KR102111469B1 - Carnosic acid - highly branched cyclic dextrin complex and method for production thereof - Google Patents

Carnosic acid - highly branched cyclic dextrin complex and method for production thereof Download PDF

Info

Publication number
KR102111469B1
KR102111469B1 KR1020180107694A KR20180107694A KR102111469B1 KR 102111469 B1 KR102111469 B1 KR 102111469B1 KR 1020180107694 A KR1020180107694 A KR 1020180107694A KR 20180107694 A KR20180107694 A KR 20180107694A KR 102111469 B1 KR102111469 B1 KR 102111469B1
Authority
KR
South Korea
Prior art keywords
carnosic acid
branched dextrin
complex
rosemary extract
branched
Prior art date
Application number
KR1020180107694A
Other languages
Korean (ko)
Other versions
KR20200029193A (en
Inventor
김용노
박지운
노신정
문세훈
박신제
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Priority to KR1020180107694A priority Critical patent/KR102111469B1/en
Publication of KR20200029193A publication Critical patent/KR20200029193A/en
Application granted granted Critical
Publication of KR102111469B1 publication Critical patent/KR102111469B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P10/00Shaping or working of foodstuffs characterised by the products
    • A23P10/30Encapsulation of particles, e.g. foodstuff additives
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/02Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms
    • A01N43/04Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom
    • A01N43/14Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom six-membered rings
    • A01N43/16Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom six-membered rings with oxygen as the ring hetero atom
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/30Foods or foodstuffs containing additives; Preparation or treatment thereof containing carbohydrate syrups; containing sugars; containing sugar alcohols, e.g. xylitol; containing starch hydrolysates, e.g. dextrin
    • A23L29/35Degradation products of starch, e.g. hydrolysates, dextrins; Enzymatically modified starches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/53Lamiaceae or Labiatae (Mint family), e.g. thyme, rosemary or lavender
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6949Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit inclusion complexes, e.g. clathrates, cavitates or fullerenes
    • A61K47/6951Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit inclusion complexes, e.g. clathrates, cavitates or fullerenes using cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • A61K8/9783Angiosperms [Magnoliophyta]
    • A61K8/9789Magnoliopsida [dicotyledons]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/20Natural extracts
    • A23V2250/21Plant extracts
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/50Polysaccharides, gums
    • A23V2250/51Polysaccharide
    • A23V2250/5114Dextrins, maltodextrins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/57Compounds covalently linked to a(n inert) carrier molecule, e.g. conjugates, pro-fragrances

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biotechnology (AREA)
  • Botany (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Birds (AREA)
  • Nutrition Science (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Medical Informatics (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Dermatology (AREA)
  • Cosmetics (AREA)

Abstract

본 발명은 카르노스산을 내포하는 분지덱스트린 복합체 및 그의 제조방법에 관한 것으로, 로즈마리 추출물 내 유용성분인 카르노스산의 수 용해도 및 열안정성을 향상시킴에 따라, 수용액에서의 항균 활성 및 안정성이 증대되어, 액상의 식품, 화장품, 의약품에 효과적으로 적용할 수 있다.The present invention relates to a branched dextrin complex containing carnosic acid and a method for preparing the same, as it improves the water solubility and thermal stability of carnosic acid, a useful component in rosemary extract, thereby increasing the antibacterial activity and stability in aqueous solutions, It can be effectively applied to liquid food, cosmetics, and medicines.

Description

카르노스산 내포 분지덱스트린 복합체 및 그의 제조방법 {Carnosic acid - highly branched cyclic dextrin complex and method for production thereof}Carnosic acid-highly branched cyclic dextrin complex and method for production thereof

본 발명은 카르노스산을 내포하는 분지덱스트린 복합체 및 그의 제조방법에 관한 것이다.The present invention relates to a branched dextrin complex containing carnosic acid and a method for manufacturing the same.

식품 산업에서 아스코르브산(비타민C), 토코페롤(비타민E), 아질산염, 안신향산나트륨, 소르브산염 등의 식용 화학물질은 주로 광범위한 항균 작용을 위한 식품 보존제로 이용되고 있고, BHT, BHA, PG 등의 산화방지제는 유지 또는 유지함유식품의 산패에 의한 변질을 방지하기 위하여 사용되고 있다. In the food industry, edible chemicals such as ascorbic acid (vitamin C), tocopherol (vitamin E), nitrite, sodium anhydrous sodium, and sorbate are mainly used as food preservatives for a wide range of antibacterial activities, such as BHT, BHA, PG, etc. The antioxidants of are used to prevent the deterioration caused by rancidity of foods or fats and oils.

하지만, 합성 첨가물의 일부 조합은 독성 및 바람직하지 않은 화합물의 형성을 유도할 수 있고, 많은 양의 합성 보존제 및 산화방지제는 기형 유발. 발암성 및 잔류 독성의 주요 원인으로 밝혀지면서 화학 물질의 안전성에 관한 논란이 끊이지 않고 있다. However, some combinations of synthetic additives can lead to the formation of toxic and undesirable compounds, and large amounts of synthetic preservatives and antioxidants cause malformation. Controversy over the safety of chemicals continues to emerge as a major cause of carcinogenicity and residual toxicity.

이에 식물 추출물과 같은 천연물은 화학적 다양성의 결과로 미생물 성장을 제어하는 안전한 보존제로 각광받고 있다. 특히 향신료와 허브에서 유래한 에센셜 오일 및 추출물은 일반적으로 안전하고, 항균 및 항산화능을 가지고 있어 기능성 식품, 음료, 세면 용품 및 화장품 생산의 원료가 된다. Accordingly, natural products such as plant extracts are in the spotlight as a safe preservative that controls microbial growth as a result of chemical diversity. In particular, essential oils and extracts derived from spices and herbs are generally safe, and have antibacterial and antioxidant properties, making them a raw material for the production of functional foods, beverages, toiletries, and cosmetics.

식물 추출물 중, 로즈마리 추출물은 항균, 항바이러스, 항산화성 등 기능적 특성이 뛰어나고, 가격이 저렴하여 천연 식품 첨가물로 광범위하게 사용된다. 플라본, 디테르펜(diterpened), 트리테르펜(triterpened) 및 스테로이드(steroids)를 비롯한 많은 화합물이 로즈마리에서 분리되었다. 이들 중 로즈마리 추출물의 항산화 활성은 카르노스산(carnosic acid)과 카르노졸(carnosol)과 같은 페놀계 디테르펜과 관련이 있다. Among plant extracts, rosemary extract has excellent functional properties such as antibacterial, antiviral, and antioxidant properties, and is inexpensive, so it is widely used as a natural food additive. Many compounds have been isolated from rosemary, including flavones, diterpened, triterpened and steroids. Among them, the antioxidant activity of rosemary extract is related to phenolic diterpenes such as carnosic acid and carnosol.

카르노스산은 로즈마리 추출물에서 발견되는 모든 화합물 중 가장 높은 항산화 효능을 갖는 것으로 알려졌다. 카르노스산은 저장 중 또 다른 항산화 성분인 카르노졸을 형성하며, 이는 또 다른 항산화 성분인 로즈마놀을 형성한다. 카르노졸과 로즈마놀도 항산화 효능 (~45%)을 가지고 있으나, 카르노스산은 2차 및 3차 항산화 생성 메커니즘을 통해 보다 강력한 항산화 효능을 나타낸다. Carnosic acid is known to have the highest antioxidant efficacy of all compounds found in rosemary extract. Carnosic acid forms another antioxidant component, carnosol, during storage, which forms another antioxidant component, rosemanol. Carnosol and rosemanol also have antioxidant efficacy (~45%), but carnosic acid exhibits stronger anti-oxidant efficacy through secondary and tertiary antioxidant production mechanisms.

하지만, 카르노스산은 수용액에서의 용해도가 매우 낮으며, 열, pH, 빛, 습기 등 불리한 환경에 노출되는 경우 활성이 저하되는 문제가 있다. However, carnosic acid has a very low solubility in aqueous solution, and there is a problem in that its activity decreases when exposed to adverse environments such as heat, pH, light, and moisture.

이러한 문제를 해결하기 위해 일반적으로 마이크로캡슐화를 사용하고 있는데, 그 중에서도 미셀화, 리포좀, 사이클로덱스트린이 캡슐화에 많이 사용된다. 사이클로덱스트린과 같은 환형 글루칸은 다양한 소수성 게스트 분자를 포접할 수 있으며, 독성이 없고 합리적인 가격 때문에 다른 물질보다 이점이 있다. 특히, 베타-사이클로덱스트린은 향미제, 방향제 또는 원하지 않는 맛의 제거를 위한 첨가제로 식품 산업에서 널리 이용되는 물질이다. In order to solve this problem, microencapsulation is generally used, and among them, micelle, liposome, and cyclodextrin are frequently used for encapsulation. Cyclic glucans, such as cyclodextrins, are capable of incorporating a variety of hydrophobic guest molecules and are advantageous over other materials due to their non-toxicity and reasonable price. In particular, beta-cyclodextrin is a widely used material in the food industry as an additive for the removal of flavors, fragrances or unwanted flavors.

로즈마리 추출물의 활성 성분 중 로즈마린산과 베타 사이클로덱스트린의 포접 복합체는 로즈마린산의 용해도 향상 및 저장 안정성 증진에 효과가 있었던 것으로 보고된 바가 있다. 하지만, 베타 사이클로덱스트린은 수용액에서 낮은 용해도 (1.8%)를 가지므로 사용량에 한계가 있어 이를 대체할 수 있는 물질이 요구되는 실정이다.Among the active ingredients of rosemary extract, the inclusion complex of rosemarinic acid and beta cyclodextrin has been reported to be effective in improving solubility and storage stability of rosemary acid. However, since the beta cyclodextrin has a low solubility (1.8%) in aqueous solution, there is a limit to the amount of use, and a substance capable of replacing it is required.

대한민국등록특허 제10-0865047호(2008.10.17)에는, 감마-사이클로덱스트린 및 인삼추출물의 포접물을 제조하는 방법 및 이를 함유하는 조성물에 관하여 기재되어 있다.Korean Patent Registration No. 10-0865047 (2008.10.17) describes a method for preparing an inclusion of gamma-cyclodextrin and ginseng extract and a composition containing the same. 대한민국공개특허 제10-2017-0018254호(2017.02.16)에는, 항균성과 향 지속성을 개선시킨 잣나무 오일의 캡슐화 방법 및 이를 이용한 샴푸 조성물에 관하여 기재되어 있다.Korean Patent Publication No. 10-2017-0018254 (2017.02.16) describes a method of encapsulating pine tree oil with improved antibacterial and fragrance persistence and a shampoo composition using the same.

본 발명은 로즈마리 추출물을 분지덱스트린 내에 포접함으로써, 로즈마리 추출물 내 유용성분인 카르노스산의 기능성, 안정성의 향상은 물론 포접체로 사용되던 기존 베타사이클로덱스트린이 갖는 낮은 수용해성을 개선할 수 있는 방법을 개발하고자 한다.The present invention is to develop a method capable of improving the low water solubility of the existing beta cyclodextrin used as an inclusion body, as well as improving the functionality and stability of carnosic acid, a useful component in the rosemary extract, by incorporating the rosemary extract into the branched dextrin. do.

본 발명은 카르노스산(carnosic acid)이 분지덱스트린에 내포되어 있는 것을 특징으로 하는 카르노스산 분지덱스트린 복합체를 제공한다. The present invention provides a carnosic acid branched dextrin complex, characterized in that carnosic acid is contained in the branched dextrin.

본 발명의 카르노스산 분지덱스트린 복합체에 있어서, 상기 분지덱스트린은, 바람직하게 아밀로펙틴으로부터 분지화 효소(branching enzyme; BE, EC 2.4.1.18)의 고리화 반응을 통해 생성된 것일 수 있다.In the carnosic acid branched dextrin complex of the present invention, the branched dextrin may be preferably produced through a cyclization reaction of a branching enzyme (BE, EC 2.4.1.18) from amylopectin.

본 발명의 분지덱스트린 복합체에 있어서, 상기 카르노스산 분지덱스트린 복합체는, 바람직하게 카르노스산에 비해 수용액 상에서 용해도가 증가되어 있는 것일 수 있다. . In the branched dextrin complex of the present invention, the carnosic acid branched dextrin complex may preferably have an increased solubility in aqueous solution compared to carnosic acid. .

본 발명은 카르노스산이 분지덱스트린에 내포되어 있는 카르노스산 분지덱스트린 복합체를 포함하는 항균제를 제공한다. The present invention provides an antibacterial agent comprising a carnosic acid branched dextrin complex in which carnosic acid is contained in a branched dextrin.

본 발명은 카르노스산 또는 카르노스산이 함유된 로즈마리추출물을 함유하는 용액과 분지덱스트린을 함유하는 용액을 혼합한 후, 빛을 차단한 상태로 교반하면서 반응시키는 것을 특징으로 하는 카르노스산 내포 분지덱스트린 복합체의 제조방법을 제공한다. The present invention is a mixture of a carnosic acid or a solution containing a rosemary extract containing a carnosic acid and a solution containing a branched dextrin, and reacting while stirring while blocking light, and comprising a carnosic acid-containing branched dextrin complex. Provide a manufacturing method.

본 발명의 카르노스산 내포 분지덱스트린 복합체의 제조방법에 있어서, 상기 카르노스산 또는 카르노스산이 함유된 로즈마리추출물을 함유하는 용액은, 바람직하게 카르노스산 분말 또는 카르노스산이 함유된 로즈마리추출물 분말을 에탄올, 메탄올, DMSO 중 선택되는 어느 하나의 용매에 용해시켜 제조한 것이고, 상기 분지덱스트린을 함유하는 용액은, 바람직하게 분지덱스트린을 정제수, 에탄올, 메탄올, DMSO 중 선택되는 어느 하나의 용매에 용해시켜 제조한 것일 수 있다.In the method for producing a carnosic acid-containing branched dextrin complex of the present invention, the solution containing the carnosic acid or the rosemary extract containing carnosic acid, preferably carnosic acid powder or carnosic acid-containing rosemary extract powder containing ethanol, methanol , It is prepared by dissolving in any one solvent selected from DMSO, the solution containing the branched dextrin is preferably prepared by dissolving the branched dextrin in purified water, ethanol, methanol, any one solvent selected from DMSO Can be.

본 발명의 카르노스산 내포 분지덱스트린 복합체의 제조방법에 있어서, 상기 분지덱스트린은, 바람직하게 아밀로펙틴으로부터 분지화 효소(branching enzyme; BE, EC 2.4.1.18)의 고리화 반응을 통해 생성된 것일 수 있다.In the method for preparing a carnosic acid-containing branched dextrin complex of the present invention, the branched dextrin may be preferably produced through the cyclization reaction of a branching enzyme (BE, EC 2.4.1.18) from amylopectin.

본 발명은 로즈마리 추출물 내 유용성분인 카르노스산의 수(水) 용해도 및 열안정성을 향상시킴에 따라, 수용액에서의 항균 활성 및 안정성이 증대되어, 액상의 식품, 화장품, 의약품에 효과적으로 적용할 수 있다.The present invention increases the water solubility and thermal stability of carnosic acid, a useful component in rosemary extract, thereby increasing the antimicrobial activity and stability in aqueous solutions, which can be effectively applied to liquid foods, cosmetics, and pharmaceuticals. .

도 1은 호스트(담체)의 종류에 따른 로즈마리추출물 복합체의 카르노스산의 함량을 측정한 그래프이다. BD: 분지덱스트린, ßCD: 베타사이클로덱스트린, MD: 말토덱스트린. 호스트 물질 0%는 호스트 물질이 포함되지 않은 단일 로즈마리추출물에 존재하는 카르노스산의 용해도를 나타낸다.
도 2는 분지덱스트린(BD)의 농도에 따라 로즈마리추출물 복합체의 카르노스산의 함량을 측정한 그래프이다.
도 3은 호스트(담체)의 종류에 따른 로즈마리추출물 복합체의 열안정성을 비교한 그래프이다. BD: 분지덱스트린, ßCD: 베타사이클로덱스트린, MD: 말토덱스트린. 호스트 물질 0%는 호스트 물질이 포함되지 않은 단일 로즈마리추출물의 열안정성을 나타낸다.
도 4는 분지덱스트린(BD)의 농도에 따른 '로즈마리추출물과 분지덱스트린(BD) 복합체'의 열에 대한 항산화 안정성을 시간에 따라 확인한 결과이다.
1 is a graph measuring the content of carnosic acid in the rosemary extract complex according to the type of host (carrier). BD: branched dextrin, ßCD: betacyclodextrin, MD: maltodextrin. 0% host material represents the solubility of carnosic acid present in a single rosemary extract without host material.
2 is a graph measuring the content of carnosic acid in the rosemary extract complex according to the concentration of branched dextrin (BD).
3 is a graph comparing the thermal stability of the rosemary extract complex according to the type of host (carrier). BD: branched dextrin, ßCD: betacyclodextrin, MD: maltodextrin. 0% host material represents the thermal stability of a single rosemary extract without the host material.
4 is a result of confirming the antioxidant stability against heat of the'rosemary extract and branched dextrin (BD) complex' according to the concentration of branched dextrin (BD) over time.

본 발명은 카르노스산(carnosic acid)이 분지덱스트린에 내포되어 있는 것을 특징으로 하는 카르노스산 분지덱스트린 복합체를 제공한다. 또한, 카르노스산이 분지덱스트린에 내포되어 있는 카르노스산 분지덱스트린 복합체를 포함하는 항균제를 제공한다. The present invention provides a carnosic acid branched dextrin complex, characterized in that carnosic acid is contained in the branched dextrin. In addition, it provides an antimicrobial agent comprising a carnosic acid branched dextrin complex in which carnosic acid is contained in a branched dextrin.

본 발명에서는 카르노스산을 분지덱스트린을 사용하여 복합체로 형성하면, 수용화도가 향상되고, 열안정성 등이 향상되어, 궁극적으로 카르노스산이 갖는 한계(낮은 수용성, 낮은 열안정성 등)를 극복하여 수용액 상으로 다양한 제형에 사용될 수 있음을 확인할 수 있었다. In the present invention, when carnosic acid is formed into a complex using a branched dextrin, water solubility is improved, thermal stability and the like are improved, ultimately overcoming the limitations of carnosic acid (low water solubility, low heat stability, etc.) It was confirmed that it can be used in various formulations.

본 발명에서 사용하는 분지덱스트린은 고도로 분지된 고리형 덱스트린(Highly branched cyclic dextrin; HBCD; 이하 '분지덱스트린'이라 함)으로, 아밀로펙틴으로부터 분지화 효소(branching enzyme; BE, EC 2.4.1.18)의 고리화 반응을 통해 생성되는 덱스트린이다. 일본의 Ezaki Glico사는 효소 기술을 적용하여 클러스터 덱스트린을 산업적으로 생산하는 데 성공하였고, 2002년부터 식품 소재로 스포츠 음료 및 식품의 맛이나 물성을 향상시키는 데 사용되고 있다. The branched dextrin used in the present invention is a highly branched cyclic dextrin (HBCD; hereinafter referred to as'branched dextrin'), a ring of branching enzyme (BE, EC 2.4.1.18) from amylopectin. Dextrin produced through chemical reaction. Japan's Ezaki Glico has succeeded in producing clustered dextrins industrially by applying enzyme technology, and has been used as a food material since 2002 to improve the taste and physical properties of sports drinks and foods.

한편, 본 발명은 카르노스산 또는 카르노스산이 함유된 로즈마리추출물을 함유하는 용액과 분지덱스트린을 함유하는 용액을 혼합한 후, 빛을 차단한 상태로 교반하면서 반응시키는 것을 특징으로 하는 카르노스산 내포 분지덱스트린 복합체의 제조방법을 제공한다. On the other hand, the present invention is mixed with a solution containing a carnosic acid or a rosemary extract containing a carnosic acid and a solution containing a branched dextrin, and reacting while stirring while blocking light, and containing carnosic acid. Provides a method for manufacturing a complex.

상기 카르노스산 또는 카르노스산이 함유된 로즈마리추출물을 함유하는 용액은, 카르노스산을 용해시킬 수 있는 것이라면 용해의 정도와 무관한 용매를 사용하여 제조할 수 있으나, 바람직하게 카르노스산 분말 또는 카르노스산이 함유된 로즈마리추출물 분말을 에탄올, 메탄올, DMSO 중 선택되는 어느 하나의 용매에 용해시켜 제조한 것일 수 있고,가장 바람직하게는 80% 이상의 에탄올을 사용하여 제조한 것일 수 있다. 또한, 로즈마리추출물은 로즈마리에 다양한 용매를 사용하여 수득한 추출물을 의미하는데, 바람직하게는 에탄올, 메탄올, DMSO 중 선택되는 어느 하나의 용매를 사용하여 추출한 추출물이면 더욱 좋고, 가장 바람직하게는 80% 이상의 에탄올을 사용하는 것이다.The solution containing the carnosic acid or the rosemary extract containing carnosic acid can be prepared using a solvent independent of the degree of dissolution as long as it can dissolve carnosic acid, but preferably contains carnosic acid powder or carnosic acid The prepared rosemary extract powder may be prepared by dissolving in any one solvent selected from ethanol, methanol, and DMSO, and most preferably, 80% or more of ethanol. In addition, the rosemary extract means an extract obtained using various solvents for rosemary, preferably an extract extracted using any one solvent selected from ethanol, methanol, DMSO, and most preferably 80% or more. Ethanol is used.

한편, 상기 분지덱스트린을 함유하는 용액은 분지덱스트린을 용해할 수 있는 것이라면 어떤 용매를 사용하여 제조한 것이라도 무방하며, 바람직하게 분지덱스트린을 정제수, 에탄올, 메탄올, DMSO 중 선택되는 어느 하나의 용매에 용해시켜 제조한 것일 수 있다. 바람직하게는 50% 이하의 에탄올이 좋고, 가장 바람직하게는 정제수를 용매로 사용하여 제조한 것이 좋다. On the other hand, the solution containing the branched dextrin may be prepared using any solvent as long as it can dissolve the branched dextrin, preferably branched dextrin in any one solvent selected from purified water, ethanol, methanol, DMSO It may be prepared by dissolving. Preferably, 50% or less of ethanol is preferred, and most preferably, purified water is used as a solvent.

본 발명은 상기의 카르노스산 또는 카르노스산이 함유된 로즈마리추출물을 함유하는 용액과 분지덱스트린을 함유하는 용액을 혼합한 후, 빛을 차단한 상태로 교반하면서 반응시켜 카르노스산 내포 분지덱스트린 복합체를 제조할 수 있는데, 로즈마리추출물 용액과 분지덱스트린 용액은 바람직하게 1:18~19의 부피 비율로 혼합하는 것이 바람직하다. 또한, 빛을 차단한 상태로 바람직하게 20~30℃에서 12~48시간 동안 교반하는 것이 좋다. 이상과 같은 교반을 통해 로즈마리추출물과 분지덱스트린 복합체를 수득할 수 있는데, 필터 (바람직하게 0.45㎛ 필터)로 여과한 후 건조 (바람직하게) 동결건조하여 분말화된 복합체로 최종 제조할 수 있다. The present invention is mixed with a solution containing a carnosic acid or a rosemary extract containing carnosic acid and a solution containing a branched dextrin, and reacted while stirring while blocking light to prepare a carnosic acid-containing branched dextrin complex. The rosemary extract solution and the branched dextrin solution are preferably mixed in a volume ratio of 1:18 to 19. In addition, it is preferable to stir for 12 to 48 hours at 20 to 30°C, preferably while blocking light. The rosemary extract and the branched dextrin complex can be obtained through the agitation as described above, followed by filtration through a filter (preferably a 0.45 μm filter), followed by drying (preferably) and freeze-drying to obtain a final powdered composite.

이하, 본 발명의 내용을 하기 실시예 및 실험예를 통해 더욱 상세히 설명하고자 한다. 다만, 본 발명의 권리범위가 하기 실시예 및 실험예에만 한정되는 것은 아니고, 그와 등가의 기술적 사상의 변형까지를 포함한다.Hereinafter, the contents of the present invention will be described in more detail through the following examples and experimental examples. However, the scope of the present invention is not limited only to the following examples and experimental examples, and includes modifications to technical ideas equivalent thereto.

<실시예 1: 호스트(담체)의 종류에 따른 카르노스산의 포접율 비교><Example 1: Comparison of the inclusion rate of carnosic acid according to the type of host (carrier)>

로즈마리추출물과 호스트(담체, 분지덱스트린, 베타사이클로덱스트린, 말토덱스트린) 복합체를 각각 제조하고, 48시간 후, 각 샘플을 0.45㎛ 필터로 여과한 후 분광광도계를 이용하여 285nm에서 여과액의 흡광도를 측정하여 복합체 용액에 존재하는 카르노스산의 농도를 구하였다. 카르노스산의 농도는 측정된 흡광도 값을 표준 물질 카르노스산의 농도에 따라 얻어진 표준 곡선 방정식에 대입하여 계산하였다.A rosemary extract and a host (carrier, branched dextrin, betacyclodextrin, maltodextrin) complex were respectively prepared, and after 48 hours, each sample was filtered with a 0.45 μm filter, and the absorbance of the filtrate was measured at 285 nm using a spectrophotometer. The concentration of carnosic acid present in the complex solution was determined. The concentration of carnosic acid was calculated by substituting the measured absorbance value into the standard curve equation obtained according to the concentration of the reference material carnosic acid.

도 1은 호스트(담체)의 종류에 따른 로즈마리추출물 복합체의 카르노스산의 함량을 측정한 그래프이다. BD: 분지덱스트린, ßCD: 베타사이클로덱스트린, MD: 말토덱스트린. 호스트 물질 0%는 호스트 물질이 포함되지 않은 단일 로즈마리추출물에 존재하는 카르노스산의 용해도를 나타낸다.1 is a graph measuring the content of carnosic acid in the rosemary extract complex according to the type of host (carrier). BD: branched dextrin, ßCD: betacyclodextrin, MD: maltodextrin. 0% host material represents the solubility of carnosic acid present in a single rosemary extract without host material.

실험 결과, 호스트(담체)로 분지덱스트린을 사용한 것이 카르노스산의 포접율이 높은 것으로 나타났다 (특히, 10% 또는 20%의 호스트(담체) 첨가 농도시). 또한, 호스트(담체)를 사용하지 않은 0% 호스트 농도보다 호스트(담체)를 사용한 경우가 더 높은 카르노스산 함량을 보이는 것으로 나타나, 난용성의 카르노스산이 분지덱스트린과 복합체를 형성함으로써 물에 대한 용해도가 향상된 것으로 판단할 수 있었다. 비교물질로 사용된 말토덱스트린 또한 농도가 증가함에 따라 카르노스산의 수용해도를 향상시키는 데 효과가 있었다. 하지만 분지덱스트린보다 그 효과는 적었다. As a result of the experiment, it was found that using a branched dextrin as a host (carrier) had a high inclusion rate of carnosic acid (especially at a concentration of 10% or 20% host (carrier)). In addition, when the host (carrier) was used, the host (carrier) showed a higher carnosic acid content than the 0% host concentration without the host (carrier), and the poorly soluble carnosic acid formed a complex with the branched dextrin solubility in water. Was judged to be improved. Maltodextrin used as a comparative material was also effective in improving the water solubility of carnosic acid as the concentration increased. However, it was less effective than branched dextrin.

한편, 베타사이클로덱스트린은 낮은 농도에서 카르노스산의 용해도를 증가시키는 역할을 하나, 높은 농도에서는 자체의 낮은 용해도로 인해 카르노스산의 용해도를 오히려 감소시키는 결과를 나타내어 전체로서는 분지덱스트린보다 포접율이 낮게 판단되었다.On the other hand, beta cyclodextrin plays a role in increasing the solubility of carnosic acid at low concentrations, but at high concentrations, it exhibits a result of rather reducing the solubility of carnosic acid due to its low solubility. Became.

<< 실시예Example 2: 분지덱스트린 첨가 농도에 따른 카르노스산의 포접 정도 비교> 2: Comparison of the degree of inclusion of carnosic acid according to the concentration of branched dextrin>

로즈마리추출물 분말 0.5g을 95% 에탄올 2.5mL에 완전히 용해시켜 준비하였고, 분지덱스트린은 농도별로 각각 0.25g, 0.5g, 2.5g, 5g, 10g, 15g을 증류수 47.5mL에 용해시켜 각각 준비하였다 (이들 분지덱스트린의 농도별 샘플들이 도 1 내지 도 4에 기재한 BD 0.5, 1, 5, 10, 20, 30% 샘플을 각각 의미함). 0.5 g of rosemary extract powder was prepared by completely dissolving in 2.5 mL of 95% ethanol, and branched dextrin was prepared by dissolving 0.25 g, 0.5 g, 2.5 g, 5 g, 10 g, and 15 g of distilled water in 47.5 mL, respectively, for each concentration (these were The samples by concentration of branched dextrin refer to BD 0.5, 1, 5, 10, 20, 30% samples described in FIGS. 1 to 4, respectively).

이상과 같이 준비한 로즈마리추출물 용액과 분지덱스트린 용액을 혼합한 후 빛을 차단한 상태로 25℃에서 48시간 동안 교반하였다. 48시간 후, 로즈마리추출물과 분지덱스트린 복합 조성물을 0.45㎛ 필터로 여과한 후 72시간 동안 동결건조하여 분말화된 복합체를 제조하였다.After mixing the rosemary extract solution and the branched dextrin solution prepared as described above, the mixture was stirred for 48 hours at 25° C. while blocking light. After 48 hours, the rosemary extract and the branched dextrin composite composition were filtered through a 0.45 μm filter, and then freeze-dried for 72 hours to prepare a powdered composite.

도 2는 분지덱스트린(BD)의 농도에 따라 로즈마리추출물 복합체의 카르노스산의 함량을 측정한 그래프이다.2 is a graph measuring the content of carnosic acid in the rosemary extract complex according to the concentration of branched dextrin (BD).

카르노스산을 정량화하기 위해 카르노스산 표준물질 (Sigma, USA) 을 농도별 (0 ~ 0.015 wt.%)로 95% 에탄올에 녹인 후 흡광도 (285nm)를 측정하여 표준곡선방정식(Y=83.881x + 0.0046)을 얻었다. 로즈마리추출물 내의 카르노스산 또는 복합체 내의 카르노스산의 농도는 여과된 용액의 흡광도 값을 표준곡선방정식에 대입하여 계산하였다.To quantify carnosic acid, the carnosic acid standard (Sigma, USA) was dissolved in 95% ethanol at concentrations (0 to 0.015 wt.%) and absorbance (285 nm) was measured to measure the standard curve equation (Y=83.881x + 0.0046) ). The concentration of carnosic acid in the rosemary extract or carnosic acid in the complex was calculated by substituting the absorbance value of the filtered solution into the standard curve equation.

실험 결과, 분지덱스트린의 농도가 높아짐에 따라, 카르노스산의 포접율이 높은 것으로 나타났다. 또한, 호스트(담체)를 사용하지 않은 대조군(control)보다 호스트(담체)를 사용한 경우가 더 높은 카르노스산 함량을 보이는 것으로 나타나, 난용성의 카르노스산이 분지덱스트린과 복합체를 형성함으로써, 분지덱스트린의 농도 의존적으로 물에 대한 용해도가 향상된 것으로 판단할 수 있었다.As a result of the experiment, as the concentration of branched dextrin increased, the inclusion rate of carnosic acid was found to be high. In addition, when the host (carrier) was used, the host (carrier) showed a higher carnosic acid content than the control group (control), and the poorly soluble carnosic acid formed a complex with the branched dextrin, thereby causing It was judged that the solubility in water was improved depending on the concentration.

<< 실험예Experimental Example 1: One: 로즈마리Rosemary 추출물과 분지덱스트린 복합체의 수용액에서의 항균력 측정> Measurement of antibacterial activity in aqueous solution of extract and branched dextrin complex>

실시예 2에서 제조한 로즈마리 추출물과 분지덱스트린 복합체의 미생물에 대한 항균력을 평가하였다. 항균력 시험에 사용된 미생물은 그람 양성균인 바실러스 서브틸리스 (Bacillus subtilis ATCC 6633) 균주이고, 항균력을 평가하는 방법은 미생물의 최소생육저해농도 (MIC, Minimal Inhibitory Concentration)를 측정하는 방법을 사용하였다.The antimicrobial activity of the rosemary extract and the branched dextrin complex prepared in Example 2 against microorganisms was evaluated. The microorganism used for the antibacterial activity test was a Gram-positive bacterium Bacillus subtilis ATCC 6633 strain, and the method for evaluating the antibacterial activity was a method for measuring the minimum growth inhibitory concentration (MIC) of the microorganism.

미생물은 영양 배지 (Nutrient broth, DifcoTM, USA) 에서 30℃, 24시간의 조건으로 전배양하여 활성화한 후, 이를 1×105-6 CFU/㎖의 농도가 되도록 PBS(phosphate buffer saline)으로 희석하여 준비하였다. 각 샘플을 96 웰 플레이트 (96 well plate) 에 200㎕씩 분주한 후 배지를 이용하여 단계희석하였다. 준비한 미생물을 각 well에 100㎕씩 분주하고 30℃에서 24시간 배양한 후 MIC 결과를 확인하였다. 그 결과는 하기 표 1에 나타내었다.Microorganisms are activated by pre-incubation in a nutrient medium (Nutrient broth, DifcoTM, USA) at a condition of 30° C. for 24 hours, and then diluted with PBS (phosphate buffer saline) to a concentration of 1×10 5-6 CFU/mL. Was prepared. 200 µl of each sample was dispensed into a 96-well plate, followed by step dilution using a medium. The prepared microorganisms were dispensed 100 µl in each well and incubated at 30° C. for 24 hours to confirm the MIC results. The results are shown in Table 1 below.

로즈마리 추출물과 분지덱스트린 복합체의 항균력 평가Evaluation of antibacterial activity of rosemary extract and branched dextrin complex 분지덱스트린 농도 (%)Branched dextrin concentration (%) MIC (ppm)/Bacillus subtilis ATCC 6633MIC (ppm)/ Bacillus subtilis ATCC 6633 00 52.66 ± 10.5452.66 ± 10.54 0.50.5 59.52 ± 3.7959.52 ± 3.79 1One 54.78 ± 10.7154.78 ± 10.71 55 34.01 ± 0.2134.01 ± 0.21 1010 35.31 ± 1.6835.31 ± 1.68 2020 20.26 ± 0.6120.26 ± 0.61 3030 11.39 ± 0.6811.39 ± 0.68

실험 결과, 분지덱스트린의 농도가 증가할수록 항균 활성이 향상되는 것을 확인할 수 있었다. 이는 수용액에서 불안정한 카르노스산이 덱스트린과 복합체를 형성함으로써 수용해도 및 안정성이 증대되어 항균 활성에 영향을 미치는 것으로 판단된다.As a result of the experiment, it was confirmed that the antibacterial activity was improved as the concentration of the branched dextrin increased. This is believed to affect the antimicrobial activity by increasing the water solubility and stability by forming an unstable carnosic acid complex in the aqueous solution with dextrin.

<< 실험예Experimental Example 2: 2: 로즈마리Rosemary 추출물과 분지덱스트린 복합체의 열 안정성 측정> Measurement of thermal stability of extract and branched dextrin complex>

상이한 덱스트린의 사용에 따른 복합체의 열안정성을 비교하기 위하여, 분지덱스트린(branched dextrin, BD)의 비교물질로 베타사이클로덱스트린(β-cyclodextrin, βCD)과 말토덱스트린(maltodextrin, MD)을 사용하여 복합체를 각각 제조하고, 24시간 동안 열을 가한 후, 복합체의 활산화 활성을 측정하였다. In order to compare the thermal stability of the complexes according to the use of different dextrins, the complexes using betacyclodextrin (βCD) and maltodextrin (MD) as a comparative substance of branched dextrin (BD) Each was prepared, and heated for 24 hours, and then the active activity of the complex was measured.

항산화 활성 측정은 ABTS 라디칼 소거능 측정 방법을 이용하였고, 이 방법은 ABTS가 포타슘 펄설페이트 (potassium persulfate)와 반응에 의해 생성된 ABTS 양이온이 시료 내의 항산화 물질에 의해 제거되어 탈색되는 것을 이용한 항산화능 측정 방법이다. For the measurement of antioxidant activity, an ABTS radical scavenging activity measurement method was used, and this method is an antioxidant activity measurement method using ABTS cations generated by reaction with potassium persulfate and decolorized by removal of antioxidants in the sample. to be.

이를 위해, 7 mM ABTS와 2.45 mM 포타슘 펄설페이트를 혼합하고, 상온에서 24시간 반응시킨 후 ABTS 양이온을 형성시켰다. ABTS 양이온이 포함된 용액을 증류수로 희석하여 734 nm에서 흡광도 값이 0.7이 되도록 준비하였다. ABTS 양이온 용액 1 ㎖에 샘플 10 ㎕를 가하여 상온에서 20분 동안 방치 후에 흡광도를 측정하였다. 항산화 활성은 샘플을 녹인 용매인 5% 에탄올을 대조군으로 사용하여 다음의 수학식으로 라디칼 소거능을 상대적인 백분율로 나타내었다. 대조군으로는 분지덱스트린을 포함하지 않는 단일 로즈마리 추출물을 사용하였고, 항산화 활성은 각 조성물에 열을 가하기 전을 100%로 하고, 열을 가한 후를 상대적으로 측정하여 나타내었다. To this end, 7 mM ABTS and 2.45 mM potassium sulphate were mixed and reacted at room temperature for 24 hours to form ABTS cations. The solution containing the ABTS cation was diluted with distilled water to prepare an absorbance value of 0.7 at 734 nm. After adding 10 µl of sample to 1 ml of ABTS cation solution, the absorbance was measured after standing at room temperature for 20 minutes. Antioxidant activity was expressed as a relative percentage of radical scavenging activity by the following equation using 5% ethanol, a solvent in which the sample was dissolved, as a control. As a control group, a single rosemary extract containing no branched dextrin was used, and the antioxidant activity was indicated by measuring 100% before adding heat to each composition and measuring it after applying heat.

[수학식 1][Equation 1]

ABTS radical scavenging activity = ( 1 - Atest/ Acontrol) x 100ABTS radical scavenging activity = (1-A test / A control ) x 100

도 3은 호스트(담체)의 종류에 따른 로즈마리추출물 복합체의 열안정성을 비교한 그래프이다. BD: 분지덱스트린, ßCD: 베타사이클로덱스트린, MD: 말토덱스트린. 호스트 물질 0%는 호스트 물질이 포함되지 않은 단일 로즈마리추출물의 열안정성을 나타낸다.3 is a graph comparing the thermal stability of the rosemary extract complex according to the type of host (carrier). BD: branched dextrin, ßCD: betacyclodextrin, MD: maltodextrin. 0% host material indicates the thermal stability of a single rosemary extract without host material.

실험 결과, 분지덱스트린과 말토덱스트린은 농도가 증가함에 따라 열안정성도 증가하는 것으로 나타났으며, 두 물질 간의 큰 차이는 없었다. 반면, 베타사이클로덱스트린은 0.5~5% 농도에서는 가장 우수한 열안정성을 나타내었으나, 그 이상의 농도에서는 안정성이 감소하는 것으로 나타났다. As a result of the experiment, it was found that the thermal stability of the branched dextrin and maltodextrin increased as the concentration increased, and there was no significant difference between the two substances. On the other hand, beta cyclodextrin showed the best thermal stability at a concentration of 0.5 to 5%, but stability was decreased at a concentration higher than that.

한편, 분지덱스트린의 농도를 달리하여 제조한 복합체의 열 안정성을 평가하기 위하여, 실시예 2의 복합체를 90℃ 항온수조에서 24시간 동안 열처리하였고, 일정 시간 간격으로 샘플링하여 상기와 같은 방법으로 복합체의 항산화 활성을 평가하였다. On the other hand, in order to evaluate the thermal stability of the composite prepared by varying the concentration of branched dextrin, the composite of Example 2 was heat treated in a constant temperature water bath at 90° C. for 24 hours, and sampled at regular time intervals to obtain the composite Antioxidant activity was evaluated.

도 4는 분지덱스트린(BD)의 농도에 따른 '로즈마리추출물과 분지덱스트린(BD) 복합체'의 열에 대한 항산화 안정성을 시간에 따라 확인한 결과이다. 실험 결과, 대조군은 열을 가하는 24시간 동안 항산화 활성이 대폭 감소하는 반면, 분지덱스트린 복합체의 항산화 활성은 천천히 감소하였다. 이는 분지덱스트린이 열에 의한 로즈마리 추출물의 분해를 방지함으로써 항산화 안정성에 기여하는 것으로 판단된다. 또한, 분지덱스트린의 농도가 높을수록 안정성에 대한 효과가 우수하였다.4 is a result of confirming the antioxidant stability against heat of the'rosemary extract and branched dextrin (BD) complex' according to the concentration of branched dextrin (BD) over time. As a result of the experiment, the antioxidant activity of the control group was significantly reduced for 24 hours while heat was applied, while the antioxidant activity of the branched dextrin complex was slowly decreased. It is believed that the branched dextrin contributes to antioxidant stability by preventing the decomposition of rosemary extract by heat. In addition, the higher the concentration of branched dextrin, the better the effect on stability.

Claims (7)

삭제delete 삭제delete 삭제delete 삭제delete 카르노스산 또는 카르노스산이 함유된 로즈마리추출물을 함유하는 용액과, 10~30%(w/v) 농도의 분지덱스트린을 함유하는 용액을 혼합한 후, 빛을 차단한 상태로 교반하면서 20~30℃의 온도로 12~48시간 동안 반응시켜 카르노스산 내포 분지덱스트린 복합체를 제조하는 과정을 포함하며,
상기 카르노스산 내포 분지덱스트린 복합체는 카르노스산에 비해 수용액 상에서 용해도가 증가되어 있는 것을 특징으로 하는 항균제의 제조방법.
After mixing a solution containing carnosic acid or a rosemary extract containing carnosic acid and a solution containing branched dextrin at a concentration of 10-30% (w/v), 20-30° C. while stirring while blocking the light It comprises a process of preparing a branched dextrin complex containing carnosic acid by reacting at a temperature of 12 to 48 hours,
The carnosic acid-containing branched dextrin complex has an increased solubility in aqueous solution compared to carnosic acid.
제5항에 있어서,
상기 카르노스산 또는 카르노스산이 함유된 로즈마리추출물을 함유하는 용액은,
카르노스산 분말 또는 카르노스산이 함유된 로즈마리추출물 분말을 에탄올, 메탄올, DMSO 중 선택되는 어느 하나의 용매에 용해시켜 제조한 것이고,
상기 분지덱스트린을 함유하는 용액은,
분지덱스트린을 정제수, 에탄올, 메탄올, DMSO 중 선택되는 어느 하나의 용매에 용해시켜 제조한 것임을 특징으로 하는 항균제의 제조방법.
The method of claim 5,
The solution containing the carnosic acid or rosemary extract containing carnosic acid,
Carnosic acid powder or carnosic acid-containing rosemary extract powder is prepared by dissolving in any one solvent selected from ethanol, methanol, and DMSO,
The solution containing the branched dextrin,
A method for producing an antibacterial agent, characterized in that it is prepared by dissolving branched dextrin in purified water, ethanol, methanol, or any one solvent selected from DMSO.
제5항에 있어서,
상기 분지덱스트린은,
아밀로펙틴으로부터 분지화 효소(branching enzyme; BE, EC 2.4.1.18)의 고리화 반응을 통해 생성된 것을 특징으로 하는 항균제의 제조방법.
The method of claim 5,
The branched dextrin,
A method for producing an antibacterial agent, characterized in that it is produced through a cyclization reaction of a branching enzyme (BE, EC 2.4.1.18) from amylopectin.
KR1020180107694A 2018-09-10 2018-09-10 Carnosic acid - highly branched cyclic dextrin complex and method for production thereof KR102111469B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180107694A KR102111469B1 (en) 2018-09-10 2018-09-10 Carnosic acid - highly branched cyclic dextrin complex and method for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180107694A KR102111469B1 (en) 2018-09-10 2018-09-10 Carnosic acid - highly branched cyclic dextrin complex and method for production thereof

Publications (2)

Publication Number Publication Date
KR20200029193A KR20200029193A (en) 2020-03-18
KR102111469B1 true KR102111469B1 (en) 2020-06-04

Family

ID=69999251

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180107694A KR102111469B1 (en) 2018-09-10 2018-09-10 Carnosic acid - highly branched cyclic dextrin complex and method for production thereof

Country Status (1)

Country Link
KR (1) KR102111469B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008031200A (en) 2006-07-26 2008-02-14 Daicel Chem Ind Ltd Composite resin solid material in which thermoplastic resin is coated with water-soluble material and method for producing the same
KR100865047B1 (en) 2007-04-16 2008-10-23 주식회사 바이오랜드 A method for preparing the inclusive product of gamma-cyclodextrin and ginseng extract and the composition comprising the same
JP2011157321A (en) * 2010-02-02 2011-08-18 Fujifilm Corp Dispersion composition, and method for producing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170018254A (en) 2015-08-07 2017-02-16 주식회사 시온비에스케이 Encapsulation method of nut pine oil and shampoo compositions using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008031200A (en) 2006-07-26 2008-02-14 Daicel Chem Ind Ltd Composite resin solid material in which thermoplastic resin is coated with water-soluble material and method for producing the same
KR100865047B1 (en) 2007-04-16 2008-10-23 주식회사 바이오랜드 A method for preparing the inclusive product of gamma-cyclodextrin and ginseng extract and the composition comprising the same
JP2011157321A (en) * 2010-02-02 2011-08-18 Fujifilm Corp Dispersion composition, and method for producing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Van der Maarel et. al., ‘Starch modification with microbial alpha-glucanotransferase enzymes’, Carbohydrate Polymers 93(2013) 116-121(2012.01.31. 온라인 공개)*

Also Published As

Publication number Publication date
KR20200029193A (en) 2020-03-18

Similar Documents

Publication Publication Date Title
Rakmai et al. Antioxidant and antimicrobial properties of encapsulated guava leaf oil in hydroxypropyl-beta-cyclodextrin
Peixoto et al. Grape pomace as a source of phenolic compounds and diverse bioactive properties
Ghadermazi et al. Effect of various additives on the properties of the films and coatings derived from hydroxypropyl methylcellulose—A review
Rakmai et al. Physico-chemical characterization and evaluation of bio-efficacies of black pepper essential oil encapsulated in hydroxypropyl-beta-cyclodextrin
Negi et al. Antioxidant and antibacterial activities of Punica granatum peel extracts
Jansen-Alves et al. Propolis microparticles produced with pea protein: Characterization and evaluation of antioxidant and antimicrobial activities
Ansorena et al. Active wheat gluten films obtained by thermoplastic processing
Cazón et al. Evaluation of easy-removing antioxidant films of chitosan with Melaleuca alternifolia essential oil
Chen et al. Development and characterization of PVA-Starch active films incorporated with β-cyclodextrin inclusion complex embedding lemongrass (Cymbopogon citratus) oil
Dima et al. Encapsulation of coriander essential oil in beta-cyclodextrin: Antioxidant and antimicrobial properties evaluation
do Valle Calomeni et al. Characterization of antioxidant and antimicrobial properties of spray-dried extracts from peanut skins
Cecchini et al. Nanoemulsion of Minthostachys verticillata essential oil. In-vitro evaluation of its antibacterial activity
Park et al. Enhancing antioxidant and antimicrobial activity of carnosic acid in rosemary (Rosmarinus officinalis L.) extract by complexation with cyclic glucans
KR101759776B1 (en) Method of manufacturing a natural preservative containing Rosmarinus officinalis L.
Plati et al. Hemp protein isolate–gum Arabic complex coacervates as a means for oregano essential oil encapsulation. Comparison with whey protein isolate–gum Arabic system
Maaroufi et al. New insights of Nettle (Urtica urens): Antioxidant and antimicrobial activities
López‐Miranda et al. Modified cyclodextrin type and dehydration methods exert a significant effect on the antimicrobial activity of encapsulated carvacrol and thymol
CN103284121A (en) Substance mixtures
Gengatharan et al. The application of clove extracts as a potential functional component in active food packaging materials and model food systems: a mini-review
Jacumazo et al. Development, characterization and antimicrobial activity of sodium dodecyl sulfate-polysaccharides capsules containing eugenol
KR102111469B1 (en) Carnosic acid - highly branched cyclic dextrin complex and method for production thereof
Azad et al. A technical strategy to prolong anthocyanins thermal stability in formulated purple potato (Solanum tuberosum L. cv Bora valley) processed by hot‐melt extrusion
Casagrande et al. Optical, mechanical, antioxidant and antimicrobial properties of starch/polyvinyl alcohol biodegradable film incorporated with Baccharis dracunculifolia lyophilized extract
Zakharova et al. Supramolecular strategy of the encapsulation of low-molecular-weight food ingredients
Izadi et al. Fabrication and characterization of active poly (Lactic Acid) films containing Thymus daenensis essential oil/Beta-cyclodextrin inclusion complex and silver nanoparticles to extend the shelf life of ground beef

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant