KR102114108B1 - Preparation of carbon nanocomposites containing molybdenum nanoparticles - Google Patents

Preparation of carbon nanocomposites containing molybdenum nanoparticles Download PDF

Info

Publication number
KR102114108B1
KR102114108B1 KR1020180079504A KR20180079504A KR102114108B1 KR 102114108 B1 KR102114108 B1 KR 102114108B1 KR 1020180079504 A KR1020180079504 A KR 1020180079504A KR 20180079504 A KR20180079504 A KR 20180079504A KR 102114108 B1 KR102114108 B1 KR 102114108B1
Authority
KR
South Korea
Prior art keywords
molybdenum
drying
carbon nanocomposite
producing
precursor
Prior art date
Application number
KR1020180079504A
Other languages
Korean (ko)
Other versions
KR20190135385A (en
Inventor
박원철
황태진
황규태
Original Assignee
재단법인차세대융합기술연구원
주식회사 밸류엔지니어링
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인차세대융합기술연구원, 주식회사 밸류엔지니어링 filed Critical 재단법인차세대융합기술연구원
Publication of KR20190135385A publication Critical patent/KR20190135385A/en
Application granted granted Critical
Publication of KR102114108B1 publication Critical patent/KR102114108B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/06Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • B01J35/0006
    • B01J35/023
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 몰리브데넘이 포함된 탄소나노복합체 제조방법에 관한 것으로, 그 제조방법으로는 몰리브데넘을 강산용액에 넣어 액상화 시키는 액상화 단계; 액상화된 물질에 구연산나트륨(Sodium oleate)을 혼합하는 혼합단계; 혼합된 물질을 건조하는 건조단계; 건조된 혼합물을 가열하는 가열단계; 및 증류수를 이용하여 세정하고 여과하는 세정 및 여과단계;를 포함하는 몰리브데넘이 포함된 탄소나노복합체 제조방법을 제공한다.The present invention relates to a method for producing a carbon nanocomposite containing molybdenum, the method of manufacturing a liquefaction step of liquefying the molybdenum in a strong acid solution; A mixing step of mixing sodium citrate with the liquefied material; A drying step of drying the mixed material; A heating step of heating the dried mixture; And a cleaning and filtering step of washing and filtering using distilled water.

Description

몰리브데넘이 포함된 탄소나노복합체 제조방법 {Preparation of carbon nanocomposites containing molybdenum nanoparticles}Manufacturing method of carbon nanocomposites containing molybdenum {Preparation of carbon nanocomposites containing molybdenum nanoparticles}

본 발명은 몰리브데넘이 포함된 탄소나노복합체 제조방법에 관한 것으로, 보다 상세하게는 반도체 폐기물로 부터 몰리브데넘을 효율적으로 추출할 수 있는 몰리브데넘이 포함된 탄소나노복합체 제조방법에 관한 것이다.The present invention relates to a method for producing a carbon nanocomposite containing molybdenum, and more particularly, to a method for manufacturing a carbon nanocomposite containing molybdenum capable of efficiently extracting molybdenum from semiconductor waste. .

폐기 장비에 있는 몰리브데넘을 재활용하여 몰리브데넘 화합물-탄소 나노복합체를 제조하는 상기 방법은 제조비용을 줄일 수 있고 대량 합성이 가능하다. The above method for producing a molybdenum compound-carbon nanocomposite by recycling the molybdenum in the waste equipment can reduce manufacturing cost and allow mass synthesis.

최근에 이러한 몰리브데넘 기반 나노 입자는 고 에너지 볼 밀링법, 용융 염 보조 자기 전파 고주파 가열법, 물리적 증기 증착법, 기체 상 연소 합성법, 화학적 환원 법 등이 있다. 입자의 크기와 모양은 금속 전구체에 대한 안정제의 몰비, 가열 시간과 온도와 같은 합성 변수를 조절하여 조절할 수 있다.Recently, such molybdenum-based nanoparticles include high energy ball milling, molten salt assisted self-propagating high-frequency heating, physical vapor deposition, gas phase combustion synthesis, and chemical reduction. The size and shape of the particles can be controlled by adjusting the synthetic parameters such as the molar ratio of stabilizer to metal precursor, heating time and temperature.

그러나 이러한 방법들은 나노입자 크기 제어가 어렵고, 고온의 열처리 공정을 수반하기 때문에 몰리브데넘 기반 나노물질의 결정 성장 및 응집이 발생하기 때문에, 균일한 크기 입자의 제조에 한계를 보이며, 뿐만 아니라 다단계 공정을 통해 제조가 되기 때문에 제조비용이 비싼 단점이 있고 대량 합성에 부적합하다는 문제점이 지적되고 있다.However, since these methods are difficult to control the size of nanoparticles and involve high-temperature heat treatment, crystal growth and agglomeration of molybdenum-based nanomaterials occur, thus limiting the production of uniform size particles, as well as multi-step processes. It is pointed out that there is a disadvantage in that the manufacturing cost is high because it is manufactured through and is unsuitable for mass synthesis.

이러한 부작용을 막기 위해, 최근에는 wrap-bake-peel 방법이 고안되어 나노입자를 열처리 과정 중에 나노입자가 뭉치는 것을 방지하였다. 하지만 상기 방법 또한 복잡한 공정을 통해 제조되기 때문에, 시간이 많이 소요되고 제조비용이 높은 문제점들이 여전히 남아 있다.In order to prevent such side effects, a wrap-bake-peel method was recently devised to prevent the nanoparticles from agglomerating during the heat treatment process. However, since the method is also manufactured through a complicated process, problems that are time consuming and high in manufacturing cost still remain.

우수하고 균일한 크기의 몰리브데넘 화합물-탄소 나노복합체를 제조하는 것은 유기염을 탄화시켜 탄소 나노 복합체를 경제적으로 제조할 수 있으며, 대량생산이 가능하여 실제 촉매분야에 산업적으로 적용이 가능하다.Producing an excellent and uniformly sized molybdenum compound-carbon nanocomposite can economically manufacture a carbon nanocomposite by carbonizing an organic salt, and can be mass-produced, so it can be industrially applied to the actual catalyst field.

이에 따라, 몰리브데넘 전구체와 유기염의 혼합물을 함께 열처리하게 되면 얇은 종이 형태의 탄소 복합재료를 제조하여 얇은 종이형태의 복합재료 구조로 개발하여 촉매활성 등 특성이 우수한 몰리브데넘이 포함된 탄소나노복합체의 개발이 요구되었다.Accordingly, when the mixture of the molybdenum precursor and the organic salt is heat-treated together, a carbon nanomaterial containing molybdenum having excellent properties such as catalytic activity is developed by manufacturing a thin paper-like carbon composite material and developing it into a thin paper-like composite material structure. Development of the complex was required.

본 발명은 상기한 종래 기술의 문제점을 해결하기 위해, 폐기 장비에 있는 몰리브데넘을 재활용하여 몰리브데넘 기반 나노입자를 제조할 수 있는 제조공정을 제공하는 데 있다.The present invention is to provide a manufacturing process capable of producing molybdenum-based nanoparticles by recycling the molybdenum in the waste equipment, in order to solve the problems of the prior art described above.

또한, 본 발명의 목적은 구조 및 촉매활성 등 특성이 우수한 균일한 크기의 몰리브데넘 기반 나노입자 제조방법을 제공하는 데 있다.In addition, it is an object of the present invention to provide a method for producing nanoparticles based on molybdenum having a uniform size having excellent characteristics such as structure and catalytic activity.

본 발명의 일 측면에 따르면, 몰리브데넘을 강산용액에 넣어 몰리브데넘 전구체를 제조하는 몰리브데넘 전구체 합성단계; 몰리브데넘 전구체에 구연산나트륨(Sodium citrate)을 혼합하는 혼합단계; 혼합된 물질을 건조하는 건조단계; 건조된 혼합물을 가열하는 가열단계; 및 증류수를 이용하여 세정하고 여과하는 세정 및 여과단계;를 포함하는 몰리브데넘이 포함된 탄소나노복합체 제조방법을 제공한다.According to an aspect of the present invention, a molybdenum precursor synthesis step of preparing a molybdenum precursor by adding molybdenum to a strong acid solution; A mixing step of mixing sodium citrate with the molybdenum precursor; A drying step of drying the mixed material; A heating step of heating the dried mixture; And a cleaning and filtering step of washing and filtering using distilled water.

또한, 본 발명에 따르면, 상기 몰리브데넘 전구체 합성단계에서 상기 강산용액은 염산 및 질산을 혼합하여 제조하는 것을 특징으로 하는 몰리브데넘이 포함된 탄소나노복합체 제조방법을 제공한다.In addition, according to the present invention, in the step of synthesizing the molybdenum precursor, the strong acid solution provides a method for producing a carbon nanocomposite containing molybdenum, characterized in that it is prepared by mixing hydrochloric acid and nitric acid.

또한, 본 발명에 따르면, 상기 혼합단계에서 물을 추가하여 혼합하여 몰리브데넘 이온과 구연산나트륨(Sodium citrate)의 결합을 돕는 것을 특징으로 하는 몰리브데넘이 포함된 탄소나노복합체 제조방법을 제공한다.In addition, according to the present invention, by adding water in the mixing step to provide a method for producing a carbon nanocomposite containing molybdenum, characterized in that to assist the binding of molybdenum ions and sodium citrate (Sodium citrate) .

또한, 본 발명에 따르면, 상기 건조단계에서 건조는 80~90℃에서 건조하는 것을 특징으로 하는 몰리브데넘이 포함된 탄소나노복합체 제조방법을 제공한다.In addition, according to the present invention, the drying in the drying step provides a method for producing a carbon nanocomposite containing molybdenum, characterized in that it is dried at 80 to 90 ° C.

또한, 본 발명에 따르면, 상기 가열단계에서 가열온도는 550 ~ 650℃ 로 가열하는 것을 특징으로 하는 몰리브데넘이 포함된 탄소나노복합체 제조방법을 제공한다.In addition, according to the present invention, the heating temperature in the heating step provides a method for producing a carbon nanocomposite containing molybdenum, characterized in that heating to 550 ~ 650 ℃.

또한, 본 발명에 따르면, 상기 가열단계에서 질소분위기 또는 H2S 분위기에서 실시하는 것을 특징으로 하는 몰리브데넘이 포함된 탄소나노복합체 제조방법을 제공한다.In addition, according to the present invention, there is provided a method for producing a carbon nanocomposite containing molybdenum, characterized in that carried out in a nitrogen atmosphere or H 2 S atmosphere in the heating step.

또한, 본 발명에 따르면, 상기 질소분위기 하에서 몰리브데넘-카본 나노입자가 제조되는 것을 특징으로 하는 몰리브데넘이 포함된 탄소나노복합체 제조방법을 제공한다.In addition, according to the present invention, there is provided a method for producing a carbon nanocomposite containing molybdenum, characterized in that the molybdenum-carbon nanoparticles are produced under the nitrogen atmosphere.

또한, 본 발명에 따르면, 상기 H2S 분위기 하에서 몰리브데넘 설파이드-탄소나노 복합체가 제조되는 것을 특징으로 하는 몰리브데넘이 포함된 탄소나노복합체 제조방법을 제공한다.In addition, according to the present invention, there is provided a method for producing a carbon nanocomposite containing molybdenum, wherein the molybdenum sulfide-carbon nanocomposite is prepared under the H 2 S atmosphere.

본 발명의 일 실시 예에 의하면, 폐기 장비에 있는 몰리브데넘을 재활용하여 몰리브데넘 기반 나노입자를 제조하는 것으로 제조비용을 줄일 수 있고 대량 합성이 가능한 장점이 있다.According to an embodiment of the present invention, by manufacturing the molybdenum-based nanoparticles by recycling the molybdenum in the waste equipment, there is an advantage that can reduce the manufacturing cost and enable mass synthesis.

또한, 본 발명에 따르면 폐기 장비에 있는 몰리브데넘을 재활용하여 전구체를 합성하고 열처리를 통해 결정성이 우수하고 균일한 크기의 몰리브데넘 기반 나노입자를 제조하는 것은 나노입자의 합성뿐만 아니라, 동시에 탄소 나노 복합체를 경제적으로 제조할 수 있으며, 대량생산이 가능하여 실제 전지전자, 기계공정, 촉매 등 다양한 산업적 응용 분야에 적용이 가능하다.In addition, according to the present invention, by recycling the molybdenum in the waste equipment, synthesizing the precursor and producing heat-treated molybdenum-based nanoparticles having excellent crystallinity and uniform size, as well as the synthesis of nanoparticles, at the same time Carbon nanocomposites can be manufactured economically and can be mass-produced, making them applicable to various industrial applications such as actual battery electronics, mechanical processes, and catalysts.

또한, 전구체와 유기염의 혼합물과 함께 열처리하게 되면 얇은 종이 형태의 탄소 복합재료를 제조할 수 있다. 이와 같은 얇은 종이형태의 복합재료는 구조 및 촉매활성 등 특성이 우수할 것으로 예측된다.In addition, when heat treatment is performed with a mixture of a precursor and an organic salt, a carbon composite material in the form of a thin paper can be produced. It is expected that such a thin paper-like composite material has excellent properties such as structure and catalytic activity.

도 1은 본 발명의 일실시예에 따른 몰리브데넘 나노입자 제조공정을 대략적으로 나타낸 것이다.
도 2는 몰리브데넘-시트레이트의 화학식을 나타낸 것이다.
1 schematically shows a process for producing molybdenum nanoparticles according to an embodiment of the present invention.
Figure 2 shows the formula of molybdenum-citrate.

이하, 본 발명의 실시 예를 첨부된 도면들을 참조하여 더욱 상세하게 설명한다. 본 발명의 실시 예는 여러 가지 형태로 변형할 수 있으며, 본 발명의 범위가 아래의 실시 예들로 한정되는 것으로 해석되어서는 안 된다. 본 실시 예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해 제공되는 것이다. 따라서 도면에서의 요소의 형상은 보다 명확한 설명을 강조하기 위해 과장되었다.Hereinafter, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. The embodiments of the present invention can be modified in various forms, and the scope of the present invention should not be interpreted as being limited to the following embodiments. This embodiment is provided to more fully describe the present invention to those skilled in the art. Therefore, the shape of the elements in the drawings has been exaggerated to emphasize a clearer explanation.

도 1은 본 발명의 일실시예에 따른 몰리브데넘 나노입자 제조공정을 대략적으로 나타낸 것이다.1 schematically shows a process for producing molybdenum nanoparticles according to an embodiment of the present invention.

본 발명은 사용된 반도체 장비에서 몰리브데넘을 회수하여 몰리브데넘 나노입자로 제조하는 방법에 관한 것으로, 몰리브데넘을 강산용액에 넣어 몰리브데넘 전구체를 제조하는 몰리브데넘 전구체 합성단계; 몰리브데넘 전구체에 구연산나트륨(Sodium citrate)을 혼합하는 혼합단계; 혼합된 물질을 건조하는 건조단계; 건조된 혼합물을 가열하는 가열단계; 및 증류수를 이용하여 세정하고 여과하는 세정 및 여과단계를 포함한다.The present invention relates to a method for recovering molybdenum from used semiconductor equipment to produce molybdenum nanoparticles, a molybdenum precursor synthesis step of preparing molybdenum precursor by adding molybdenum in a strong acid solution; A mixing step of mixing sodium citrate with the molybdenum precursor; A drying step of drying the mixed material; A heating step of heating the dried mixture; And a washing and filtering step of washing and filtering using distilled water.

(1) 몰리브데넘 전구체 합성단계(1) Molybdenum precursor synthesis step

반도체 장비로 부터 얻어진 몰리브데넘을 몰리브데넘 전구체로 합성한다.Molybdenum obtained from semiconductor equipment is synthesized as a molybdenum precursor.

반도체 장비로 부터 얻어진 몰리브데넘은 금속 형태의 몰리브데넘으로 녹는점이 높아 이를 분리해 내려면 어려운 점이 있다. 이에 따라 화학반응을 통해 간단한 공정으로 몰리브데넘 나노물질로 전환하여 얻어 낼 수 있다. 이를 위해 먼저 사용을 다한 반도체 장비에서 얻어진 몰리브데넘 금속을 액상화 시킨다.Molybdenum obtained from semiconductor equipment is a metal-type molybdenum that has a high melting point, which makes it difficult to separate it. Accordingly, it can be obtained by converting to molybdenum nanomaterial in a simple process through a chemical reaction. To this end, the molybdenum metal obtained from the used semiconductor equipment is first liquefied.

몰리브데넘의 액상화를 위해 강산 용액을 사용하여 몰리브데넘을 이온화 할 수 있다. 즉, 금속의 몰리브데넘을 이온화 상태로 변화시킬 수 있다.For the liquefaction of molybdenum, molybdenum can be ionized using a strong acid solution. That is, the molybdenum of the metal can be changed to an ionized state.

이 때 사용하는 강산용액은 염산 및 질산을 약 3:1의 질량비율로 혼합하여 사용한다.The strong acid solution used at this time is used by mixing hydrochloric acid and nitric acid at a mass ratio of about 3: 1.

이렇게 액상화 시키게 되면 몰리브데넘 이온이 포함된 몰리브데넘 전구체로 형성될 수 있는 데, 액상화된 물질은 오븐 등에 진공건조함으로써 수분은 날라가고 몰리브데넘이온은 강산용액물질과 반응하여 몰리브데넘 전구체 물질을 합성하게 된다.When liquefied in this way, molybdenum ions may be formed as molybdenum precursors. The liquefied material is vacuum dried in an oven or the like to remove moisture, and molybdenum ions react with strong acid solution materials to form molybdenum precursors. The material is synthesized.

오븐 진공건조시에는 약 100℃의 온도에서 건조하면서 수분을 제거함으로써 분말형태의 몰리브데넘 전구체를 합성한다.In the oven vacuum drying, the molybdenum precursor in powder form is synthesized by removing moisture while drying at a temperature of about 100 ° C.

(2) 혼합단계(2) Mixing step

혼합단계에서는 합성된 몰리브데넘 전구체 물질에 구연산나트륨(Sodium citrate)을 혼합한다.In the mixing step, sodium citrate is mixed with the synthesized molybdenum precursor material.

몰리브데넘 전구체에 있는 몰리브데넘 이온이 구연산나트륨과 혼합됨으로써 몰리브데넘-시트레이트를 제조하게 된다.Molybdenum ions in the molybdenum precursor are mixed with sodium citrate to produce molybdenum-citrate.

또한, 혼합단계에서는 물을 추가로 혼합할 수 있는 데, 강산용액의 역할을 낮추고 혼합되는 구연산나트륨이 몰리브데넘 이온과 잘 혼합될 수 있도록 한다.In addition, in the mixing step, water can be additionally mixed, and the role of the strong acid solution is lowered and sodium citrate to be mixed can be well mixed with molybdenum ions.

상기 물은 용매역할로 몰리브데넘 이온과 구연산나트륨이 잘 혼합되도록 한다.The water acts as a solvent so that molybdenum ions and sodium citrate are well mixed.

물이 혼합되는 양은 몰리브데넘 전구체 양의 약 2배의 중량으로 혼합할 수 있다.The amount of water to be mixed can be mixed with a weight of about twice the amount of the molybdenum precursor.

몰리브데넘 전구체와 구연산나트륨이 혼합되면 구연산나트륨의 시트레이트에 몰리브데넘 전구체의 몰리브데넘 이온이 결합되어 몰리브데넘-시트레이트로 형성된다.When the molybdenum precursor and sodium citrate are mixed, the molybdenum ion of the molybdenum precursor is bound to the citrate of sodium citrate to form molybdenum-citrate.

도 2는 몰리브데넘-시트레이트의 화학식을 나타낸 것이다.Figure 2 shows the formula of molybdenum-citrate.

도 2와 같이 몰리브데넘-시트레이트로 형성될 수 있는 데, 이는 나노형태의 작은 사이즈로 형성될 수 있다.It can be formed of molybdenum-citrate, as shown in Figure 2, which can be formed into a small size of the nano-form.

혼합되는 구연산나트륨의 양은 몰리브데넘 전구체와 구연산나트륨이 약 2:1의 중량비율로 혼합된다.The amount of sodium citrate to be mixed is a molybdenum precursor and sodium citrate are mixed in a weight ratio of about 2: 1.

(3) 건조단계(3) Drying step

건조 단계에서는 몰리브데넘 이온과 구연산나트륨이 잘 결합되게 하기 위해서 고온에서 건조하게 된다.In the drying step, the molybdenum ion and sodium citrate are dried at a high temperature in order to bond well.

건조하는 온도는 80~90℃에서 건조시키는 것이 바람직한데, 이를 위해 오븐 같은 가열장치를 통해 80~90℃의 온도를 유지하면서 건조시키며, 대기 압력보다 낮은 압력에서 실시하는 것이 바람직다.The drying temperature is desirably dried at 80 to 90 ° C. To this end, it is dried while maintaining a temperature of 80 to 90 ° C through a heating device such as an oven, and is preferably performed at a pressure lower than atmospheric pressure.

이와같이 80~90℃의 고온으로 건조시키는 이유는 구연산나트륨의 용해도가 올라가 몰리브데넘 이온과의 결합력을 높이기 위해서이다.The reason for drying at a high temperature of 80 to 90 ° C is to increase the solubility of sodium citrate and to increase the binding force with molybdenum ions.

또한, 혼합단계에서 혼합되었던 물은 건조단계에서 고온으로 유지함으로써 제거할 수 있다.In addition, water that has been mixed in the mixing step can be removed by maintaining it at a high temperature in the drying step.

(4) 가열단계(4) Heating step

건조단계 이후에는 가열하는 공정을 갖는다.After the drying step, there is a process of heating.

나노입자 형태가 아닌 얇은 종이와 같은 2차원 형태로 변형하여 몰리브데넘 나노입자를 제조할 수도 있는다.It is also possible to manufacture molybdenum nanoparticles by transforming them into two-dimensional shapes, such as thin paper, rather than nanoparticles.

가열단계에서는 질소분위기 또는 H2S 분위기를 조성하여 다른 형태의 몰리브데넘을 제조할 수 있다.In the heating step, a nitrogen atmosphere or an H 2 S atmosphere can be formed to produce other types of molybdenum.

가열온도는 550 ~ 650℃ 로 가열할 수 있다.Heating temperature can be heated to 550 ~ 650 ℃.

질소분위기(N2) 하에서 가열을 하게 되면 몰리브데넘-시트레이트가 몰리브데넘-카본 나노복합체로 형성된다. 질소분위기(N2) 하에서 가열을 하게 되면 시트레이트에 있는 탄소원자가 남게 되어 몰리브데넘-카본 나노복합체가 형성된다.When heated under a nitrogen atmosphere (N 2 ), molybdenum-citrate is formed of molybdenum-carbon nanocomposites. When heated under a nitrogen atmosphere (N 2 ), carbon atoms in the citrate remain and molybdenum-carbon nanocomposites are formed.

또한, H2S 분위기를 조성하에서 가열하게 되면 시트레이트는 탄화되고 몰리브데넘은 황화되어 MoS2-카본 나노 복합체가 형성된다.In addition, when heated under the composition of H 2 S atmosphere, citrate is carbonized and molybdenum is sulfurized to form MoS 2 -carbon nanocomposites.

(5) 세정 및 여과단계(5) Cleaning and filtration steps

가열단계 이후에 세정 및 여과단계를 거칠 수 있다.After the heating step, a washing and filtering step may be performed.

세정은 증류수를 통해 할 수 있는데, 증류수로 씻어 내면 몰리브데넘 나노입자는 고체상태로 남고 나머지는 증류수에 녹는다. 이를 거름종이등의 여과를 통해 몰리브데넘 나노입자만을 걸러낼 수 있다.Washing can be done through distilled water. When washed with distilled water, molybdenum nanoparticles remain solid and the rest are dissolved in distilled water. It can filter out molybdenum nanoparticles through filtration such as filter paper.

한편, 가열단계에서 질소분위기(N2) 하에서 가열한 경우에는 몰리브데넘-카본 나노복합체가 생기는 데, 이 또한 증류수로 씻어 내면 몰리브데넘-탄소 나노복합체는 고체상태로 남고 나머지는 증류수에 녹으며, 여과를 통해 몰리브데넘-카본 나노복합체만을 걸러낼 수 있다.On the other hand, when heated under a nitrogen atmosphere (N 2 ) in the heating step, molybdenum-carbon nanocomposites are formed, and when washed with distilled water, molybdenum-carbon nanocomposites remain solid and the rest are dissolved in distilled water. In addition, only molybdenum-carbon nanocomposites can be filtered through filtration.

걸러낸 물질은 몰리브데넘 나노입자인데 여기서 수분을 제거하는 건조를 추가적으로 실시하면 분말 형태의 몰리브데넘 나노입자를 얻을 수 있게 된다.The filtered material is molybdenum nanoparticles. Here, drying to remove water is additionally performed to obtain molybdenum nanoparticles in powder form.

이하 본 발명의 실시예에 대하여 자세히 설명한다.Hereinafter, embodiments of the present invention will be described in detail.

실시예 1Example 1

반도체 폐기 장비에서 몰리브데넘을 습득한 후 이를 산성용액에 녹이는 데, 상기 산성용액은 염산과 질산을 약 3:1의 질량비율로 혼합하여 몰리브데넘을 녹여 액상화시킨다.After obtaining molybdenum from the semiconductor waste equipment, it is dissolved in an acidic solution. The acidic solution is mixed with hydrochloric acid and nitric acid at a mass ratio of about 3: 1 to melt and liquefy the molybdenum.

액상화된 물질은 오븐에서 건조함으로써 산성용액의 수분을 제거하여 몰리브데넘 전구체를 합성한다.The liquefied material is dried in an oven to remove moisture from the acidic solution to synthesize a molybdenum precursor.

이렇게 합성된 몰리브데넘 전구체에 물과 구연산나트륨(Sodium citrate)을 혼합하는 데, 몰리브데넘 전구체, 물, 구연산나트륨(Sodium citrate)을 1 : 2 : 2의 중량비율로 혼합한다.Water and sodium citrate are mixed with the synthesized molybdenum precursor, and the molybdenum precursor, water, and sodium citrate are mixed in a weight ratio of 1: 2: 2.

혼합 후 건조를 시키는 데, 80℃ 오븐에 넣어 진공건조시킨다. After mixing and drying, it is put in an oven at 80 ° C. and dried under vacuum.

건조 후 가열시키는 데, 가열조건은 질소분위기하에서 약 600℃로 3시간 정도 가열한다.After drying, heating is performed, and the heating conditions are heated at about 600 ° C. for 3 hours under a nitrogen atmosphere.

가열 후에 증류수로 세정하며 고체물질을 습득하는 데, 거름종이에 여과방식으로 얻는다. After heating, it is washed with distilled water to acquire a solid material, which is obtained by filtering on filter paper.

추가적으로 건조를 통해 수분을 제거하게 되면 나노입자 형태의 분말을 얻게 된다.In addition, when moisture is removed through drying, a powder in the form of nanoparticles is obtained.

질소분위기에서 가열시 산화몰리브데넘과 시트레이트(citrate)에 있는 탄소원자가 남게 되어 산화몰리브데넘-카본 나노입자가 형성된다.When heated in a nitrogen atmosphere, carbon atoms in molybdenum oxide and citrate remain, and molybdenum oxide-carbon nanoparticles are formed.

실시예 2Example 2

실시예 1과 동일하게 실시하되,It was carried out in the same manner as in Example 1,

가열시 질소분위기가 아닌 H2S 분위기 하에서 가열을 실시하였다.When heating, heating was performed under an H 2 S atmosphere, not a nitrogen atmosphere.

H2S 분위기 하에서 가열시 몰리브데넘금속을 시트레이트(citrate)에 있는 탄소원자가 감싸는 구조가 형성되어 2차원 형태의 MoS2-카본 나노입자가 형성된다.When heated under an H 2 S atmosphere, a structure surrounding the carbon atom in the citrate of the molybdenum metal is formed to form a two-dimensional MoS 2 -carbon nanoparticle.

이상의 상세한 설명은 본 발명을 예시하는 것이다. 또한 전술한 내용은 본 발명의 바람직한 실시 형태를 나타내어 설명하는 것이며, 본 발명은 다양한 다른 조합, 변경 및 환경에서 사용할 수 있다. 즉 본 명세서에 개시된 발명의 개념의 범위, 저술한 개시 내용과 균등한 범위 및/또는 당업계의 기술 또는 지식의 범위내에서 변경 또는 수정이 가능하다. 저술한 실시예는 본 발명의 기술적 사상을 구현하기 위한 최선의 상태를 설명하는 것이며, 본 발명의 구체적인 적용 분야 및 용도에서 요구되는 다양한 변경도 가능하다. 따라서 이상의 발명의 상세한 설명은 개시된 실시 상태로 본 발명을 제한하려는 의도가 아니다. 또한 첨부된 청구범위는 다른 실시 상태도 포함하는 것으로 해석되어야 한다.The above detailed description is to illustrate the present invention. In addition, the above-described content is to describe and describe preferred embodiments of the present invention, and the present invention can be used in various other combinations, modifications and environments. That is, it is possible to change or modify the scope of the concept of the invention disclosed herein, the scope equivalent to the disclosed contents, and / or the scope of the art or knowledge in the art. The embodiments described describe the best conditions for implementing the technical spirit of the present invention, and various changes required in specific application fields and uses of the present invention are possible. Therefore, the detailed description of the above invention is not intended to limit the present invention to the disclosed embodiments. In addition, the appended claims should be construed to include other embodiments.

Claims (8)

몰리브데넘을 강산용액에 넣어 몰리브데넘 전구체를 제조하는 몰리브데넘 전구체 합성단계;
몰리브데넘 전구체에 구연산나트륨(Sodium citrate)을 혼합하는 혼합단계;
혼합된 물질을 건조하는 건조단계;
건조된 혼합물을 가열하는 가열단계; 및
증류수를 이용하여 세정하고 여과하는 세정 및 여과단계;를 포함하고,
상기 몰리브데넘 전구체 합성단계는,
사용을 다한 폐기 반도체 장비에서 몰리브데넘 금속을 얻는 몰리브데넘 금속 획득 단계,
몰리브데넘 금속을 강산용약에 넣어 금속의 몰리브데넘을 이온화 상태로 변화시키는 액상화 단계; 및
몰리브데넘 이온을 포함하는 액상화 물질을 진공건조하여, 수분을 제거하고 몰리브데넘 이온과 강산용액물질을 반응 시켜 몰리브데넘 전구체 물질을 합성하는 합성단계; 를 포함하는 몰리브데넘이 포함된 탄소나노복합체 제조방법.
A molybdenum precursor synthesis step of preparing a molybdenum precursor by adding molybdenum to a strong acid solution;
A mixing step of mixing sodium citrate with the molybdenum precursor;
A drying step of drying the mixed material;
A heating step of heating the dried mixture; And
Includes; washing and filtration step of washing and filtering using distilled water,
The molybdenum precursor synthesis step,
Molybdenum metal acquisition step of obtaining molybdenum metal from used semiconductor equipment,
A liquefaction step of putting the molybdenum metal in a strong acidic medicine to change the molybdenum of the metal to an ionized state; And
A synthetic step of synthesizing a molybdenum precursor material by vacuum drying the liquefied material containing molybdenum ions to remove moisture and reacting the molybdenum ions with a strong acid solution material; Method for producing a carbon nanocomposite containing molybdenum containing a.
제1항에 있어서,
상기 몰리브데넘 전구체 합성단계에서 상기 강산용액은 염산 및 질산을 혼합하여 제조하는 것을 특징으로 하는 몰리브데넘이 포함된 탄소나노복합체 제조방법.
According to claim 1,
In the step of synthesizing the molybdenum precursor, the strong acid solution is prepared by mixing hydrochloric acid and nitric acid with carbon nanocomposite containing molybdenum.
제1항에 있어서,
상기 혼합단계에서 물을 추가하여 혼합하여 몰리브데넘 이온과 구연산나트륨(Sodium citrate)의 결합을 돕는 것을 특징으로 하는 몰리브데넘이 포함된 탄소나노복합체 제조방법.
According to claim 1,
A method of preparing a carbon nanocomposite containing molybdenum, characterized in that by adding water in the mixing step and mixing to help the combination of molybdenum ions and sodium citrate.
제1항에 있어서,
상기 건조단계에서 건조는 80~90℃에서 건조하는 것을 특징으로 하는 몰리브데넘이 포함된 탄소나노복합체 제조방법.
According to claim 1,
The drying in the drying step is a method for producing a carbon nanocomposite containing molybdenum, characterized in that drying at 80 ~ 90 ℃.
제1항에 있어서,
상기 가열단계에서 가열온도는 550 ~ 650℃ 로 가열하는 것을 특징으로 하는 몰리브데넘이 포함된 탄소나노복합체 제조방법.
According to claim 1,
Method for producing a carbon nanocomposite containing molybdenum, characterized in that the heating temperature in the heating step is heated to 550 ~ 650 ℃.
제1항에 있어서,
상기 가열단계에서 질소분위기 또는 H2S 분위기에서 실시하는 것을 특징으로 하는 몰리브데넘이 포함된 탄소나노복합체 제조방법.
According to claim 1,
Method of producing a carbon nanocomposite containing molybdenum, characterized in that carried out in a nitrogen atmosphere or H 2 S atmosphere in the heating step.
제6항에 있어서,
상기 질소분위기 하에서 몰리브데넘-카본 나노입자가 제조되는 것을 특징으로 하는 몰리브데넘이 포함된 탄소나노복합체 제조방법.
The method of claim 6,
Method for producing a carbon nanocomposite containing molybdenum, characterized in that the molybdenum-carbon nanoparticles are produced under the nitrogen atmosphere.
제6항에 있어서,
상기 H2S 분위기 하에서 몰리브데넘 설파이드-탄소나노 복합체가 제조되는 것을 특징으로 하는 몰리브데넘이 포함된 탄소나노복합체 제조방법.
The method of claim 6,
A method for producing a carbon nanocomposite containing molybdenum, wherein the molybdenum sulfide-carbon nanocomposite is prepared under the H 2 S atmosphere.
KR1020180079504A 2018-05-28 2018-07-09 Preparation of carbon nanocomposites containing molybdenum nanoparticles KR102114108B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180060591 2018-05-28
KR20180060591 2018-05-28

Publications (2)

Publication Number Publication Date
KR20190135385A KR20190135385A (en) 2019-12-06
KR102114108B1 true KR102114108B1 (en) 2020-05-22

Family

ID=68836979

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180079504A KR102114108B1 (en) 2018-05-28 2018-07-09 Preparation of carbon nanocomposites containing molybdenum nanoparticles

Country Status (1)

Country Link
KR (1) KR102114108B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006202759A (en) 2005-01-21 2006-08-03 Samsung Sdi Co Ltd Carbon-metal composite material and process of manufacturing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120043358A (en) * 2010-10-26 2012-05-04 주식회사 한국환경사업단 Method of recovering molybdenum oxide from waste catalyst with molybdenum
JP2012171826A (en) * 2011-02-21 2012-09-10 Toyo Tanso Kk Metal-carbon composite material, and method for producing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006202759A (en) 2005-01-21 2006-08-03 Samsung Sdi Co Ltd Carbon-metal composite material and process of manufacturing same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 39 (2014) 9638-9650*

Also Published As

Publication number Publication date
KR20190135385A (en) 2019-12-06

Similar Documents

Publication Publication Date Title
Yang et al. Synthesis and characterization of single-crystalline nanorods of α-MnO2 and γ-MnOOH
Wang et al. Facile synthesis of magnesium oxide nanoplates via chemical precipitation
Zhang et al. Synthesis and characterization of α-MnO2 nanowires: Self-assembly and phase transformation to β-MnO2 microcrystals
KR101893955B1 (en) Metal doped crystalline iron phosphate, method for preparation thereof and lithium composite metal phosphorus oxide prepared using the same
JP2017150063A5 (en)
JP2017150063A (en) Production method of nickel powder
KR100816547B1 (en) A synthesis method of porous organic inorganic hybrid materials having iron
KR102114108B1 (en) Preparation of carbon nanocomposites containing molybdenum nanoparticles
Stoyanova et al. Synthesis and structural characterization of MoO3 phases obtained from molybdic acid by addition of HNO3 and H2O2
Xiu et al. Barium hydroxyapatite nanoparticles synthesized by citric acid sol–gel combustion method
KR102114106B1 (en) Preparation of tungsten nanoparticles
CN105710390A (en) Method for preparing nano-grade molybdenum powder by directly utilizing industrial-grade molybdenum trioxide
Liu et al. The green synthesis of PdO/Pd anchored on hierarchical ZnO microflowers with a synthetic effect for the efficient catalytic reduction of 4-nitrophenol
CN102728853B (en) Production technique for high-purity nanoscale metal magnesium powder
JP7407702B2 (en) Method for producing carbon nanotubes from natural rubber
RU2489351C2 (en) Method of producing molybdenum carbide nanoparticles
KR101141716B1 (en) Large-scale manufacturing method of high-surface area iron oxide nanoparticles
KR101201623B1 (en) One-pot synthesis of silica nanoparticle in silica nanotube nano-structure
KR100976554B1 (en) Grain growth control method through Mg compound addition when synthesis of hexagonal born nitride
JPS61132509A (en) Production of silicon carbide
WO2017038589A1 (en) Process for producing nickel powder
KR101765893B1 (en) Preperation method for molybdenum oxide particles
KR101620016B1 (en) Controll method of fluorescence properties of carbon nitride
CN108033901A (en) A kind of preparation method of stratiform carbodiimides iron compound
KR101485857B1 (en) Preparation method of reduced graphene oxide and the reduced graphene oxide thereby

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant