KR102104789B1 - Intelligent optimum safety operation system of submerged pump and control process thereof - Google Patents

Intelligent optimum safety operation system of submerged pump and control process thereof Download PDF

Info

Publication number
KR102104789B1
KR102104789B1 KR1020190123126A KR20190123126A KR102104789B1 KR 102104789 B1 KR102104789 B1 KR 102104789B1 KR 1020190123126 A KR1020190123126 A KR 1020190123126A KR 20190123126 A KR20190123126 A KR 20190123126A KR 102104789 B1 KR102104789 B1 KR 102104789B1
Authority
KR
South Korea
Prior art keywords
submersible pump
water level
pump
value
temperature sensor
Prior art date
Application number
KR1020190123126A
Other languages
Korean (ko)
Inventor
김윤완
Original Assignee
신신이앤지(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신신이앤지(주) filed Critical 신신이앤지(주)
Priority to KR1020190123126A priority Critical patent/KR102104789B1/en
Application granted granted Critical
Publication of KR102104789B1 publication Critical patent/KR102104789B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/02Stopping of pumps, or operating valves, on occurrence of unwanted conditions
    • F04D15/0209Stopping of pumps, or operating valves, on occurrence of unwanted conditions responsive to a condition of the working fluid
    • F04D15/0218Stopping of pumps, or operating valves, on occurrence of unwanted conditions responsive to a condition of the working fluid the condition being a liquid level or a lack of liquid supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/08Units comprising pumps and their driving means the pump being electrically driven for submerged use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/12Combinations of two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/02Stopping of pumps, or operating valves, on occurrence of unwanted conditions
    • F04D15/0281Stopping of pumps, or operating valves, on occurrence of unwanted conditions responsive to a condition not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2210/00Working fluids
    • F05D2210/10Kind or type
    • F05D2210/11Kind or type liquid, i.e. incompressible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)

Abstract

The present invention relates to an intelligent optimum safety operation system of an underwater pump comprising: a temperature sensor (20) installed on an underwater pump (10) to measure the temperature of a motor coil and a bearing; a water gauge (30) to measure the water level of a place of using the underwater pump (10); a controller (50) electrically connected to the underwater pump (10) and the water gauge (30), and provided with a current measurement part (52); and a monitoring unit (60) electrically connected to the temperature sensor (20) and the controller (50). A pump stop water level of the underwater pump (10) is determined based on a flow rate value of the underwater pump (10), a temperature value measured by the temperature sensor (20), a water level value measured by the water gauge (30), a current value measured by the current measurement part (52), and a cavitation calculation value. Accordingly, the reliability of the intelligent optimum safety operation system of an underwater pump can be strengthened.

Description

수중펌프의 지능형 최적 안전 운전시스템 및 이의 제어방법 {INTELLIGENT OPTIMUM SAFETY OPERATION SYSTEM OF SUBMERGED PUMP AND CONTROL PROCESS THEREOF}INTELLIGENT OPTIMUM SAFETY OPERATION SYSTEM OF SUBMERGED PUMP AND CONTROL PROCESS THEREOF

본 발명은 수중펌프의 지능형 최적 안전 운전시스템 및 이의 제어방법에 관한 것으로서, 더욱 상세하게는 수중펌프를 최적의 상태로 간편하고 안전하게 운전할 수 있는 수중펌프의 지능형 최적 안전 운전시스템 및 이의 제어방법에 관한 것이다.The present invention relates to an intelligent optimum safe driving system and its control method of an underwater pump, and more particularly, to an intelligent optimal safe driving system and control method of the underwater pump that can easily and safely operate the underwater pump in an optimal state. will be.

일반적으로, 펌프는 압력작용에 의하여 액체나 기체의 유체를 관을 통해서 수송하거나, 저압의 용기 속에 있는 유체를 관을 통하여 고압의 용기 속으로 압송하는 기계이다.In general, a pump is a machine that transports a liquid or gaseous fluid through a tube by a pressure action, or pressurizes a fluid in a low pressure container into a high pressure container through the tube.

이러한 펌프는 용도 또는 사용장소 등에 따라 여러 다양한 형태로 구분되고 있다.These pumps are classified into various types according to the purpose or place of use.

그 중 수중에서 작동되는 수중펌프는 그 수요가 점차적으로 증가하고 있는 추세이다.Among them, the demand for submersible pumps operating underwater is gradually increasing.

종래의 수중펌프는 수위계의 LWL(저수위)에서 중지됨과 아울러 HWL(고수위)에서 가동되도록 초기 설정상태가 고정되어 있어 그 운전상태를 최적화하는 데 문제가 있었으며, 이를 개선하기 위하여 전류측정부가 구비된 센서유닛을 통해 전류값을 측정하여 수중펌프의 작동(가동 및 중지)를 제어하는 수중펌프 시스템이 선보이고 있다.The conventional submersible pump was stopped at the LWL (low water level) of the water gauge, and the initial setting state was fixed to be operated at the HWL (high water level), so there was a problem in optimizing the operation state, and a sensor equipped with a current measurement unit to improve it A submersible pump system that controls the operation (start and stop) of the submersible pump by measuring the current value through the unit has been introduced.

이러한 구성의 수중펌프 시스템은 등록특허공보 제10-1228415호에 개시되어 있다.An underwater pump system having such a configuration is disclosed in Korean Patent Publication No. 10-1228415.

그러나 위와 같은 수중펌프 시스템은 수위를 측정하기 위한 센서가 불필요하다는 장점이 있으나, 전류측정부에 의해 측정된 전류값 및 기설정된 전류값만 서로 비교하여 수중펌프의 작동을 제어함으로 인해, 수중펌프의 최적 운전수위를 산출하는 데 한계가 있다.However, the above submersible pump system has an advantage that a sensor for measuring the water level is unnecessary, but only the current value measured by the current measuring unit and the preset current value are compared with each other to control the operation of the submersible pump. There is a limit to calculating the optimum driving level.

이는 결국, 수중펌프 시스템의 신뢰성을 상대적으로 저하시키는 결과를 초래한다.This, in turn, results in relatively low reliability of the submersible pump system.

본 발명은 위와 같은 문제점을 해결하기 위하여 안출된 것으로, 본 발명에서 해결하고자 하는 과제는 수중펌프의 작동에 따른 최적의 운전수위를 효율적으로 산출할 수 있는 수중펌프의 지능형 최적 안전 운전시스템 및 이의 제어방법을 제공하는 것이다.The present invention has been devised to solve the above problems, and the problem to be solved in the present invention is an intelligent optimal safe driving system and control of the intelligent submersible pump that can efficiently calculate the optimum operating level according to the operation of the submersible pump. Is to provide a way.

위와 같은 과제를 해결하기 위한 본 발명에 따른 수중펌프의 지능형 최적 안전 운전시스템은, 수중펌프에 설치되어, 베어링 및 모터권선의 온도를 측정하는 온도센서; 상기 수중펌프의 설치장소 수위를 측정하는 수위계; 상기 수중펌프 및 상기 수위계와 전기적으로 연결되며, 전류측정부가 구비되어 있는 컨트롤러; 상기 온도센서 및 상기 컨트롤러와 전기적으로 연결되는 모니터링유닛을 포함하며, 상기 수중펌프의 유량값, 상기 온도센서를 통해 측정되는 온도값, 상기 수위계를 통해 측정되는 수위값, 상기 전류측정부를 통해 측정되는 전류값 및 캐비테이션값에 근거하여 상기 수위계의 펌프중지수위를 결정하는 데 그 기술적 특징이 있다.An intelligent optimal safe driving system for an underwater pump according to the present invention for solving the above problems is installed in the underwater pump, a temperature sensor for measuring the temperature of the bearing and the motor winding; A water gauge to measure the water level at the installation location of the submersible pump; A controller electrically connected to the submersible pump and the water level meter and equipped with a current measuring unit; It includes a monitoring unit that is electrically connected to the temperature sensor and the controller, the flow value of the submersible pump, the temperature value measured through the temperature sensor, the water level value measured through the water gauge, measured through the current measuring unit There is a technical feature in determining the pump stop water level of the water gauge based on the current value and the cavitation value.

본 발명에 따른 수중펌프의 지능형 최적 안전 운전시스템의 제어방법은, 수위계로부터 펌프가동신호를 수신하는 펌프 가동신호 수신단계; 수중펌프를 가동하는 수중펌프 가동단계; 수위계를 통해 수위가 저수위(LWL) 세팅값에 도달했는지를 판단하는 저수위 판단단계; 수위가 저수위 세팅값에 도달했을 경우 온도센서를 통해 측정되는 온도값이 최고허용온도의 80% 이하인가를 판단하고, 전류측정부를 통해 측정되는 전류값이 정격전류 이하인가를 판단하며, 수중펌프의 유량값 및 상기 수위계를 통해 측정된 수위값으로 계산한 캐비테이션값이 허용범위에 만족하는가를 판단하는 단계; 모든 조건을 충족하면 기존의 세팅된 저수위를 하강시키는 저수위 하강단계를 포함하는 데 그 기술적 특징이 있다.A control method of an intelligent optimum safe driving system for a submersible pump according to the present invention includes a pump operation signal receiving step of receiving a pump operation signal from a water level meter; A submersible pump operation step of operating the submersible pump; A low water level determination step of determining whether the water level has reached a low water level (LWL) setting value through a water level meter; When the water level reaches the low water level setting value, it is determined whether the temperature value measured by the temperature sensor is 80% or less of the maximum allowable temperature, and it is determined whether the current value measured by the current measurement unit is less than or equal to the rated current. Determining whether a cavitation value calculated from a flow rate value and a water level value measured through the water level meter satisfies an allowable range; When all the conditions are met, the technical feature is to include a low water level lowering step of lowering the previously set low water level.

본 발명에 따른 수중펌프의 지능형 최적 안전 운전시스템 및 이의 제어방법은 온도센서와 수위계, 유량계 및 전류측정부를 통해 수중펌프의 작동에 따른 최적의 운전수위를 간편하고 효율적으로 산출할 수 있어, 수중펌프의 불필요한 가동 및 중지없이 안정적인 운전이 가능하다.The intelligent optimal safe driving system and control method of the underwater pump according to the present invention can conveniently and efficiently calculate the optimum operating level according to the operation of the underwater pump through a temperature sensor, a water level meter, a flow meter, and a current measuring unit. Stable operation is possible without unnecessary operation and stoppage.

그로 인해, 수중펌프의 지능형 최적 안전 운전시스템의 신뢰성을 한층 강화시킬 수 있다.Therefore, the reliability of the intelligent optimum safe driving system of the submersible pump can be further enhanced.

도 1 및 도 2는 본 발명에 따른 수중펌프의 지능형 최적 안전 운전시스템을 도시한 구성도,
도 3은 본 발명에 따른 수중펌프의 지능형 최적 안전 운전시스템을 도시한 블럭도,
도 4는 본 발명에 따른 수중펌프의 지능형 최적 안전 운전시스템의 제어방법을 도시한 개략도,
도 5는 본 발명에 따른 수중펌프의 지능형 최적 안전 운전시스템의 제어방법을 도시한 흐름도이다.
1 and 2 is a block diagram showing an intelligent optimal safe driving system of the underwater pump according to the present invention,
Figure 3 is a block diagram showing an intelligent optimum safe driving system of the underwater pump according to the present invention,
Figure 4 is a schematic diagram showing a control method of the intelligent optimum safe driving system of the underwater pump according to the present invention,
5 is a flow chart showing a control method of an intelligent optimum safe driving system of an underwater pump according to the present invention.

아래에서는 본 발명에 따른 수중펌프의 지능형 최적 안전 운전시스템 및 이의 제어방법을 도면을 통해 상세히 설명한다.Hereinafter, an intelligent optimal safe driving system and a control method of the underwater pump according to the present invention will be described in detail with reference to the drawings.

먼저, 본 발명에 따른 수중펌프의 지능형 최적 안전 운전시스템은 도 1 내지 도 3에 도시되어 있는 바와 같이, 수중펌프(10)의 가동 시 발생되는 각종 값으로 그 운전상태를 자동 검토하여 최적의 운전수위(펌프정지수위 및 펌프가동수위)를 결정한다.First, the intelligent optimal safe driving system of the underwater pump according to the present invention is shown in FIGS. 1 to 3, and the optimal operation by automatically reviewing the operating state with various values generated when the underwater pump 10 is operated Determine the water level (pump stop level and pump operating level).

이러한 수중펌프의 지능형 최적 안전 운전시스템은 온도센서(20), 수위계(30), 유량계(40), 컨트롤러(50), 모니터링유닛(60) 및 누수센서(70)로 이루어진다.The intelligent optimal safe driving system of the submersible pump consists of a temperature sensor 20, a water level meter 30, a flow meter 40, a controller 50, a monitoring unit 60 and a leak sensor 70.

한편, 도 1은 수중사류펌프를 도시한 것이고, 도 2는 수중모터펌프를 도시한 것이다.On the other hand, Figure 1 shows an underwater flow pump, Figure 2 shows an underwater motor pump.

수중펌프(10)는 온도센서(20)를 통해 측정되는 온도값, 수위계(30)를 통해 측정되는 수위값, 유량계(40)를 통해 측정되는 유량값, 전류측정부(52)를 통해 측정되는 전류값 및 캐비테이션값에 근거하여 산출된 수위계(30)의 펌프중지수위(LWL)에서 중지되고, 가동위치가 고정되어 있는 펌프가동수위(HWL1)에서 가동된다.The submersible pump 10 is a temperature value measured through the temperature sensor 20, a water level value measured through the water gauge 30, a flow rate value measured through the flow meter 40, and a current measured by the current measuring unit 52 It is stopped at the pump stop water level LWL of the water level meter 30 calculated based on the current value and the cavitation value, and is operated at the pump operating water level HWL1 at which the movable position is fixed.

그리고 수중펌프(10)가 제1·2 수중펌프로 이루어질 경우에는 온도센서(20)를 통해 측정되는 온도값, 수위계(30)를 통해 측정되는 수위값, 유량계(40)를 통해 측정되는 유량값, 전류측정부(52)를 통해 측정되는 전류값 및 캐비테이션(Cavitation)값에 근거하여 산출된 수위계(30)의 펌프중지수위(LWL)에서 중지되고, 제1 수중펌프는 가동위치가 고정되어 있는 펌프가동수위(HWL1)에서 가동됨과 아울러 제2 수중펌프는 유량계(40)의 유량에 따라 실시간으로 조절되는 펌프가동수위(HWL2)에서 가동된다.And if the underwater pump 10 is made of a first and second underwater pump, the temperature value measured through the temperature sensor 20, the water level value measured through the water level meter 30, the flow rate value measured through the flow meter 40 , Stopped at the pump stop water level (LWL) of the water level meter 30 calculated based on the current value and the cavitation value measured through the current measuring unit 52, and the first submersible pump has a fixed movable position. In addition to being operated at the pump operating level (HWL1), the second submersible pump is operated at the pump operating level (HWL2) which is adjusted in real time according to the flow rate of the flow meter (40).

캐비테이션값은 수위계(30)를 통해 측정되는 수위값, 유량계(40)를 통해 측정되는 유랑값을 포함하여 계산한다.The cavitation value is calculated by including the water level value measured through the water level meter 30 and the flow rate value measured through the flow meter 40.

이에 따라, 수중펌프(10)의 빈번한 가동 및 중지없이 안정적이고 효율적인 운전이 가능함은 물론이고 물 유입량이 급증할 경우 초기 세팅된 수중펌프(10)의 가동시점보다 더 빨리 가동되어 최적의 운전이 가능하다.Accordingly, stable and efficient operation is possible without frequent operation and stoppage of the submersible pump 10, and when water inflow rapidly increases, the submersible pump 10 is operated faster than the starting point of operation and thus optimal operation is possible. Do.

온도센서(20)는 수중펌프(10)의 베어링 및 모터에 설치되어, 베어링 및 모터권선의 온도를 실시간으로 측정한다.The temperature sensor 20 is installed on the bearing and the motor of the submersible pump 10, and measures the temperature of the bearing and the motor winding in real time.

이러한 온도센서(20)로는 공지된 다양한 종류의 것을 선택적으로 적용할 수 있다.As the temperature sensor 20, various kinds of known ones can be selectively applied.

수위계(30)는 수중펌프(10) 설치장소의 수위를 측정하기 위한 것으로, 이러한 수위계(30)로는 초음파 수위계 또는 레이더 수위계 등 공지된 것을 선택적으로 적용 가능하다.The water level meter 30 is for measuring the water level in the installation location of the submersible pump 10. As the water level meter 30, a known water level meter or a radar water level meter can be selectively applied.

유량계(40)는 수중펌프(10)의 유량을 측정하기 위한 것으로, 그 설치위치 등은 적절하게 조절 가능하다.The flow meter 40 is for measuring the flow rate of the submersible pump 10, the installation position and the like can be appropriately adjusted.

한편, 유량계(40)가 없을 경우에는 유량산출공식에 의해 유량을 산출할 수 있으며, 또한 수중펌프(10)의 유량값은 공지된 다양한 방법에 의해 산출 가능함은 물론이다.On the other hand, when there is no flow meter 40, the flow rate can be calculated by the flow rate calculation formula, and the flow rate value of the submersible pump 10 can be calculated by various known methods.

컨트롤러(50)는 수중펌프(10), 수위계(30) 및 유량계(40)와 전기적으로 연결되며, 수중펌프(10)의 가동 시 수위계(30) 및 유량계(40)로부터 수위값 및 유량값을 실시간으로 제공받는다.The controller 50 is electrically connected to the submersible pump 10, the water level meter 30 and the flow meter 40, and when the submersible pump 10 is operated, the water level value and the flow rate value from the water level meter 30 and the flow meter 40 are obtained. It is provided in real time.

이러한 컨트롤러(50)에는 전류값을 측정하기 위한 전류측정부(52)가 구비되어 있다.The controller 50 is provided with a current measuring unit 52 for measuring the current value.

모니터링유닛(60)은 온도센서(20) 및 컨트롤러(50)와 전기적으로 연결되어 있으며, 수중펌프(10)의 가동 시 온도센서(20)로부터 온도값을 실시간으로 제공받는다.The monitoring unit 60 is electrically connected to the temperature sensor 20 and the controller 50, and receives the temperature value from the temperature sensor 20 in real time when the underwater pump 10 is operated.

누수센서(70)는 수중펌프(10)에서 발생되는 누수를 정확하게 감지하기 위한 것이다.The leak sensor 70 is for accurately detecting leaks generated from the underwater pump 10.

한편, 미설명 도면부호 C1은 수위계케이블을 나타낸 것이고, C2는 펌프전원케이블을 나타낸 것이고, C3는 센서케이블을 나타낸 것이며, C4는 유량계케이블을 나타낸 것이다.On the other hand, reference numeral C1 denotes a water gauge cable, C2 denotes a pump power cable, C3 denotes a sensor cable, and C4 denotes a flow meter cable.

필요에 따라 위의 각종 케이블 없이 무선으로 신호를 수신받을 수도 있음은 물론이다.Of course, it is possible to receive signals wirelessly without the above various cables, if necessary.

이상에서 설명한 수중펌프의 지능형 최적 안전 운전시스템의 제어방법을 도 3 및 4를 통해 설명하면 아래와 같다.The control method of the intelligent optimal safe driving system of the underwater pump described above will be described with reference to FIGS. 3 and 4 as follows.

① 펌프가동신호 수신단계(S10) : 수중펌프(10)를 가동하기 위한 펌프가동신호를 수신하는 단계임.① Pump operation signal receiving step (S10): This is a step of receiving the pump operation signal to start the submersible pump (10).

이때, 펌프가동신호는 수위계(30)로부터 컨트롤러(50)로 실시간으로 제공된다.At this time, the pump operation signal is provided in real time from the water level meter 30 to the controller 50.

② 수중펌프 가동단계(S20) : 수위계(30)로부터 펌프가동신호를 수신하여 컨트롤러(50)를 통해 수중펌프(10)를 가동하는 단계임.② Submersible pump operation step (S20): This is a step of receiving the pump operation signal from the water level meter 30 and operating the submersible pump 10 through the controller 50.

③ 수중펌프 수용능력 판단단계(S25); 수중펌프(10)를 가동하는 단계에서 유량계(40)를 통해 측정되는 수중펌프(10)의 유량값 및 수위계(30)를 통해 측정되는 수위값에 근거하여 수중펌프 1대로 충분한가를 판단하는 단계임.③ Underwater pump capacity determination step (S25); In the step of operating the submersible pump 10, it is a step of determining whether one submersible pump is sufficient based on the flow rate value of the submersible pump 10 measured through the flow meter 40 and the water level value measured through the water level meter 30. .

이 단계에서 수중펌프 1대로 충분하다고 판단되면 후술하는 저수위 판단단계(S30)로 넘어가고, 수중펌프 1대로 충분하다고 판단되지 않으면 수중펌프 2대를 가동한다. 그리고 수중펌프 2대의 가동 중에 다시 수중펌프 1대로 충분한가를 판단하여 충분하면 기동빈도 및 횟수조건에 만족하는가를 판단한 후, 만족하면 수중펌프 1대를 중지시킨다. If it is judged that one submersible pump is sufficient in this step, the process proceeds to the low water level determination step (S30), which will be described later, and if it is not judged that one submersible pump is sufficient, two submersible pumps are operated. Then, during operation of the two submersible pumps, it is again determined whether one submersible pump is sufficient, and if sufficient, it is determined whether the conditions for starting frequency and frequency are satisfied, and if satisfied, one submersible pump is stopped.

또한 수중펌프 1대로 충분하지 않다고 판단하면 다시 수중펌프 2대로 충분한가를 판단하여, 가능하면 수중펌프 2대를 가동하고 그렇치 않으면 수중펌프 3대를 가동한다.In addition, if it is determined that one submersible pump is not sufficient, it is again determined whether two submersible pumps are sufficient, and if possible, two submersible pumps are operated. Otherwise, three submersible pumps are operated.

물론, 수중펌프(10)의 유량값은 유량계가 아닌 유량산출공식에 의해 산출 가능하다.Of course, the flow value of the submersible pump 10 can be calculated by a flow rate calculation formula rather than a flow meter.

④ 저수위 판단단계(S30) : 수위가 저수위(LWL) 세팅값에 도달했는가를 판단하는 단계임.④ Low water level determination step (S30): This is a step to determine whether the water level has reached the low water level (LWL) setting value.

⑤ 온도값 판단단계(S40); 수위가 저수위(LWL) 세팅값에 도달했을 경우 온도센서(20)를 통해 측정되는 온도값이 최고허용온도의 80% 이하인가를 판단하는 단계임.⑤ temperature value determination step (S40); When the water level reaches the low water level (LWL) setting value, it is a step of determining whether the temperature value measured by the temperature sensor 20 is 80% or less of the maximum allowable temperature.

이때, 온도센서(20)를 통해 측정되는 온도값이 최고허용온도의 80% 이상일 경우에는 수중펌프(10)의 가동이 중지된다.At this time, when the temperature value measured by the temperature sensor 20 is 80% or more of the maximum allowable temperature, the operation of the underwater pump 10 is stopped.

⑥ 전류값 판단단계(S50); 전류측정부(52)를 통해 측정되는 전류값이 정격전류 이하인가를 판단하는 단계임. ⑥ current value determination step (S50); It is a step of determining whether the current value measured through the current measuring unit 52 is equal to or less than the rated current.

이때, 전류측정부(52)를 통해 측정되는 전류값이 정격전류를 초과하게 되면 수중펌프(10)의 가동이 중지된다.At this time, when the current value measured through the current measuring unit 52 exceeds the rated current, the operation of the underwater pump 10 is stopped.

⑦ 캐비테이션값 판단단계(S60) : 유량계(40)를 통해 측정되는 유량값 및 수위계(30)를 통해 측정되는 수위값으로 계산한 케비테이션값이 허용범위에 만족하는가를 판단하는 단계임.⑦ Cavitation value determination step (S60): It is a step of determining whether the cavitation value calculated by the flow rate value measured through the flow meter 40 and the water level value measured through the water level meter 30 satisfies the allowable range.

이때, 유량계(40)를 통해 측정되는 유량값 및 수위계(30)를 통해 측정되는 수위값으로 계산한 캐비테이션값이 허용범위에 만족하지 않으면 수중펌프(10)의 가동이 중지된다.At this time, if the cavitation value calculated as the flow rate value measured through the flow meter 40 and the water level value measured through the water level meter 30 does not satisfy the allowable range, the operation of the submersible pump 10 is stopped.

⑧ 저수위 하강단계(S70) : 온도값과 전류값 및 캐비테이션값이 모든 조건을 만족하면 기존의 세팅된 저수위(LWL)를 하강시키는 단계임.⑧ Low water level lowering step (S70): This step is to lower the existing set low water level (LWL) if the temperature, current and cavitation values satisfy all conditions.

이때, 온도값과 전류값 및 캐비테이션값 중 어느 하나의 조건이라도 만족하지 않으면 위에서 설명한 바와 같이 수중펌프(10)의 가동을 중지시키는 수중펌프 중지단계(S80)로 이동되며, 수중펌프(10)의 중지 후 다시 가동할 때의 저수위(LWL)는 초기값이 된다.At this time, if any one of the conditions of the temperature value, the current value and the cavitation value is not satisfied, it is moved to the submersible pump stopping step (S80) to stop the operation of the submersible pump 10 as described above, and the submersible pump 10 The low water level (LWL) when running again after stopping is an initial value.

10 : 수중펌프 20 : 온도센서
30 : 수위계 40 : 유량계
50 : 컨트롤러 52 : 전류측정부
60 : 모니터링 유닛 70 : 누수센서
10: submersible pump 20: temperature sensor
30: water level meter 40: flow meter
50: controller 52: current measuring unit
60: monitoring unit 70: leak sensor

Claims (6)

수중펌프(10)를 최적의 상태로 안전하게 운전하기 위한 수중펌프의 지능형 최적 안전 운전시스템에 있어서,
상기 수중펌프(10)에 설치되어, 베어링 및 모터권선의 온도를 측정하는 온도센서(20); 상기 수중펌프(10)의 설치장소 수위를 측정하는 수위계(30); 상기 수중펌프(10) 및 상기 수위계(30)와 전기적으로 연결되며, 전류측정부(52)가 구비되어 있는 컨트롤러(50); 상기 온도센서(20) 및 상기 컨트롤러(50)와 전기적으로 연결되는 모니터링유닛(60)을 포함하며,
상기 온도센서(20)의 온도값, 상기 전류측정부(52)의 전류값, 상기 수중펌프(10)의 유량값과 상기 수위계(30)의 수위값을 포함하여 계산되는 캐비테이션값이 정해진 조건을 만족하면 기존의 세팅된 저수위(LWL)를 하강시키고,
상기 온도센서(20)의 온도값, 상기 전류측정부(52)의 전류값, 상기 수중펌프(10)의 유량값과 상기 수위계(30)의 수위값을 포함하여 계산되는 캐비테이션값 중 어느 하나라도 정해진 조건을 만족하지 않으면 상기 수중펌프(10)의 가동을 중지시키며,
상기 수중펌프(10)가 제1·2 수중펌프로 이루어지고, 상기 제1 수중펌프는 가동위치가 고정되어 있는 펌프가동수위(HWL1)에서 가동되고, 상기 제2 수중펌프는 유입되는 유량에 따라 가동위치가 실시간으로 조절되는 펌프가동수위(HWL2)에서 가동되며,
상기 수중펌프(10)의 누수를 감지하는 누수센서(70)를 더 포함하는 것을 특징으로 하는 수중펌프의 최적 안전 운전시스템.
In the intelligent optimum safe driving system of the submersible pump for safely driving the submersible pump (10) in an optimal state,
A temperature sensor 20 installed in the submersible pump 10 to measure the temperature of the bearing and the motor winding; A water level meter 30 for measuring the water level at the installation location of the submersible pump 10; A controller 50 electrically connected to the submersible pump 10 and the water level meter 30 and equipped with a current measuring unit 52; It includes a monitoring unit 60 electrically connected to the temperature sensor 20 and the controller 50,
Cavitation value calculated including the temperature value of the temperature sensor 20, the current value of the current measurement unit 52, the flow rate value of the submersible pump 10 and the water level value of the water gauge 30 is determined. If satisfied, the existing set low water level (LWL) is lowered,
Any of the cavitation values calculated including the temperature value of the temperature sensor 20, the current value of the current measurement unit 52, the flow rate value of the submersible pump 10 and the water level value of the water gauge 30. If the prescribed conditions are not satisfied, the operation of the submersible pump 10 is stopped,
The submersible pump 10 is made of a first and second submersible pump, the first submersible pump is operated at the pump operating water level (HWL1) is fixed to the movable position, the second submersible pump according to the flow rate It operates at the pump operating level (HWL2) where the operating position is adjusted in real time.
Optimal safe driving system of the submersible pump, characterized in that it further comprises a leak sensor (70) for detecting the leakage of the submersible pump (10).
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020190123126A 2019-10-04 2019-10-04 Intelligent optimum safety operation system of submerged pump and control process thereof KR102104789B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190123126A KR102104789B1 (en) 2019-10-04 2019-10-04 Intelligent optimum safety operation system of submerged pump and control process thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190123126A KR102104789B1 (en) 2019-10-04 2019-10-04 Intelligent optimum safety operation system of submerged pump and control process thereof

Publications (1)

Publication Number Publication Date
KR102104789B1 true KR102104789B1 (en) 2020-04-27

Family

ID=70467692

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190123126A KR102104789B1 (en) 2019-10-04 2019-10-04 Intelligent optimum safety operation system of submerged pump and control process thereof

Country Status (1)

Country Link
KR (1) KR102104789B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111592058A (en) * 2020-05-25 2020-08-28 江苏中车环保设备有限公司 Drainage system without liquid level sensor, sewage treatment system and method
CN114320942A (en) * 2021-12-31 2022-04-12 浙江东音科技有限公司 Solar submersible pump with intelligent power regulation function for well
KR20220155697A (en) 2021-05-17 2022-11-24 주식회사 다인펌프 Water pump monitoring system and operation method of the same
WO2023118089A1 (en) * 2021-12-23 2023-06-29 Grundfos Holding A/S Sensor device and pump or pump system with such a sensor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200454775Y1 (en) * 2011-01-20 2011-07-28 김해웅 Monitoring unit to monitor the operation of the submersible motor pump
KR20150131602A (en) * 2014-05-15 2015-11-25 김형진 Underwater pump system
JP2017036669A (en) * 2015-08-06 2017-02-16 株式会社荏原製作所 Control device, control method and pump station

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200454775Y1 (en) * 2011-01-20 2011-07-28 김해웅 Monitoring unit to monitor the operation of the submersible motor pump
KR20150131602A (en) * 2014-05-15 2015-11-25 김형진 Underwater pump system
JP2017036669A (en) * 2015-08-06 2017-02-16 株式会社荏原製作所 Control device, control method and pump station

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111592058A (en) * 2020-05-25 2020-08-28 江苏中车环保设备有限公司 Drainage system without liquid level sensor, sewage treatment system and method
KR20220155697A (en) 2021-05-17 2022-11-24 주식회사 다인펌프 Water pump monitoring system and operation method of the same
WO2023118089A1 (en) * 2021-12-23 2023-06-29 Grundfos Holding A/S Sensor device and pump or pump system with such a sensor device
CN114320942A (en) * 2021-12-31 2022-04-12 浙江东音科技有限公司 Solar submersible pump with intelligent power regulation function for well
CN114320942B (en) * 2021-12-31 2024-03-29 浙江东音科技有限公司 Immersible pump for solar well with intelligent power regulation function

Similar Documents

Publication Publication Date Title
KR102104789B1 (en) Intelligent optimum safety operation system of submerged pump and control process thereof
JP4812327B2 (en) Water supply equipment
CN107340102B (en) Water leakage detection method and system for converter valve cooling system
KR20140079381A (en) Actuator displacement measurement system in electronic hydraulic system of construction equipment
CN201173843Y (en) Automatic control multifunctional pressure test station
CN211176339U (en) Pipe explosion detection system
KR101314833B1 (en) A method of controlling pressurized water supply, an apparatus and a system of thereof
JP5083896B2 (en) Submersible pump control panel and control method thereof
CN110716032A (en) Transformer winding hot spot aging evaluation method and system based on furfural in oil
CN211143078U (en) Automatic control device for concrete elevation pouring
KR101809092B1 (en) Method for operating inverter booster pump to save power by a flow-rate prediction
CN103470573B (en) Pumping unit oil supplementing and draining control device, system and method and engineering machinery
CN104929197A (en) Method of automatically pumping water in water tower by pipeline
KR100753445B1 (en) Apparatus and method for detecting of water level sensor error
JP4741312B2 (en) Variable speed water supply device
CN111043522A (en) Liquid chlorine tank car filling safety protection device and control method thereof
KR100908385B1 (en) Inverter booster pump and cavitation detection method of inverter booster pump system
CN208268045U (en) A kind of diving apparatus for controlling pump
CN105735963A (en) Method and system for monitoring hanging ring state of top drive drilling device
CN108443129B (en) Submersible pump control device
JPH07200014A (en) Operation control method for pump
CN220598523U (en) Dewatering well monitoring control device
KR20080005637A (en) The low water level sensing apparatus of submerged pump
KR101605111B1 (en) Apparatus and method of driving booster pump for saving power
CN114215729B (en) Logic control method of water pump

Legal Events

Date Code Title Description
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant