KR102114787B1 - Preparing method for 3 dimension corneal endothelial graft comprising ribonuclease 5 overexepressing corneal endothelial cells - Google Patents

Preparing method for 3 dimension corneal endothelial graft comprising ribonuclease 5 overexepressing corneal endothelial cells Download PDF

Info

Publication number
KR102114787B1
KR102114787B1 KR1020180038240A KR20180038240A KR102114787B1 KR 102114787 B1 KR102114787 B1 KR 102114787B1 KR 1020180038240 A KR1020180038240 A KR 1020180038240A KR 20180038240 A KR20180038240 A KR 20180038240A KR 102114787 B1 KR102114787 B1 KR 102114787B1
Authority
KR
South Korea
Prior art keywords
corneal endothelial
endothelial cells
ribonuclease
cells
implant
Prior art date
Application number
KR1020180038240A
Other languages
Korean (ko)
Other versions
KR20190115332A (en
Inventor
김재찬
김경우
장인호
이수진
Original Assignee
중앙대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 중앙대학교 산학협력단 filed Critical 중앙대학교 산학협력단
Priority to KR1020180038240A priority Critical patent/KR102114787B1/en
Publication of KR20190115332A publication Critical patent/KR20190115332A/en
Application granted granted Critical
Publication of KR102114787B1 publication Critical patent/KR102114787B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3683Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment
    • A61L27/3687Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment characterised by the use of chemical agents in the treatment, e.g. specific enzymes, detergents, capping agents, crosslinkers, anticalcification agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/142Cornea, e.g. artificial corneae, keratoprostheses or corneal implants for repair of defective corneal tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3604Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3641Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the site of application in the body
    • A61L27/3666Epithelial tissues other than skin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/67General methods for enhancing the expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/0621Eye cells, e.g. cornea, iris pigmented cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2240/00Manufacturing or designing of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2240/001Designing or manufacturing processes
    • A61F2240/002Designing or making customized prostheses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells

Abstract

본 발명은 리보핵산분해효소 5 고발현된 각막 내피세포를 포함하는 3차원 각막 내피 이식체 제조방법에 관한 것으로, 보다 상세하세는 리보핵산분해효소 5(RNase 5)가 고발현된 각막 내피세포가 3차원 바이오 프린트된 각막 내피 이식체의 경우 리보핵산분해효소 5(RNase 5)가 고발현된 각막 내피세포 보다 ZO-1(zonular occludens-1) 발현이 증가되어 세포 표현형이 개선되었으며, 세포 표면의 Na+-K+ ATPase 발현 역시 증가된 것이 확인됨에 따라, 효과적으로 손상된 각막의 부종을 예방하고 치료할 수 있으므로, 리보핵산분해효소 5(RNase 5)가 고발현된 각막 내피세포를 이용한 3차원 각막 내피 이식체는 효과적인 손상 각막 치료에 사용될 수 있다.The present invention relates to a method for producing a three-dimensional corneal endothelial implant containing ribonuclease 5 highly expressed corneal endothelial cells, and more specifically, corneal endothelial cells highly expressed with ribonuclease 5 (RNase 5) In the case of a 3D bio-printed corneal endothelial implant, zonular occludens-1 (ZO-1) expression was increased compared to corneal endothelial cells in which ribonuclease 5 (RNase 5) was highly expressed, resulting in improved cell phenotype. As it is confirmed that Na + -K + ATPase expression is also increased, it is possible to effectively prevent and treat swelling of the damaged cornea, and thus, 3D corneal endothelial transplantation using corneal endothelial cells highly expressed with ribonuclease 5 (RNase 5) The sieve can be used for effective damage to the cornea.

Description

리보핵산분해효소 5 고발현된 각막 내피세포를 포함하는 3차원 각막 내피 이식체 제조방법{Preparing method for 3 dimension corneal endothelial graft comprising ribonuclease 5 overexepressing corneal endothelial cells}Preparing method for 3 dimension corneal endothelial graft comprising ribonuclease 5 overexepressing corneal endothelial cells}

본 발명은 리보핵산분해효소 5가 고발현된 각막 내피세포를 이용하여 3차원 바이오 프린팅된 각막 내피 이식체에 관한 것이다.The present invention relates to a 3D bioprinted corneal endothelial implant using corneal endothelial cells highly expressed with ribonuclease 5.

해부학적으로 각막 내피 조직은 육각형의 각막 내피세포가 세포 간 밀착연접(tight junction)을 형성하여 단일층 각막 내피층을 만들고 있으며, 세포간 밀착연접은 각막으로의 수분유입 및 각막 부종을 차단하고, 세포 표면에 Na-K ATPase 펌프를 발현하여 각막으로 유입된 수분을 퍼내기 때문에 역시 각막의 부종을 방지하여 투명도를 유지한다. 따라서, 각막 내피 고유의 기능을 위해서는 세포의 수가 충분해야 하고, 세포간 밀착연접이 잘 발달되어야 하며, 세포 표면의 Na-K ATPase 발현이 뚜렷해야 한다.Anatomically, the corneal endothelial tissue forms a single-layered corneal endothelial layer by forming hexagonal corneal endothelial cells with tight junctions between cells, and the intercellular closet blocks water inflow to the cornea and corneal edema, Since the Na-K ATPase pump is expressed on the cell surface to pump out moisture that has flowed into the cornea, it also prevents edema of the cornea and maintains transparency. Therefore, for the intrinsic function of the corneal endothelium, the number of cells must be sufficient, the cell-to-cell adhesion must be well developed, and the Na-K ATPase expression on the cell surface must be distinct.

하지만, 생체 내에서 손상된 각막 내피세포의 재생은 극히 제한적이어서, 푹스각막이영양증, 외상, 인공수정체 수포각막병증 등의 여러 질환들에 의해 내피세포가 손상되는 경우 각막의 부종 및 혼탁을 유발하여 심각한 시력의 소실을 초래하기도 한다.However, regeneration of damaged corneal endothelial cells in vivo is extremely limited, and when endothelial cells are damaged by various diseases such as Fuchs' corneal dystrophy, trauma, and phacoepithelial keratosis, corneal swelling and turbidity can cause serious vision. It can also cause loss.

이러한 사람 각막 내피세포는 일생동안 세포 주기의 G1기에 정지해 있으며, 동시에 세포주기 진행을 억제하는 p53 유전자와 같은 여러 조절자의 발현이 증가되어 있어 대부분의 세포들이 손상 치유과정에서 세포증식 및 세포이주가 함께 동반되는 데 반하여 각막 내피세포는 세포이주와 세포크기의 증가를 통하여 손상부위를 수복함에 따라 각막은 정상각막 두께의 몇 배로 붓게 되고, 불투명해져 그 기능을 잃게 된다.These human corneal endothelial cells are stationary in the G1 phase of the cell cycle throughout their lives, and at the same time, the expression of several regulators, such as the p53 gene, which inhibits cell cycle progression, has increased, so most cells undergo cell proliferation and cell migration during the damage healing process. On the contrary, as the corneal endothelial cells repair the damaged area through an increase in cell migration and cell size, the cornea swells several times the thickness of the normal cornea and becomes opaque and loses its function.

최근에 각막 내피세포의 줄기세포가 각막 내피와 섬유주 사이에 존재하는 것이 알려지고, 이 이행대 부위에서 줄기세포 표지자인 네스틴(nestin)에 염색되는 세포들이 발견되어, 각막 내피세포도 사람 생체 내에서 증식될 수 있을 것으로 제안될 수 있으나, 아직까지 각막 내피세포를 생체 내에서 증식시킬 수 있는 방법은 보고되어 있지 않으므로, 각막 내피세포의 손상을 치료하기 위해서는 각막 이식 이외의 다른 대안이 없는 실정이다.Recently, it is known that the stem cells of the corneal endothelial cells exist between the corneal endothelial and the fibrous line, and cells stained with the stem cell marker nestin at this transition zone have been discovered, and the corneal endothelial cells are also found in the human body. Although it can be suggested that it can be proliferated in, there is no method to proliferate corneal endothelial cells in vivo, so there is no alternative to corneal endothelial cell damage to treat corneal endothelial cell damage. .

대한민국공개특허 제10-2014-0031814 (2014.03.13. 공개)Republic of Korea Patent No. 10-2014-0031814 (2014.03.13. Public)

앞서 전술한 바와 같이 각막 내피세포의 손상은 시력 예후와 직결되나 각막 내피세포는 다른 세포들과 달리 자체 증식능이 없어 각막 내피 손상 치료에 어려움이 많은 바, 본 발명은 손상된 각막 내피 부위에 각막 내피세포를 이식하기 위해 리보핵산분해효소 5가 고발현된 각막 내피세포를 이용하여 3차원 바이오 프린트된 각막 내피 이식체의 제조방법에 관한 것이다.As described above, the damage of the corneal endothelial cells is directly related to the prognosis of vision, but the corneal endothelial cells have many difficulties in treating corneal endothelial damage because they do not have their own proliferative ability, unlike other cells. The present invention relates to a method of manufacturing a 3D bioprinted corneal endothelial implant using corneal endothelial cells highly expressed with ribonuclease 5 for transplantation.

본 발명은 리보핵산분해효소 5(Ribonuclease 5)를 각막 내피세포에 과발현시키는 단계(제1단계); 상기 제1단계의 리보핵산분해효소 5가 과발현된 각막 내피세포를 바이오잉크에 분산시키는 단계(제2단계); 상기 제2단계의 각막 내피세포가 분산된 바이오잉크를 가축으로부터 분리되어 동결건조된 양막에 바이오 프린팅하는 단계(제3단계); 및 상기 제3단계의 바이오 프린팅된 양막에 자외선을 조사하여 교차결합시키는 단계(제4단계)를 포함하는 것을 특징으로 하는 3차원 바이오 프린팅된 각막 내피 이식체 제조방법을 제공한다.The present invention is a step of overexpressing ribonuclease 5 (Ribonuclease 5) on corneal endothelial cells (first step); Dispersing corneal endothelial cells overexpressed in the first step of ribonuclease 5 in bioink (second step); Separating the bioink in which the corneal endothelial cells of the second step are dispersed from livestock and bioprinting the lyophilized amniotic membrane (third step); And it provides a three-dimensional bio-printed corneal endothelial implant manufacturing method comprising the step of cross-linking by irradiating ultraviolet rays to the bio-printed amniotic membrane of the third step (step 4).

또한, 본 발명은 상기 각막 내피 이식체 제조방법에 따른 리보핵산분해효소 5(Ribonuclease 5)가 과발현된 각막 내피세포가 양막 위에 3차원 바이오 프린팅된 각막 내피 이식체를 제공한다.In addition, the present invention provides a corneal endothelial implant in which a corneal endothelial cell overexpressing ribonuclease 5 according to the method for preparing the corneal endothelial implant is 3D bioprinted on the amniotic membrane.

본 발명에 따르면, 리보핵산분해효소 5(RNase 5)가 고발현된 각막 내피세포가 3차원 바이오 프린트된 각막 내피 이식체의 경우 리보핵산분해효소 5(RNase 5)가 고발현된 각막 내피세포 보다 ZO-1(zonular occludens-1) 발현이 증가되어 세포 표현형이 개선되었으며, 세포 표면의 Na+-K+ ATPase 발현 역시 증가된 것이 확인됨에 따라, 효과적으로 손상된 각막의 부종을 예방하고 치료할 수 있으므로, 리보핵산분해효소 5(RNase 5)가 고발현된 각막 내피세포를 이용한 3차원 각막 내피 이식체는 효과적인 손상 각막 치료에 사용될 수 있다.According to the present invention, in the case of corneal endothelial transplantation in which a corneal endothelial cell having high expression of ribonuclease 5 (RNase 5) is 3D bioprinted, than corneal endothelial cell having high expression of ribonuclease 5 (RNase 5) As zonular occludens-1 (ZO-1) expression was increased, cell phenotype was improved and Na + -K + ATPase expression on the cell surface was also confirmed to be increased, so it is possible to effectively prevent and treat edema of the damaged cornea. A three-dimensional corneal endothelial implant using RNase 5 highly expressed corneal endothelial cells can be used for effective damage to the cornea.

도 1은 양막 위에 배양된 사람 각막 내피세포(HCECs)의 바이오 프린팅하는 과정을 나타낸 모식도이다.
도 2는 토끼 각막 위에 3차원(3D) 바이오 프린트된 각막 내피 이식체를 이식하는 수술과정을 나타낸 모식도 및 광학 사진으로, 도 2A는 토끼 각막 내 데스메막을 박리시킨 후 양막 위 사람 각막 내피세포가 3차원 프린트된 이식체를 이식하는 과정을 설명하기 위한 모식도이며, 도 2B 내지 2M은 수술과정 중 대표적인 이미지들로 도 2B는 중심에 8 mm 원을 표시한 후의 사진이며, 도 2C 내지 도 2E는 역방향 Sinskey hook를 이용하여 데스메막을 박리시키고 추출하는 과정을 나타낸 사진으로, 도 2E와 같이 추출된 데스메막은 도 2와 같이 각막 중심을 향해 박리되었으며, 도 2F와 같이 8 mm 트리핀 블러드(trephine blade)로 직경 8 mm 원형으로 잘라낸 이식체를 접어 도 2G와 같이 인공수정체(IOL) 삽입용 포셉(forcep)을 이용하여 전방에 삽입하였다. 도 2H 및 도 2I와 같이 이식체를 펼친 후 도 2J 내지 도 2M과 같이 2.75 mm 크기의 각막 상처를 #10-0 나일론으로 봉합하고 이식체가 각막 스트로마에 잘 부착되도록 공기를 주입하였다.
도 2K의 화살표 부분은 삽입된 이식체의 마진은 전방 공기 주입에 의해 각막의 내부 표면에 잘 부착된 것을 확인할 수 있었다.
도 3은 콜로니 PCR를 통하여 리보핵산분해효소 5(RNase 5) 플라스미드 및 대조군 플라스미드를 확인한 결과 및 배양된 사람 각막 내피세포에 RNase 5 발현 벡터로 형질전환시키고 RNase 5의 과발현을 확인한 결과로, 도 3A는 C-녹색 형광 단백질(GFP)-RNase 5 플라스미드 및 C-GFP-대조군 플라스미드로 형질전환된 DH5α 세포를 콜로니 스크리닝한 결과로, RNase 5 유전자 및 대조군 유전자의 증폭된 클론 352-bp-조각을 나타내었다. 6, 7, 8, 9 및 10번 레인의 클론은 재조합형이며, 3 및 4번 레인은 거짓 양성 콜로니로 확인되었으며, 도 3B는 배양된 사람 각막 내피세포(HCECs)내 RNase 5 유전자를 PCR 확인한 결과이며, 도 3C 내지 도 3E는 0.2 ㎍ 및 0.5 ㎍ 농도의 RNase 5 발현 벡터, 음성 대조군(N/C) 벡터 또는 Lipofectamine® 3000으로 24시간 및 48시간 동안 형질전환된 사람 각막 내피세포(HCECs)에서 RNase 5의 mRNA 발현을 확인한 결과로, 도 3C는 transfection-passage 0 (t-P0)에서 24시간 형질전환시킨 세포의 RNase 5 발현 수준을 확인한 결과이며, 도 3D는 transfection-passage 0 (t-P0)에서 48시간 형질전환시킨 세포의 RNase 5 발현 수준을 확인한 결과이며, 도 3E는 배양 배지에서 계대배양(transfection-passage 1 [t-P1]) 후 72시간 유지시킨 세포에서 Nase 5 발현 수준을 확인한 결과이다.
도 3F는 벡터가 없는 배지에서 유지시켰음에도 불구하고 RNase 5 벡터(0.2 ㎍ and 0.5 ㎍)로 형질전환된 HCECs에서 내생적인 RNase 5가 계속 발현되는 것을 확인한 결과로(**p < 0.01, n = 4 독립적인 실험), 결과값은 평균 ± s.e.m.로 나타내었으며, 배양된 HCECs mock, N/C 벡터 및 RNase 5 벡터군에서 RNase 5의 웨스턴 블롯 분석은 레인 7에서 12가 t-P1의 R5-HCECs이며, β-액틴을 로딩 대조군으로 사용하였고, 동일한 레인에서 β-액틴 농도에 대한 상대적인 농도 값을 겔 아래 기록하였다.
도 4는 리보핵산분해효소 5(RNase 5) 발현 벡터로 형질전환된 사람 각막 내피 세포를 배양하고 세포 내 RNase 5 단백질의 발현 수준을 확인한 결과로, 도 4A는 transfection-passage 0 (t-P0)에서 RNase 5 벡터(0.5 ㎍)로 48시간 동안 형질전환된 HCECs (R5-HCECs)의 C-말단에서 과발현된 RNase 5를 표지시킨 녹색 형광 단백질(GFP)의 형광을 확인한 대표 이미지로, 도 4Ai 내지 4Aiii는 핵 내에서 녹색 형광이 확인되었으며(흰색 화살표), 도 4Aiv 내지 도 4vi에서는 핵 주위의 세포질에서 녹색 형광이 확인되었다(노란색 화살표). 도 4B는 R5-HCECs와 음성 대조군(N/C) 벡터 0.5 ㎍으로 48시간 동안 형질전환된 인간 각막 내피세포(NC-HCECs)에서 RNase 5의 면역염색을 수행한 결과, 핵 주위에서 풍부한 RNase 5를 발현하거나 핵 내에서 부분적으로 풍부한 RNase 5를 발현(별표)시키는 R5-HCECs와 대조적으로 NC-HCEC는 내재적인 RNase 5가 희박하게 존재하는 것으로 확인되었다. 도 4C는 대표적으로 확대된 R5-HCECs(t-P0 및 t-P1)의 이미지로, 세포 내 RNase 5는 핵(희색 화살표)과 핵막을 가로 질러 연결된 핵 주위 영역(노란색 화살표)에서 공존하는 것을 확인한 결과이다 [(A-C) Scale bars: 20 ㎛ (흰색) and 200 ㎛ (노란색)].
도 5는 리보핵산분해효소 5(RNase 5) 발현 벡터로 형질전환되어 배양된 사람 각막 내피세포(HCECs)의 시간 경과에 따른 세포 생존력을 확인한 결과로, RNase 5 벡터로 형질전환된 HCECs(R5-HCECs)의 상대적 생존력을 mock 그룹과 비교하기 위해 형질전환 1일째(D0)부터 배양 배지에 6일간 유지시킨 후 MTT 분석하여 세포 생존력을 확인한 결과, 도 5A는 R5-HCECs의 생존력은 mock 그룹과 별다른 차이가 확인되지 않았지만, 도 5B 및 도 5C에서 0.5㎍ 벡터로 처리한 R5-HCEC 군에서 D1부터 우수한 생존력을 나타내기 시작했다. D3일째인 도 5D 및 도 5G에서는 두 벡터 그룹의 세포 생존력이 mock 그룹보다 우수하게 나타났다 [**p < 0.01 and *p < 0.05 (ANOVA followed by Bonferroni's post-hoc analysis), n = 6 independent experiments at all timepoints. Values represent the mean

Figure 112018032700050-pat00001
s.e.m.].
도 6은 배양된 사람 각막 내피세포의 증식에 있어 리보핵산분해효소 5(RNase 5) 과발현 효과를 확인한 결과로, 도 6A는 mock과 비교하여 RNase 5 발현 벡터(R5-HCECs)로 형질전환된 HCECs의 형질전환-페세지 1에서 상대적인 BrdU 흡수량을 확인한 결과이며, 도 6B는 대조군 HCECs와 mock 그룹과 비교하여 R5-HCECs의 성장 곡선은 배양 배지에서 5일 이상 유지되는 것을 확인한 결과로, RNase 5의 과발현은 BrdU 흡수를 유의적으로 증가시켰으며(A), R5-HCECs (0.5 ㎍ 벡터)의 성장속도를 가속화시켰음을 확인한 결과이다 [(A) **p < 0.01. n = 4 independent experiments. (B) **p < 0.01 and *p < 0.05, vs. control HCEC. ## p < 0.01 and # p < 0.05, vs. mock. n = 5 independent experiments.].
도 7은 리보핵산분해효소 5(RNase 5) 발현 벡터로 형질전환되어 배양된 인간 각막 내피세포(HCECs)에서 마이크로 RNA (miR)-21, miR-23a 및 miR-27a의 발현 수준을 확인한 결과로, 도 7A 내지 도 7C는 miR-21의 발현 변화수준을 확인한 결과이며, 도 7D 내지 도 7F는 miR-23a의 발현 변화수준을 확인한 결과이며, 도 7G 내지 도 7I는 miR-27a의 발현 수준을 확인한 결과로, 상기 발현수준은 RNase 5 발현 벡터(0.2 ㎍ 및 0.5 ㎍, R5-HCECs)로 24시간 및 48시간 동안 형질전환된 HCECs(transfection-passage 0; t-P0)와 72시간 동안 배양 배지에서 유지시킨 R5-HCECs(passage; t-P1)에서 miRs의 변화를 실시간 RT-PCR을 수행하여 정량한 결과이다. 중요한 것은 R5-HCECs 내 miRs의 상향 조절은 형질전환(t-P0)시기 보다 페세지(t-P1) 후 더욱 두드러지게 나타났다[**p < 0.01 and *p < 0.05 (ANOVA followed by Bonferroni's post-hoc analysis). n = 3 independent experiments. Values represent the mean
Figure 112018032700050-pat00002
s.e.m.].
도 8은 RNase 5 발현 벡터로 형질전환된 배양된 인간 각막 내피세포 (HCECs)에서 리보핵산분해효소 5(RNase 5)의 표적 유전자 후보를 확인한 정량적 실시간 RT-PCR 분석 결과로, 도 8A는 PDCD4 (programmed cell death protein 4; A)의 발현 수준을 확인한 결과이며, 도 8B는 PTEN(phosphatase and tensin homolog)의 발현 수준을 확인한 결과이며, 도 8C는 Cdc25A의 발현 수준을 확인한 결과이며, 도 8D는 Cdk2AP1의 발현 수준을 확인한 결과이며, 도 8E는 Spry1(sprouty RTK signaling antagonist 1)의 발현 수준을 확인한 결과이며, 도 8F는 Spry2의 발현 수준을 확인한 결과이며, 도 8G는 Apaf1(apoptotic protease activating factor 1)의 발현 수준을 확인한 결과이며, 상기 발현 수준은 RNase 5 발현 벡터로 형질전환되어 배양된 HCECs와 mock 그룹 및 음성 대조군(N/C) 벡터로 형질전환된 HCECs를 비교한 결과이며 [**p < 0.01 and *p < 0.05 (ANOVA followed by Bonferroni's post-hoc analysis). n = 8 independent experiments. Values represent the mean
Figure 112018032700050-pat00003
s.e.m.], 도 8H는 배양된 mock, N/C 벡터 및 RNase 5 벡터 HCECs 군에서 PDCD4, cyclin A2, cyclin D1, cyclin D3 및 cyclin E1을 확인하기 위한 웨스턴블롯 분석 결과로, 레인 7에서 12는 t-P1의 R5-HCECs이며, β-액틴을 로딩 대조군으로 사용하였으며, 동일한 레인에서는 β-액틴 밀도에 대한 상대적인 농도 값을 각 겔 아래에 기록하였다.
도 9는 리보핵산분해효소 5(RNase 5) 발현 벡터로 형질전환되어 배양된 인간 각막 내피세포(HCEC)와 대조군 HCECs에서 기능 관련 마커의 발현 수준을 확인한 결과로, 도 9A는 20세 여성 기증자(A)로부터 배양된 초대 HCECs (passage 0; P0)를 위상차 현미경으로 확인한 결과이며, 도 9B는 RNase 5 벡터 형질전환 전 및 후에 CD166 및 CD44 발현 수준을 확인한 결과로, 상기 HCEC 세포군은 CD166 및 CD44 양성을 나타낼 뿐만 아니라, 표면 마커 역시 양성을 나타낸 RNase 5 벡터 0.5 ㎍로 48시간 동안 형질전환된 HCECs (R5-HCECs)를 t-P1(transfection-passage 1)시기에서 확인한 유세포 분석결과이다 (Scale bar: 100 ㎛). 도 9C는 대조군 HCECs (P4)와 R5-HCECs (t-P1)의 위상차 현미경 분석 결과 및 상기 세포군의 Na+-K+ ATPase 및 ZO-1(zonular occludens-1)를 확인한 면역염색 결과로, 도 9Ci 및 도 9Cii의 융합성 R5-HCECs 및 대조군 HCECs 모두 비교적 섬유아세포 표현형을 나타내지만 다각형 세포 형태와 세포 간 단단한 접합부는 대조군 HCEC 보다 R5-HCEC에서 더 많이 확인되었다. Na+-K+ ATPase 발현은 세포의 측면 막에서 발견되었으며, HCECs 보다 R5-HCECs에서 현저하게 많이 나타났다. 또한, 도 9Cx와 같이 이들 모양 중 일부는 타이트한 교차점에서 ZO-1 발현에 따라 표준형으로 확인되었다(흰 점선 경계). 이미지 iv, vi, viii 및 x는 이미지 iii, v, vii 및 ix를 각각 확대한 것이며, 세포 핵 시각화를 위해 DAPI를 사용하였다[Scale bars: 100 ㎛ (흰색), 20 ㎛ (노란색)]. 도 9D는 ATP1A1(ATPase Na+-K+ transporting subunit alpha 1) 유전자 발현을 정량적으로 확인한 실시간 RT-PCR 분석결과이며, 도 9E는 TJP1(tight junction protein 1) 유전자 발현을 정량적으로 확인한 실시간 RT-PCR 분석결과이며, 도 9F는 ALCAM(activated leukocyte cell adhesion molecule; i.e. CD166) 유전자 발현을 정량적으로 확인한 실시간 RT-PCR 분석결과이며, 도 9G는 CD44 유전자 발현을 정량적으로 확인한 실시간 RT-PCR 분석결과이다. 상기 유전자 발현량을 확인한 결과들은 R5-HCECs에서 발현된 유전자량을 mock 군 및 음성 대조군 벡터로 형질전환된 HCECs와 비교한 결과이다. [**p < 0.01 and *p < 0.05 (ANOVA followed by Bonferroni's post-hoc analysis). n = 8 independent experiments. Values represent the mean
Figure 112018032700050-pat00004
s.e.m.]. 도 9H는 mock, N/C 벡터 및 RNase 5 벡터로 형질전환된 HCECs 세포에서 Na+-K+ ATPase, ZO-1, C166 및 CD44 발현을 확인한 웨스턴블롯 분석결과로, β-액틴을 로딩 대조군으로 사용하였으며, 동일한 레인에서 β-액틴 밀도에 대한 상대 농도 값을 각 겔 아래에 기록하였다.
도 10은 무 세포 양막(AM) 및 이식 가능한 3차원(3D) 바이오 프린트된 각막 내피 이식체의 선명도 및 조직학적 분석 결과로, 도 10A는 바이오 프린팅 10일 후 무 세포 양막(AM)과 리보핵산분해효소 5(RNase 5) 벡터로 형질전환된 사람 각막 내피세포(HCECs; R5-HCECs)가 가득한 양막 이식체의 투명도를 확인한 결과이며, R5-HCEC의 바이오 프린팅(무색 점선 안쪽)은 무 세포 소 양막(검은 점선 사각형)의 선명도를 감소시키지 않았다. 도 10B는 무 세포 양막 및 바이오 프린팅 10일 후 R5-이식체의 헤마톡실린 & 에오신 염색을 광학 현미경으로 확인한 결과로, HCEC의 운반체로 사용된 동결 건조된 양막에서는 세포가 관찰되지 않은 반면, 도 10Biii 및 도 10Biv와 같이 R5-이식체에서는 R5-HCEC가 양막 조직위에 25 μm 두께로 단층을 형성한 것을 확인한 결과이며 [Scale bar: 20 ㎛ (검정), 10 ㎛ (흰색)], 도 10C는 이식 전 양막 위에서 3D 바이오 프린트된 R5-HCECs를 10일간 성장시키고 소맥배아응집소(wheat germ agglutinin; WGA)로 염색하여 3D 바이오 프린트된 R5-HCECs의 세포막을 형광 현미경으로 관찰한 결과로(endothelial cell density [ECD]: 1244 cells/mm2), 접촉이 억제된 다각형 모양의 표준 세포가 사각형 안쪽에서 확인되었다 [Scale bars: 100 ㎛ (흰색), 30 ㎛ (노란색)].
도 11은 이식 가능한 3차원 바이오 프린트된 각막 내피세포 이식체의 세포질 및 표현형을 확인한 결과로, 도 11A는 바이오 프린팅 10일 후 CellTracker™ Green CMFDA 염료를 이용한 형광현미경 분석을 수행하여 이식체 상의 사람 각막 내피세포(HCECs)를 추적한 결과로, R5-HCECs 이식체(R5-Graft) 상에 리보핵산분해효소 5(RNase 5) 벡터로 형질전환된 사람 각막 내피세포(R5-HCECs)가 거의 합류되었고 다각형의 모양을 형성하였으나, 대조군 HCECs 이식체(Ct-Graft)에서는 대조군 HCECs에서는 희막하게 분포되어 있었으며, 섬유아세포 표현형을 나타내는 것을 확인한 결과이며 이미지 i 및 iii은 이미지 ii 및 iv를 확대한 것이다 [Scale bars: 500 ㎛ (흰색), 100 ㎛ (노란색)]. 도 11B는 바이오 프린팅 10일 후 R5-HCECs로 덮힌 이식체(R5-Graft)와 대조군 HCECs로 덮힌 이식체(P4; Ct-Graft)에서 Na+-K+ ATPase 및 ZO-1(zonular occludens-1)을 면역염색하여 확인한 결과로, Na+-K+ ATPase (arrow, representative in ii)의 기저 외측 발현 및 ZO-1의 결합 발현은 R5-이식체 상의 HCEC보다 Ct-이식체 상의 HCEC가 섬유아세포임을 나타낸 결과이다. 이미지 i 및 iii은 이미지 ii 및 iv를 확대한 것이며, Scale bars: 100 μm (흰색), 50 ㎛ (노란색)이다.
도 12는 3차원 바이오 프린트된 각막 내피세포 이식체 이식 후 생체 내 각막 내피 재생 변화를 시간 경과에 따라 확인한 결과로, 이식체 이식 수술 4주 후 토끼 대조군 그룹의 각막과 생체 외 조직학적 분석을 수행하여 비교한 결과이다. 도 12A는 수술 후 4주 동안 다양한 그룹에서 전방 부분을 촬영한 사진으로, 데스메막을 벗겨낸 대조군 그룹, 세포 주입 그룹 및 무 세포 양막(AM) 그룹에서는 수술 후 4주동안 중심 각막 부종 때문에 동공 여백이 가려졌으며, 세포 주입 그룹의 안구에서는 각막 혈관신생이 확인되었다(도 12ii의 검은색 화살표). 도 12A xiii 및 도 12A xviii의 검은 색 점선은 수축된 마진을 나타내며, 중심 사람 각막 내피세포(HCECs)가 삽입된 이식체(Ct-Graft) 및 리보핵산분해효소 5(RNase 5) 벡터로 형질전환된 HCECs (R5-HCECs)가 삽입된 이식체(R5-Graft) 그룹과 다르게 삽입된 무 세포 양막은 수술 3주 후 부터 수축하였다. 도 12B는 정상 토끼 각막, 데스메막이 박리된 대조군 각막 및 R5-이식체가 이식된 각막을 수술 4주 후 확인한 대표 사진으로, R5-이식체가 이식된 각막은 전방 구조 및 동공 마진이 명확하게 보일 정도로 회복된 것을 확인할 수 있었으며, 화살표 팁은 삽입된 이식체의 마진을 나타낸다. 도 12C는 대조군(n = 5 eyes), 세포 주입군(n = 3 eyes), 무 세포 양막(n = 2 eyes), Ct-이식체군(n = 5 eyes) 및 R5-이식체군(n = 6 eyes)의 중심 각막 두께(CCT)를 확인한 결과로, R5-이식체군의 각막 두께는 수술 4주 후 거의 기준치 수준으로 회복되었다. **p < 0.01 and *p < 0.05, vs. 대조군, # p < 0.05, vs. 세포 주입군, && p < 0.01 및 & p < 0.05, vs. 무 세포 양막(AM) (ANOVA followed by Bonferroni's post-hoc analysis). 실험 결과값은 평균 ± s.e.m.으로 나타내었다. 도 12D는 항 염색 항체를 이용하여 형광 현미경 분석한 CellTracker™ Green CMFDA 염료 이미지이며, 도 12E는 알리자린 레드 S 염색 현미경 분석 이미지(흑백 여과)이다. 도 12D i는 양막 시트의 가장자리 안쪽에서 R5-이식체 시트 상에 추적된 세포를 확인할 수 있었으며, 도 12D ii 및 도 12E에서 세포 모양이 다각형임을 확인할 수 있었다[Scale bars: 100 ㎛ (노란색), 40 ㎛ (흰색) and 10 ㎛ (검정색)]. 도 12F는 R5-이식체 상에 R5-HCEC의 Na+-K+ ATPase, CD166 및 ZO-1(zonular occludens-1) 및 Ct-이식체 상의 대조군 HCECs의 Na+-K+ ATPase를 면역염색한 결과로, DAPI는 세포 핵 시각화를 위해 사용되었다 [Scale bars: 20 ㎛].
도 13은 RNase 5을 과발현시키기 위한 RNase 5에 대한 ORF(Gene open reading frame) cDNA 클론 발현 플라스미드(Human Angiogenin/RNase 5 gene ORF cDNA clone expression plasmid)의 개열지도이다.1 is a schematic diagram showing the process of bio-printing of human corneal endothelial cells (HCECs) cultured on the amniotic membrane.
Figure 2 is a schematic and optical picture showing the surgical process of implanting a 3D (3D) bio-printed corneal endothelial implant on the rabbit cornea, Figure 2A is a human corneal endothelial cell on the amniotic membrane after detaching the desme membrane from the rabbit cornea It is a schematic diagram for explaining the process of implanting a 3D printed implant, and FIGS. 2B to 2M are representative images of the surgical procedure, and FIG. 2B is a photograph after displaying an 8 mm circle at the center, and FIGS. 2C to 2E are A photograph showing the process of peeling and extracting a desme membrane using a reverse sinskey hook. The desme membrane extracted as shown in FIG. 2E was peeled toward the center of the cornea as shown in FIG. 2, and an 8 mm trippin blood as shown in FIG. 2F The implant cut into a circular shape with a diameter of 8 mm was folded with a blade) and inserted into the anterior chamber using a forceps for inserting an IOL (Fig. 2G). 2H and 2I, after expanding the implant, as shown in FIGS. 2J to 2M, a 2.75 mm corneal wound was sealed with # 10-0 nylon and air was injected so that the implant adhered well to the corneal stroma.
In the arrow portion of FIG. 2K, it was confirmed that the margin of the inserted implant was well attached to the inner surface of the cornea by forward air injection.
3 is a result of confirming the ribonuclease 5 (RNase 5) plasmid and control plasmid through colony PCR and transforming the cultured human corneal endothelial cells with the RNase 5 expression vector and confirming the overexpression of RNase 5, FIG. 3A Shows colony screening of DH5α cells transformed with C-green fluorescent protein (GFP) -RNase 5 plasmid and C-GFP-control plasmid, showing amplified clone 352-bp-piece of RNase 5 gene and control gene Did. Clones of lanes 6, 7, 8, 9, and 10 are recombinant, lanes 3 and 4 are identified as false positive colonies, and FIG. 3B shows PCR analysis of the RNase 5 gene in cultured human corneal endothelial cells (HCECs). results, and Fig. 3C through 3E is of 0.2 ㎍ and 0.5 ㎍ concentration RNase 5 expression vector, negative control (N / C) vector or Lipofectamine ® 3000 in transformed human endothelial cells (HCECs) converted for 24 hours and 48 hours As a result of confirming the mRNA expression of RNase 5 in, Figure 3C is a result of confirming the RNase 5 expression level of cells transformed for 24 hours in transfection-passage 0 (t-P0), Figure 3D is transfection-passage 0 (t- P0) is the result of confirming the RNase 5 expression level of cells transformed for 48 hours, and FIG. 3E shows the level of Nase 5 expression in cells maintained for 72 hours after passage in culture medium (transfection-passage 1 [t-P1]). It is the result of confirmation.
3F is a result of confirming that endogenous RNase 5 is continuously expressed in HCECs transformed with an RNase 5 vector (0.2 μg and 0.5 μg) despite being maintained in a medium without a vector (** p <0.01, n = 4 independent experiments), the results were expressed as mean ± sem, and Western blot analysis of RNase 5 in cultured HCECs mock, N / C vector, and RNase 5 vector groups showed R5-HCECs of 12-valent t-P1 in lane 7 And β-actin was used as a loading control, and the relative concentration values for β-actin concentration in the same lane were recorded under the gel.
4 is a result of culturing human corneal endothelial cells transformed with ribonuclease 5 (RNase 5) expression vector and confirming the expression level of RNase 5 protein in cells, FIG. 4A shows transfection-passage 0 (t-P0) Representative images confirming fluorescence of green fluorescent protein (GFP) labeled RNase 5 overexpressed at C-terminus of HCECs (R5-HCECs) transformed with RNase 5 vector (0.5 μg) for 48 hours in FIGS. 4Ai to 4 Green fluorescence was observed in the nucleus 4Aiii (white arrow), and green fluorescence was observed in the cytoplasm around the nucleus in FIGS. 4Aiv to 4vi (yellow arrow). Figure 4B is a result of performing immunostaining of RNase 5 in human corneal endothelial cells (NC-HCECs) transformed with R5-HCECs and negative control (N / C) vector 0.5 μg for 48 hours, RNase 5 enriched around the nucleus. In contrast to R5-HCECs expressing or expressing (asterisk) partially enriched RNase 5 in the nucleus, NC-HCEC was found to have a rare presence of intrinsic RNase 5. FIG. 4C is a representatively enlarged image of R5-HCECs (t-P0 and t-P1), and intracellular RNase 5 coexists in the nucleus (white arrow) and the region around the nucleus (yellow arrow) connected across the nuclear membrane. The results are confirmed [(AC) Scale bars: 20 μm (white) and 200 μm (yellow)].
5 is a result of confirming the cell viability over time of human corneal endothelial cells (HCECs) transformed with ribonuclease 5 (RNase 5) expression vector and cultured, HCECs transformed with RNase 5 vector (R5- In order to compare the relative viability of HCECs with the mock group, the cell viability was confirmed by MTT analysis after maintaining in the culture medium for 6 days from the first day of transformation (D0), and FIG. 5A shows that the viability of R5-HCECs is different from the mock group. Although no difference was confirmed, in FIG. 5B and FIG. 5C, the R5-HCEC group treated with the 0.5 μg vector started to show excellent viability from D1. On days D3, 5D and 5G, the cell viability of both vector groups was better than that of the mock group [** p <0.01 and * p <0.05 (ANOVA followed by Bonferroni's post-hoc analysis), n = 6 independent experiments at all timepoints. Values represent the mean
Figure 112018032700050-pat00001
sem].
Figure 6 is a result of confirming the effect of overexpressing ribonuclease 5 (RNase 5) in the proliferation of cultured human corneal endothelial cells, Figure 6A is HCECs transformed with RNase 5 expression vectors (R5-HCECs) compared to mock Transformation-is a result of confirming the relative amount of BrdU absorption in Fessage 1, Figure 6B is a result of confirming that the growth curve of R5-HCECs is maintained for more than 5 days in the culture medium compared to the control HCECs and mock group, of RNase 5 Overexpression significantly increased BrdU uptake (A), and results confirming that the growth rate of R5-HCECs (0.5 μg vector) was accelerated [(A) ** p <0.01. n = 4 independent experiments. (B) ** p <0.01 and * p <0.05, vs. control HCEC. ## p <0.01 and # p <0.05, vs. mock. n = 5 independent experiments.].
7 is a result of confirming the expression level of micro RNA (miR) -21, miR-23a and miR-27a in human corneal endothelial cells (HCECs) transformed and cultured with ribonuclease 5 (RNase 5) expression vector. , Figures 7A to 7C is a result of confirming the expression change level of miR-21, Figure 7D to 7F is a result of confirming the expression change level of miR-23a, Figure 7G to 7I is the expression level of miR-27a As a result of confirmation, the expression level was RNase 5 expression vectors (0.2 μg and 0.5 μg, R5-HCECs) transformed with HCECs (transfection-passage 0; t-P0) transformed for 24 hours and 48 hours and culture medium for 72 hours. It is a result of quantifying the change of miRs in R5-HCECs (passage; t-P1) maintained at RT-PCR. Importantly, the up-regulation of miRs in R5-HCECs was more prominent after fertilization (t-P1) than during transfection (t-P0) [** p <0.01 and * p <0.05 (ANOVA followed by Bonferroni's post- hoc analysis). n = 3 independent experiments. Values represent the mean
Figure 112018032700050-pat00002
sem].
FIG. 8 is a quantitative real-time RT-PCR analysis result confirming a target gene candidate of ribonuclease 5 (RNase 5) in cultured human corneal endothelial cells (HCECs) transformed with an RNase 5 expression vector, FIG. 8A shows PDCD4 ( programmed cell death protein 4; and the results confirm the level of expression of a), Fig. 8B is a result of confirming the expression level of PTEN (phosphatase and tensin homolog), Figure 8C is a result of confirming the expression level of Cdc25A, 8D are Cdk2AP1 8E is the result of confirming the expression level of Spry1 (sprouty RTK signaling antagonist 1), FIG. 8F is the result of confirming the expression level of Spry2, and FIG. 8G is Apaf1 (apoptotic protease activating factor 1) The expression level was confirmed, and the expression level is a result of comparing HCECs transformed with RNase 5 expression vector and cultured with HCECs transformed with mock group and negative control (N / C) vector [** p < 0.01 and * p <0.05 (ANOVA followed by Bonferroni's post-hoc analysis). n = 8 independent experiments. Values represent the mean
Figure 112018032700050-pat00003
sem], FIG. 8H is a Western blot analysis result for identifying PDCD4, cyclin A2, cyclin D1, cyclin D3 and cyclin E1 in cultured mock, N / C vector and RNase 5 vector HCECs group, lanes 7 to 12 are t R5-HCECs of -P1, β-actin was used as a loading control, and relative concentration values for β-actin density were recorded under each gel in the same lane.
9 is a result of confirming the expression level of a function-related marker in human corneal endothelial cells (HCEC) and control HCECs cultured by transformation with a ribonuclease 5 (RNase 5) expression vector, and FIG. 9A is a 20-year-old female donor ( Primary HCECs (passage 0; P0) cultured from A) are confirmed by phase contrast microscopy, and FIG. 9B shows CD166 and CD44 expression levels before and after RNase 5 vector transformation, and the HCEC cell population is CD166 and CD44 positive. In addition, the surface marker is also a result of flow cytometry analysis of HCECs (R5-HCECs) transformed with 0.5 µg of the RNase 5 vector, which was also positive, for 48 hours at t-P1 (transfection-passage 1) (Scale bar: 100 μm). 9C is a result of phase contrast microscopy analysis of control HCECs (P4) and R5-HCECs (t-P1) and immunostaining results confirming Na + -K + ATPase and zonular occludens-1 (ZO-1) of the cell group. Both the fusion R5-HCECs and control HCECs of 9Ci and FIG. 9Cii show relatively fibroblast phenotypes, but the polygonal cell morphology and tight junctions between cells were more confirmed in R5-HCEC than in control HCEC. Na + -K + ATPase expression was found in the lateral membrane of the cell and was significantly higher in R5-HCECs than in HCECs. In addition, as shown in FIG. 9Cx, some of these shapes were confirmed as a standard form according to ZO-1 expression at a tight intersection (white dotted border). Images iv, vi, viii and x are enlarged images iii, v, vii and ix, respectively, and DAPI was used for cell nuclear visualization [Scale bars: 100 μm (white), 20 μm (yellow)]. 9D is a real-time RT-PCR analysis result quantitatively confirming ATP1A1 (ATPase Na + -K + transporting subunit alpha 1) gene expression, and FIG. 9E is a real-time RT-PCR quantitatively confirming TJP1 (tight junction protein 1) gene expression. 9F is a real-time RT-PCR analysis result quantitatively confirming ALCAM (activated leukocyte cell adhesion molecule; ie CD166) gene expression, and FIG. 9G is a real-time RT-PCR analysis result quantitatively confirming CD44 gene expression. The results of confirming the gene expression amount are the results of comparing the gene amount expressed in R5-HCECs with HCECs transformed with a mock group and a negative control vector. [** p <0.01 and * p <0.05 (ANOVA followed by Bonferroni's post-hoc analysis). n = 8 independent experiments. Values represent the mean
Figure 112018032700050-pat00004
sem]. 9H is a Western blot analysis result confirming Na + -K + ATPase, ZO-1, C166 and CD44 expression in HCECs cells transformed with mock, N / C vector and RNase 5 vector, β-actin as a loading control. The relative concentration values for β-actin density in the same lane were recorded under each gel.
FIG. 10 shows the results of the clarity and histological analysis of a cell-free amniotic membrane (AM) and implantable 3-dimensional (3D) bio-printed corneal endothelial implant, and FIG. This is a result of confirming the transparency of the amniotic membrane implanter full of human corneal endothelial cells (HCECs; R5-HCECs) transformed with RNase 5 vector, and bioprinting of R5-HCEC (inside the colorless dotted line) is cell-free. The clarity of the amniotic membrane (black dotted rectangle) was not reduced. Figure 10B is a result of confirming hematoxylin & eosin staining of R5-grafts 10 days after cell-free amniotic membrane and bioprinting, while cells were not observed in the freeze-dried amniotic membrane used as a carrier of HCEC. As shown in 10Biii and 10Biv, in the R5-graft, it was confirmed that R5-HCEC formed a monolayer with a thickness of 25 μm on the amnion tissue. [Scale bar: 20 μm (black), 10 μm (white)], FIG. 10C 3D bioprinted R5-HCECs were grown on the amniotic membrane for 10 days prior to transplantation, stained with wheat germ agglutinin (WGA), and the cell membrane of 3D bioprinted R5-HCECs was observed with a fluorescence microscope (endothelial cell density [ECD]: 1244 cells / mm 2 ), standard cells of polygonal shape with inhibited contact were identified inside the square [Scale bars: 100 μm (white), 30 μm (yellow)].
11 is a result of confirming the cytoplasm and phenotype of a transplantable 3D bio-printed corneal endothelial cell transplant, and FIG. 11A shows fluorescence microscopy analysis using CellTracker ™ Green CMFDA dye 10 days after bioprinting to human cornea on the implant. As a result of tracking endothelial cells (HCECs), human corneal endothelial cells (R5-HCECs) transformed with the ribonuclease 5 (RNase 5) vector on the R5-HCECs transplant (R5-Graft) were almost joined. Although the shape of the polygon was formed, the control HCECs implant (Ct-Graft) was found to be rarely distributed in the control HCECs, and it was confirmed that the fibroblast phenotype was shown. Images i and iii are enlarged images ii and iv [Scale bars: 500 μm (white), 100 μm (yellow)]. FIG. 11B shows Na + -K + ATPase and zonular occludens-1 in Na + -K + ATPase (P4; Ct-Graft) covered with R5-HCECs after 10 days of bioprinting (R5-Graft) and control HCECs. As a result of immunostaining), Na + -K + ATPase (arrow, representative in ii) of basal lateral expression and binding expression of ZO-1 showed that the HCEC on the Ct-graft is more fibroblast than the HCEC on the R5-graft. This is the result. Images i and iii are enlarged images ii and iv, Scale bars: 100 μm (white), 50 μm (yellow).
12 is a result of confirming changes in corneal endothelial regeneration in vivo after transplantation of a 3D bio-printed corneal endothelial cell transplant, and performed corneal and in vitro histological analysis of the rabbit control group 4 weeks after the transplantation surgery. This is the result of comparison. 12A is a photograph of the anterior portion taken in various groups for 4 weeks after surgery. In the control group, the cell injection group, and the cell-free amniotic membrane (AM) group, in which the desme membrane was peeled off, pupil margin due to central corneal edema for 4 weeks after surgery. This was masked, and corneal angiogenesis was confirmed in the eye of the cell injection group (black arrow in FIG. 12ii). The black dashed lines in FIGS. 12A xiii and 12A xviii represent contracted margins, and are transformed with central human corneal endothelial cells (HCECs) inserted implants (Ct-Graft) and ribonuclease 5 (RNase 5) vector. The cell-free amniotic membrane inserted differently than the implanted group (R5-Graft) with inserted HCECs (R5-HCECs) contracted after 3 weeks of surgery. FIG. 12B is a representative photograph confirming the normal rabbit cornea, the control cornea from which the Desme membrane was detached, and the cornea transplanted with the R5-graft 4 weeks after surgery, and the cornea implanted with the R5-graft is clearly visible in anterior structure and pupil margin. The recovery was confirmed, and the arrow tip indicates the margin of the inserted implant. 12C shows control group ( n = 5 eyes), cell injection group ( n = 3 eyes), cell-free amniotic membrane ( n = 2 eyes), Ct-graft group ( n = 5 eyes) and R5-graft group ( n = 6) As a result of confirming the central corneal thickness (CCT) of the eyes), the corneal thickness of the R5-graft group recovered almost to the baseline level after 4 weeks of surgery. ** p <0.01 and * p <0.05, vs. Control, # p <0.05, vs. Cell infusion group, && p <0.01 and & p <0.05, vs. Cell-free amniotic membrane (AM) (ANOVA followed by Bonferroni's post-hoc analysis). The experimental results were expressed as the mean ± sem. 12D is an image of CellTracker ™ Green CMFDA dye analyzed by fluorescence microscopy using an anti-staining antibody, and FIG. 12E is an alizarin red S staining microscopy image (monochrome filtration). 12D i was able to confirm the traced cells on the R5-graft sheet inside the edge of the amnion sheet, and it was confirmed that the cell shape was polygonal in FIGS. 12D ii and 12E [Scale bars: 100 μm (yellow), 40 μm (white) and 10 μm (black)]. Figure 12F is R5- of R5-HCEC on the implant Na + -K + ATPase, CD166, and ZO-1 (zonular occludens-1 ) and one control Ct- implant immunostaining for the Na + -K + ATPase HCECs on As a result, DAPI was used for cell nuclear visualization [Scale bars: 20 μm].
13 is a cleavage map of a human open reading frame (ORF) cDNA clone expression plasmid for RNase 5 to overexpress RNase 5 (Human Angiogenin / RNase 5 gene ORF cDNA clone expression plasmid).

이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명은 리보핵산분해효소 5(Ribonuclease 5)를 각막내피세포에 과발현시키는 단계(제1단계); 상기 제1단계의 리보핵산분해효소 5가 과발현된 각막내피세포를 바이오잉크에 분산시키는 단계(제2단계); 상기 제2단계의 각막내피세포가 분산된 바이오잉크를 가축으로부터 분리되어 동결건조된 양막에 바이오 프린팅하는 단계(제3단계); 및 상기 제3단계의 바이오 프린팅된 양막에 자외선을 조사하여 교차결합시키는 단계(제4단계)를 포함하는 것을 특징으로 하는 3차원 바이오 프린팅된 각막 내피 이식체 제조방법을 제공할 수 있다.The present invention is a step of overexpressing ribonuclease 5 (Ribonuclease 5) on corneal endothelial cells (first step); Dispersing corneal endothelial cells overexpressed in the first step of ribonuclease 5 in bioink (second step); Separating the bioink in which the corneal endothelial cells of the second step are dispersed from livestock and bioprinting the lyophilized amniotic membrane (third step); And it may provide a three-dimensional bio-printed corneal endothelial implant manufacturing method comprising the step of cross-linking by irradiating ultraviolet rays to the bio-printed amniotic membrane of the third step (step 4).

상기 제1단계의 리보핵산분해효소 5가 과발현된 각막내피세포는 서열번호 1로 표시되는 아미노산 서열을 코딩하는 리보핵산분해효소 5 유전자를 포함하는 재조합 벡터로 각막내피세포를 형질전환시켜 리보핵산분해효소 5를 과발현시키는 것일 수 있다.Corneal endothelial cells in which the ribonuclease 5 of step 1 is overexpressed is transformed into corneal endothelial cells with a recombinant vector containing the ribonuclease 5 gene encoding the amino acid sequence represented by SEQ ID NO: 1 to transform the ribonucleic acid. It may be that the enzyme 5 is overexpressed.

상기 재조합 벡터는 도 13으로 표시되는 개열지도를 갖는 것일 수 있으며, 상기 각막내피세포는 사람에게서 분리된 각막내피세포일 수 있다.The recombinant vector may have a cleavage map shown in FIG. 13, and the corneal endothelial cells may be corneal endothelial cells isolated from humans.

상기 제2단계의 각막내피세포가 분산된 바이오잉크는 리보핵산분해효소 5가 과발현된 각막내피세포를 3×106 cell/mL 농도로 바이오 잉크에 분산시키는 것일 수 있다.The bioink in which the corneal endothelial cells in the second step are dispersed may be to disperse the corneal endothelial cells in which the ribonuclease 5 is overexpressed in a bio ink at a concentration of 3 × 10 6 cells / mL.

상기 제3단계는 각막내피세포가 분산된 바이오잉크를 소 양막에 0.5 내지 1 mm 두께로 바이오 프린팅하는 것일 수 있다.The third step may be to bioprint the bio-ink in which corneal endothelial cells are dispersed to a small amniotic membrane with a thickness of 0.5 to 1 mm.

보다 상세하게는 상기 소 양막은 동결건조 및 화학적 효소 처리하여 무세포화시킨 것일 수 있다.More specifically, the bovine amniotic membrane may be lyophilized and acellularized by chemical enzyme treatment.

상기 제4단계는 바이오 프린팅된 양막에 360nm 자외선을 10 내지 20초간 조사하여 교차결합시키는 것일 수 있다.The fourth step may be to cross-link the bioprinted amniotic membrane by irradiating 360 nm ultraviolet rays for 10 to 20 seconds.

상기 각막 내피 이식체 제조방법은 제4단계 이후 자외선 조사된 각막 내피 이식체를 37℃에서 10일간 배양하는 단계를 추가로 더 포함하는 것일 수 있다.The method of manufacturing the corneal endothelial implant may further include a step of culturing the corneal endothelial implant irradiated with ultraviolet rays after the fourth step at 37 ° C for 10 days.

또한, 본 발명은 상기 각막 내피 이식체 제조방법에 따른 리보핵산분해효소 5(Ribonuclease 5)가 과발현된 각막내피세포가 양막 위에 3차원 바이오 프린팅된 각막 내피 이식체를 제공할 수 있다.In addition, the present invention can provide a corneal endothelial implant in which a corneal endothelial cell overexpressing ribonuclease 5 according to the method for preparing the corneal endothelial implant is 3D bioprinted on the amniotic membrane.

상기 각막 내피 이식체는 양막 위에 3차원 바이오 프린팅된 리보핵산분해효소 5(Ribonuclease 5)가 과발현된 각막내피세포에서 Na+-K+ ATPase 및 CD166 발현이 증가된 것일 수 있다.The corneal endothelial implant may have increased expression of Na + -K + ATPase and CD166 in corneal endothelial cells overexpressing 3D bioprinted ribonuclease 5 on the amniotic membrane.

상기 각막 내피 이식체는 양막 위에 3차원 바이오 프린팅된 리보핵산분해효소 5(Ribonuclease 5)가 과발현된 각막내피세포에서 ZO-1(zonular occludens-1) 발현이 증가되어 각막 내피 표현형이 증가된 것일 수 있다.The corneal endothelial implant may have increased corneal endothelial phenotype due to increased expression of zonular occludens-1 (ZO-1) in corneal endothelial cells overexpressing 3D bioprinted ribonuclease 5 on the amniotic membrane. have.

본 발명의 실시예에 따르면, 토끼 안구를 대조군(5 안구), 세포 주입군(3 안구), 무 세포 AM군(2 안구), Ct-이식체 군(5 안구) 및 R5-이식체 군(7 안구)으로 나누고 각 실험군 토끼의 안구 각막을 8.0 mm 직경의 원형으로 데스메막을 벗긴 후 원형의 이식체 (R5-이식체, 대조군-이식체 또는 무세포 소양막)를 DSEK(Descemet's Stripping Endothelial Keratoplasty)과 유사한 방법으로 이식하였다. 별로도 추가 군에서 배양한 R5-HCEC 세포를 전방 내에 주사 주입하였으며, 이들 모든 실험군을 데스메막을 분리 후 이식체의 이식 또는 세포 주입 등의 어느 조작도 수행되지 않은 군(대조군)과 비교하였다.According to an embodiment of the present invention, the rabbit eye was a control group (5 eyes), a cell infusion group (3 eyes), a cell-free AM group (2 eyes), a Ct-graft group (5 eyes), and an R5-graft group ( 7 eyes), and after removing the desmem of the eye cornea of each experimental group rabbit with a circular shape of 8.0 mm diameter, the round implant (R5-graft, control-graft or cell-free small membrane) was described as DSEK (Descemet's Stripping Endothelial Keratoplasty) ). In addition, R5-HCEC cells cultured in additional groups were injected into the anterior chamber, and all these experimental groups were compared to a group (control) in which no manipulations such as implantation of implants or cell implantation were performed after desmemak separation.

수술 4주 후 R5-이식체 군의 3안에서 각막 내피를 조직학적으로 관찰 및 분석한 결과, 이식한 R5-이식체의 후면부는 빈틈없는 단일층의 세포로 가득차 있었으며 세포의 평균 밀도는 3,073 ± 341.2 (평균 ± 표준 오차) cells/mm2 로 확인되었으며, 항염료 형광을 현미경으로 관찰 결과, 도 12E와 같이 이들은 토끼의 각막 내피세포가 아니라 배양하여 이식한 사람 각막내피세포들이 확인되었으며, 도 12F와 같이 이식한 R5-이식체 표면의 각막 내피세포는 세포의 육각형 테두리를 따라서 Na+-K+ ATPase, ZO-1 및 CD166 등의 마커가 뚜렷하게 발현된 반면, 대조군-이식체의 각막내피세포에서는 Na+-K+ ATPase의 발현이 R5-이식체 대비 상대적으로 현저하게 낮았다.As a result of histological observation and analysis of corneal endothelium in 3 eyes of the R5-graft group 4 weeks after surgery, the rear part of the transplanted R5-graft was filled with a single layer of cells with no gaps, and the average density of the cells was 3,073 ± 341.2 (Mean ± standard error) It was confirmed as cells / mm 2 , and anti-dye fluorescence was observed under a microscope. As shown in FIG. 12E, these were not corneal endothelial cells of rabbits, but human corneal endothelial cells cultured and transplanted. Corneal endothelial cells on the surface of the transplanted R5-graft surface clearly expressed markers such as Na + -K + ATPase, ZO-1 and CD166 along the hexagonal border of the cells, whereas Na in the control-graft corneal endothelial cells + -K + ATPase expression was relatively low compared to R5-graft.

이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.Hereinafter, examples will be described in detail to help understanding of the present invention. However, the following examples are merely illustrative of the contents of the present invention, and the scope of the present invention is not limited to the following examples. The embodiments of the present invention are provided to more fully describe the present invention to those skilled in the art.

<< 참고예Reference example > 물질, 시약 및 항체> Substances, reagents and antibodies

본 발명에서 사용된 물질, 시약 및 항체는 다음과 같다: 사람 재조합 RNase 5 (synonym for ANG) 단백질(#265-AN/CF, R&D Systems, Minneapolis, MN, USA), microRNA 프라이머: (miR)-21 (#MS00009079, miScript Primer Assays, QIAGEN, Hilden, Germany), miR-23a (#MS00031633, QIAGEN), miR-27a (#MS00003241, QIAGEN); Abs: mouse monoclonal Abs (mAbs) 항-RNase 5 (#14017.7, Abcam, Cambridge, MA, USA), 항-Na+/K+ ATPase (#464.6, Abcam), 항-cyclin E1 (#4129, Cell Signaling Technology, Danvers, MA, USA) 및 항-β-actin (#5441, Sigma-Aldrich, St. Louis, MO, USA); rabbit mAbs: 항-cyclin D1 (#2978, Cell Signaling Technology) 및 항-programmed cell death (PDCD)4 (#9535, Cell Signaling Technology); rabbit polyclonal Abs (pAbs): 항-zonula occludens (ZO)-1 (#40-2200, Invitrogen, Waltham, MA, USA), 항-CD44 (#HPA005785, Atlas Antibodies AB, Stockholm, Sweden), 항-CD166 (#109215, Abcam), 항-cyclin-dependent kinase (Cdk)2 (#A301-812A-T, Bethyl Laboratories, Montgomery, TX, USA), 항-Cdk4 (#A304-225A, Bethyl Laboratories) 및 항-cyclin A2 (#A305-253A, Bethyl Laboratories) 항체를 사용하였으며, 물질 및 시약은 Opti-MEM-I (#31985070, Gibco®, Life Technologies Inc.TM, Carlsbad, CA, USA), fetal bovine serum (FBS, #S001-01, Welgene, Gyeongsan-si, Gyeongsangbuk-do, Republic of Korea), 콘드로이틴 황산(chondroitin sulfate; #C9819-5g, Sigma-Aldrich), 아스코르브산(ascorbic acid; #A5960-25g, Sigma-Aldrich), CaCl2 (#C5670-100g, Sigma-Aldrich), 멀티비타민 용액 (RPMI 1640 vitamins solution, #R7256, Sigma-Aldrich), 겐타마이신(gentamicin; #15750060, Gibco®), 페니실린/스트렙토마이신 항생지 (PSA, #15140122, Gibco®), 뇌하수체 수출물(pituitary extract; #13028014, Gibco®), 표피생장인자 (EGF, #E9644, Sigma-Aldrich) 및 신경성장인자 (NGF, #450-01, PeproTech, Rocky Hill, NJ, USA)를 사용하였다.Materials, reagents and antibodies used in the present invention are as follows: human recombinant RNase 5 (synonym for ANG) protein (# 265-AN / CF, R & D Systems, Minneapolis, MN, USA), microRNA primer: (miR)- 21 (# MS00009079, miScript Primer Assays, QIAGEN, Hilden, Germany), miR-23a (# MS00031633, QIAGEN), miR-27a (# MS00003241, QIAGEN); Abs: mouse monoclonal Abs (mAbs) anti-RNase 5 (# 14017.7, Abcam, Cambridge, MA, USA), anti-Na + / K + ATPase (# 464.6, Abcam), anti-cyclin E1 (# 4129, Cell Signaling Technology, Danvers, MA, USA) and anti-β-actin (# 5441, Sigma-Aldrich, St. Louis, MO, USA); rabbit mAbs: anti-cyclin D1 (# 2978, Cell Signaling Technology) and anti-programmed cell death (PDCD) 4 (# 9535, Cell Signaling Technology); rabbit polyclonal Abs (pAbs): anti-zonula occludens (ZO) -1 (# 40-2200, Invitrogen, Waltham, MA, USA), anti-CD44 (# HPA005785, Atlas Antibodies AB, Stockholm, Sweden), anti-CD166 (# 109215, Abcam), anti-cyclin-dependent kinase (Cdk) 2 (# A301-812A-T, Bethyl Laboratories, Montgomery, TX, USA), anti-Cdk4 (# A304-225A, Bethyl Laboratories) and anti- cyclin A2 (# A305-253A, Bethyl Laboratories) antibody was used, and the materials and reagents were Opti-MEM-I (# 31985070, Gibco®, Life Technologies Inc.TM, Carlsbad, CA, USA), fetal bovine serum (FBS , # S001-01, Welgene, Gyeongsan-si, Gyeongsangbuk-do, Republic of Korea), chondroitin sulfate (# C9819-5g, Sigma-Aldrich), ascorbic acid (# A5960-25g, Sigma- Aldrich), CaCl 2 (# C5670-100g, Sigma-Aldrich), multivitamin solution (RPMI 1640 vitamins solution, # R7256, Sigma-Aldrich), gentamicin (# 15750060, Gibco®), penicillin / streptomycin antibiotic Gland (PSA, # 15140122, Gibco®), pituitary extract (# 13028014, Gibco®), epidermal growth factor (EGF, # E9644, Sigma-Aldrich) and nerve growth factor (NGF, # 450-01, PeproTech, Rocky Hill, NJ, USA).

<< 실험예Experimental Example 1> 사람  1> People 각막내피세포Corneal endothelial cells (Human Corneal Endothelial Cells; (Human Corneal Endothelial Cells; HCECsHCECs ) 배양) Culture

중심부 8 mm 둥근 각막을 절개하여 이식한 후 남은 주변 각막 조직을 배양하여 사람 각막내피세포(HCECs)를 분리하였다.After transplanting by incising the central 8 mm round cornea, the remaining peripheral corneal tissue was cultured to separate human corneal endothelial cells (HCECs).

어떠한 안구 질환도 없는 9명의 공여자(13 안구)로부터 사람 각막 조직을 얻었으며, 52세 여성으로부터 2개의 안구(#1, 2; primary cause of death [PCOD]: brain haemorrhage; endothelial cell density [ECD]: 3,076 and 2,570 cells/mm2)를 공여받았으며, 29세 남성으로부터 2개의 안구를 공여받았다(#3, 4; PCOD: brain haemorrhage; ECD: 2,687 and 3,373 cells/mm2)Human corneal tissue was obtained from 9 donors (13 eyes) without any ocular disease, and 2 eyes (# 1, 2; primary cause of death [PCOD]: brain haemorrhage; endothelial cell density [ECD] from a 52-year-old woman) : 3,076 and 2,570 cells / mm 2 ) and 2 eyes from a 29-year-old male (# 3, 4; PCOD: brain haemorrhage; ECD: 2,687 and 3,373 cells / mm 2 )

40세 남성으로부터 2개의 안구(#5, 6; PCOD: brain haemorrhage; ECD: 2,886 and 2,887 cells/mm2)를 공여받았으며, 54세의 남성으로부터 2개의 안구(#7, 8; PCOD: brain haemorrhage; ECD: 2,986 and 2,912 cells/mm2)를 공여받았다. Two eyes (# 5, 6; PCOD: brain haemorrhage; ECD: 2,886 and 2,887 cells / mm 2 ) were donated from a 40-year-old male, and two eyes (# 7, 8; PCOD: brain haemorrhage) from a 54-year-old male. ; ECD: 2,986 and 2,912 cells / mm 2 ).

20세의 여성으로부터 한 개의 안구(#9; PCOD: brain haemorrhage; ECD: 3,252 cells/mm2)를 공여받았으며, 66세의 남성으로부터 공여받은 한 개의 안구(#10; PCOD: pulmonary fibrosis; ECD: 2,342 cells/mm2)를 Mid-America Transplant (St. Louis, MO, USA)를 구입하였다.One eyeball (# 9; PCOD: brain haemorrhage; ECD: 3,252 cells / mm 2 ) from a 20-year-old woman, and one eyeball (# 10; PCOD: pulmonary fibrosis; ECD: from a 66-year-old male) 2,342 cells / mm 2 ) was purchased Mid-America Transplant (St. Louis, MO, USA).

또한, 57세의 남성에게 공여받은 한 개의 안구(#11; PCOD: myocardial infarction; ECD: 2,532 cells/mm2)를 Lone Star Lions Eye Bank (Manor, TX, USA)에서 구입하였다.In addition, one eye (# 11; PCOD: myocardial infarction; ECD: 2,532 cells / mm 2 ) donated to a 57-year-old male was purchased from Lone Star Lions Eye Bank (Manor, TX, USA).

63세의 여성으로부터 공여받은 한 개의 안구(#12; PCOD: acute cardiac event; ECD: 2,639 cells/mm2)를 Lone Star Lions Eye Bank에서 구입하였으며, 18세의 남성에게서 공여받은 한 개의 안구(#13; PCOD: cardiomyopathy; ECD: 3,436 cells/mm2)를 Cincinnati Eye Bank (Cincinnati, OH, USA)에서 구입하였다. One eyeball (# 12; PCOD: acute cardiac event; ECD: 2,639 cells / mm2) from a 63-year-old woman was purchased from Lone Star Lions Eye Bank and one eyeball from a 18-year-old male (# 13 PCOD: cardiomyopathy; ECD: 3,436 cells / mm2) was purchased from Cincinnati Eye Bank (Cincinnati, OH, USA).

모든 과정은 기존에 공지되어진 방법을 기초로 진행되었다(Kim KW, Park SH, Lee SJ, Kim JC. Ribonuclease 5 facilitates corneal endothelial wound healing via activation of PI3-kinase/Akt pathway. Sci Rep. 2016;6:31162.).All procedures were based on previously known methods (Kim KW, Park SH, Lee SJ, Kim JC. Ribonuclease 5 facilitates corneal endothelial wound healing via activation of PI3-kinase / Akt pathway.Sci Rep . 2016; 6: 31162.).

각막이식술 후 절개된 각막-공막 고리로부터 얻어진 사람 각막내피세포(HCECs)를 실험 전까지 저장 배지(Optisol-GS, Bausch and Lomb, Inc., Rochester, NY, USA)에 보관하였다.Human corneal endothelial cells (HCECs) obtained from incised corneal-sclerotic rings after corneal transplantation were stored in storage medium (Optisol-GS, Bausch and Lomb, Inc., Rochester, NY, USA) until the experiment.

HCECs은 이전에 보고된 방법(Kim E, Kim JJ, Hyon JY, et al. The effects of different culture media on human corneal endothelial cells. Invest Ophthalmol Vis Sci. 2014;55:5099-5108.)으로 8% FBS, 0.08% 콘드로이틴황산염, 아스코르빅산 20㎍/mL, CaCl2 200 ㎍/mL, 멀티비타민 용액(1:100), 뇌하수체 추출물(1:100) 100㎍/mL, EGF 5 ng/mL, NGF 20 ng/mL, 겐타마이신 50 ng/mL 및 PSA (1:100)가 포함된 감소된 혈청 배지(Opti-MEM-I)로 구성된 신선한 배지에서 유지되었다.HCECs have been reported previously (Kim E, Kim JJ, Hyon JY, et al. The effects of different culture media on human corneal endothelial cells.Invest Ophthalmol Vis Sci . 2014; 55: 5099-5108.) 8% FBS, 0.08% chondroitin sulfate, ascorbic acid 20 μg / mL, CaCl 2 200 μg / mL, multivitamin solution (1: 100), pituitary extract (1: 100) Maintained in fresh medium consisting of reduced serum medium (Opti-MEM-I) containing 100 μg / mL, EGF 5 ng / mL, NGF 20 ng / mL, gentamicin 50 ng / mL and PSA (1: 100) Became.

간략하게, 멸균된 외과용 겸자를 이용하여, 손상되지 않은 내피세포를 가진 데스메막 시트를 조심스럽게 벗겨내고 콜라게나아제 A 1 mg/mL로 37℃에서 2시간 동안 인큐베이션한 후 1,200 rpm에서 5분간 HCECs를 원심분리하였다.Briefly, using sterile surgical forceps, carefully desmec sheet with intact endothelial cells and carefully incubated with collagenase A 1 mg / mL for 2 hours at 37 ° C. for 5 minutes at 1,200 rpm. HCECs were centrifuged.

상층액을 제거하고 HCECs를 인산완충용액(phosphate-buffered saline ; PBS)으로 세척한 후 1,200 rpm에서 5분간 재원심분리하였다.The supernatant was removed, and the HCECs were washed with a phosphate-buffered saline (PBS) and re-centrifuged at 1,200 rpm for 5 minutes.

그 후, 각막내피세포를 피브로넥틴(fibronectin)이 코팅된 조직 배양 디쉬에 접착시킨 후 분리된 세포를 배지에서 배양하였다.Then, corneal endothelial cells were adhered to a tissue culture dish coated with fibronectin, and then the separated cells were cultured in the medium.

사람 각막내피세포가 80 내지 90% 합류도를 나타내면 트립신/EDTA를 이용하여 분리하고 10,000 cells/cm2 밀도로 분주하여 계대배양하였다.When human corneal endothelial cells showed 80-90% confluence, they were separated using trypsin / EDTA and dispensed at a density of 10,000 cells / cm 2 to be passaged.

모든 인큐베이션 및 사람 각막내피세포의 배양은 37℃ 및 5% CO2 세포배양기(humidified incubator)에서 수행되었으며, 신선한 배지로 이틀마다 교체되었다.All incubation and cultivation of human corneal endothelial cells was performed in a 37 ° C. and 5% CO 2 humidified incubator and replaced every other day with fresh medium.

<< 실험예Experimental Example 2>  2> RNaseRNase 5 발현 벡터로 형질전환된 사람  People transformed with 5 expression vectors 각막내피세포Corneal endothelial cells 제작 making

RNase 5에 대한 ORF(Gene open reading frame) cDNA 클론 발현 플라스미드(Human Angiogenin/RNase 5 gene ORF cDNA clone expression plasmid: (1) C-green fluorescent protein (GFP)Spark tag [#HG10441-ACG, Sino Biological Inc., Beijing, China] 또는 음성대조군 벡터로 (2) C-Flag tag [#HG10441-M-F, Sino Biological Inc.]) 또는 pCMV3-C-GFPSpark Control Vector (C-terminal GFP Spark-tagged, #CV026, Sino Biological Inc.)를 제조사의 설명서(Protocols 2 in Rapid MacCell™-DH5α, #15062, iNtRON Biotechnology Inc., Gyeonggi-do, Republic of Korea)에 따라 E. coli에 형질전환시켰다. Gene open reading frame (ORF) cDNA clone expression plasmid for RNase 5 (Human Angiogenin / RNase 5 gene ORF cDNA clone expression plasmid: (1) C-green fluorescent protein (GFP) Spark tag [# HG10441-ACG, Sino Biological Inc ., Beijing, China] or as a negative control vector (2) C-Flag tag [# HG10441-MF, Sino Biological Inc.]) or pCMV3-C-GFPSpark Control Vector (C-terminal GFP Spark-tagged, # CV026, Sino Biological Inc.) was transformed into E. coli according to the manufacturer's instructions (Protocols 2 in Rapid MacCell ™ -DH5α, # 15062, iNtRON Biotechnology Inc., Gyeonggi-do, Republic of Korea).

벡터 형질전환된 콜로니들을 증식시키기 위해, 카나마이신 100 ㎍/mL가 포함된 LB(lysogeny broth) 배지 4 mL이 담긴 코니칼 튜브에서 37℃ 조건으로 하룻밤 동안 230 rpm으로 교반시켜 배양하였다. To propagate vector transformed colonies, the cells were cultured by stirring at 230 rpm overnight at 37 ° C. in a conical tube containing 4 mL of LB (lysogeny broth) medium containing 100 μg / mL of kanamycin.

플라스미드 준비는 제조사의 설명서[HiGene™ Plasmid Mini Prep Kit (#PM119, BIOFACT, Daejeon, Republic of Korea)]에 따라 수행되었다.Plasmid preparation was performed according to the manufacturer's instructions [HiGene ™ Plasmid Mini Prep Kit (# PM119, BIOFACT, Daejeon, Republic of Korea)].

그 후, 70 내지 80% 합류되게 배양된 HCECs에 Lipofectamine® 3000 transfection reagent (7.5 μL) (#L3000008, Invitrogen)를 이용하여 제조사의 설명서에 따라 RNase 5 발현 벡터 또는 N/C 벡터를 0.2 및 0.5 ㎍ 농도로 72시간 동안 형질전환시켰다.Subsequently, 0.2 and 0.5 μg of RNase 5 expression vector or N / C vector according to the manufacturer's instructions using Lipofectamine ® 3000 transfection reagent (7.5 μL) (# L3000008, Invitrogen) in HCECs cultured to be confluent to 70 to 80%. Transformed to concentration for 72 hours.

RNase 5 발현 벡터로 형질전환시킨 후 RNase 5가 과발현되도록 배양된 HCECs를 R5-HCECs라 명명하였으며, N/C 벡터로 형질전환되어 배양된 HCECs를 NC-HCECs라 명명하였다.HCECs cultured to overexpress RNase 5 after transformation with RNase 5 expression vector were named R5-HCECs, and HCECs cultured with N / C vector transformation were named NC-HCECs.

HCECs에 Lipofectamine® 3000만 처리된 세포군을 mock군으로 선정하였으며, 실시간 RT-PCR (qRT-PCR)을 수행하여 RNase 5 과발현 효율을 확인하였다.The cell group treated with Lipofectamine® 30 million in HCECs was selected as a mock group, and real-time RT-PCR (qRT-PCR) was performed to confirm the RNase 5 overexpression efficiency.

<< 실시예Example 3> 세포 성장 분석 3> Cell growth analysis

배양된 HCECs를 35-mm 디쉬 플레이트(SPL life sciences, Pocheon, Gyeonggi-do, Republic of Korea)에 1 × 105 cells/mL 밀도로 접종하고 1 내지 5일동안 배지에 배양하였다. The cultured HCECs were inoculated to a 35-mm dish plate (SPL life sciences, Pocheon, Gyeonggi-do, Republic of Korea) at a density of 1 × 10 5 cells / mL and cultured in the medium for 1 to 5 days.

그 후 배지를 제거하고 세포에 트립신 처리하였다. 트리판 블루 염색 후 5일 동안 hemocytometer를 이용하여 HCECs 수를 확인하였다. The medium was then removed and the cells were trypsinized. The number of HCECs was checked using a hemocytometer for 5 days after trypan blue staining.

RNase 5 과발현 벡터(0.2 ㎍ 및 0.5 ㎍)가 포함된 Lipofectamine® 3000 (7.5 μL) 또는 RNase 5 발현 벡터가 없는 Lipofectamine® 3000 (7.5 μL)를 HCECs에 48시간 동안 처리한 후, 배양 배지로 계대배양하였으며, 실험 시작 전(D0) 24시간 동안 배양배지에 세포를 유지시켰다.5 RNase-overexpressing vector and then (0.2 ㎍ and 0.5 ㎍) to Lipofectamine ® 3000 (7.5 μL) or RNase 5 expression vector Lipofectamine® 3000 (7.5 μL) not containing a treatment for 48 hours in HCECs, subcultured in the culture medium Cells were maintained in the culture medium for 24 hours before the start of the experiment (D0).

<< 실험예Experimental Example 4>  4> BrdUBrdU 세포 증식 분석 Cell proliferation assay

BrdU Cell Proliferation Assay Kit (#6813, Cell Signaling Technology)를 이용하여 제조사의 설명서에 따라 세포 증식을 확인하였다.Cell proliferation was confirmed according to the manufacturer's instructions using the BrdU Cell Proliferation Assay Kit (# 6813, Cell Signaling Technology).

96 웰 플레이트에 HCECs를 0.5 × 104 cells/well 밀도로 분주하고 RNase 5 과발현 벡터(0.2 ㎍ 및 0.5 ㎍)가 포함된 Lipofectamine® 3000 (7.5 μL) 또는 RNase 5 발현 벡터가 없는 Lipofectamine® 3000 (7.5 μL)를 HCECs에 72시간 동안 처리하였다. The HCECs to a 96 well plate 0.5 × 10 4 cells / well density divided by the RNase 5 overexpression vector (0.2 ㎍ and 0.5 ㎍) with Lipofectamine ® 3000 (7.5 μL) or RNase-free vector 5 expression Lipofectamine® 3000 contain (7.5 μL) was treated with HCECs for 72 hours.

그 후, 최종 1× 농도가 되도록 10× BrdU 용액을 플레이트 각 웰에 첨가하여 24시간 동안 처리하였다. Thereafter, a 10x BrdU solution was added to each well of the plate to reach a final 1x concentration and treated for 24 hours.

HCECs를 고정시킨 후 마우스 항-BrdU 항체(Ab)로 인큐베이트한 후 페록시다아제가 결합된 항-마우스 Ab로 인큐베이트하였다.HCECs were immobilized and then incubated with mouse anti-BrdU antibody (Ab) followed by peroxidase bound anti-mouse Ab.

3,3′,5,5′-테트라메틸벤지딘 페록시다아제 기질을 첨가하여 색을 발현시키고 30분간 인큐베이트한 후 정지 용액을 첨가하여 반응을 중단시켰다.The reaction was stopped by adding 3,3 ', 5,5'-tetramethylbenzidine peroxidase substrate to express color, incubating for 30 minutes, and then adding a stop solution.

SpectramaxTM 340PC384 microplate photometer (Molecular Devices, Sunnyvale, CA, USA)를 이용하여 450 nm에서 BrdU 결합 수준을 확인하였다.BrdU binding levels were confirmed at 450 nm using a SpectramaxTM 340PC384 microplate photometer (Molecular Devices, Sunnyvale, CA, USA).

<< 실험예Experimental Example 5> 세포 생존도( 5> Cell viability ( MTTMTT ) 분석) analysis

HCECs를 96웰 배양 플레이트에 배양하고 RNase 5 과발현 벡터(0.2 ㎍ 및 0.5 ㎍)가 포함된 Lipofectamine® 3000 또는 RNase 5 발현 벡터가 없는 Lipofectamine® 3000 (7.5 μL)를 HCECs에 48시간 동안 처리한 후, D0에서 시작하여 배양 배지로 계대배양하였다.After incubating HCECs in 96-well culture plates and treating Lipofectamine® 3000 with RNase 5 overexpression vectors (0.2 μg and 0.5 μg) or Lipofectamine® 3000 without RNase 5 expression vectors (7.5 μL) with HCECs for 48 hours, Starting at D0, it was passaged with culture medium.

MTT 분석 방법을 이용하여 세포 생존도를 확인하였다.Cell viability was confirmed using the MTT assay.

간략하게 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)를 PBS에 5 mg/mL 농도로 용해시켰다. MTT를 각 웰에 배지 100 μL당 10 μL로 첨가하고 37℃, 암조건에서 2시간 동안 인큐베이트하였다.Briefly, 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide (MTT) was dissolved in PBS at a concentration of 5 mg / mL. MTT was added to each well at 10 μL per 100 μL of medium and incubated for 2 hours at 37 ° C. and dark conditions.

그 후 DMSO(dimethyl sulfoxide) 100 μL로 배지를 교체하고 SpectramaxTM 340PC384 microplate photometer를 이용하여 570 nm에서 각 웰의 흡광도를 측정하였다. Then, the medium was replaced with 100 μL of DMSO (dimethyl sulfoxide), and the absorbance of each well was measured at 570 nm using a SpectramaxTM 340PC384 microplate photometer.

<< 실험예Experimental Example 6> 실시간  6> Real Time PCRPCR

RNAiso plus (Takara Bio, Inc., Otsu, Japan)를 이용하여 제조사의 설명서에 따라, RNA를 분리하였다.RNA was isolated according to the manufacturer's instructions using RNAiso plus (Takara Bio, Inc., Otsu, Japan).

qRT-PCR 분석을 위해, 전체 RNA를 상보적인 DNA로 역전사하고(PrimeScript™ 1st strand cDNA synthesis kit for mRNA, #6110A, Takara Bio, Inc.), miScript® II RT kit (#218161, QIAGEN)를 이용하여 miRNA를 역전사하였다.For qRT-PCR analysis, total RNA is reverse transcribed into complementary DNA (PrimeScript ™ 1st strand cDNA synthesis kit for mRNA, # 6110A, Takara Bio, Inc.), and miScript® II RT kit (# 218161, QIAGEN) is used. The miRNA was reverse transcribed.

mRNA는 SYBR Premix ExTaq ™ (# RR420A, Takara Bio, Inc.)를 사용하고, miRNA는 miScript SYBR® Green PCR Kit (# 218075, QIAGEN)을 사용하여 QRT-PCR을 수행하였다.mRNA was performed using SYBR Premix ExTaq ™ (# RR420A, Takara Bio, Inc.), and miRNA was QRT-PCR using miScript SYBR® Green PCR Kit (# 218075, QIAGEN).

CFX96 Real-Time PCR Detection System (BioRad, Hercules, CA, USA)과 자율 qPCR 분석 반응으로부터 얻은 적절한 표준 곡선을 이용하여 증폭된 cDNA 산물의 SybrGreen 형광을 정량하였다.SybrGreen fluorescence of the amplified cDNA product was quantified using an appropriate standard curve obtained from a CFX96 Real-Time PCR Detection System (BioRad, Hercules, CA, USA) and an autonomous qPCR analysis reaction.

레퍼런스 유전자(glyceraldehyde-3-phosphate dehydrogenase [GAPDH] for mRNA and U6 small nuclear RNA [RNU6-2, #MS00033740, QIAGEN] for miRNA)로 표준화한 후 비교 Ct(cycle threshold) 방법을 이용하여 상대적인 유전자량을 확인하였으며, qRT-PCR 분석의 결과는 기준 유전자 발현 평균에 대한 상대값으로 각 유전자의 발현량을 나타내었다. After standardization with a reference gene (glyceraldehyde-3-phosphate dehydrogenase [GAPDH] for mRNA and U6 small nuclear RNA [RNU6-2, # MS00033740, QIAGEN] for miRNA), the relative gene weight is determined using a comparative cycle threshold (Ct) method. The results of the qRT-PCR analysis showed the expression level of each gene as a relative value to the reference gene expression average.

표 1과 같은 RNase 5, CD44, CD166, ATP1A1(sodium/potassium-transporting ATPase subunit alpha-1), TJP1(tight junction protein 1), Cdc25A(cell division cycle 25A), Cdk2AP1(cyclin-dependent kinase 2-associated protein 1), PDCD4, PTEN(phosphatase and tensin homolog), Spry1(sprouty homolog 1), Spry2, Apaf1(apoptotic protease activating factor 1), 및 GAPDH 유전자 특이적 프라이머를 이용하여 qRT-PCR 분석을 수행하였다.Table 1, RNase 5, CD44, CD166, ATP1A1 (sodium / potassium-transporting ATPase subunit alpha-1), TJP1 (tight junction protein 1), Cdc25A (cell division cycle 25A), Cdk2AP1 (cyclin-dependent kinase 2-associated qRT-PCR analysis was performed using protein 1), PDCD4, PTEN (phosphatase and tensin homolog), Spry1 (sprouty homolog 1), Spry2, Apaf1 (apoptotic protease activating factor 1), and GAPDH gene specific primers.

GeneGene Primer SequencePrimer Sequence
Product Product size (size ( bp)bp) Reference numberReference number
RNaseRNase 5 5 SenseSense 5'-TTGCGTTTTCTACCGGCTCC-3'5'-TTGCGTTTTCTACCGGCTCC-3 ' 231231 NM_001145.4NM_001145.4 AntisenseAntisense 5'-CAGGAAGTGTGTGTACCTGGA-3'5'-CAGGAAGTGTGTGTACCTGGA-3 ' CD44CD44 SenseSense 5'-GTGATGGCACCCGCTATG-3'5'-GTGATGGCACCCGCTATG-3 ' 179179 NM_000610.3NM_000610.3 AntisenseAntisense 5'-ACTGTCTTCGTCTGGGATGG-3'5'-ACTGTCTTCGTCTGGGATGG-3 ' ALCAMALCAM (CD166) (CD166) SenseSense 5'-CCCCAGAGGAATTTTTGTTTTAC-3'5'-CCCCAGAGGAATTTTTGTTTTAC-3 ' 289289 NM_001243281.1NM_001243281.1 AntisenseAntisense 5'-AGCCTGATGTTATCTTTCATCCA-3'5'-AGCCTGATGTTATCTTTCATCCA-3 ' ATP1A1ATP1A1 (Na (Na ++ -K-K ++ ATPase) ATPase) SenseSense 5'-CAGCACGCAGGTTGCATATT-3'5'-CAGCACGCAGGTTGCATATT-3 ' 220220 NM_000701.7NM_000701.7 AntisenseAntisense 5'-GAGCCAAGTGGAGGGAGCTA-3'5'-GAGCCAAGTGGAGGGAGCTA-3 ' TJP1TJP1
(( ZOZO -1)-One)
SenseSense 5'-GAACGAGGCATCATCCCTAA-3'5'-GAACGAGGCATCATCCCTAA-3 ' 218218 NM_001330239.1NM_001330239.1
AntisenseAntisense 5'-CCAGCTTCTCGAAGAACCAC-3'5'-CCAGCTTCTCGAAGAACCAC-3 ' Cdc25ACdc25A SenseSense 5'-ACCTCAGAAGCTGTTGGGATG-3'5'-ACCTCAGAAGCTGTTGGGATG-3 ' 174174 NM_001789.2NM_001789.2 AntisenseAntisense 5'-TGGAGTCCATGAGAGTGCAG-3'5'-TGGAGTCCATGAGAGTGCAG-3 ' Cdk2AP1Cdk2AP1 SenseSense 5'-CAGACCTTACAAAGACGGGCT-3'5'-CAGACCTTACAAAGACGGGCT-3 ' 221221 NM_001270433.1NM_001270433.1 AntisenseAntisense 5'-GCGTACGTGGGTCTGATCTC-3'5'-GCGTACGTGGGTCTGATCTC-3 ' PDCD4PDCD4 SenseSense 5'-ACCCTGCAGATCCTGATAACT-3'5'-ACCCTGCAGATCCTGATAACT-3 ' 151151 NM_014456.4NM_014456.4 AntisenseAntisense 5'-CGCCTTTTTGCCTTGGCATT-3'5'-CGCCTTTTTGCCTTGGCATT-3 ' PTENPTEN SenseSense 5'-TCCCAGACATGACAGCCATC-3'5'-TCCCAGACATGACAGCCATC-3 ' 189189 NM_000314.6NM_000314.6 AntisenseAntisense 5'-GCTTTGAATCCAAAAACCTTACTAC-3'5'-GCTTTGAATCCAAAAACCTTACTAC-3 ' Spry1Spry1 SenseSense 5'-GTGTGTTGGAAATCCACGGT-3'5'-GTGTGTTGGAAATCCACGGT-3 ' 171171 NM_005841.2NM_005841.2 AntisenseAntisense 5'-AAAGAAGGCTGCTGGATCAC-3'5'-AAAGAAGGCTGCTGGATCAC-3 ' Spry2Spry2 SenseSense 5'-AGATCAGAGCCATCCGAAACA-3'5'-AGATCAGAGCCATCCGAAACA-3 ' 170170 NM_001318536.1NM_001318536.1 AntisenseAntisense 5'-AGAATGGACCTGCGAGTGC-3'5'-AGAATGGACCTGCGAGTGC-3 ' Apaf1Apaf1 SenseSense 5'-ATGAGCCCACTCAACAGCAA-3'5'-ATGAGCCCACTCAACAGCAA-3 ' 170170 NM_001160.2NM_001160.2 AntisenseAntisense 5'-TGTCCTTACACTGGAAGAAGAGA-3'5'-TGTCCTTACACTGGAAGAAGAGA-3 ' GAPDHGAPDH SenseSense 5'-TGATGACATCAAGAAGGTGGTGAAG-3'5'-TGATGACATCAAGAAGGTGGTGAAG-3 ' 240240 NM_002046.5NM_002046.5 AntisenseAntisense 5'-TCCTTGGAGGCCATGTGGGCCAT-3'5'-TCCTTGGAGGCCATGTGGGCCAT-3 '

<< 실험예Experimental Example 7>  7> 웨스턴블롯Western Blot

세포를 PBS로 두 번 세척하고 PRO-PREP™ (iNtRON Biotechnology Inc.)로 용해시켰다. 세포 용해물을 소디움도데실 설페이트(SDS)-폴리아크릴아마이드 겔에서 분리시키고 니트로셀룰로스(NC) 막(Pall Corporation, Port Washington, NY, USA)으로 옮겼다.Cells were washed twice with PBS and lysed with PRO-PREP ™ (iNtRON Biotechnology Inc.). Cell lysates were separated on sodium dodecyl sulfate (SDS) -polyacrylamide gel and transferred to a nitrocellulose (NC) membrane (Pall Corporation, Port Washington, NY, USA).

3% 소혈청 알부민(bovine serum albumin; BSA)이 포함된 트리스 완충식염수(TBS-T; 50 mM Tris-HCl pH 7.5, 150 mM NaCl and 0.1 % Tween-20)로 실온에서 1시간 동안 비특이적인 항체 결합을 차단하고, 5% BSA가 포함된 TBS-T로 일차 항체를 희석(1:1,000 except RNase 5, which was 1:250)하여 막에 적용시키고 4℃에서 하룻밤 동안 인큐베이션하였다.Non-specific antibody at room temperature for 1 hour with Tris buffered saline (TBS-T; 50 mM Tris-HCl pH 7.5, 150 mM NaCl and 0.1% Tween-20) containing 3% bovine serum albumin (BSA) The binding was blocked, and the primary antibody was diluted (1: 1,000 except RNase 5, which was 1: 250) with TBS-T containing 5% BSA and applied to the membrane and incubated overnight at 4 ° C.

적절한 이차 항체를 5% 탈지유가 포함된 TBS-T로 1:3,000으로 희석한 후 막과 실온에서 1시간 동안 인큐베이트하고, enhanced chemiluminescence Western Blotting detection kit (Pierce Biotechnology, Inc., Rockford, IL, USA)를 이용하여 특이적인 항체의 결합을 시각화하였다.The appropriate secondary antibody was diluted 1: 3,000 with TBS-T containing 5% skim milk and then incubated for 1 hour at membrane and room temperature, and enhanced chemiluminescence Western Blotting detection kit (Pierce Biotechnology, Inc., Rockford, IL, USA ) To visualize the binding of specific antibodies.

각 밴드의 값을 β-액틴 신호로 표준화하고 Image J software ver. 1.46 (National Institutes of Health (NIH); http://rsbweb.nih.gov/ij/)를 이용하여 면역밴드를 정량하였다. The values of each band are normalized to β-actin signals and Image J software ver. Immune bands were quantified using 1.46 (National Institutes of Health (NIH); http://rsbweb.nih.gov/ij/).

<< 실험예Experimental Example 8> 형광  8> Fluorescence 활성된Active 세포 선별( Cell selection ( FACSFACS ))

HCECs를 6-웰 플레이트에 1 × 105 cells/mL 농도로 접종한 수 48시간 후 세포를 수집하여 차가운 PBS로 세척하였다.HCECs were inoculated in a 6-well plate at a concentration of 1 × 10 5 cells / mL, and after 48 hours, cells were collected and washed with cold PBS.

각 튜브에 5 × 105 세포를 분주하고 블로킹 용액 버퍼인 10 % BSA가 포함된 PBS를 각 튜브에 첨가하고, 세포를 얼음에서 30분간 인큐베이트하였다.5 x 10 5 cells were dispensed into each tube, PBS containing 10% BSA as a blocking solution buffer was added to each tube, and the cells were incubated on ice for 30 minutes.

직접 면역형광법을 위해, 형광색소가 결합된 일차 마우스 단일항체(mAbs) anti-CD166-PE (#A22361, Beckman Coulter, Inc., Brea, CA, USA), anti-CD44-FITC (#IM1219U, Immunotec, Inc., Vaudreuil-Dorion, Canada) 또는 각각의 아이소타입 대조군 단일항체 mouse IgG1-PE (#A07796, Beckman Coulter, Inc.), mouse IgG1-FITC (#A07795, Beckman Coulter, Inc.) 및 마우스 IgG1 아이소타입 대조군 (#02-6100, Invitrogen)를 5 ㎍/mL을 HCECs와 4℃ 암조건에서 45분간 부유시킨 후 차가운 2% 파라포름알데하이드(PFA)로 4℃에서 20분간 고정시키고, flow cytometer (Navios, Beckman Coulter)로 면역형광을 분석하였다.For direct immunofluorescence, primary mouse monoantibody (mAbs) anti-CD166-PE (# A22361, Beckman Coulter, Inc., Brea, CA, USA), anti-CD44-FITC (# IM1219U, Immunotec , Inc., Vaudreuil-Dorion, Canada) or the respective isotype control single antibody mouse IgG1-PE (# A07796, Beckman Coulter, Inc.), mouse IgG1-FITC (# A07795, Beckman Coulter, Inc.) and mouse IgG1 The isotype control (# 02-6100, Invitrogen) was suspended for 5 min at 5 μg / mL in HCECs and 4 ° C. in dark conditions, and then fixed with cold 2% paraformaldehyde (PFA) at 4 ° C. for 20 min, flow cytometer ( Navios, Beckman Coulter).

<< 실험예Experimental Example 9> 3D  9> 3D 바이오프린트된Bioprinted HCECHCEC 이식체Implant 제조방법 Manufacturing method

도 1과 같은 과정으로 바이오 프린팅을 수행하여 이식체를 준비하였다.The bioprinting was performed in the same process as in FIG. 1 to prepare an implant.

3차원(3D) 바이오프린팅 전 배양된 HCECs를 CellTracker™ Green CMFDA (5-chloromethylfluorescein diacetate; #C2925, Invitrogen) 5 μM을 30분간 처리하여 추적하였다.HCECs cultured before three-dimensional (3D) bioprinting were tracked by treatment with 5 μM of CellTracker ™ Green CMFDA (5-chloromethylfluorescein diacetate; # C2925, Invitrogen) for 30 minutes.

세포가 가득한 바이오잉크 용액을 준비하기 위해, 최적의 형태의 젤라틴 기반 하이드로겔 복합체인 젤라틴 기반의 바이오잉크(Gel4Cell®, Bioink Solutions, Inc., Daegu, South Korea)에 HCECs를 3 × 106 cells/mL 농도로 분산시킨 후, 바이오잉크에 0.02% RGD(Arginylglycylaspartic acid; Arg-Gly-Asp)를 첨가하였다.To prepare a cell-filled bioink solution, HCECs were added to 3 × 10 6 cells / in gelatin-based bioink (Gel4Cell®, Bioink Solutions, Inc., Daegu, South Korea), an optimal form of gelatin-based hydrogel complex. After dispersing to a mL concentration, 0.02% Arginylglycylaspartic acid (RGD) was added to the bioink.

세포가 포함된 용액을 가는 노즐 팁(24 gauge)으로 옮기고 프린팅되지 않는 시간 동안 얼음에 보관하였다. 동결건조된 소 양막(AM; Amnisite®-BA, SK bioland, Cheongju-si, Chungcheongbuk-do, Republic of Korea)을 10 × 10 mm2의 크기로 60mm 세포 배양 디쉬에 올려놓았다 (150 to 200 μL per sheet).The solution containing the cells was transferred to a fine nozzle tip (24 gauge) and stored on ice for a non-printing time. Lyophilized bovine amniotic membrane (AM; Amnisite®-BA, SK bioland, Cheongju-si, Chungcheongbuk-do, Republic of Korea) was placed on a 60 mm cell culture dish with a size of 10 × 10 mm 2 (150 to 200 μL per sheet).

바이오 프린팅 동안, 바이오잉크는 3D 프린트 시스템(EDISON INVIVO, ROKIT, Seoul, Republic of Korea)으로 8 × 8 mm 크기와 0.7 mm 두께로 층층이 쌓인 형태의 거대 다공성 구조물로 제작되었다.During bio-printing, the bio-ink was made of a large porous structure in the form of a stacked layer of 8 × 8 mm and 0.7 mm thick with a 3D printing system (EDISON INVIVO, ROKIT, Seoul, Republic of Korea).

365 nm 자외선(UV)으로 15초간 교차결합한 후, 양막(AM) 위에 HCECs가 균일하고 밀도있게 공급되었는지 확인하기 위해, 몇 개의 이식체에서 살아있는 세포에 대한 염색을 수행하였다.After crosslinking with 365 nm UV (UV) for 15 seconds, staining of living cells was performed in several implants to confirm that HCECs were uniformly and densely supplied onto the amniotic membrane (AM).

이식 전 양막 구조체 위에 HCECs 수를 증가시키기 위해, 제작된 이식체를 FBS(2%)가 감소된 배양 배지에서 37℃ 및 5% CO2 조건으로 10일간 배양하였다.In order to increase the number of HCECs on the amniotic membrane structure before transplantation, the prepared implants were cultured for 10 days at 37 ° C. and 5% CO 2 in a culture medium with reduced FBS (2%).

프린트 전 RNase 5 벡터(0.5 ㎍)로 48시간 동안 형질전환시킨 R5-HCECs를 계대 배양하고 72시간 동안 배양 배지에서 유지시킨 후 3D 바이오 프린트된 AM 구조체를 R5-이식체(R5-Graft) 군으로 정의하였으며, 패시지 4(P4)의 대조군 HCECs로 3D 프린팅된 구조체를 Ct-이식체(Ct-Graft) 군으로 정의하였다.The R5-HCECs transformed with the RNase 5 vector (0.5 μg) for 48 hours before printing were passage cultured and maintained in the culture medium for 72 hours, and then the 3D bio-printed AM construct was transferred to the R5-graft group. The 3D printed construct with control HCECs of passage 4 (P4) was defined as the Ct-Graft group.

<< 실험예Experimental Example 10> 살아있는 세포 염색 10> Live cell staining

두 색상 형광 분석(Molecular ProbesTM LIVE/DEADTM assays consisting of calcein as a marker of viable cells and ethidium homodimer as a marker of dead cells, Invitrogen)을 수행하여, 세포 생존율을 대조적으로 확인하였다.Two-color fluorescence analysis (Molecular ProbesTM LIVE / DEADTM assays consisting of calcein as a marker of viable cells and ethidium homodimer as a marker of dead cells, Invitrogen) was performed to check cell viability in contrast.

각 시료를 염색 전 PBS로 3번 세척하고 암 조건에서 15분간 염색한 후 PBS로 3번 세척하였다. 그 후, 도립현미경(IX71, Olympus, Tokyo, Japan)를 이용하여 이미지를 캡쳐하였다.Each sample was washed 3 times with PBS before staining, stained for 15 minutes in dark condition, and then washed 3 times with PBS. Thereafter, an image was captured using an inverted microscope (IX71, Olympus, Tokyo, Japan).

<< 실험예Experimental Example 11>  11> 이식체의Implant 조직학적 평가 Histological evaluation

이식 전 10일간 배양 배지에 보존한 이식체를 4% PFA로 하룻밤 동안 고정한 후 30% 수크로스로 하룻밤 동안 비냉동화시켰다. 그 후 -80℃ 드라이 아이스에서 최적의 절삭온도(optimal cutting temperature; OCT) 화합물(Tissue-Tek® O.C.T. Compound, Sakura Finetek USA, Inc., Torrance, CA, USA)에 박아 넣었다.Implants preserved in culture medium for 10 days prior to transplantation were fixed overnight with 4% PFA and then unfrozen overnight with 30% sucrose. Then, it was put in an optimal cutting temperature (OCT) compound (Tissue-Tek® O.C.T.Compound, Sakura Finetek USA, Inc., Torrance, CA, USA) at -80 ° C dry ice.

냉동된 OCT 화합물이 박힌 부분을 6 ㎛ 두께로 절단하고 시레인(silane)이 코팅된 현미경 슬라이드에 놓았다. 헤마톡실린-에오신으로 염색하고 광학현미경(Leica DM750, Leica Microsystems Ltd., Wetzlar, Germany)으로 관찰하였다.The portion of the frozen OCT compound was cut to a thickness of 6 μm and placed on a microscope slide coated with silane. Stained with hematoxylin-eosin and observed with an optical microscope (Leica DM750, Leica Microsystems Ltd., Wetzlar, Germany).

이식 전 이식체 시트 위에 접종된 HCECs의 경계를 확인하기 위해, 제조사의 설명서에 따라, 소맥배아응집소(Wheat Germ Agglutinin; WGA) 결합체 (WGA, Alexa Fluor® 488 conjugate, #W11261, Invitrogen)로 플라스마 막을 표지하고 도립현미경(IX71, Olympus)을 이용하여 이미지를 사진 문서화하였다.Plasma membranes with Wheat Germ Agglutinin (WGA) conjugates (WGA, Alexa Fluor® 488 conjugate, # W11261, Invitrogen), according to the manufacturer's instructions, to determine the boundaries of HCECs inoculated on the implant sheet prior to transplantation The image was documented using an inverted microscope (IX71, Olympus).

<< 실험예Experimental Example 12> 동물 실험 12> Animal Experiment

1. 실험동물1. Experimental animals

12마리의 뉴질랜드 흰토끼(24 안구; 10 내지 12 주령 암컷, 2.0 내지 2.5 kg)를 클리닉 연구 센터에서 사육하였으며, 이를 중앙대학교에서 연구에 사용하였다.Twelve New Zealand white rabbits (24 eyes; 10 to 12 weeks old female, 2.0 to 2.5 kg) were bred at the Clinic Research Center and used for research at Chung-Ang University.

토끼 안구를 다음과 같은 다섯 개의 그룹으로 나누었다.The rabbit eye was divided into five groups:

대조군(5 안구), 세포 주입군(3 안구), 무 세포 AM군(2 안구), Ct-이식체 군(5 안구) 및 R5-이식체 군(7 안구) 및 두 안구는 정상 각막 확인을 위해 사용하였다.The control group (5 eyes), cell infusion group (3 eyes), cell-free AM group (2 eyes), Ct-graft group (5 eyes) and R5-graft group (7 eyes) and both eyes confirmed normal corneal confirmation. Was used.

2. 수술과정2. Surgery process

마취를 위해, 틸레타민(tiletamine)과 졸라제팜(zolazepam) 혼합물(ZoletilTM, Virbac, Fort Worth, TX, USA; 0.2 cc/Kg)과 자일라진(xylazine; RompunTM, Bayer, Leverkusen, Germany; 0.1 cc/Kg)을 근육내 주사하였다.For anesthesia, a mixture of tiletamine and zolazepam (ZoletilTM, Virbac, Fort Worth, TX, USA; 0.2 cc / Kg) and xylazine (RompunTM, Bayer, Leverkusen, Germany; 0.1 cc / Kg) was injected intramuscularly.

펜으로 각막 표면에 8.0mm 원을 표시한 후, 슬릿 나이프로 2.75 mm 각막 윤부 절개하고 점액탄성물질(cohesive ocular viscoelastic device, OVD; ProviscTM, Alcon, Fort Worth, TX, USA)을 전안방(anterior chamber)에 주입하였다.After marking a 8.0 mm circle on the corneal surface with a pen, a 2.75 mm corneal limbal incision is made with a slit knife and the anterior chamber (cohesive ocular viscoelastic device, OVD; ProviscTM, Alcon, Fort Worth, TX, USA) ).

그 후, 역방향 Sinskey hook (customized order from BELLEIF, Suzhou, China)를 이용하여 데스메막 중심부 8mm를 벗겨내어 각막 내피 장해를 유도하였다.Subsequently, a corneal endothelial disorder was induced by peeling 8 mm of the center of the desmemak using a reverse Sinskey hook (customized order from BELLEIF, Suzhou, China).

전안방내로 주사된 OVD를 제거한 후, 8mm trephine blade (#E3096 8.00, Storz, El Segundo, CA, USA)를 넣어 3차원 바이오프린트된 각막 내피 이식체를 절단한 후 접었다. Thornton intraocular lens forcep (#E2988, Storz)을 이용하여 HCEC가 접종된 면이 전안방에 대면하도록 삽입하였다. After removing the OVD injected into the anterior chamber, 8 mm trephine blade (# E3096 8.00, Storz, El Segundo, CA, USA) was added, and then a 3D bioprinted corneal endothelial implant was cut and folded. The Thornton intraocular lens forcep (# E2988, Storz) was used to insert the HCEC-inoculated side facing the anterior chamber.

이식체를 펼친 후, 2.75 mm 크기의 각막 상처를 #10-0 나일론으로 비연속적으로 봉합하여 닫고 공기를 주입하여 이식체 시트를 데스메막이 박리된 부위에 부착시켰다. After the implant was unfolded, a 2.75 mm corneal wound was closed, discontinuously closed with # 10-0 nylon, and air was injected to attach the implant sheet to the area where the desmem film was peeled off.

부착 후 즉시, 레보플록사신 안구 점안약(levofloxacin ophthalmic eyedrops; CravitTM, Santen Pharmaceutical Co., Ltd., Osaka, Japan)과 항생제와 스테로이드 혼합 연고(MaxitrolTM, Alcon)를 넣었다.Immediately after attachment, levofloxacin ophthalmic eyedrops (CravitTM, Santen Pharmaceutical Co., Ltd., Osaka, Japan) and antibiotic and steroid mixed ointments (MaxitrolTM, Alcon) were added.

세포가 주입된 안구 군은 각막 내피를 향해 RNase 5 벡터로 형질전환된 R5-HCECs(5 × 105 cells in 50 μL of PBS)를 직접 전안방에 주입한 후, 중력에 의해 데스메막이 벗겨진 부분에 주입된 세포가 침착될 수 있도록 즉시 눈을 감기고 1시간 동안 유지시켰다.In the cell-injected eye group, R5-HCECs (5 × 10 5 cells in 50 μL of PBS) transformed with the RNase 5 vector directed toward the corneal endothelium were injected directly into the anterior chamber, and the desmemak was peeled off by gravity. The eyes were immediately closed and maintained for 1 hour so that the cells injected into the cells could be deposited.

전제적인 수술 과정은 입체현미경(Leica M60, Leica Microsystems Ltd.)을 이용하여 수행되었으며, 수술 후 4주간 하루에 한 번 모든 동물 눈에 안연고(MaxitrolTM)를 적용하였다. 전신면역억제제는 사용하지 않았으며, 수술 과정의 설명 및 광학 이미지는 도 2와 같다.The preliminary surgical procedure was performed using a stereomicroscope (Leica M60, Leica Microsystems Ltd.), and ophthalmic ointment (MaxitrolTM) was applied to all animal eyes once a day for 4 weeks after surgery. No systemic immunosuppressant was used, and the description of the surgical procedure and the optical image are shown in FIG. 2.

<< 실험예Experimental Example 13> 중심 각막 두께 확인 13> Check the thickness of the central cornea

중심 각막 두께(CCT)로 각막 부종을 평가하였으며, 중심 각막 두께(CCT)는 수술 전과 수술 후 1, 2, 3 및 4주째 토끼 각막을 ultrasound corneal pachymeter (POKET-II, Quantel medical, Clemont-Ferrand, France)로 측정하였다.Corneal edema was assessed by central corneal thickness (CCT), and central corneal thickness (CCT) was measured by ultrasound corneal pachymeter (POKET-II, Quantel medical, Clemont-Ferrand, rabbit cornea 1, 2, 3, and 4 weeks after surgery). France).

상기 장비는 최대 1,000 ㎛까지 각막 두께를 측정할 수 있으며, 제한치를 초과하는 CCT의 예측할 수 없는 값은 통계 분석을 위해 1,000 μm로 간주되었다.The instrument can measure corneal thickness up to 1,000 μm, and the unpredictable value of CCT above the limit was considered 1,000 μm for statistical analysis.

분석을 위해, 세 번 반복 측정하고 평균을 기록하였다.For analysis, three repeat measurements and averages were recorded.

<< 실험예Experimental Example 14> 생체 외 각막 내피세포 확인 14> In vitro corneal endothelial cell identification

외과수술 4주 후 각막 조직을 절개하고 1% 알리자린 레드 S 용액(Lab Chem, Pittsburgh, PA, USA) 침투시키고 2분 후 PBS로 세척하였다.4 weeks after surgery, corneal tissue was dissected and infiltrated with 1% alizarin red S solution (Lab Chem, Pittsburgh, PA, USA) and washed with PBS after 2 minutes.

그 후, 내피 측이 보이도록 조직을 유리 슬라이드에 평평하게 올려놓고 도립현미경(IX71, Olympus)을 이용하여 사진 문서화하였다.Thereafter, the tissue was placed flat on a glass slide so that the endothelial side was visible and photographed using an inverted microscope (IX71, Olympus).

수술 4주 후 배양된 HCECs에서 초기에 추적된 CMFDA의 형광을 증가시키기 위해, 항-염색 항체(anti-fluorescein/Oregon GreenTM polyclonal antibody, Alexa FluorTM 488 conjugate, #A-11096, Invitrogen)를 사용하였다.To increase the fluorescence of CMFDA initially traced in HCECs cultured 4 weeks after surgery, an anti-fluorescein / Oregon GreenTM polyclonal antibody, Alexa FluorTM 488 conjugate, # A-11096, Invitrogen was used.

각막 조직 절개 후 4% 파라포름알데하이드로 하룻밤 동안 고정시키고, 항-염색 항체(1:200)를 사진 문서화 전에 24시간 동안 처리하였다.After corneal tissue incision, it was fixed overnight with 4% paraformaldehyde and anti-stained antibody (1: 200) was treated for 24 hours prior to photo documentation.

수술 4주 후 탈체(ex vivo) 각막 조직의 면역 세포 화학 방법을 수행하기 위해, 10% 정상 고트(goat) 블로킹 용액이 포함된 PBS를 이용하여 실온에서 1시간 동안 비특이적 결합을 차단하고, 하룻밤 동안 1% 정상 고트 혈청 및 0.1 % Triton X-100이 포함된 PBS에 1:100으로 희석된 항-Na+-K+ ATPase 항체(Ab), 항-ZO-1 (1:100) 또는 항-CD166 (1:100)로 인큐베이션하였다. 그 후, 실온에서 2시간 동안 슬라이드를 이차 항체와 인큐베이션하였다.To perform an immunocytochemical method of ex vivo corneal tissue 4 weeks after surgery, non-specific binding was blocked for 1 hour at room temperature using PBS containing 10% normal goat blocking solution, and overnight. Anti-Na + -K + ATPase antibody (Ab), anti-ZO-1 (1: 100) or anti-CD166 (1) diluted 1: 100 in PBS with 1% normal goat serum and 0.1% Triton X-100 : 100). Thereafter, the slides were incubated with the secondary antibody for 2 hours at room temperature.

유리 슬라이드에 내피 층이 위로 향하도록 편평하게 올려놓고 DAPI가 있는 Fluoroshield™ mounting medium로 고정하였다. 그 후 공초점 현미경(Zeiss LSM 700, Carl Zeiss, Jena, Germany)을 이용하여 슬라이드를 관찰하였다.The endothelial layer was placed flat on a glass slide and fixed with a Fluoroshield ™ mounting medium with DAPI. Then, the slide was observed using a confocal microscope (Zeiss LSM 700, Carl Zeiss, Jena, Germany).

<< 실시예Example 1>  1> RNaseRNase 5(리보핵산분해효소 5)의  5 (ribonuclease 5) 고발현이High expression 유도된 사람  Induced person 각막내피세포Corneal endothelial cells 제조 Produce

RNase 5 발현 플라스미드 벡터를 이용하여 배양 사람 각막내피세포에서 RNase 5 고발현을 유도하고 발현량을 확인하였다 (RNase 5 발현 플라스미드 벡터 주입 배양 사람 각막내피세포는 R5-HCECs로 명명). RNase 5 expression plasmid vector was used to induce high expression of RNase 5 in cultured human corneal endothelial cells and the expression level was confirmed (RNase 5 expression plasmid vector injection cultured human corneal endothelial cells are named R5-HCECs).

그 결과, 도 3E 및 3F와 같이 RNase 5 벡터 0.2 및 0.5 μg 용량이 처리된 세포 모두에서, 그리고 24 및 48시간 처리농도 모두에서 RNase 5의 mRNA 발현이 증폭되었다. As a result, mRNA expression of RNase 5 was amplified in cells treated with 0.2 and 0.5 μg doses of the RNase 5 vector as shown in FIGS. 3E and 3F, and at both 24 and 48 hour treatment concentrations.

또한, 계대배양 후에도 RNase 5의 고발현 유도가 지속되는지 확인하기 위해서 각막 내피세포에 벡터를 48시간 처리하고 계대배양 후 72시간 동안 배양액에 두고 보관하였다 (계대 전 벡터 주입 각막 내피세포는 t-P0, 계대 후 벡터 주입 각막 내피세포는 t-P1 이라고 명명함). 그 결과, 도 3C 내지 도 3F와 같이 RNase 5 벡터 주입 각막 내피세포는 t-P1에서 RNase 5의 mRNA 및 단백질 모두 고발현이 지속되는 것을 확인할 수 있었다. 반면, 음성 대조군 벡터 주입 각막내피세포 (negative control;NC-HCECS) 또는 Lipofectamine 3000 단독 처리 각막내피세포 (mock 그룹)에서는 RNase 5의 발현 변화가 나타나지 않았다.In addition, in order to confirm that high expression induction of RNase 5 persists after passage, the vector was treated with corneal endothelial cells for 48 hours and stored in culture for 72 hours after passage (pre-passage vector injection corneal endothelial cells were t-P0). , The vector injected corneal endothelial cells after passage are called t-P1). As a result, as shown in FIGS. 3C to 3F, it was confirmed that high expression of both RNase 5 mRNA and protein persisted in t-P1 in RNase 5 vector-injected corneal endothelial cells. On the other hand, in the negative control vector injection corneal endothelial cells (negative control; NC-HCECS) or Lipofectamine 3000 alone, corneal endothelial cells (mock group) did not show a change in expression of RNase 5.

도 4A 및 4B와 같이 RNase 5 벡터 (0.5 μg)를 48시간 동안 처리한 R5-HCEC에서 세포 내 RNase 5 단백의 고발현은 핵 속이나 핵 주위의 세포질에서 관찰되었으나, NC-HCEC는 세포 내에서 RNase 5를 거의 발현하지 않았다. As shown in FIGS. 4A and 4B, in R5-HCEC treated with RNase 5 vector (0.5 μg) for 48 hours, high expression of intracellular RNase 5 protein was observed in the nucleus or in the cytoplasm around the nucleus, but NC-HCEC in the cell RNase 5 was rarely expressed.

도 4C를 참고하면, 몇몇 R5-HCECs는 핵 내와 핵 주위 세포질에서 동시에 RNase 5를 고발현되는 것을 확인할 수 있었으며, 상기 결과는 세포질에서 생성된 RNase 5가 R5-HCEC의 핵 내로 전위(translocation)된 증거로 제안될 수 있다.Referring to FIG. 4C, it was confirmed that several R5-HCECs simultaneously express RNase 5 in the nucleus and in the periplasm of the nucleus, and the result shows that RNase 5 generated in the cytoplasm translocates into the nucleus of R5-HCEC. Can be suggested as evidence.

<< 실시예Example 2> 배양 사람  2> cultured person 각막내피세포의Of corneal endothelial cells 생존에 영향을 주는  Survival RNaseRNase 5의  5's 고발현High expression

종래에 외인성 인간 재조합 RNase 5를 외부 투여한 후 배양 사람 각막내피세포에 생존과 성장 메커니즘이 활성화된다는 결과가 보고됨에 따라, RNase 5의 발현 수준 조작이 사람 각막내피세포의 생존에 영향을 주는지 여부를 평가하기 위해서 MTT assay을 수행하여 세포 생존능을 확인하였다.As the result of survival and growth mechanism activation in cultured human corneal endothelial cells after exogenous human recombinant RNase 5 was externally administered, whether or not manipulation of the expression level of RNase 5 affects the survival of human corneal endothelial cells To evaluate, cell viability was confirmed by performing an MTT assay.

그 결과, 도 5A와 같이 0.2 및 0.5 ㎍ RNase 5 벡터를 48시간 주입한 후 계대배양한 순간의 시점(Day 0, D0)에서는 생존능이 변화가 나타나지 않았다. 그러나 도 5B 내지 도 5G를 참고하면 24시간 이후(D1)부터 R5-HCEC의 생존능은 단순 배양액 하에서 mock 그룹 대비 높았으며 이러한 효과는 Day 6까지 유지되는 것을 확인할 수 있었다.As a result, there was no change in viability at the time point (Day 0, D0) at the moment of passage after injecting 0.2 and 0.5 μg RNase 5 vectors for 48 hours as shown in FIG. 5A. However, referring to FIGS. 5B to 5G, since 24 hours (D1), the viability of R5-HCEC was higher than that of the mock group under simple culture, and it was confirmed that this effect was maintained until Day 6.

<< 실시예Example 3>  3> RNaseRNase 5의  5's 고발현에In high expression 의해 유도된 배양 사람  Cultured by induced 각막내피세포에서의In corneal endothelial cells 세포분열-관련 세포 성장의 변화 Cell division-related cell growth changes

비대상성 사람 각막내피질환을 치료하기 위한 최선의 방책은 잔여 건강각막 내피세포를 증식시키거나 혹은 증식 중인 사람 각막내피세포를 공급해주어서 병들거나 죽은 세포를 대체해주는 것이다. 전자에 대한 내용으로서, 본 발명자들은 과거 냉동-손상 토끼 안구 각막 내피에 RNase 5 안약을 점안한 바 있고, 외인성 RNase 5가 배양 사람 각막내피의 세포분열을 활성화시키는 잠재력을 가짐을 확인한 바 있다. 하지만, 일반적으로 내과적 치료는 대개 경증 혹은 중등도 증례에서만 효과가 있으며 반면 중증의 각막 내피손상에서는 필연적으로 건강한 각막 내피세포로 대체해주는 것이 요구된다. 각막내피세포가 사라진 각막 내피 조직을 빨리 정상 세포로 매워주는 것이 세포치료의 성공의 열쇠인 점에서, R5-HCEC의 세포분열-관련 세포 성장을 평가하고 대조군 각막 내피세포와 이를 비교하였다.The best way to treat nondegenerative human corneal endothelial disease is to proliferate the remaining healthy corneal endothelial cells or supply proliferating human corneal endothelial cells to replace diseased or dead cells. As a matter of the former, the present inventors have previously applied RNase 5 eye drops to the corneal endothelial of frozen-injured rabbit eye, and confirmed that exogenous RNase 5 has the potential to activate cell division of cultured human corneal endothelium. However, in general, medical treatment is usually effective only in mild or moderate cases, whereas severe corneal endothelial damage is inevitably required to be replaced with healthy corneal endothelial cells. Since cell corneal endothelial tissue was quickly filled with normal cells, the cell division-related cell growth of R5-HCEC was evaluated and compared with control corneal endothelial cells.

먼저, 도 6A와 같이 BrdU 분석법을 수행한 결과, R5-HCEC의 세포 분열 (0.2 μg 및 0.5μg, 48시간 처리)은 t-P1 passage에서 mock군 대비 증가된 것을 확인할 수 있었다.  First, as a result of performing the BrdU assay as shown in FIG. 6A, it was confirmed that cell division of R5-HCEC (0.2 μg and 0.5 μg, 48 hour treatment) was increased compared to the mock group in the t-P1 passage.

이후 RNase 5의 고발현이 결과적으로 HCEC의 세포 성장 속도와 연관되는지 확인하였다. 도 6B와 같이 대조군 HCEC와 R5-HCEC (0.5 μg 벡터 48시간 처리)의 일일별 세포 성장 곡선에 따르면, R5-HCEC의 성장이 대조군 세포와 mock 그룹의 세포 대비 1일에서 3일 동안 높게 나타났다.Afterwards, it was confirmed that the high expression of RNase 5 was consequently related to the cell growth rate of HCEC. According to the daily cell growth curve of the control HCEC and R5-HCEC (0.5 μg vector 48 hour treatment) as shown in FIG. 6B, the growth of R5-HCEC was higher for 1 to 3 days compared to the cells of the control cells and the mock group.

상기 결과로부터 내재적으로 존재하는 RNase 5가 사람 각막내피세포의 증식에 연관된 중요한 물질임이 확인되었다.From the results, it was confirmed that RNase 5, which is inherently present, is an important substance involved in the proliferation of human corneal endothelial cells.

<< 실시예Example 4> 배양 사람  4> cultured person 각막내세포Intracorneal cells  of mine RNaseRNase 5의  5's 고발현과High Expression miRmiR -21, 23a 및 27a 신호기작 연관성 확인-21, 23a and 27a signal mechanism association check

RNase 5의 리보핵산효소 활성은 RNase 5의 이름 그 자체가 의미하듯이 생물학적 활성을 위해 필수적이다. 본 발명자들은 과거 사람 각막내피세포와 섬유주세포에 외부 투약한 재조합 RNase 5가 PI3-k/Akt 신호 기작을 활성화시킨다는 사실을 일부 밝힌 바 있지만, 내인성 RNase 5의 타겟을 밝히고 RNase 5의 세부적인 리보핵산분해 메커니즘을 규명하기 위해서는 추가적인 탐색 작업이 여전히 필요한 상황이다. 마이크로 RNA (miRNA, miR의 동의어)는 짧고 (18~25 뉴클레오타이드 사이즈)내인성의 코딩하지 않는 RNA로서 기능 RNA 전사를 억제하고 전사 후 유전자 발현을 조절하는 물질이다. RNase 3 도메인 효소인 Drosha가 세포의 핵 속에서 RNA를 자르고 primary 마이크로 RNA의 헤어핀 형태를 유리시켜 precursor 마이크로 RNA를 생산해내고, 나아가 precursor 마이크로 RNA는 세포질로 방출되고 RNase 3 효소인 Dicer 에 의해 잘려서 최종 단계의 성숙 마이크로 RNA가 된다. The ribonuclease activity of RNase 5 is essential for biological activity, as the name of RNase 5 itself implies. Although the present inventors have partially revealed that recombinant RNase 5 externally administered to human corneal endothelial cells and fibroblast cells activates the PI3-k / Akt signaling mechanism, the target of endogenous RNase 5 is revealed and detailed ribonucleic acid of RNase 5 Further exploration is still necessary to identify the decomposition mechanism. Micro RNA (miRNA, synonym for miR) is a short (18-25 nucleotide size), endogenous non-coding RNA that inhibits functional RNA transcription and regulates gene expression after transcription. Drosha, an RNase 3 domain enzyme, cuts RNA in the nucleus of the cell and releases the hairpin form of primary micro RNA to produce precursor micro RNA, and further, precursor micro RNA is released into the cytoplasm and is cut by the RNase 3 enzyme Dicer, the final step Becomes the mature micro RNA.

이러한 맥락에서, 본 발명자들은 RNase 5 역시 마이크로 RNA의 생성에 있어서, 리보핵산분해 기능을 모사할 것이라는 가설을 세우고 다양한 종류의 마이크로 RNA 중에서 세포 주기 및 세포 증식과 연관되어있다고 알려진 miR-21, miR-23a 및 miR-27a를 R5-HCEC 내 RNase 5의 타켓 마이크로 RNA의 후보로 선택하였다.In this context, the present inventors hypothesized that RNase 5 also mimics ribonuclease in the production of micro RNA, and miR-21, miR-, which are known to be associated with cell cycle and cell proliferation among various types of micro RNA. 23a and miR-27a were selected as candidates for the target micro RNA of RNase 5 in R5-HCEC.

miR-21과 miR-23a 신호경로는 PI3-k 신호를 억제하는 PTEN을 억제하rh Akt를 인산화시켜 세포의 증식, 분화 및 운동성을 촉진한다고 알려져있다. 또한, miR-27a의 최근 알려진 역할은 세포 증식, 생존 및 자멸사 억제에 기여한다고 알려졌다). The miR-21 and miR-23a signaling pathways are known to inhibit PTEN, which inhibits PI3-k signaling, and phosphorylate rh Akt to promote cell proliferation, differentiation and motility. In addition, the recently known role of miR-27a is known to contribute to cell proliferation, survival and inhibition of apoptosis).

그 결과, 도 7과 같이 R5-HCEC에서 MiR-21, 23a 및 27a는 mock 그룹보다 발현이 증가해 있었다. 흥미롭게도, R5-HCEC는 계대 전인 t-P0 페세지에서 miRNA 신호 변화를 초래하지 않았다. 또한, 외부에서 투여한 재조합 RNase 5 (rRNase 5, 1 μg/mL, 24 시간 처리)는 miR-21, 23a의 변화를 유발하지 않아 내인성 RNase 5의 발현을 증가시킨 R5-HCECs와 다른 양상을 나타내었다.As a result, as shown in FIG. 7, MiR-21, 23a and 27a in R5-HCEC had higher expression than the mock group. Interestingly, R5-HCEC did not result in miRNA signal changes in the t-P0 passage before passage. In addition, externally administered recombinant RNase 5 (rRNase 5, 1 μg / mL, treated for 24 hours) did not induce changes in miR-21 and 23a, and showed a different pattern from R5-HCECs which increased the expression of endogenous RNase 5 Did.

<< 실시예Example 5> 사람  5> People 각막내세포Intracorneal cells 내에서  Within RNaseRNase 5의  5's 타겟target 분석 analysis

다양한 연구들에서 miR-21와 miR-23a의 하위 인자 중 세포 증식과 생존에 관한 물질들을 다룬 바 있으며, 이들은 PDCD4, PTEN, Cdc25A, CdksAP1, Spry1, Spry2 및 Apaf1을 포함한다. 간략하게, PTEN은 PKB/Akt 경로의 강력한 억제제이며, PDCD4의 결손은 세포의 증식과 항자멸사와 연관된다고 알려져있다. Cdc25A는 세포주기의 G1기에서 S기로 넘어가는데 필요한 물질이고, Cdk2AP1은 Cdk2가 세포 주기의 G1/S checkpoint를 넘어가게 하는 작용을 억제시킨다. 활동성의 Spry1은 EGF/EGFR 신호를 촉진한다고 알려져 있으며, Apaf1은 caspase-3의 활성화를 유발하는 자멸사 조절 네트워크의 주요 허브로 작용한다. 본 발명자들은 이러한 타겟들의 배양 사람 각막내피세포 내 유전자 발현을 선별검사하였고 RNase 5의 과발현과의 상관관계를 규명해보고자 하였다. Among the sub-factors of miR-21 and miR-23a in various studies, substances related to cell proliferation and survival were included, including PDCD4, PTEN, Cdc25A, CdksAP1, Spry1, Spry2 and Apaf1. Briefly, PTEN is a potent inhibitor of the PKB / Akt pathway, and the deletion of PDCD4 is known to be associated with cell proliferation and anti-apoptotic. Cdc25A is a substance required to pass from the G1 phase to the S phase of the cell cycle, and Cdk2AP1 inhibits the action of causing Cdk2 to cross the G1 / S checkpoint of the cell cycle. Active Spry1 is known to promote EGF / EGFR signaling, and Apaf1 acts as a major hub for apoptosis regulatory networks that trigger caspase-3 activation. The present inventors screened the gene expression in the cultured human corneal endothelial cells of these targets and tried to investigate the correlation with RNase 5 overexpression.

그 결과, 도 8A, 내지 도8G와 같이 여러 타켓 중 R5-HCEC (0.5 μg 벡터, 48시간 처리)에서 PDCD4가 억제되었으며, Cdc25A와 Apaf1은 활성화되었다. 반면, PTEN, Cdk2AP1, Spry1 및 Spry2는 RNase 5 과발현에 의해 별다른 영향을 받지 않았다. 또한, 도 8H와 같이 세포주기와 연관된 인자인 Cyclin A2, cyclin D1 및 cyclin E1 단백 발현이 R5-HCEC (0.5 μg 벡터, 48시간 처리)에서 활성화되었으며, Cyclin D3의 발현은 증가하지 않았다.As a result, PDCD4 was inhibited in R5-HCEC (0.5 μg vector, 48 hour treatment) among several targets as shown in FIGS. 8A and 8G, and Cdc25A and Apaf1 were activated. On the other hand, PTEN, Cdk2AP1, Spry1 and Spry2 were not significantly affected by RNase 5 overexpression. In addition, as shown in Figure 8H, the cell cycle-related factors Cyclin A2, cyclin D1 and cyclin E1 protein expression were activated in R5-HCEC (0.5 μg vector, 48 hour treatment), and the expression of Cyclin D3 did not increase.

<< 실시예Example 6> 기능성 사람 각막  6> Functional human cornea 내피세포을Endothelial cells 구분하고 그들의 세포 고유의 표현형을 평가하기 위한 세포 표면  Cell surface to distinguish and evaluate their cell-specific phenotype 마커Marker 발현 분석 Expression analysis

각막 내피 고유의 왕성한 펌프 기능을 위해서, Na+-K+ ATPase와 zonular occludens (ZO)-1과 같은 기능성 마커의 풍성한 발현은 생체 내에서 충분한 세포 밀도를 유지하는 것과 더불어 각막 내피세포에서 매우 중요한 문제이다. 이와 관련하여 몇몇 연구팀에서 몇 가지 CD 항원의 발현이 각막 내피세포의 고유의 표현형과 연관되어 있음을 보고하였고 현재 이식을 위한 정제된 각막 내피세포 코호트를 마련하기 위해서 이와 같은 CD 마커를 이용하고 있다. 본 발명자들은 그 중에서 각각 섬유모세포성과 비섬유모세포성 표현형의 대표 마커인 CD44와 CD166의 발현 수준을 Na+-K+ ATPase 및 ZO-1과 함께 평가하여 이들이 RNase 5의 과발현과 연관이 있는지 확인하였다.For the innate pump function of the corneal endothelium, the abundant expression of functional markers such as Na + -K + ATPase and zonular occludens (ZO) -1 maintains sufficient cell density in vivo and is a very important problem in corneal endothelial cells. to be. In this regard, several researchers have reported that the expression of several CD antigens is associated with the intrinsic phenotype of corneal endothelial cells and are currently using these CD markers to prepare a purified corneal endothelial cell cohort for transplantation. The present inventors evaluated the expression levels of CD44 and CD166, which are representative markers of fibroblastic and non-fibroblastic phenotype, respectively, together with Na + -K + ATPase and ZO-1, and confirmed whether they are associated with overexpression of RNase 5, respectively. .

그 결과, 도 9A를 참고하면 본 발명에서 사용된 각막 내피세포는 20세 여성 기증자의 것으로 초기 배양에서의 세포의 모양은 각막 내피 고유의 모양과 섬유모세포성 모양의 중간 정도를 띄었다. 또한, 도 9B와 같이 계대를 거듭한 후 passage 4에서의 각막 내피세포는 주로 CD44+CD166+ 이었고, CD44+CD166+ 세포의 분율은 R5-HCEC (0.5 μg 벡터, 48시간 처리)라고 해서 다르지는 않았다. As a result, referring to FIG. 9A, the corneal endothelial cells used in the present invention are 20-year-old female donors, and the shape of the cells in the initial culture showed a medium degree between the shape of the corneal endothelial and the fibroblastic shape. In addition, the corneal endothelial cells in passage 4 were mainly CD44 + CD166 + after repeated passages as shown in FIG. 9B, and the fraction of CD44 + CD166 + cells was different from R5-HCEC (0.5 μg vector, 48 hour treatment). Did.

또한, 도 9Ci 및 9Cii를 참고하면, 대조군 각막 내피세포(passage 4)와 R5-HCEC(t-P1) 모두 전형적인 각막 내피세포의 고유 세포 표현형을 띄지는 않았지만, 도 9Ciii 내지 도 9Cx와 같이 R5-HCEC의 세포 모양은 대조군 각막 내피세포와 비교하였을 때 덜 섬유모세포 스러웠고 Na+-K+ ATPase의 발현이 더욱 뚜렷하게 나타났다. In addition, referring to FIGS. 9Ci and 9Cii, both control corneal endothelial cells (passage 4) and R5-HCEC (t-P1) did not exhibit the unique cell phenotype of typical corneal endothelial cells, but R5-as shown in FIGS. 9Ciii to 9Cx. The cell shape of HCEC was less fibroblast compared to control corneal endothelial cells, and the expression of Na + -K + ATPase was more pronounced.

마찬가지로, 도 9D 내지 도 9H를 참고하면 Na+-K+ ATPase의 유전자와 단백질 수준에서의 발현 역시 R5-HCEC (0.5 μg 벡터, 48 시간 처리)에서 명백하게 나타났으며, 비록 미미하긴 했지만, ZO-1 발현 유전자인 TJP1와 CD166 발현 유전자인 ALCAM 역시 R5-HCEC에서 발현이 증가되었으며, CD44의 발현은 RNase 5의 고발현과 별다른 연관성이 없었다.Similarly, referring to Figures 9D to 9H, the expression of Na + -K + ATPase at the gene and protein levels was also apparent in R5-HCEC (0.5 μg vector, 48 hour treatment), although insignificant, ZO- 1 expression genes TJP1 and CD166 expression genes ALCAM also increased expression in R5-HCEC, and CD44 expression was not significantly related to high expression of RNase 5.

<< 실시예Example 7> 3D 프린터로 제작한 각막 내피  7> Corneal endothelium made by 3D printer 이식체Implant 평가 evaluation

3D 프린터로 각막 내피 이식체를 제작한 10일 후 그리고 수술적 이식 전 이식체의 투명도, 세포의 수, 세포 모양 및 이식체 위의 각막 내피세포의 기능성 표현형 등을 분석하였다. 10 days after fabrication of a corneal endothelial implant with a 3D printer and before surgical implantation, the transparency of the implant, the number of cells, the shape of the cells, and the functional phenotype of corneal endothelial cells on the implant were analyzed.

먼저, 도 10A와 같이 수술 전 10일간 배양액에서 보관된 이식체 조직은 그 투명도를 유지하는 것이 확인되었다. 각각의 R5-이식체 (R5-HCEC를 3D 프린팅하여 만든 이식체를 명명)는 대략 20-30 μm의 두께를 나타내었으며, 3D 프린팅된 R5-HCEC 세포들은 세포와 지지체인 무세포 소양막 사이의 들뜬 공간 없이 1개의 층을 이루고 있었다. First, as shown in FIG. 10A, it was confirmed that the implant tissue stored in the culture medium for 10 days before surgery maintained its transparency. Each R5-graft (named the implant made by 3D printing R5-HCEC) exhibited a thickness of approximately 20-30 μm, and 3D-printed R5-HCEC cells were between the cell and the support cell-free small membrane. There was one layer with no excitement.

프린팅 10일 후 도 10B 및 도 10C와 같이 각막 내피세포는 고유의 육각형 세포 모양을 형성하는 것을 확인할 수 있었다. 3D 프린팅 당시 CellTracker™ Green CMFDA 염료로 트랙킹된 각막내피세포들의 세포 수를 프린팅 10일 후 분석해본 결과, 도 11A와 같이 R5-이식체 상의 R5-HCECs에서 대조군-이식체 상의 대조군 각막내피세포 대비 약 2.5배의 높은 수의 세포 수가 관찰되었고 세포의 모양들 역시 R5-HCEC에서 훨씬 더 고유의 각막 내피세포의 모양에 가까웠다. 10 days after printing, it was confirmed that corneal endothelial cells formed a unique hexagonal cell shape as shown in FIGS. 10B and 10C. As a result of analyzing the cell number of corneal endothelial cells tracked with CellTracker ™ Green CMFDA dye at the time of 3D printing, the result was analyzed 10 days after printing. As shown in FIG. A 2.5-fold higher number of cells was observed, and the morphology of the cells was also much closer to that of the corneal endothelial cells that were much more unique in R5-HCEC.

또한, 도 11B를 참고하면 Na+-K+ ATPase와 ZO-1의 면역형광은 대조군-이식체 대비 R5-이식체 상의 R5-HCEC에서 훨씬 더 명확하게 나타났다.In addition, referring to FIG. 11B, the immunofluorescence of Na + -K + ATPase and ZO-1 was much more clearly seen in R5-HCEC on R5-graft than control-graft.

<< 실시예Example 8> 3D 프린터로 제작된 각막 내피  8> Corneal endothelium made by 3D printer 이식체Implant 이식에 따른 생체 내 각막 내피의 재생 효과 확인 Confirmation of regeneration effect of corneal endothelium in vivo following transplantation

8.0-mm 직경의 원형으로 데스메막을 벗긴 후 원형의 이식체 (R5-이식체, 대조군-이식체 또는 무세포 소양막)를 DSEK(Descemet's Stripping Endothelial Keratoplasty)과 유사한 방법으로 이식하였다. 별로도 추가 군에서 배양한 R5-HCEC 세포를 전방 내에 주사 주입하였으며, 이들 모든 실험군을 데스메막을 분리 후 이식체의 이식 또는 세포 주입 등의 어느 조작도 수행되지 않은 군(대조군)과 비교하였다.After removing the desmemak into a 8.0-mm diameter circle, a circular graft (R5-graft, control-graft or acellular vesicle) was implanted in a similar manner to DSEK (Descemet's Stripping Endothelial Keratoplasty). In addition, R5-HCEC cells cultured in additional groups were injected into the anterior chamber, and all these experimental groups were compared to a group (control) in which no manipulations such as implantation of implants or cell implantation were performed after desmemak separation.

그 결과, 도 12Ai 내지 12Av와 같이 수술 1주 후에는 모든 안구에서 동공 테두리와 안구 전방 내 구조물이 가려보일 정도의 심한 각막 부종이 관찰되었다. 또한, 도 12Aii를 참고하면, 세포 주입군의 안구에서는 마치 진행된 수포 각막병증에서 보이는 것과 같은 각막 표면의 신생혈관을 동반하였다.As a result, severe corneal edema was observed in all eyes after 1 week of surgery as shown in FIGS. Also, referring to FIG. 12Aii, the cells of the cell injection group were accompanied by new blood vessels on the surface of the cornea as seen in advanced blister keratopathy.

반면, 도 12Axx를 참고하면 R5-이식체 이식군의 안구에서 2주째부터 각막의 투명도가 개선되기 시작하였고, 수술 4주 후에는 거의 완전히 각막의 투명도를 회복하였으며 전방 내에는 특별한 염증성 물질이 관찰되지 않았다. 비록 대조군-이식체군에서도 수술 4주 후 각막의 투명도의 개선이 일부 나타났지만 현미경적으로 관찰 시 R5-이식체군 만큼의 개선은 아니었다. On the other hand, referring to Figure 12Axx, the transparency of the cornea began to improve from the second week in the eye of the R5-graft transplantation group, and after 4 weeks of surgery, the transparency of the cornea was almost completely restored and no special inflammatory substance was observed in the anterior chamber. Did. Although the control-graft group showed some improvement in corneal clarity after 4 weeks of surgery, it was not as much as the R5-graft group under microscopic observation.

또한, 도 12Axiii 및 도 12Axviii를 참고하면 R5-이식체와 대조군-이식체 모두 경과 관찰기간 동안 이식체가 각막에 원형을 유지하면서 잘 부착되어 있었으나, 무세포 소양막을 이식한 군에서는 이식한 양막이 수술 3주 후부터 수축되기 시작하였다.Also, referring to FIGS. 12Axiii and 12Axviii, both the R5-implant and the control-implant were well attached while the graft remained circular to the cornea during the course of the observation, but the amnion implanted in the group transplanted with the cell-free small membrane was performed. It began to contract after 3 weeks.

한편, 각막 부종의 정도를 반영하는 중심 각막 두께 (CCT)를 측정한 결과, 심하고 지속적인 각막 부종이 2주째까지 대조군, 세포 주입군 및 무세포 양막 이식군에서 관찰되었다. 세포 주입군에서 3-4주째 약간의 각막 두께 감소가 나타났으나 세포 주입군, 무세포 양막 이식군, 대조군 사이에서 통계적으로 의미있는 차이는 없었다. 그러나 대조군-이식체와 R5-이식체 군에서는 수술 2주 후부터 점차적으로 중심 각막두께가 감소하기 시작하였고, 3주와 4주째에는 대조군 대비 현저히 낮은 두께를 보였으며, 도 12D를 참고하면 4주째 대조군-이식체와 R5-이식체군 사이에는 통계적으로 유의한 차이가 나타나지 않았으며, 4주째 안압의 상승을 보인 안구는 없었다.Meanwhile, as a result of measuring the central corneal thickness (CCT) reflecting the degree of corneal edema, severe and persistent corneal edema was observed in the control group, cell infusion group, and cell-free amniotic membrane transplantation group by 2 weeks. There was a slight decrease in corneal thickness at 3-4 weeks in the cell injection group, but there was no statistically significant difference between the cell injection group, the cell-free amniotic membrane transplantation group and the control group. However, in the control-implant and R5-implant group, the central corneal thickness gradually began to decrease after 2 weeks of surgery, and at 3 and 4 weeks, the thickness was significantly lower than that of the control group. -There was no statistically significant difference between the graft group and the R5-graft group, and no eye showed an increase in intraocular pressure at 4 weeks.

수술 4주 후 R5-이식체 군의 3안에서 각막 내피를 조직학적으로 관찰 및 분석한 결과, 이식한 R5-이식체의 후면부는 빈틈없는 단일층의 세포로 가득차 있었으며 세포의 평균 밀도는 3,073 ± 341.2 (평균 ± 표준 오차) cells/mm2 였다. 또한, 항염료 형광을 현미경으로 관찰 결과, 도 12E와 같이 이들은 토끼의 각막 내피세포가 아니라 배양하여 이식한 사람 각막내피세포들이 확인되었으며, 도 12F와 같이 이식한 R5-이식체 표면의 각막 내피세포는 세포의 육각형 테두리를 따라서 Na+-K+ ATPase, ZO-1 및 CD166 등의 마커가 뚜렷하게 발현된 반면, 대조군-이식체의 각막내피세포에서는 Na+-K+ ATPase의 발현이 R5-이식체 대비 상대적으로 현저하게 낮았다.As a result of histological observation and analysis of corneal endothelium in 3 eyes of the R5-graft group 4 weeks after surgery, the rear part of the transplanted R5-graft was filled with a single layer of cells with no gaps, and the average density of the cells was 3,073 ± 341.2 (Mean ± standard error) cells / mm 2 . In addition, as a result of observing anti-dye fluorescence under a microscope, as shown in FIG. 12E, these were not corneal endothelial cells of rabbits, but human corneal endothelial cells transplanted by culture were identified, and as shown in FIG. Markers such as Na + -K + ATPase, ZO-1 and CD166 are clearly expressed along the hexagonal border of the cell, whereas expression of Na + -K + ATPase in the corneal endothelial cells of the control-graft is R5-graft. Contrast was relatively low.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.Since the specific parts of the present invention have been described in detail above, for those skilled in the art, it is obvious that this specific technique is only a preferred embodiment, and the scope of the present invention is not limited thereby. something to do. Therefore, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

<110> Chung-Ang University Industry-Academy Cooperation Foundation <120> Preparing method for 3 dimension corneal endothelial graft comprising ribonuclease 5 overexepressing corneal endothelial cells <130> ADP-2018-0032 <160> 1 <170> KopatentIn 2.0 <210> 1 <211> 147 <212> PRT <213> ribonuclease 5 <400> 1 Met Val Met Gly Leu Gly Val Leu Leu Leu Val Phe Val Leu Gly Leu 1 5 10 15 Gly Leu Thr Pro Pro Thr Leu Ala Gln Asp Asn Ser Arg Tyr Thr His 20 25 30 Phe Leu Thr Gln His Tyr Asp Ala Lys Pro Gln Gly Arg Asp Asp Arg 35 40 45 Tyr Cys Glu Ser Ile Met Arg Arg Arg Gly Leu Thr Ser Pro Cys Lys 50 55 60 Asp Ile Asn Thr Phe Ile His Gly Asn Lys Arg Ser Ile Lys Ala Ile 65 70 75 80 Cys Glu Asn Lys Asn Gly Asn Pro His Arg Glu Asn Leu Arg Ile Ser 85 90 95 Lys Ser Ser Phe Gln Val Thr Thr Cys Lys Leu His Gly Gly Ser Pro 100 105 110 Trp Pro Pro Cys Gln Tyr Arg Ala Thr Ala Gly Phe Arg Asn Val Val 115 120 125 Val Ala Cys Glu Asn Gly Leu Pro Val His Leu Asp Gln Ser Ile Phe 130 135 140 Arg Arg Pro 145 <110> Chung-Ang University Industry-Academy Cooperation Foundation <120> Preparing method for 3 dimension corneal endothelial graft          comprising ribonuclease 5 overexepressing corneal endothelial          cells <130> ADP-2018-0032 <160> 1 <170> KopatentIn 2.0 <210> 1 <211> 147 <212> PRT <213> ribonuclease 5 <400> 1 Met Val Met Gly Leu Gly Val Leu Leu Leu Val Phe Val Leu Gly Leu   1 5 10 15 Gly Leu Thr Pro Pro Thr Leu Ala Gln Asp Asn Ser Arg Tyr Thr His              20 25 30 Phe Leu Thr Gln His Tyr Asp Ala Lys Pro Gln Gly Arg Asp Asp Arg          35 40 45 Tyr Cys Glu Ser Ile Met Arg Arg Arg Gly Leu Thr Ser Pro Cys Lys      50 55 60 Asp Ile Asn Thr Phe Ile His Gly Asn Lys Arg Ser Ile Lys Ala Ile  65 70 75 80 Cys Glu Asn Lys Asn Gly Asn Pro His Arg Glu Asn Leu Arg Ile Ser                  85 90 95 Lys Ser Ser Phe Gln Val Thr Thr Cys Lys Leu His Gly Gly Ser Pro             100 105 110 Trp Pro Pro Cys Gln Tyr Arg Ala Thr Ala Gly Phe Arg Asn Val Val         115 120 125 Val Ala Cys Glu Asn Gly Leu Pro Val His Leu Asp Gln Ser Ile Phe     130 135 140 Arg Arg Pro 145

Claims (11)

리보핵산분해효소 5(Ribonuclease 5)를 각막내피세포에 과발현시키는 단계(제1단계);
상기 제1단계의 리보핵산분해효소 5가 과발현된 각막내피세포를 바이오잉크에 분산시키는 단계(제2단계);
상기 제2단계의 각막내피세포가 분산된 바이오잉크를 가축으로부터 분리되어 동결건조된 양막에 바이오 프린팅하는 단계(제3단계); 및
상기 제3단계의 바이오 프린팅된 양막에 자외선을 조사하여 교차결합시키는 단계(제4단계)를 포함하는 것을 특징으로 하는 3차원 바이오 프린팅된 각막 내피 이식체 제조방법.
Overexpressing ribonuclease 5 on corneal endothelial cells (first step);
Dispersing corneal endothelial cells overexpressed in the first step of ribonuclease 5 in bioink (second step);
Separating the bioink in which the corneal endothelial cells of the second step are dispersed from livestock and bioprinting the lyophilized amniotic membrane (third step); And
A method of manufacturing a 3D bioprinted corneal endothelial implant comprising the step of irradiating ultraviolet rays to the bioprinted amniotic membrane of the third step to cross-link them (the fourth step).
청구항 1에 있어서, 상기 제1단계의 리보핵산분해효소 5가 과발현된 각막내피세포는 서열번호 1로 표시되는 아미노산 서열을 코딩하는 리보핵산분해효소 5 유전자를 포함하는 재조합 벡터로 각막내피세포를 형질전환시켜 리보핵산분해효소 5를 과발현시키는 것을 특징으로 하는 각막 내피 이식체 제조방법.The method according to claim 1, wherein the first step of the ribonuclease 5 overexpressed corneal endothelial cells are transformed corneal endothelial cells with a recombinant vector containing the ribonuclease 5 gene encoding the amino acid sequence represented by SEQ ID NO: 1 Method for producing a corneal endothelial implant characterized by overexpressing ribonuclease 5 by conversion. 청구항 2에 있어서, 상기 재조합 벡터는 하기 개열지도 1로 표시되는 것을 특징으로 하는 각막 내피 이식체 제조방법.
[개열지도 1]
Figure 112020002970813-pat00018
The method according to claim 2, wherein the recombinant vector is a corneal endothelial implant manufacturing method, characterized in that the following cleavage map 1.
[Open map 1]
Figure 112020002970813-pat00018
청구항 1에 있어서, 상기 각막내피세포는 사람에게서 분리된 각막내피세포인 것을 특징으로 하는 각막 내피 이식체 제조방법.The method of claim 1, wherein the corneal endothelial cells are corneal endothelial cells separated from humans. 청구항 1에 있어서, 상기 제2단계의 각막내피세포가 분산된 바이오잉크는 리보핵산분해효소 5가 과발현된 각막내피세포를 3×106 cell/mL 농도로 바이오 잉크에 분산시키는 것을 특징으로 하는 각막 내피 이식체 제조방법.The method according to claim 1, wherein the bioink in which the corneal endothelial cells are dispersed in the second step is characterized in that the corneal endothelial cells overexpressing ribonuclease 5 are dispersed in bioink at a concentration of 3 × 10 6 cells / mL. Method for manufacturing an endothelial implant. 청구항 1에 있어서, 상기 제3단계는 각막내피세포가 분산된 바이오잉크를 동결건조 및 무세포화 처리된 소 양막에 0.5 내지 1 mm 두께로 바이오 프린팅하는 것을 특징으로 하는 각막 내피 이식체 제조방법.The method according to claim 1, wherein the third step is a method for producing a corneal endothelial implant, characterized in that bioprinting of the corneal endothelial cells dispersed in the lyophilized and acellularized bovine membrane is 0.5 to 1 mm thick. 청구항 1에 있어서, 상기 제4단계는 바이오 프린팅된 양막에 360nm 자외선을 10 내지 20초간 조사하여 교차결합시키는 것을 특징으로 하는 각막 내피 이식체 제조방법.The method according to claim 1, wherein the fourth step is a method of manufacturing a corneal endothelial implant, characterized by cross-linking the bioprinted amniotic membrane by irradiating 360 nm ultraviolet rays for 10 to 20 seconds. 청구항 1에 있어서, 상기 각막 내피 이식체 제조방법은 제4단계 이후 자외선 조사된 각막 내피 이식체를 37℃에서 10일간 배양하는 단계를 추가로 더 포함하는 것을 특징으로 하는 각막 내피 이식체 제조방법.The method according to claim 1, wherein the method of manufacturing a corneal endothelial implant further comprises the step of culturing the corneal endothelial implant irradiated with ultraviolet rays after the fourth step at 37 ° C for 10 days. 청구항 1 내지 청구항 8 중 어느 한 항에 따른 리보핵산분해효소 5(Ribonuclease 5)가 과발현된 각막내피세포가 양막 위에 3차원 바이오 프린팅된 각막 내피 이식체.A corneal endothelial implant in which corneal endothelial cells overexpressing ribonuclease 5 according to any one of claims 1 to 8 are 3D bioprinted on the amniotic membrane. 청구항 9에 있어서, 상기 각막 내피 이식체는 양막 위에 3차원 바이오 프린팅된 리보핵산분해효소 5(Ribonuclease 5)가 과발현된 각막내피세포는 양막 위에 3차원 바이오 프린팅된 리보 핵산분해효소 5가 과발현되지 않은 대조군 각막내피세포보다 Na+-K+ ATPase 및 CD166 발현이 증가된 것을 특징으로 하는 각막 내피 이식체.The method according to claim 9, wherein the corneal endothelial implant is a 3D bioprinted ribonuclease 5 (Ribonuclease 5) overexpressed on the amniotic membrane, the corneal endothelial cells 3D bioprinted ribonuclease 5 on the amniotic membrane is not overexpressed. A corneal endothelial implant characterized by increased expression of Na + -K + ATPase and CD166 than control corneal endothelial cells. 청구항 9에 있어서, 상기 각막 내피 이식체는 양막 위에 3차원 바이오 프린팅된 리보핵산분해효소 5(Ribonuclease 5)가 과발현된 각막내피세포는 양막 위에 3차원 바이오 프린팅된 리보 핵산분해효소 5가 과발현되지 않은 대조군 각막내피세포보다 ZO-1(zonular occludens-1) 발현이 증가되어 각막 내피 표현형이 증가된 것을 특징으로 하는 각막 내피 이식체.The method according to claim 9, wherein the corneal endothelial implant is a three-dimensional bioprinted ribonuclease 5 (Ribonuclease 5) overexpressed on the amniotic membrane, the corneal endothelial cells are three-dimensional bioprinted ribonuclease 5 on the amniotic membrane is not overexpressed. A corneal endothelial implant, characterized in that the expression of zonular occludens-1 (ZO-1) is increased compared to the control corneal endothelial cells, thereby increasing the corneal endothelial phenotype.
KR1020180038240A 2018-04-02 2018-04-02 Preparing method for 3 dimension corneal endothelial graft comprising ribonuclease 5 overexepressing corneal endothelial cells KR102114787B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180038240A KR102114787B1 (en) 2018-04-02 2018-04-02 Preparing method for 3 dimension corneal endothelial graft comprising ribonuclease 5 overexepressing corneal endothelial cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180038240A KR102114787B1 (en) 2018-04-02 2018-04-02 Preparing method for 3 dimension corneal endothelial graft comprising ribonuclease 5 overexepressing corneal endothelial cells

Publications (2)

Publication Number Publication Date
KR20190115332A KR20190115332A (en) 2019-10-11
KR102114787B1 true KR102114787B1 (en) 2020-05-26

Family

ID=68210349

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180038240A KR102114787B1 (en) 2018-04-02 2018-04-02 Preparing method for 3 dimension corneal endothelial graft comprising ribonuclease 5 overexepressing corneal endothelial cells

Country Status (1)

Country Link
KR (1) KR102114787B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017529842A (en) 2014-09-24 2017-10-12 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 3D bioprint artificial cornea
WO2017184667A1 (en) 2016-04-19 2017-10-26 The United States Of America As Represented By The Secretary Of The Army Device and method for isolation of corneal endothelial cells
US20180072989A1 (en) 2011-12-06 2018-03-15 Astellas Institute for Regenarative Medicine Method of directed differentiation producing corneal endothelial cells, compositions thereof, and uses thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2012352180A1 (en) * 2011-12-16 2014-07-31 Moderna Therapeutics, Inc. Modified nucleoside, nucleotide, and nucleic acid compositions
KR101539700B1 (en) 2012-09-05 2015-07-28 아주대학교산학협력단 A composition for treating diseases related to angiogenesis and cornea or conjunctiva transplant using chondrocyte-derived extracellular matrix membrane

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180072989A1 (en) 2011-12-06 2018-03-15 Astellas Institute for Regenarative Medicine Method of directed differentiation producing corneal endothelial cells, compositions thereof, and uses thereof
JP2017529842A (en) 2014-09-24 2017-10-12 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 3D bioprint artificial cornea
WO2017184667A1 (en) 2016-04-19 2017-10-26 The United States Of America As Represented By The Secretary Of The Army Device and method for isolation of corneal endothelial cells

Also Published As

Publication number Publication date
KR20190115332A (en) 2019-10-11

Similar Documents

Publication Publication Date Title
Peh et al. Regulatory compliant tissue-engineered human corneal endothelial grafts restore corneal function of rabbits with bullous keratopathy
Chen et al. Human corneal epithelial cell viability and morphology after dilute alcohol exposure
Peh et al. Human corneal endothelial cell expansion for corneal endothelium transplantation: an overview
Parekh et al. Concise review: an update on the culture of human corneal endothelial cells for transplantation
Kimoto et al. Development of a bioengineered corneal endothelial cell sheet to fit the corneal curvature
JP5255846B2 (en) Corneal endothelial preparation capable of cell proliferation in vivo
Zaniolo et al. Culture of human corneal endothelial cells isolated from corneas with Fuchs endothelial corneal dystrophy
Thomas et al. Identification of Notch-1 expression in the limbal basal epithelium
Arnalich-Montiel et al. Treatment of corneal endothelial damage in a rabbit model with a bioengineered graft using human decellularized corneal lamina and cultured human corneal endothelium
Yaji et al. Transplantation of tissue-engineered retinal pigment epithelial cell sheets in a rabbit model
Bostan et al. In vivo functionality of a corneal endothelium transplanted by cell-injection therapy in a feline model
Sun et al. Bruch's membrane aging decreases phagocytosis of outer segments by retinal pigment epithelium
Lei et al. A new method for selection of angular aqueous plexus cells from porcine eyes: a model for Schlemm's canal endothelium
Smeringaiova et al. Ex vivo expansion and characterization of human corneal endothelium for transplantation: a review
Fang et al. Overexpression of integrin α6 and β4 enhances adhesion and proliferation of human retinal pigment epithelial cells on layers of porcine Bruch's membrane
Lachaud et al. Mesothelial cells: a cellular surrogate for tissue engineering of corneal endothelium
Romo-Valera et al. Characterisation of corneas following different time and storage methods for their use as a source of stem-like limbal epithelial cells
Guo et al. Matrigel and Activin A promote cell-cell contact and anti-apoptotic activity in cultured human retinal pigment epithelium cells
KR102114787B1 (en) Preparing method for 3 dimension corneal endothelial graft comprising ribonuclease 5 overexepressing corneal endothelial cells
Pino et al. Seeding of corneal wounds by epithelial cell transfer from micropatterned PDMS contact lenses
CN112538454A (en) Culture method of corneal endothelial cells
US20090047738A1 (en) Feeder cell derived from tissue stem cell
Zhang et al. Tissue-engineered corneal endothelial sheets using ultrathin acellular porcine corneal stroma substrates for endothelial keratoplasty
Farrokh-Siar et al. Cryoprecipitate: an autologous substrate for human fetal retinal pigment epithelium
Liu et al. Human limbal progenitor cell characteristics are maintained in tissue culture

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant