of the present invention is illustrated according to the above description and drawings, it is only described as an example, and is various within a range not departing from the technical spirit of the present invention. Those skilled in the art will appreciate that changes and modifications are possible.

1 : 선체 설계정보
2 : 3D 곡형 모델
3 : 3D 프린팅 정보
4 : 3D 곡형
5 : 2D 곡형 제작도면
6 : 2D 곡형 제작요소 정보
100 : 설계정보 관리용 단말기
110 : 3D 프린팅정보 산출알고리즘
111 : 3D 기준면 산출용 프로세스모듈
112 : 3D 초기형상 산출용 프로세스모듈
113 : 곡형 2D 제작정보 산출용 프로세스모듈
114 : 곡형 3D 상세정보 산출용 프로세스모듈
115 : 3D 프린팅용 G-CODE 변환 프로세스모듈
200 : 3D 곡형제작 관리서버
300 : 3D 프린터
400 : 클라이언트측 단말기
1: Hull design information
2: 3D curved model
3: 3D printing information
4: 3D curved shape
5: 2D curved production drawing
6: 2D curved production element information
100: Design information management terminal
110: 3D printing information calculation algorithm
111: 3D reference plane process module
112: 3D initial shape process module
113: Process module for calculating curved 2D production information
114: Process module for calculating curved 3D detailed information
115: G-CODE conversion process module for 3D printing
200: 3D music production management server
300: 3D printer
400: client-side terminal

Claims (5)

선체 설계정보(1)가 저장되어 있으며, 곡가공 공장의 곡형제작 요청정보에 대응하는 3D 곡형 모델(2)이 상기 선체 설계정보(1)를 기반으로 생성되고, 상기 3D 곡형 모델(2)로부터 3D 프린팅 정보(3)를 산출하며, 3D 곡형(4)의 현장 제작을 위한 2D 곡형 제작도면(5)과 2D 곡형 제작요소 정보(6)를 상기 선체 설계정보(1)를 기반으로 생성하는 설계정보 관리용 단말기(100);
상기 설계정보 관리용 단말기(100)와 연동되어 3D 프린팅 정보(3)와 상기 2D 곡형 제작도면(5)과 2D 곡형 제작요소 정보(6)를 전달받아 외부로 전송하는 3D 곡형제작 관리서버(200);
곡가공 공장이 구비되는 클라이언트측 조선소에 배치되어 상기 3D 곡형제작 관리서버(200)와 통신하여 상기 3D 곡형제작 관리서버(200)로부터 3D 프린팅 정보(3)를 전송받아 3D 곡형(4)을 제작하는 3D 프린터(300);
곡가공 공장이 구비되는 클라이언트측 조선소에 배치되어 상기 2D 곡형 제작도면(5)과 2D 곡형 제작요소 정보(6)를 수신하는 클라이언트측 단말기(400);
를 포함하는 것을 특징으로 하는 FDM 기반 선체 3D 곡형 제작시스템.
The hull design information (1) is stored, and a 3D curved model (2) corresponding to the curved fabrication factory's request for manufacturing a curved piece is generated based on the hull design information (1), and from the 3D curved model (2) Design for calculating 3D printing information (3) and generating 2D curved production drawings (5) and 2D curved production element information (6) for field production of 3D curved (4) based on the hull design information (1) Information management terminal 100;
A 3D music production management server 200 that receives and transmits 3D printing information 3 and the 2D music production drawing 5 and 2D music production element information 6 in connection with the design information management terminal 100 );
It is arranged at a client-side shipyard equipped with a music processing factory and communicates with the 3D music production management server 200 to receive 3D printing information 3 from the 3D music production management server 200 to produce a 3D music 4 3D printer 300;
A client-side terminal 400 which is disposed in a client-side shipyard equipped with a curved processing plant and receives the 2D curved production drawings 5 and 2D curved production element information 6;
FDM-based hull 3D curved production system comprising a.
삭제delete 삭제delete 삭제delete 삭제delete
KR1020180097405A 2018-08-21 2018-08-21 3D hull bending template production system based on FDM KR102119692B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180097405A KR102119692B1 (en) 2018-08-21 2018-08-21 3D hull bending template production system based on FDM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180097405A KR102119692B1 (en) 2018-08-21 2018-08-21 3D hull bending template production system based on FDM

Publications (2)

Publication Number Publication Date
KR20200023698A KR20200023698A (en) 2020-03-06
KR102119692B1 true KR102119692B1 (en) 2020-06-05

Family

ID=69802397

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180097405A KR102119692B1 (en) 2018-08-21 2018-08-21 3D hull bending template production system based on FDM

Country Status (1)

Country Link
KR (1) KR102119692B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU200173U1 (en) * 2020-06-04 2020-10-08 Федеральное государственное бюджетное образовательное учреждение высшего образования "Калининградский государственный технический университет" SMALL VESSEL HULL

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111351737A (en) * 2020-04-01 2020-06-30 中国建筑第八工程局有限公司 Rheological property testing method of building 3D printing material
CN112124517B (en) * 2020-09-29 2022-07-05 中船黄埔文冲船舶有限公司 Bottom jig frame lofting method for shaft-containing wrapping plate
CN113071628B (en) * 2021-04-23 2022-03-15 中船黄埔文冲船舶有限公司 Lofting method for stern section molded line containing shaft packing plate
CN113859468B (en) * 2021-10-27 2022-11-29 中船黄埔文冲船舶有限公司 Lofting method of stern section line containing pod prosthesis
CN113879479B (en) * 2021-10-29 2023-12-26 中船黄埔文冲船舶有限公司 Design lofting method of double-inclined jig frame

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101542261B1 (en) 2010-07-23 2015-08-06 현대중공업 주식회사 Support Modeling Drawing creation system and method
KR101631474B1 (en) * 2015-01-13 2016-06-17 동국대학교 산학협력단 Three dimensional model creating method for digital manufacture
KR101757451B1 (en) * 2016-01-04 2017-07-12 현대삼호중공업 주식회사 System for generating automatically of the urvature and curved data for manufacturig the ship plate

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100913848B1 (en) 2007-07-06 2009-08-26 삼성중공업 주식회사 Completion assessment System of curved plates in manufacturing process and Method thereof
KR101605116B1 (en) 2010-06-28 2016-03-22 대우조선해양 주식회사 Method of construction for a block curved shape in ship building
KR20120056651A (en) * 2010-11-25 2012-06-04 현대중공업 주식회사 Pilot job order system
KR101246185B1 (en) 2012-01-20 2013-03-25 삼성중공업 주식회사 Completion assessment method of curved plates in manufacturing process and system using the same
KR20150065228A (en) * 2013-12-04 2015-06-15 대우조선해양 주식회사 Method and system for subcontractor collaboration of offshore project
KR20160116090A (en) * 2015-03-25 2016-10-07 (주) 크림박스 Apparatus for selling 3d printing based products and the operation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101542261B1 (en) 2010-07-23 2015-08-06 현대중공업 주식회사 Support Modeling Drawing creation system and method
KR101631474B1 (en) * 2015-01-13 2016-06-17 동국대학교 산학협력단 Three dimensional model creating method for digital manufacture
KR101757451B1 (en) * 2016-01-04 2017-07-12 현대삼호중공업 주식회사 System for generating automatically of the urvature and curved data for manufacturig the ship plate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
비특허문헌

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU200173U1 (en) * 2020-06-04 2020-10-08 Федеральное государственное бюджетное образовательное учреждение высшего образования "Калининградский государственный технический университет" SMALL VESSEL HULL

Also Published As

Publication number Publication date
KR20200023698A (en) 2020-03-06

Similar Documents

Publication Publication Date Title
KR102119692B1 (en) 3D hull bending template production system based on FDM
CN108602343B (en) Wind turbine, wind turbine blade and method for manufacturing a wind turbine blade
Campbell et al. Drone arc routing problems
Flöry et al. Ruled surfaces for rationalization and design in architecture
US9156240B2 (en) Automated production and installation of patches for reworking structures
CN101267062B (en) Method for predicting antenna electric performance based on simulated distortion reflective side
KR102187710B1 (en) Collaboration System For Production During Process of Vessel's Construction Based Lightweight Model
CN101230845A (en) Preform spar cap for a wind turbine rotor blade
JPH02292688A (en) Generation of computerized ply pattern
US20100042243A1 (en) Computer assisted method for the advanced design of bent parts of composite material
KR101493659B1 (en) Method and apparatus for modeling pipe using 3 dimensional scanning data
US10207464B2 (en) Method for defining fiber trajectories from curves or constraint grid
JP2015074229A (en) Bends in composite panels
CN101797956A (en) Field digitized laser lofting method of ship piping system
CN110210082A (en) Assembled architecture pipeline Deepen Design, manufacture and construction method based on BIM and big data
US9481135B2 (en) Method for defining fiber trajectories from a transfer surface
CN105292273A (en) Integrally-formed housing structure for touring car and machining method thereof
CN104809307A (en) Engine right-angle pipeline genetic algorithm planning method oriented to Manhattan space
CN109543335B (en) Method for designing external pressure resistant carbon fiber composite material cylinder structure
CN108137128B (en) For determining the method and system of connecting element manufacture size
KR101451372B1 (en) Manufacturing-BOM Generation Method For Construction Submarine
CN113742824A (en) Lightweight steel structure smart collaborative design cloud platform and operation method thereof
CN105089635A (en) Design method and system of rear turbine of underground camera
Kwon et al. Fabrication Assessment Method for Dimensional Quality Management of Curved Plates in Shipbuilding and Offshore Structures
TWI385076B (en) Slicing method of three dimensional prototyping apparatus

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant