KR102117507B1 - A mercury absorbent and a manufacturing method of thereof - Google Patents

A mercury absorbent and a manufacturing method of thereof Download PDF

Info

Publication number
KR102117507B1
KR102117507B1 KR1020190133848A KR20190133848A KR102117507B1 KR 102117507 B1 KR102117507 B1 KR 102117507B1 KR 1020190133848 A KR1020190133848 A KR 1020190133848A KR 20190133848 A KR20190133848 A KR 20190133848A KR 102117507 B1 KR102117507 B1 KR 102117507B1
Authority
KR
South Korea
Prior art keywords
psac
mercury
sulfur
adsorption
activated carbon
Prior art date
Application number
KR1020190133848A
Other languages
Korean (ko)
Inventor
장민
윤소연
종초은
김재봉
공준
윤진향
Original Assignee
(주)에니스환경건설
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)에니스환경건설 filed Critical (주)에니스환경건설
Priority to KR1020190133848A priority Critical patent/KR102117507B1/en
Application granted granted Critical
Publication of KR102117507B1 publication Critical patent/KR102117507B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treating Waste Gases (AREA)

Abstract

The present invention relates to a mercury adsorbent and a method for manufacturing the same. More specifically, the present invention relates to: a mercury adsorbent in which sulfur (S) is coated on activated carbon by mixing and drying the activated carbon and sodium sulfide pentahydrate (Na_2S·5H_2O); and a method for manufacturing the same.

Description

수은 흡착제 및 이의 제조방법{A mercury absorbent and a manufacturing method of thereof}A mercury absorbent and a manufacturing method thereof

본 발명은 인체에 해로운 중금속 중에 하나인 토양, 대기나 수중에 포함된 수은을 효과적으로 제거하기 위한 흡착제 및 이를 제조하는 방법에 관한 것으로서, 활성탄소(activated carbon)에 황(S)이 코팅된 흡착제이되, 전구체로서 활성탄소와 황화나트륨 5수화물(Na2S·5H2O)을 증류수에 혼합한 후 건조하여 황(S)이 활성탄소에 코팅되도록 한 수은 흡착제 및 이의 제조방법에 관한 것이다.The present invention relates to an adsorbent for effectively removing mercury contained in soil, air or water, which is one of heavy metals harmful to the human body, and a method for manufacturing the same, being an adsorbent coated with sulfur (S) on activated carbon. , As a precursor, a mixture of activated carbon and sodium sulfide pentahydrate (Na 2 S·5H 2 O) in distilled water and dried to provide mercury adsorbent and a method of manufacturing the sulfur (S) coated on activated carbon.

산업혁명 이후 산업화의 가속화로 환경문제가 급속도로 심화되고 있다. 특히, 오염 배출원으로부터 배출되는 중금속은 많은 우려를 낳고 있다. 그 중에서도 수은은 다른 중금속과는 달리 높은 휘발성, 강한 유해성 및 체내에 축적되어 미나마타병과 같은 신경계 손상 등 급성 및 만성 질병의 원인 물질로 더욱 관심의 대상이 되는 오염물질로 알려져 있다.After the Industrial Revolution, environmental problems are rapidly intensifying due to the acceleration of industrialization. In particular, heavy metals emitted from pollutant sources are causing many concerns. Among them, mercury is known as a pollutant that is of more interest as a causative agent of acute and chronic diseases, such as high volatility, strong harmfulness, and accumulation in the body and damage to the nervous system such as Minamata disease, unlike other heavy metals.

수은은 자연적 활동과 화석연료 사용 등의 인위적 활동에 의해 토양, 대기 또는 수계로 방출될 수 있다. 현재 수은 처리기술에는 전기화학처리, 물리화학처리, 그리고 흡착이 있는데, 흡착법은 오랫동안 가장 다방면에서 넓게 사용되었고, 활성탄소가 가장 일반적으로 사용되는 흡착제이다.Mercury can be released into the soil, the atmosphere, or the water system by natural activities and anthropogenic activities such as fossil fuel use. Currently, mercury treatment technology includes electrochemical treatment, physicochemical treatment, and adsorption, and the adsorption method has been widely used in many ways for a long time, and activated carbon is the most commonly used adsorbent.

종래기술인 대한민국 특허등록번호 제10-1165796호를 살펴본다.Look at Korean Patent Registration No. 10-1165796, which is a prior art.

종래기술은 왕수를 이용하여 염소를 첨착한 활성탄의 표면에 연소가스로부터 발생되는 원소수은이 염화수은을 형성함으로써 효과적으로 제거되는 수은 제거용 활성탄에 관한 것이다.The prior art relates to activated carbon for mercury removal that is effectively removed by forming elemental mercury from mercury chloride on the surface of activated carbon impregnated with chlorine using aqua regia.

종래기술은 연소가스에 포함된 수은을 제거함에 있어서 활성탄을 이용하여 수은을 흡착한다는 기술적 특징을 개시하고만 있을 뿐, 토양이나 수계에 포함된 수은을 제거하기 위하여 활성탄의 수은 흡착력에 관련된 기술적 특징을 개시하고 있지 않다.The prior art only discloses the technical characteristics of adsorbing mercury using activated carbon in removing mercury contained in the combustion gas, and the technical characteristics related to the mercury adsorption power of activated carbon in order to remove mercury contained in the soil or water system. It is not disclosed.

활성탄을 활용하여 대기, 토양 및 수계에 포함된 수은을 효과적으로 흡착하기 위한, 특히 수중에 포함된 수은을 효과적으로 흡착하기 위한 수은 흡착제 및 이의 제조방법이 절실히 필요한 실정이다.There is an urgent need for a mercury adsorbent and a method for producing mercury to effectively adsorb mercury contained in the atmosphere, soil, and water based on activated carbon, and particularly to effectively adsorb mercury contained in water.

상술한 바와 같이 종래기술에 따른 문제점을 해결하고자, 대기, 토양 또는 수계에 포함된 수은을, 특히 수계에 포함된 수은을 효과적으로 흡착하여 제거할 수 있는 수은 흡착제 및 이의 제조방법, 수은 흡착방법을 제안하고자 한다.In order to solve the problems according to the prior art as described above, a mercury adsorbent capable of effectively adsorbing and removing mercury contained in the atmosphere, soil or water system, particularly mercury contained in the water system, and a manufacturing method thereof, and a mercury adsorption method are proposed. I want to.

상술한 종래기술에 따른 문제점을 해결하고자 본 발명에 따른 수은 흡착제는, 활성탄소(activated carbon)에 황(S)이 코팅되되, 상기 활성탄소와 황화나트륨 5수화물(Na2S·5H2O)이 혼합되어 건조됨으로써 상기 황(S)이 상기 활성탄소에 코팅된다To solve the problems according to the prior art described above, the mercury adsorbent according to the present invention is coated with sulfur (S) on activated carbon, and the activated carbon and sodium sulfide pentahydrate (Na 2 S·5H 2 O) By mixing and drying, the sulfur (S) is coated on the activated carbon.

바람직하게는, 상기 황화나트륨 5수화물(Na2S·5H2O)에 포함된 황(S)과 상기 활성탄소의 중량비는 1:0.05 내지 1:0.15이다.Preferably, the weight ratio of sulfur (S) contained in the sodium sulfide pentahydrate (Na 2 S·5H 2 O) and the activated carbon is 1:0.05 to 1:0.15.

바람직하게는, 상기 황화나트륨 5수화물(Na2S·5H2O)에 포함된 황(S)과 상기 활성탄소의 중량비는 1:0.1 내지 1:0.15이다.Preferably, the weight ratio of sulfur (S) contained in the sodium sulfide pentahydrate (Na 2 S·5H 2 O) and the activated carbon is 1:0.1 to 1:0.15.

상술한 종래기술에 따른 문제점을 해결하고자 본 발명에 따른 수은 흡착방법은 상술한 수은 흡착제로 수중에 포함된 수은을 흡착하는 단계를 포함한다.The mercury adsorption method according to the present invention in order to solve the above-described problems according to the prior art includes adsorbing mercury contained in the water with the above-described mercury adsorbent.

상술한 종래기술에 따른 문제점을 해결하고자 본 발명에 따른 수은 흡착제 제조방법은, (a) 활성탄소(activated carbon)와 황화나트륨 5수화물(Na2S·5H2O)이 증류수에 용해되어 혼합용액이 생성되는 단계; 및 (b) 상기 (a) 단계에서의 혼합용액이 건조되어 상기 활성탄소에 황(S)이 코팅되는 단계를 포함한다.In order to solve the problems according to the prior art described above, the method of manufacturing a mercury adsorbent according to the present invention includes: (a) activated carbon and sodium sulfide pentahydrate (Na 2 S·5H 2 O) dissolved in distilled water. The step in which it is created; And (b) drying the mixed solution in the step (a) to coat the activated carbon with sulfur (S).

바람직하게는, 상기 (a) 단계에서, 상기 황화나트륨 5수화물(Na2S·5H2O)에 포함된 황(S)과 상기 활성탄소의 중량비는 1:0.05 내지 1:0.15이다.Preferably, in the step (a), the weight ratio of sulfur (S) and the activated carbon contained in the sodium sulfide pentahydrate (Na 2 S·5H 2 O) is 1:0.05 to 1:0.15.

상술한 종래기술에 따른 문제점을 해결하고자 본 발명에 따른 수은 흡착방법은 상술한 수은 흡착제 제조방법에 따라 제조된 수은 흡착제로 수중에 포함된 수은을 흡착한다.The mercury adsorption method according to the present invention in order to solve the problems according to the prior art described above adsorbs mercury contained in water as a mercury adsorbent prepared according to the above-described mercury adsorbent manufacturing method.

상술한 과제해결수단으로 인한 수은 흡착제로 수은을 효과적으로 흡착하여 제거할 수 있으며, 특히 수중에 포함된 수은을 효과적으로 흡착하여 제거할 수 있다.The mercury adsorbent due to the above-described problem solving means can effectively adsorb and remove mercury. In particular, mercury contained in water can be effectively adsorbed and removed.

도 1은 본 발명에 따른 PSAC-S를 제조함에 있어서 다수의 황(S) 전구체의 수은 흡착용량에 대한 데이터를 도시한 도면이다.
도 2는 본 발명에 따른 PSAC-S 제조방법을 개략적으로 도시한 도면이다.
도 3 내지 도 16은 실험결과를 도시한 도면이다.
1 is a view showing data on the mercury adsorption capacity of a number of sulfur (S) precursors in manufacturing the PSAC-S according to the present invention.
2 is a view schematically showing a method of manufacturing PSAC-S according to the present invention.
3 to 16 are diagrams showing experimental results.

이하, 본 발명에 따른 방법의 바람직한 실시예를 첨부된 도면을 참조하여 설명한다. 이 과정에서 도면에 도시된 선들의 두께나 구성요소의 크기 등은 설명의 명료성과 편의성을 위해 과장되게 도시될 수 있다. 또한, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자 또는 운용자의 의도 또는 관례에 따라 달라질 수 있다. 그러므로 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.Hereinafter, preferred embodiments of the method according to the present invention will be described with reference to the accompanying drawings. In this process, the thickness of the lines or the size of components shown in the drawings may be exaggerated for clarity and convenience. In addition, terms to be described later are terms defined in consideration of functions in the present invention, which may vary according to a user or operator's intention or practice. Therefore, the definition of these terms should be made based on the contents throughout the specification.

팜 쉘(palm shell)이 탄화되어 생성된 활성탄소(activated carbon)를 PSAC라 지칭하며, 황(S)이 코팅된 PSAC를 PSAC-S라 지칭한다.Activated carbon produced by carbonization of a palm shell is referred to as PSAC, and PSAC coated with sulfur (S) is referred to as PSAC-S.

1. 수은 흡착제 제조1. Manufacturing of mercury adsorbent

도 1Fig. 1 을 참조하여 설명한다.It will be described with reference to.

PSAC에 황(S)을 코팅하기 위하여, 황(S) 전구체로서 황화나트륨(Na2S), 차아황산나트륨(Na2S2O4) 및 티오아세트아미드(CH3CSNH2)의 수은(Hg(ll)) 흡착용량의 효과를 살펴보고자, PSAC에 황(S)이 코팅되도록 전구체로서 황화나트륨(Na2S)과 PSAC가 혼합되어 생성된 PSAC-S, 전구체로서 차아황산나트륨(Na2S2O4)과 PSAC가 혼합되어 생성된 PSAC-S, 전구체로서 티오아세트아미드(CH3CSNH2)와 PSAC가 혼합되어 생성된 PSAC-S 각각을 수은이 포함된 수중에 투입하여 진행된 kinetic 실험이 이루어졌다.To coat sulfur (S) on PSAC, mercury (Hg() of sodium sulfide (Na 2 S), sodium hyposulfite (Na 2 S 2 O 4 ) and thioacetamide (CH 3 CSNH 2 ) as sulfur (S) precursor ll)) To examine the effect of adsorption capacity, PSAC-S produced by mixing sodium sulfide (Na 2 S) and PSAC as a precursor so that sulfur (S) is coated on PSAC, and sodium hyposulfate (Na 2 S 2 O as precursor) 4 ) PSAC-S generated by mixing PSAC and PSAC-S produced by mixing thioacetamide (CH 3 CSNH 2 ) and PSAC as precursors was added to mercury-containing water to perform kinetic experiments. .

각각의 황(S) 전구체에서의 황(S)의 중량부는 PSAC 중량부 대비 10%로 유지하였으며, 이후 혼합하여 PSAC에 황(S)이 코팅된 각각의 PSAC-S가 생성되도록 하였다.The weight part of sulfur (S) in each sulfur (S) precursor was maintained at 10% compared to the weight part of PSAC, and then mixed to make each PSAC-S coated with sulfur (S) on PSAC.

kinetic 실험 결과 모든 황(S) 전구체는 pseudo second order에 잘 맞았는데, 이는 화학흡착(chemisorption)에 가까운 흡착이 발생됨을 알 수 있다. 각각의 전구체에 대한 수은 흡착용량(Qeq)을 살펴보건대, 가장 효과적인 전구체는 황화나트륨(Na2S)임을 알 수 있다. 이후 모든 실험은 황화나트륨(Na2S)을 황(S) 전구체로 사용하였다.As a result of kinetic experiments, all the sulfur (S) precursors fit well in the pseudo second order, indicating that adsorption close to chemisorption occurs. Looking at the mercury adsorption capacity (Q eq ) for each precursor, it can be seen that the most effective precursor is sodium sulfide (Na 2 S). Since then, all experiments used sodium sulfide (Na 2 S) as a sulfur (S) precursor.

도 2Figure 2 를 참조하여 본 발명에 따른 수은 흡착제를 제조하는 방법을 설명한다.A method of manufacturing a mercury adsorbent according to the present invention will be described with reference to FIG.

PSAC-S을 제조하기 위하여, PSAC와 황화나트륨 5수화물(Na2S·5H2O) 용액을 혼합한 후에 건조한다.To prepare PSAC-S, the PSAC and sodium sulfide pentahydrate (Na 2 S·5H 2 O) solution are mixed and dried.

구체적 실시예로, 5g의 PSAC와 황화나트륨 5수화물(Na2S·5H2O) 용액을 100mL의 증류수에 투입하여 혼합하였고, 이후 105℃ 오븐에서 24시간 동안 건조하여 PSAC-S를 제조하였다.As a specific example, 5 g of PSAC and sodium sulfide pentahydrate (Na 2 S·5H 2 O) solution were added to 100 mL of distilled water and mixed, and then dried in an oven at 105° C. for 24 hours to prepare PSAC-S.

도 2에 도시된 바와 같이, 3 종류의 PSAC-S을 제조하였는데, 황화나트륨 5수화물(Na2S·5H2O)에 포함된 황(S)과 PSAC의 중량비를 각각 0.05:1, 0.1:1, 0.15:1인 상태로 3 종류의 PSAC-S를 제조하였다.As shown in Figure 2, three types of PSAC-S were prepared, and the weight ratio of sulfur (S) and PSAC contained in sodium sulfide pentahydrate (Na 2 S·5H 2 O) was 0.05:1 and 0.1: Three types of PSAC-S were prepared in a state of 1 and 0.15:1.

PSAC와 황화나트륨 5수화물(Na2S·5H2O)에 포함된 황(S)과 PSAC의 중량비가 0.05:1인 상태로 제조된 PSAC-S를 PSAC-S5로 지칭한다.PSAC-S prepared in a weight ratio of PSAC and sulfur (S) and PSAC contained in sodium sulfide pentahydrate (Na 2 S·5H 2 O) of 0.05:1 is referred to as PSAC-S 5 .

PSAC와 황화나트륨 5수화물(Na2S·5H2O)에 포함된 황(S)과 PSAC의 중량비가 0.1:1인 상태로 제조된 PSAC-S를 PSAC-S10로 지칭한다.PSAC-S manufactured in a state in which the weight ratio of PSAC and PSAC contained in PSAC and sodium sulfide pentahydrate (Na 2 S·5H 2 O) is 0.1:1 is referred to as PSAC-S 10 .

PSAC와 황화나트륨 5수화물(Na2S·5H2O)에 포함된 황(S)과 PSAC의 중량비가 0.15:1인 상태로 제조된 PSAC-S를 PSAC-S15로 지칭한다.PSAC-S prepared in a weight ratio of PSAC and sulfur (S) and PSAC contained in sodium sulfide pentahydrate (Na 2 S·5H 2 O) of 0.15:1 is referred to as PSAC-S 15 .

2. 실험결과2. Experimental results

도 3Figure 3 을 참조하여 설명한다.It will be described with reference to.

최적의 수은 흡착용량(Qeq)을 갖는 흡착제를 결정하기 위하여, 수은이 포함된 수중에 PSAC, PSAC-S5, PSAC-S10, PSAC-S15를 투입하여 진행된 kinetic 실험이 이루어졌다.In order to determine the adsorbent having the optimal mercury adsorption capacity (Q eq ), kinetic experiments were conducted by adding PSAC, PSAC-S 5 , PSAC-S 10 , and PSAC-S 15 into mercury-containing water.

PSAC보다는 PSAC-S에서 더 높은 흡착용량(Qeq)을 보이고 있다. 즉, 황(S)이 코팅되지 않은 상태의 PSAC보다 황(S)이 코팅된 상태의 PSAC-S가 수은 흡착에 있어서 효과적임을 알 수 있다.PSAC-S shows higher adsorption capacity (Q eq ) than PSAC. That is, it can be seen that PSAC-S in a state in which sulfur (S) is coated is more effective in mercury adsorption than PSAC in a state in which sulfur (S) is not coated.

나아가, PSAC-S 중에서 가장 최적의 수은 흡착용량(Qeq)은 PSAC-S10에서 보이고 있다.Furthermore, the most optimal mercury adsorption capacity (Q eq ) among PSAC-S is shown in PSAC-S 10 .

도 3의 그래프에서 도시된 바와 같이, kinetic 흡착평형은 15분 근방에서 이루어지고 있음을 알 수 있다.As shown in the graph of FIG. 3, it can be seen that the kinetic adsorption equilibrium is achieved in the vicinity of 15 minutes.

도 4 를 참조하여 설명한다. This will be described with reference to FIG . 4 .

최대 흡착용량을 갖는 수은 흡착제를 알아보기 위하여, 수은이 포함된 수중에 PSAC, PSAC-S5, PSAC-S10, PSAC-S15를 투입하여 진행된 isotherm 실험이 이루어졌다.In order to find out the mercury adsorbent having the maximum adsorption capacity, isotherm experiments were conducted by adding PSAC, PSAC-S 5 , PSAC-S 10 , and PSAC-S 15 into mercury-containing water.

PSAC 등온선 데이터는 Langmuir 등온선 모델 (R2 = 0.9924)이 잘 맞아서 단일층 흡착이 이루어지는 것으로 나타나고 있는 반면, PSAC-S 등온선 데이터는 Freundlich 등온선 모델 (R2 = 0.9949, 0.9962, 0.8757)이 잘 맞아 다층구조의 흡착이 이루어진 것으로 보인다.The PSAC isotherm data shows that the Langmuir isotherm model (R 2 = 0.9924) fits well, resulting in single-layer adsorption, whereas the PSAC-S isotherm data fits the Freundlich isotherm model (R 2 = 0.9949, 0.9962, 0.8757) and multi-layer structure It seems that the adsorption has been made.

최대 수은(Hg(ll)) 흡착용량을 살펴보면, PSAC는 131mg/g, PSAC-S5는 211mg/g, PSAC-S10는 220mg/g, PSAC-S15는 196.25mg/g으로, 최대 수은 흡착용량을 갖는 흡착제는 PSAC-S10로 나타난다.Looking at the maximum mercury (Hg(ll)) adsorption capacity, PSAC is 131mg/g, PSAC-S 5 is 211mg/g, PSAC-S 10 is 220mg/g, PSAC-S 15 is 196.25mg/g, and maximum mercury is The adsorbent having an adsorption capacity is represented by PSAC-S 10 .

도 5Fig. 5 를 참조하여 이온세기(ionic strength)와 pH의 따른 효과를 설명한다.The effect of ionic strength and pH will be described with reference to.

수은이 포함된 수중에 PSAC, PSAC-S5, PSAC-S10, PSAC-S15를 투입하여, 이온세기 및 pH가 흡착용량에 미치는 영향을 살펴본다.PSAC, PSAC-S 5 , PSAC-S 10 and PSAC-S 15 are added to mercury-containing water to examine the effect of ionic strength and pH on adsorption capacity.

이온세기는 수은 흡착에 크게 영향을 미치지 않는 것으로 나타난다. PSAC-S에서 이온세기가 증가할수록 PSAC-S의 수은 흡착용량이 증가되는 것으로 나타나는데, 염석효과(salt-effect)로 인하여 흡착용량이 증가되는 것으로 보인다.The ionic strength does not appear to significantly affect mercury adsorption. In PSAC-S, as the ionic strength increases, the adsorption capacity of PSAC-S appears to increase, and it appears that the adsorption capacity increases due to the salt-effect.

초기 pH가 수은 흡착에 크게 영향을 미치지 않은 것으로 나타난다. PSAC에서 수은 흡착용량이 크게 감소되는데, 이는 수소이온(H+)과 수은이온(Hg2+) 사이의 경쟁효과때문인 것으로 보인다.It appears that the initial pH did not significantly affect mercury adsorption. In PSAC, the mercury adsorption capacity is greatly reduced, which appears to be due to the competitive effect between hydrogen ions (H + ) and mercury ions (Hg 2+ ).

PSAC와 달리, PSAC-S에서 pH 2 내지 9 구간에서 PSAC보다 훨씬 증가된 수은 흡착용량을 나타내고 있다.Unlike PSAC, PSAC-S shows a much higher mercury adsorption capacity than PSAC in the pH 2 to 9 section.

초기 pH를 2, 5, 7 그리고 9에서 수은 흡착 실험을 실시한 결과. PSAC-S10 과 PSAC-S15의 경우 거의 pH에 영향을 받지 않은 것으로 나타나며, 특히 pH가 2, 5로 낮은 경우이거나 pH가 9로 높은 경우 PSAC-S15가 PSAC-S10보다 흡착효율이 컸지만, 중성 pH 조건에서는 PSAC-S10이 보다 높은 효율을 보이고 있다. PSAC 자체는 전반적으로 황(S)을 코팅한 PSAC-S에 비해 낮은 흡착 효율을 보이고 있다. 특히, pH가 낮거나 높은 경우 낮은 흡착효율을 보이고 있다. Results of mercury adsorption experiments at initial pH of 2, 5, 7 and 9. In the case of PSAC-S 10 and PSAC-S 15 , it was shown that they were almost not affected by pH. Especially, when the pH is low as 2, 5 or when the pH is high as 9, PSAC-S 15 has more adsorption efficiency than PSAC-S 10 Although large, PSAC-S 10 showed higher efficiency under neutral pH conditions. The PSAC itself has a lower adsorption efficiency than the PSAC-S coated with sulfur (S). In particular, when the pH is low or high, it shows low adsorption efficiency.

도 6Fig. 6 을 참조하여 FESEM 분석을 설명한다.The FESEM analysis will be described with reference to.

PSAC-S의 표면에 황(S)의 코팅여부와 수은의 흡착여부를 확인하기 위하여 FESEM 분석이 이루어졌다.FESEM analysis was performed to check whether the surface of PSAC-S was coated with sulfur (S) and adsorbed mercury.

우선적으로, PSAC-S 표면에서 나노 크기의 황(S) 입자를 확인할 수 있으며, 흡착후 PSAC-S 표면에서 수은을 확인할 수 있다. 원소 매칭 이미지를 살펴보면, PSAC-S 표면에서의 황(S)의 매핑(S Ka1)과 수은의 매핑(Hg Ma1)이 대응되는 바, 결과적으로 PSAC-S의 경우 수은이 황(S)과 반응하여 흡착 또는 침적(precipitation)된 것으로 보인다.First, nano-sized sulfur (S) particles can be identified on the PSAC-S surface, and mercury can be identified on the PSAC-S surface after adsorption. Looking at the element matching image, the mapping of sulfur (S) on the PSAC-S surface (S Ka1) and the mapping of mercury (Hg Ma1) correspond, and as a result, in the case of PSAC-S, mercury reacts with sulfur (S). So it appears to have been adsorbed or precipitated.

도 7Fig. 7 을 참조하여 BET 분석을 설명한다.The BET analysis will be described with reference to.

PSAC-S는 PSAC에 비하여 표면적(surface area), 전체 공극부피(total pore volume) 및 마이크로 공극부피(micro-pore volume)가 감소하는 것으로 나타난다.PSAC-S is shown to have a reduced surface area, total pore volume, and micro-pore volume compared to PSAC.

PSAC-S 중에서 황(S)의 중량비가 높을수록 표면적(surface area), 전체 공극부피(total pore volume) 및 마이크로 공극부피(micro-pore volume)가 감소하는 것으로 나타난다.The higher the weight ratio of sulfur (S) in PSAC-S, the more the surface area, total pore volume and micro-pore volume decrease.

도 8 을 참조하여 FTIR 분석을 설명한다. The FTIR analysis will be described with reference to FIG. 8 .

PSAC에서는 C-0H, C=O, C=C 및 OH 결합이 나타나며, PSAC에 황(S)이 코팅된 PSAC-S10에서는 C-S와 O=S=O 결합이 나타난다.In PSAC, C-0H, C=O, C=C, and OH bonds appear, and PSAC-S 10 coated with sulfur (S) on PSAC shows CS and O=S=O bonds.

PSAC에 수은이 흡착된 이후에는 C-O-H나 C=C 결합의 강도가 감소한 것으로 나타나며, PSAC-S10에 수은이 흡착된 이후에는 0=S=O 결합의 강도가 감소한 것으로 나타난다.After mercury was adsorbed to PSAC, the strength of the COH or C=C bond was decreased, and after mercury was adsorbed to PSAC-S 10 , the strength of the 0=S=O bond was decreased.

도 9Fig. 9 를 참조하여 XPS 분석을 설명한다.The XPS analysis will be described with reference to.

수은 흡착전 PSAC와 PSAC-S10 모두에서 탄소 피크(C 1s)와 산소 피크(O 1s)가 명확하게 나타나고 있으며, PSAC-S10에서 추가적으로 황 피크(S 2p)가 나타나고 있다.Carbon peaks (C 1s) and oxygen peaks (O 1s) are clearly seen in both PSAC and PSAC-S 10 before mercury adsorption, and additional sulfur peaks (S 2p) are present in PSAC-S 10 .

수은 흡착 후에, PSAC와 PSAC-S10 모두에서 새로운 수은 피크(Hg 4f)가 나타나고 있다.After mercury adsorption, new mercury peaks (Hg 4f) appear in both PSAC and PSAC-S 10 .

도 10Fig. 10 을 참조하여 탄소 피크(C 1s)에 대한 XPS 분석을 설명한다.Referring to the XPS analysis for the carbon peak (C 1s) will be described.

수은 흡착전 PSAC에서 C-C, C=C 그리고 O-C=O 결합이 나타나며, 수은 흡착후 PSAC에서 탄산수은(mercury carbonate, Hg2CO3)이 나타나고 있다.CC, C=C and OC=O bonds appear in PSAC before mercury adsorption, and mercury carbonate (Hg 2 CO 3 ) appears in PSAC after mercury adsorption.

수은 흡착전 PSAC-S10에서 S, C-S, C=O 결합이 나타나며, 수은 흡착후 PSAC-S10에서 C=C 결합 강도가 높게 나타나고 있는데, 이는 황화합물의 용출때문인 것으로 보인다.Mercury adsorption before there in the PSAC S-10 S, appears and CS, C = O bond, a C = C bond strength appears from the PSAC S-10 high after the mercury adsorption, which seems to be due to the elution of the sulfur compounds.

도 11Fig. 11 을 참조하여 산소 피크(O 1s)에 대한 XPS 분석을 설명한다.The XPS analysis for the oxygen peak (O 1s) will be described with reference to.

수은 흡착전 PSAC에서 C-O, C=O 그리고 O-C=O 결합이 나타나며, 수은 흡착후 PSAC에서 Hg-O, C-OH 결합이 나타나고 있다.C-O, C=O and O-C=O bonds are present in PSAC before mercury adsorption, and Hg-O, C-OH bonds are present in PSAC after mercury adsorption.

수은 흡착전 PSAC-S10에서 S, C-O-S, S=O 결합이 나타나며, 수은 흡착후 PSAC-S10에서 C-OH 결합이 나타난다. 즉, C-0-S, S=0는 수은 흡착에 의해 소모된 것으로 판단된다.Mercury adsorption appears before the S, COS, S = O bond in the PSAC-S 10, and then mercury adsorption when the C-OH bond in a PSAC-S 10. That is, it is determined that C-0-S and S=0 were consumed by mercury adsorption.

도 12Fig. 12 를 참조하여 수은 피크(Hg 4f)에 대한 XPS 분석을 설명한다.The XPS analysis for the mercury peak (Hg 4f) will be described with reference to.

수은이 PSAC에서 Hg-O 결합 형태로 흡착되는 것으로 나타나며, PSAC-S10에서는 Hg-S 결합 형태로 흡착되는 것으로 나타난다.It appears that mercury is adsorbed in the form of Hg-O in PSAC, and in PSAC-S 10 it is adsorbed in the form of Hg-S.

그리고 PSAC 및 PSAC-S10 모두에서 염소이온(Cl-)이 수은이온(Hg2+)과 반응하여 클로로착염(chloro complex)이 형성되는 것으로 나타난다.And chlorine ion (Cl -) in both the PSAC and PSAC S-10 appears to be a mercury ion-chloro complex salt (chloro complex) to the reaction (Hg 2+) is formed.

도 13Fig. 13 을 참조하여 PSAC에서의 수은 흡착 매커니즘을 설명하고, Referring to the description of the mercury adsorption mechanism in PSAC, 도 14Fig. 14 를 참조하여 PSAC-SPSAC-S with reference to 1010 에서의 수은 흡착 매커니즘을 설명한다.Describes the mechanism of mercury adsorption in.

결과적으로, 수은이 포함된 수중에서 PSAC에서는 Hg2+가 표면의 O=C-O-와 반응하여 Hg-O 결합 형태로 흡착되며, PSAC-S10에서는 Hg2+가 C-S-와 반응하여 Hg-S 결합 형태로 흡착 내지 침전되는 것을 알 수 있으며, PSAC 및 PSAC-S10 모두 표면에서 클로로착염(chloro complex)이 형성되는 것을 알 수 있다.As a result, in water containing mercury, in PSAC, Hg 2+ reacts with O=CO -on the surface to adsorb Hg-O bonds, and in PSAC-S 10 , Hg 2+ reacts with CS - to Hg-S It can be seen that it is adsorbed or precipitated in a bound form, and it can be seen that both PSAC and PSAC-S 10 form a chloro complex on the surface.

도 15Fig. 15 를 참조하여 다른 흡착제의 흡착용량을 비교하여 설명한다.The adsorption capacity of other adsorbents will be compared with reference to the description.

수중에 포함된 수은을 흡착함에 있어서, 다른 흡착제 중 RS(Rice straw)AC의 흡착용량을 제외하고 본 발명에 따른 PSAC-S 흡착용량이 가장 높은 흡착용량을 나타내고 있다.In adsorbing mercury contained in water, the PSAC-S adsorption capacity according to the present invention shows the highest adsorption capacity except for the adsorption capacity of RS (Rice straw) AC among other adsorbents.

도 16Fig. 16 을 참조하여 흡착제 크기에 따른 수은 제거효율에 대해서 설명한다.The efficiency of mercury removal according to the size of the adsorbent will be described with reference to.

PSAC 및 PSAC-S의 크기를 granular(#20~#40, 420-840μm, 평균 600μm)와 powder(< 75μm) 크기로 하여, 수은이 포함된 수중에 PSAC, PSAC-S5, PSAC-S10, PSAC-S15를 투입하여 진행된 kinetic 실험이 이루어졌다.The size of PSAC and PSAC-S is granular (#20~#40, 420-840μm, average 600μm) and powder (< 75μm), and PSAC, PSAC-S 5 and PSAC-S 10 in water containing mercury , PSAC-S 15 was introduced to carry out the kinetic experiment.

도 16에서 GSAC는 granular 크기의 PSAC를, GSAC-S는 granular 크기의 PSAC-S를 지칭한다.In FIG. 16, GSAC refers to granular size PSAC, and GSAC-S refers to granular size PSAC-S.

결과적으로, PSAC 중량비 대비 황(S)의 중량비가 10%인 GSAC-S10에서 가장 높은 제거율을 나타내고 있으며, 대략 30분 만에 완전한 제거가 일어나는 평형상태에 이르렀다. 그러나 이러한 powder 크기의 PSAC-S10보다 느린 평형을 나타내고 있다. As a result, GSAC-S 10 , which has a weight ratio of sulfur (S) to PSAC weight ratio of 10%, shows the highest removal rate and reached an equilibrium state in which complete removal occurs in approximately 30 minutes. However, it shows a slower equilibrium than the powder size of PSAC-S 10 .

결론적으로, 수은 흡착용량이 가장 높은 것은 GSAC-S10 및 PSAC-S10이었으며, 넓은 pH 범위에서 증대된 흡착용량을 보이고 있다. PSAC 및 PSAC-S에서의 수은 제거 매커니즘은 흡착과 표면 착물화(surface complexation)를 포함하는 것으로 보이며, 마찬가지로 GSAC-S 또한 높은 수은 흡착용량을 보이고 있다.In conclusion, the highest mercury adsorption capacities were GSAC-S 10 and PSAC-S 10, and showed increased adsorption capacity in a wide pH range. The mercury removal mechanism in PSAC and PSAC-S appears to include adsorption and surface complexation, and likewise GSAC-S also shows high mercury adsorption capacity.

이상, 본 명세서에는 본 발명을 당업자가 용이하게 이해하고 재현할 수 있도록 도면에 도시한 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당업자라면 본 발명의 실시예로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 보호범위는 특허청구범위에 의해서 정해져야 할 것이다.As described above, the present specification has been described with reference to the embodiments shown in the drawings so that those skilled in the art can easily understand and reproduce the present invention, but these are merely exemplary, and those skilled in the art can obtain various modifications and equivalents from the embodiments of the present invention. It will be understood that embodiments are possible. Therefore, the protection scope of the present invention should be defined by the claims.

Claims (7)

수은 흡착제로 수중에 포함된 수은을 흡착하는 단계를 포함하며,
상기 수은 흡착제는, 활성탄소(activated carbon)에 황(S)이 코팅되되, 상기 활성탄소와 황화나트륨 5수화물(Na2S·5H2O)이 혼합되어 건조됨으로써 상기 황(S)이 상기 활성탄소에 코팅된 수은 흡착제이며,
상기 황화나트륨 5수화물(Na2S·5H2O)에 포함된 황(S)과 상기 활성탄소의 중량비는 0.1:1이며,
상기 수은 흡착제의 직경은 600㎛이며,
상기 수중에서의 pH는 7인 수은 흡착방법.
And adsorbing mercury contained in the water with a mercury adsorbent.
The mercury adsorbent is coated with sulfur (S) on activated carbon, and the active carbon and sodium sulfide pentahydrate (Na 2 S·5H 2 O) are mixed and dried to make the sulfur (S) active. Is a mercury adsorbent coated on carbon,
The weight ratio of sulfur (S) contained in the sodium sulfide pentahydrate (Na 2 S·5H 2 O) and the activated carbon is 0.1:1,
The diameter of the mercury adsorbent is 600㎛,
Mercury adsorption method in which the pH in the water is 7.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020190133848A 2019-10-25 2019-10-25 A mercury absorbent and a manufacturing method of thereof KR102117507B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190133848A KR102117507B1 (en) 2019-10-25 2019-10-25 A mercury absorbent and a manufacturing method of thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190133848A KR102117507B1 (en) 2019-10-25 2019-10-25 A mercury absorbent and a manufacturing method of thereof

Publications (1)

Publication Number Publication Date
KR102117507B1 true KR102117507B1 (en) 2020-06-02

Family

ID=71090970

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190133848A KR102117507B1 (en) 2019-10-25 2019-10-25 A mercury absorbent and a manufacturing method of thereof

Country Status (1)

Country Link
KR (1) KR102117507B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0940971A (en) * 1995-07-27 1997-02-10 Taiyo Sekiyu Kk Removal of mercury in liquid hydrocarbon
JP2013237794A (en) * 2012-05-16 2013-11-28 Ihテクノロジー株式会社 Method of removing mercury in liquid hydrocarbon

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0940971A (en) * 1995-07-27 1997-02-10 Taiyo Sekiyu Kk Removal of mercury in liquid hydrocarbon
JP2013237794A (en) * 2012-05-16 2013-11-28 Ihテクノロジー株式会社 Method of removing mercury in liquid hydrocarbon

Similar Documents

Publication Publication Date Title
JP6545616B2 (en) Adsorbent to remove mercury
Xu et al. A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism
Tang et al. Engineering magnetic N-doped porous carbon with super-high ciprofloxacin adsorption capacity and wide pH adaptability
US20200197901A1 (en) Metal organic framework (mof) composite materials, methods, and uses thereof
CA2755318C (en) Sorbent formulation for removal of mercury from flue gas
Liu et al. Removal of gaseous elemental mercury by modified diatomite
Nguyen-Thanh et al. Activated carbons with metal containing bentonite binders as adsorbents of hydrogen sulfide
Saman et al. High removal efficacy of Hg (II) and MeHg (II) ions from aqueous solution by organoalkoxysilane-grafted lignocellulosic waste biomass
Jung et al. Sorptive removal of heavy metals with nano-sized carbon immobilized alginate beads
JP6641286B2 (en) Hybrid ion exchange material and method for producing the same
Girish Various impregnation methods used for the surface modification of the adsorbent: A review
JP2018515333A (en) Adsorbent to remove mercury
Yang et al. Support features govern the properties of the active phase and the performance of bifunctional ZnFe2O4-based H2S adsorbents
Sigdel et al. Immobilization of hydrous iron oxides in porous alginate beads for arsenic removal from water
Yoon et al. Sulfur-anchored palm shell waste-based activated carbon for ultrahigh sorption of Hg (II) for in-situ groundwater treatment
KR102117507B1 (en) A mercury absorbent and a manufacturing method of thereof
Yang et al. Fabrication and characterization of magnetically responsive Fe 3 O 4@ TiO 2 core-shell adsorbent for enhanced thallium removal
Dudek et al. Arsenate removal on the iron oxide ion exchanger modified with Neodymium (III) ions
Wang et al. Lead ions sorption from waste solution using aluminum hydroxide modified diatomite
Suzuki et al. Immobilization of arsenate in kaolinite by the addition of magnesium oxide: an experimental and modeling investigation
Shukla et al. Silver impregnated novel adsorbents for capture of elemental Mercury: A review
KR102168615B1 (en) Nano-porous mineral activated carbon and its using method
JP4563745B2 (en) Adsorbent
Chen et al. Influence of sulfide, chloride and dissolved organic matter on mercury adsorption by activated carbon in aqueous system
Wu et al. Modification of a commercial activated carbon for metal adsorption by several approaches

Legal Events

Date Code Title Description
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant