KR102102905B1 - 광 결합장치, 그의 제조 방법, 및 그를 포함한 디지털 홀로그램 영상 표시장치 - Google Patents

광 결합장치, 그의 제조 방법, 및 그를 포함한 디지털 홀로그램 영상 표시장치 Download PDF

Info

Publication number
KR102102905B1
KR102102905B1 KR1020130112799A KR20130112799A KR102102905B1 KR 102102905 B1 KR102102905 B1 KR 102102905B1 KR 1020130112799 A KR1020130112799 A KR 1020130112799A KR 20130112799 A KR20130112799 A KR 20130112799A KR 102102905 B1 KR102102905 B1 KR 102102905B1
Authority
KR
South Korea
Prior art keywords
optical path
light
conversion film
path conversion
modulated light
Prior art date
Application number
KR1020130112799A
Other languages
English (en)
Other versions
KR20140055974A (ko
Inventor
윤민성
김선우
신민영
Original Assignee
엘지디스플레이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지디스플레이 주식회사 filed Critical 엘지디스플레이 주식회사
Publication of KR20140055974A publication Critical patent/KR20140055974A/ko
Application granted granted Critical
Publication of KR102102905B1 publication Critical patent/KR102102905B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/08Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
    • G03H1/0841Encoding method mapping the synthesized field into a restricted set of values representative of the modulator parameters, e.g. detour phase coding
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2294Addressing the hologram to an active spatial light modulator
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/292Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection by controlled diffraction or phased-array beam steering
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • G03H2001/0208Individual components other than the hologram
    • G03H2001/0224Active addressable light modulator, i.e. Spatial Light Modulator [SLM]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2225/00Active addressable light modulator
    • G03H2225/20Nature, e.g. e-beam addressed
    • G03H2225/22Electrically addressed SLM [EA-SLM]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2225/00Active addressable light modulator
    • G03H2225/30Modulation
    • G03H2225/32Phase only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0065Recording, reproducing or erasing by using optical interference patterns, e.g. holograms
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/083Disposition or mounting of heads or light sources relatively to record carriers relative to record carriers storing information in the form of optical interference patterns, e.g. holograms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Liquid Crystal (AREA)
  • Holo Graphy (AREA)

Abstract

본 발명은 광 결합장치, 그의 제조 방법, 및 그를 포함한 디지털 홀로그램 영상 표시장치에 관한 것이다. 본 발명의 실시 예에 따른 광 결합장치는 수직으로 입사되는 제1 선편광의 광경로를 제1 각도만큼 변환하여 출력하고, 수직으로 입사되는 제2 선편광의 광경로를 변환하지 않고 그대로 출력하는 제1 광경로 변환필름; 수직으로 입사되는 상기 제2 선편광의 광경로를 변환하지 않고 그대로 출력하고, 상기 제1 광경로 변환필름에 의해 상기 제1 각도로 비스듬하게 입사되는 제1 선편광의 광경로를 상기 제1 각도만큼 변환하여 상기 제1 선편광과 상기 제2 선편광을 결합하여 출력하는 제2 광경로 변환필름; 및 상기 제1 광경로 변환필름과 상기 제2 광경로 변환필름 사이에 위치하는 스페이서를 포함한다.

Description

광 결합장치, 그의 제조 방법, 및 그를 포함한 디지털 홀로그램 영상 표시장치{BEAM COMBINER, METHOD FOR FABRICATING THE SAME, DIGITAL HOLOGRAM IMAGE DISPLAY DEVICE INCLUDING THE SAME}
본 발명은 광 결합장치, 그의 제조 방법, 및 그를 포함한 디지털 홀로그램 영상 표시장치에 관한 것이다.
최근 3차원 (3D: Three Dimension) 영상과 영상 재생 기술에 대한 연구들이 활발히 이루어지고 있다. 3차원 영상 관련 미디어는 시각 정보의 수준을 한 차원 더 높여주는 새로운 개념의 실감 영상 미디어로서 차세대 영상장치를 주도할 것으로 예상된다. 기존의 2차원 영상 시스템은 평면 영상을 제공하지만 3차원 영상 시스템은 물체가 가지고 있는 실제 이미지 정보를 관찰자에게 보여주는 관점에서 궁극적인 영상 구현 기술이라고 할 수 있다.
3차원 입체 영상을 재생하기 위한 방법으로는 크게, 스테레오스코피 (stereoscopy), 홀로그래피 (holography) 및 집적영상 (integral imaging) 등의 방법들이 연구 개발되고 있다. 이 중에서 홀로그래피 방식은 레이저를 이용하여 제작한 홀로그래피를 3차원 영상으로 재현하여 안경 없이 입체 영상을 구현할 수 있다.
홀로그래피 방식은 물체에서 반사된 빛(물체파)과 간섭성이 있는 빛(기준파)을 겹쳐서 얻어지는 간섭신호를 기록하고 이를 재생하는 원리를 이용하는 것이다. 가간섭성이 높은 레이저 광을 사용하여 물체에 부딪쳐 산란되는 물체파를 또 다른 방향에서 입사된 기준파와 만나게 하여 형성된 간섭무늬를 사진 필름에 기록하는 것을 홀로그램이라고 한다. 물체파와 기준파가 만날 때, 간섭에 의한 간섭무늬를 형성하는데, 이 간섭무늬에 물체의 진폭과 위상 정보가 함께 기록된다. 간섭무늬는 빛의 파동의 세기(intensity)와 위상(phase) 정보를 포함한다. 세기 정보는 간섭무늬의 패턴들 간의 콘트라스트(contrast)로 기록되고, 위상 정보는 간섭무늬에서 패턴들 간의 거리로 기록되고, 이렇게 기록된 간섭무늬에 참조광을 조사하여 홀로그램에 기록된 간섭무늬를 3차원 입체 영상으로 복원하는 것을 홀로그래피라고 한다.
컴퓨터를 이용하여 홀로그램 패턴의 저장, 전송 및 영상처리하는 컴퓨터 생성 홀로그램(CGH: Computer Generated Hologram)이 개발되었다. 컴퓨터 생성 홀로그램은 지금까지 다양한 방법으로 개발되고 있는데, 근래에는 디지털 산업의 발달에 의해 정지 영상의 컴퓨터 생성 홀로그램에 머무르지 않고 동영상의 컴퓨터 생성 홀로그램을 표시하기 위한 시스템이 개발되고 있다.
컴퓨터 생성 홀로그램 시스템은 컴퓨터로 간섭무늬를 계산하여 홀로그램 간섭 무늬 이미지를 생성할 수 있다. 컴퓨터 생성 홀로그램 시스템은 홀로그램 간섭 무늬 이미지 데이터를 공간 광변조기(Spatial Light Modulator, 이하 "SLM"이라 함)에 전송한다. SLM에 참조광이 조사되면, SLM에 표시된 홀로그램 간섭 무늬 패턴들이 3차원 입체 영상으로 복원된다.
도 1은 종래 기술에 의한 컴퓨터 생성 홀로그램 방식을 구현한 디지털 홀로그램 영상 재생 장치의 구성을 나타내는 도면이다. 도 1을 참조하면, 컴퓨터(10)는 구현하고자 하는 입체 영상에 해당하는 홀로그램 간섭무늬 데이터를 생성하고, 홀로그램 간섭무늬 데이터를 SLM(20)으로 전송된다. SLM(20)은 투과형 액정표시패널로 형성되어 홀로그램 간섭무늬 이미지를 표시할 수 있다. SLM(20)의 일측면에는 참조광으로 사용할 레이저 광원(30)이 위치해 있다. 레이저 광원(30)에서 조사되는 참조광(90)을 SLM(20)의 전면에 고르게 투사하기 위해서 확장기(40)와 렌즈(50)가 순차적으로 배치될 수 있다. 레이저 광원(30)에서 출사된 참조광(90)은 확장기(40)와 렌즈(50)를 거쳐 SLM(20)의 일측면에 조사된다. SLM(20)이 투과형 액정표시패널인 경우, SLM(20)의 타측면에는 SLM(20)에 구현된 홀로그램 간섭무늬 이미지에 의해 3차원 입체 영상(80)이 표시된다. 3차원 입체 영상(80)은 SLM(20) 상에 배치되는 필드 렌즈(FL)에 의해 형성되는 초점거리에 표시된다.
미국 특허 US 5,416,618에서는 두 개의 액정표시장치를 이용한 홀로그래피 방식의 입체 영상 표시장치를 개시하고 있다. 구체적으로, 미국 특허 US 5,416,618에서는 위상 변조를 위한 SLM과 진폭 변조를 위한 SLM을 사용하여, 3차원 입체 영상을 표시하였다. 하지만, 미국 특허 US 5,416,618에 개시된 홀로그래피 방식의 입체영상 표시장치는 두 개의 SLM들을 정렬하는 데 어려움이 있고, 두 개의 SLM들을 사용하므로 비용이 상승하며, 두 개의 SLM들을 구동하여야 하므로 구동이 복잡해지고, 두께가 두꺼워지는 단점들이 있다.
본 발명은 하나의 SLM으로부터 출력되는 위상이 서로 다른 두 개의 광을 복소 변조할 수 있는 광 결합장치, 그의 제조 방법, 및 그를 포함한 디지털 홀로그램 영상 표시장치를 제공한다.
본 발명의 실시 예에 따른 광 결합장치는 수직으로 입사되는 제1 선편광의 광경로를 제1 각도만큼 변환하여 출력하고, 수직으로 입사되는 제2 선편광의 광경로를 변환하지 않고 그대로 출력하는 제1 광경로 변환필름; 수직으로 입사되는 상기 제2 선편광의 광경로를 변환하지 않고 그대로 출력하고, 상기 제1 광경로 변환필름에 의해 상기 제1 각도로 비스듬하게 입사되는 제1 선편광의 광경로를 상기 제1 각도만큼 변환하여 상기 제1 선편광과 상기 제2 선편광을 결합하여 출력하는 제2 광경로 변환필름; 및 상기 제1 광경로 변환필름과 상기 제2 광경로 변환필름 사이에 위치하는 스페이서를 포함한다.
본 발명의 실시 예에 따른 광 결합장치의 제조방법은 제1 광경로 변환필름에 수직으로 입사하는 제1 평행광과 상기 제1 광경로 변환필름에 제1 각도만큼 비스듬하게 입사되는 제2 평행광을 상기 제1 광경로 변환필름의 기록 매질에 동시에 입사하여 상기 제1 광경로 변환필름에 광경로 패턴을 형성하는 제1 단계; 제2 광경로 변환필름에 수직으로 입사하는 상기 제1 평행광과 상기 제2 광경로 변환필름에 상기 제1 각도만큼 비스듬하게 입사되는 상기 제2 평행광을 상기 제2 광경로 변환필름의 기록 매질에 동시에 입사하여 상기 제2 광경로 변환필름에 광경로 패턴을 형성하는 제2 단계; 및 스페이서의 일 측면에 상기 제1 광경로 변환필름을 접착하고, 상기 스페이서의 타 측면에 상기 제2 광경로 변환필름을 접착하는 제3 단계를 포함한다.
본 발명의 또 다른 실시 예에 따른 광 결합장치의 제조방법은 스페이서의 일 측면에 상기 제1 광경로 변환필름을 접착하고, 상기 스페이서의 타 측면에 상기 제2 광경로 변환필름을 접착하는 제1 단계; 및 상기 제1 및 제2 광경로 변환필름들에 수직으로 입사하는 제1 평행광과 상기 제1 및 제2 광경로 변환필름에 제1 각도만큼 비스듬하게 입사되는 제2 평행광을 상기 제1 및 제2 광경로 변환필름들의 기록 매질들에 동시에 입사하여 상기 제1 및 제2 광경로 변환필름들에 광경로 패턴을 형성하는 제2 단계를 포함한다.
본 발명의 실시 예에 따른 디지털 홀로그램 영상 표시장치는 입사되는 제1 선편광의 위상을 변조하여 제1 변조광을 출력하는 제1 화소와, 상기 제1 화소와 이웃하고 상기 제1 선편광의 위상을 상기 제1 변조광과 다르게 변조하여 제2 변조광을 출력하는 제2 화소를 포함하는 공간 광변조기; 및 상기 제1 화소로부터 출력된 상기 제1 변조광의 광경로를 변환함으로써, 상기 제1 변조광과 상기 제2 변조광을 결합하여 출력하는 광 결합장치를 포함한다.
본 발명은 백라이트 유닛으로부터 출력된 광에 대해서 하나의 SLM을 이용하여 위상만을 변조한다. 특히, 본 발명은 인접한 두 화소에서 광의 위상을 서로 다르게 변조하고, 위상이 서로 다른 두 개의 광을 복소 변조하여 진폭과 위상을 조정함으로써 공간상에 홀로그래픽 이미지를 형성할 수 있다. 그 결과, 본 발명은 하나의 SLM을 이용하므로, 디지털 홀로그램 영상 표시장치의 제조비용을 절감할 수 있고, 그의 구동이 단순해지며, 그의 두께를 줄일 수 있다.
도 1은 종래 기술에 의한 컴퓨터 생성 홀로그램 방식을 구현한 디지털 홀로그램 영상 재생 장치의 구성을 나타내는 도면.
도 2는 본 발명의 실시 예에 따른 디지털 홀로그램 영상 표시장치를 개략적으로 보여주는 블록도.
도 3은 도 2의 SLM을 상세히 보여주는 단면도.
도 4a 내지 도 4c는 SLM의 한 화소를 나타낸 단면도들로서, 액정층에 가해지는 전압차의 크기에 따라 액정 분자들의 배열 변화 및 액정 분자를 통과하는 빛의 위상 변화를 나타낸 예시 도면들.
도 5는 도 2의 백라이트 유닛, SLM, 위상 지연판, 광 결합장치, 및 편광판을 상세히 보여주는 일 예시도면.
도 6은 도 5의 광 결합장치를 상세히 보여주는 일 예시도면.
도 7은 본 발명의 제1 실시 예에 따른 광 결합장치의 제조 방법을 보여주는 흐름도.
도 8a 내지 도 8c는 도 7의 광 결합장치의 제조 방법의 일 예를 보여주는 예시도면들.
도 9는 본 발명의 제2 실시 예에 따른 광 결합장치의 제조 방법을 보여주는 흐름도.
도 10은 도 9의 광 결합장치의 제조 방법의 일 예를 보여주는 예시도면.
이하 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예들을 상세히 설명한다. 명세서 전체에 걸쳐서 동일한 참조번호들은 실질적으로 동일한 구성요소들을 의미한다. 이하의 설명에서, 본 발명과 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우, 그 상세한 설명을 생략한다.
본 발명은 공간 광변조기(Spatial Light Modulator, 이하 "SLM"이라 함)를 이용하여 3차원 입체 영상을 표시하는 디지털 홀로그램 영상 표시 장치에 관한 것이다. 본 발명의 실시 예에서 SLM은 투과형 액정표시장치로 구현될 수 있다.
도 2는 본 발명의 실시 예에 따른 디지털 홀로그램 영상 표시장치를 개략적으로 보여주는 블록도이다. 도 2를 참조하면, 본 발명의 실시 예에 따른 디지털 홀로그램 영상 표시장치는 SLM(100), SLM 구동부(110), 백라이트 유닛(200), 백라이트 구동부(210), 광 결합장치(300), 위상 지연판(400), 편광판(500), 제어부(600) 등을 포함한다.
SLM(100)은 두 장의 기판 사이에 형성된 액정층을 포함한 투과형 액정표시패널로 구현될 수 있다. SLM(100)의 하부기판에는 데이터 라인들과 게이트 라인들의 교차구조에 의해 매트릭스 형태로 화소들이 배열된다. SLM(100)의 화소들 각각은 박막 트랜지스터(thin film transistor)에 접속되고, 박막 트랜지스터를 통해 데이터 라인으로부터 공급되는 데이터 전압을 하부 기판의 하부 전극에 공급한다. SLM(100)의 화소들 각각은 하부 전극과 상부 기판의 상부 전극 간의 전압 차에 의해 액정층의 액정 분자들의 배열을 변화시켜 입사광의 위상을 변화시킨다. 본 발명의 실시 예에서, SLM(100)은 ECB(Electrically Controlled Birefringence) 모드로 구현된 것을 중심으로 설명하였으나, 이에 한정되지 않고 어떠한 액정모드로도 구현될 수 있음에 유의하여야 한다. 즉, SLM(100)은 TN(Twisted Nematic) 모드와 VA(Vertical Alignment) 모드와 같은 수직전계 구동방식, 또는 IPS(In-Plane Switching) 모드와 FFS(Fringe Field Switching) 모드와 같은 수평전계 구동방식으로 구현될 수 있다.
SLM(100)의 화소들 중에서 이웃하는 한 쌍의 화소들은 입사광의 위상을 서로 다르게 변조한다. 예를 들어, SLM(100)의 어느 한 기수 라인의 어느 한 화소가 변조하는 입사광의 위상은 그 화소에 이웃하는 우수 라인의 화소가 변조하는 입사광의 위상과 서로 다르다. SLM(100)의 광 위상변조에 대한 자세한 설명은 도 3과 도 4a 내지 도 4c를 결부하여 후술한다.
SLM 구동부(110)는 데이터 구동회로와 게이트 구동회로를 포함한다. 데이터 구동회로는 제어부(600)로부터 입력되는 디지털 데이터(DATA)를 아날로그 정극성/부극성 감마보상전압으로 변환하여 데이터전압을 발생하고 그 데이터전압을 데이터 라인들에 공급한다. 게이트 구동회로는 제어부(600)의 제어 하에 데이터 라인들에 공급되는 데이터 전압에 동기화되도록 게이트 펄스를 게이트 라인들에 순차적으로 공급한다.
SLM(100)의 배면에는 다수의 광원을 포함하는 백라이트 유닛(200)이 배치된다. 광원은 적색 레이저 다이오드, 녹색 레이저 다이오드, 및 청색 레이저 다이오드들을 포함하는 레이저 다이오드, 또는 적색, 녹색, 및 청색 콜리메이티드 LED(light emitting diode)들로 구현될 수 있다. 또한, 광원들은 적색, 녹색 및 청색 광원의 조합이거나, 그 외의 다른 색상의 광원들의 조합이거나, 백색 레이저 다이오드나 백색 콜리메이티드 LED와 같은 단일 색의 광원일 수도 있다. 백라이트 구동부(210)는 제어부(600)의 제어 하에 백라이트 유닛(200)의 광원들을 점등 및 소등시키기 위하여 백라이트 구동전류를 공급한다.
광 결합장치(300)는 이웃하는 한 쌍의 화소들 중 어느 한 화소로부터 출력된 광의 경로를 변경함으로써, 이웃하는 한 쌍의 화소들 중 어느 한 화소로부터 출력된 광과 또 다른 한 화소로부터 출력된 광을 결합하여 출력할 수 있다. 광 결합장치(300)에 대한 자세한 설명은 도 5 및 도 6을 결부하여 후술한다.
위상 지연판(400)은 SLM(100)으로부터 출력된 광을 그대로 통과시키는 통과층과, SLM(100)으로부터 출력된 광의 위상을 λ/2 만큼 지연시켜 편광 방향을 변경하는 λ/2 지연층을 포함한다. 편광판(500)은 광 결합장치(300)로부터 출력된 광 중에서 +45도 편광 또는 -45도 편광을 갖는 광만을 통과시킨다. 위상 지연판(400)과 편광판(500)에 대한 자세한 설명은 도 5를 결부하여 후술한다.
한편, 편광판(500) 상에는 필드 렌즈가 배치되어 편광판(500)으로부터 출력된 광을 어느 한 초점에 수렴시킬 수 있다. 또한, 편광판(500) 상에는 사용자의 위치에 따라 3차원 입체 영상의 표시 위치를 이동시킬 수 있는 아이 트래킹 장치(eye-tracking unit)가 배치될 수 있다. 이 경우, 사용자의 위치를 검출하는 사용자 감지장치가 필요하다.
제어부(600)는 SLM 구동부(110)를 제어하여 SLM(100)을 구동시킨다. 제어부(600)는 외부의 컴퓨터 또는 비디오 처리 장치로부터 디지털 데이터(DATA)와 타이밍 신호들을 입력받는다. 타이밍 신호들은 수직동기신호(vertical synchronization signal), 수평동기신호(horizontal synchronization signal), 데이터 인에이블 신호(data enable signal), 및 클럭 신호(clock signal) 등을 포함할 수 있다. 제어부(600)는 타이밍 신호들에 기초하여 게이트 구동회로를 제어하기 위한 게이트 제어신호(GCS)를 생성하고, 데이터 구동회로를 제어하기 위한 데이터 제어신호(DCS)를 생성한다. 제어부(600)는 게이트 제어신호(GCS)를 게이트 구동회로로 출력하고, 디지털 데이터(DATA)와 데이터 제어신호(DCS)를 데이터 구동회로로 공급한다. 또한, 제어부(600)는 백라이트 구동부(210)를 제어하기 위한 백라이트 제어 데이터(Dbl)를 백라이트 구동부(210)로 출력한다.
도 3은 도 2의 SLM을 상세히 보여주는 단면도이다. 도 3을 참조하면, SLM(100)은 입체 영상을 표시하기 위해 매트릭스 배열을 갖는 다수 개의 화소(PXL)들을 포한한다. SLM(100)은 서로 대향하고 있는 상부 기판(US)과 하부 기판(LS) 그리고 그 사이에 개재된 액정층(LC)을 포함한다. 상부 기판(US)의 내측면에는 상부 전극(UE)이 상부 기판(US) 전체에 공통으로 형성되고, 하부 기판(LS)의 내측면에는 하부 전극(LE)들이 매트릭스 배열로 형성된다. 상부 전극(UE)은 공통 전압을 공급받고, 하부 전극(LE)들 각각은 박막 트랜지스터에 접속되어 게이트 라인의 게이트 펄스에 응답하여 데이터 라인으로부터 데이터 전압을 공급받는다. 액정층(LC)은 ECB(Electrically Controlled Birefringence) 모드의 액정 물질을 포함하는 것이 바람직하다. 특히, ECB 모드의 액정층(LC)은 이를 통과하는 빛에 대해서 위상 변화를 0에서 2π까지 변조할 수 있도록 제어할 수 있다. 위상 변화는 액정 물질의 굴절율 이방성(Δn)과 액정층의 두께(cell gap, cd)의 곱으로 결정된다.
SLM(100)은 상부 전극들(UE)을 덮는 상부 절연막(UIN)을 더 포함할 수 있다. 이 경우, 상부 절연막(UIN)은 액정층(LC)의 초기 배향 방향을 설정하는 배향막으로 사용할 수도 있다. 마찬가지로, SLM(100)은 하부 전극들(LE)을 덮는 하부 절연막(LIN)을 더 포함할 수 있다. 이 경우에도, 하부 절연막(LIN)은 액정층(LC)의 초기 배향 방향을 설정하는 배향막으로 사용할 수도 있다.
상부 전극(UE)과 하부 전극(LE)에 전압 차이를 발생시켜, 그 사이에 전계가 형성되면, 액정층(LC)을 구성하는 액정 분자들의 배향 방향이 바뀐다. 도 4a 내지 4c는 본 발명에 의한 SLM(100)의 한 화소(PXL)를 나타낸 단면도들로서, 액정층에 가해지는 전압차의 크기(V)에 따라 액정 분자들의 배열 변화 및 액정 분자를 통과하는 빛의 위상(φ) 변화를 나타낸 도면들이다.
ECB 모드의 액정은 인가된 전압차이에 의해 액정 분자의 기울어진 각도를 제어함으로써 굴절율 이방성을 발생하는 액정 물질이다. 즉, 굴절율 이방성인 Δn은 수학식 1과 같이 정의될 수 있다.
Figure 112013086008549-pat00001
수학식 1에서, θ는 액정 분자가 수평 방향에 대해 기울어진 각도, no는 액정 분자의 단축 방향에서의 굴절율, ne는 액정 분자의 장축 방향에서의 굴절율, 그리고 neff는 액정 분자의 기울어진 각도에 의한 굴절율을 의미한다.
도 4a에서는 상부 전극(UE)에 공급된 공통 전압과 하부 전극(LE)에 공급된 데이터 전압 간의 전압 차가 없는 경우가 나타나 있다. 상부 전극(UE)에 공급된 공통 전압과 하부 전극(LE)에 공급된 데이터 전압 간의 전압 차가 없는 경우 (Vdiff=0), 액정층(LC)에는 전계가 인가되지 않는다. 이 경우, 액정 분자들은 초기 배열 상태를 유지한다. 초기 배열 상태에서는 θ=0이므로, neff는 ne와 동일하다. 즉, 굴절율 차이는 Δn=ne-no이며, Δn은 최대가 된다.
도 4b에서는 상부 전극(UE)에 공급된 공통 전압과 하부 전극(LE)에 공급된 데이터 전압 간의 전압 차가 최소값과 최대값 사이의 임의의 전압인 경우가 나타나 있다. 즉, 상부 전극(UE)에 공급된 공통 전압과 하부 전극(LE)에 공급된 데이터 전압 간의 전압 차가 최소값인 "0"과 최대값인 "Vmax" 사이의 임의의 전압인 Va"가 인가된 경우 (Vdiff=Va), 액정 분자들은 기울기 각도 θa로 기울어진다(θ=θa). 액정 분자들의 기울기 각도 θa 가 증가함에 따라, Δn은 감소하게 된다.
도 4c에서는 상부 전극(UE)에 공급된 공통 전압과 하부 전극(LE)에 공급된 데이터 전압 간의 전압 차가 최대값인 경우가 나타나 있다. 상부 전극(UE)에 공급된 공통 전압과 하부 전극(LE)에 공급된 데이터 전압 간의 전압 차가 최대값인 "Vmax"인 경우 (Vdiff=Vmax), 액정 분자들은 전계 방향에 따라 완전히 정렬된 상태를 갖는다. 즉, θ=90 도가 된다. 이때, Δn은 no-no 로서 최소값을 갖는다.
본 발명에서는 위상 변화 값인 KΔn × d의 최대값을 2π가 되도록 액정 물질의 최대 Δn(ne-no)에 따라, d 값을 설정하였다. 이와 같이, 하부 전극(UE)에 공급되는 데이터 전압을 조정함으로써, SLM(100)은 입력광의 위상 변화시킬 수 있으며, 특히 액정 분자들의 기울기 각도 θa 를 제어함으로써 입력광의 위상을 0에서 2π까지 변화시킬 수 있다. 입사광은 x 축 방향으로 진동하는 선편광인 것을 중심으로 설명하였다.
도 5는 도 2의 백라이트 유닛, SLM, 위상 지연판, 광 결합장치, 및 편광판을 상세히 보여주는 일 예시도면이다. 이하에서, 도 5를 참조하여 광 결합장치를 이용한 복소 변조 방법을 상세히 설명한다.
도 5를 참조하면, 백라이트 유닛(200)의 광원들은 위상이 φ0이고 진폭이 A이며 수직 방향(y축 방향)(↕)으로 진동하는 제1 선편광(Aei Φ0(↕))을 출력할 수 있다. 백라이트 유닛(200)의 광원들로부터 출력된 제1 선편광(Aei Φ0(↕))은 SLM(100)에 입사된다.
SLM(100)의 화소들 각각은 도 3과 도 4a 내지 도 4c에서 설명한 바와 같이, 액정층(LC)의 액정 분자의 배열을 제어하여 굴절율 이방성(Δn)을 조정함으로써, 입력광의 위상을 0에서 2π까지 변화시킬 수 있다. 이때, SLM(100)의 화소들 중에서 이웃하는 한 쌍의 화소들은 입사광의 위상을 서로 다르게 변조한다. 예를 들어, SLM(100)의 어느 한 라인의 화소가 변조하는 입사광의 위상은 그 화소와 수직 방향(y축 방향)으로 이웃하는 화소가 변조하는 입사광의 위상과 서로 다르다. 즉, 도 5와 같이 기수 라인의 제1 화소(Podd1)는 입사광의 위상을 φ1로 변조하고, 제1 화소(Podd1)와 수직 방향(y축 방향)으로 이웃하는 우수 라인의 제2 화소(Peven2)는 입사광의 위상을 φ2로 변조할 수 있다. 즉, 제1 화소(Podd1)는 제1 선편광(AeiΦ0(↕))의 위상을 φ1로 변조하여 제1 변조광(AeiΦ1(↕))을 출력하고, 제2 화소(Peven2)는 제1 선편광(Aei Φ0(↕))의 위상을 φ2로 변조하여 제2 변조광(AeiΦ2(↕))을 출력한다. 한편, 도 5에서는 설명의 편의를 위해 SLM(100)의 기수 라인의 제1 화소(Podd1)와 그와 이웃하는 우수 라인의 제2 화소(Peven2)만을 예시하였다. 하지만, SLM(100)에는 다수의 라인들이 형성되며, 하나의 기수 라인에는 다수의 화소가 배열되고, 하나의 우수 라인에는 다수의 화소가 배열될 수 있다.
위상 지연판(400)은 SLM(100)으로부터 출력된 광을 그대로 통과시키는 통과층(410)과, SLM(100)으로부터 출력된 광의 위상을 λ/2 만큼 지연시켜 편광 방향을 변경하는 λ/2 지연층(420)을 포함한다. 위상 지연판(400)의 통과층(410)은 SLM(100)의 기수 라인들과 대향되고, λ/2 지연층(420)은 SLM(100)의 우수 라인들에 대향될 수 있다. 따라서, 위상 지연판(400)의 통과층(410)은 제1 화소(Podd1)로부터 출력된 제1 변조광(Aei Φ1(↕))을 그대로 통과시킨다. 위상 지연판(400)의 λ/2 지연층(420)은 입사광의 위상을 λ/2 만큼 지연시키므로, 제2 화소(Podd2)로부터 출력된 제2 변조광(Aei Φ2(↕))의 편광 방향을 수평 방향(z축 방향)(⊙)으로 변환하여 출력한다. 따라서, 위상 지연판(400)의 통과층(410)을 통과한 제1 변조광(Aei Φ1(↕))은 수직 방향(↕)으로 진동하고, λ/2 지연층(420)을 통과한 제2 변조광(Aei Φ2(⊙))은 수평 방향(⊙)으로 진동한다.
광 결합장치(300)는 제1 변조광(AeiΦ1(↕))의 광경로를 변경함으로써, 제1 변조광(AeiΦ1(↕))과 제2 변조광(AeiΦ2(⊙))을 결합하여 출력한다. 구체적으로, 광 결합장치(300)는 제1 광경로 변환필름(310), 제2 광경로 변환필름(320), 스페이서(330), 블랙 패턴(340) 등을 포함한다.
제1 광경로 변환필름(310)은 수직 편광(↕)(또는 수평 편광(⊙))의 경로를 변환하여 출력할 수 있다. 이 경우, 제1 광경로 변환필름(310)은 수평 편광(⊙)(또는 수직 편광(↕))의 경로를 변환하지 않고 그대로 통과시킨다. 예를 들어, 제1 광경로 변환필름(310)은 도 5와 같이 수직 편광(↕)을 갖는 제1 변조광(AeiΦ1(↕))의 광경로를 소정의 제1 각도(θ1)만큼 변환한다. 그 결과, 제1 변조광(AeiΦ1(↕))은 제2 광경로 변환필름(320)에 제1 각도(θ1)로 비스듬하게 입사된다. 제2 광경로 변환필름(320)에 비스듬하게 입사되는 제1 각도(θ1)는 제2 광경로 변환필름(320)의 입사 경계면의 수직 법선에서 측정한 각도이다. 제1 광경로 변환필름(310)은 수평 편광(⊙)을 갖는 제2 변조광(Aei Φ2(⊙))의 광경로를 변환하지 않고 그대로 통과시킨다.
제2 광경로 변환필름(320)은 수직 편광(↕)(또는 수평 편광(⊙))으로 입사되는 광의 경로를 변환하여 출력할 수 있다. 이 경우, 제2 광경로 변환필름(320)은 수평 편광(⊙)(또는 수직 편광(↕))으로 입사되는 광의 경로를 변환하지 않고 그대로 통과시킨다. 예를 들어, 제2 광경로 변환필름(320)은 도 5와 같이 수평 편광(⊙)을 갖는 제2 변조광(AeiΦ2(⊙))의 광경로를 변환하지 않고 그대로 통과시킨다. 또한, 제2 광경로 변환필름(320)은 도 5와 같이 제1 각도(θ1)로 입사되고 수직 편광(↕)을 갖는 제1 변조광(Aei Φ1(↕))의 광경로를 제1 각도(θ1)만큼 변환한다. 그 결과, 제2 광경로 변환필름(320)은 도 5와 같이 제1 변조광(AeiΦ1(↕))을 제2 변조광(AeiΦ2(⊙))과 결합하여 출력시킬 수 있다. 광 결합장치(300)의 구체적인 구조에 대한 자세한 설명은 도 6을 결부하여 후술하며, 광 결합장치(300)의 제조 방법에 대한 자세한 설명은 도 7 내지 도 10을 결부하여 후술한다.
스페이서(330)는 제1 광경로 변환필름(310)에 의해 광경로가 변환된 제1 변조광(Aei Φ1(↕))이 제2 변조광(AeiΦ2(⊙))과 결합될 수 있도록 제1 광경로 변환필름(310)과 제2 광경로 변환필름(320) 사이에 공간을 마련한다. 스페이서(330)의 일 측면에는 제1 광경로 변환필름(310)이 부착되고, 타 측면에는 제2 광경로 변환필름(320)이 부착된다.
블랙 패턴(340)은 제2 광경로 변환필름(320) 상에서 SLM(100)의 기수 라인들에 대향되는 영역에 형성된다. 블랙 패턴(340)은 도 5와 같이 제1 변조광(Aei Φ1(↕)) 중에서 제1 광경로 변환필름(310)에 의해 광경로가 변환되지 않고 직진하는 일부 광을 차단하는 역할을 한다.
종합해보면, 광 결합장치(300)는 기수 라인의 제1 화소(Podd1)로부터 출력되는 제1 변조광(AeiΦ1(↕))과 제1 화소(Podd1)에 이웃하는 우수 라인의 화소(Peven2)로부터 출력된 제2 변조광(Aei Φ2(⊙))을 결합하여 출력할 수 있다.
한편, 도 5에 도시된 바와 같이 광 결합장치(300)에서 제1 변조광(AeiΦ1(↕))의 이동거리(d1)와 제2 변조광(Aei Φ2(⊙))의 이동거리(d2)는 차이가 나게 된다. 즉, 제1 변조광(Ae 1(↕))의 이동거리(d1)는 제2 변조광(AeiΦ2(⊙))의 이동거리(d2)보다 길다. 이를 해결하기 위해, SLM(100)의 우수 라인의 제2 화소(Peven2)가 제1 변조광(AeiΦ1(↕))의 이동거리(d1)와 제2 변조광(AeiΦ2(⊙))의 이동거리(d2)를 고려하여 제2 변조광(Aei Φ2(⊙))의 위상을 더 지연시키는 경우, 제2 변조광(AeiΦ2(⊙))의 속도를 제1 변조광(Aei Φ1(↕))의 속도보다 늦출 수 있다. 이 경우, 제1 변조광(AeiΦ1(↕))과 제2 변조광(AeiΦ2(⊙))은 광 결합장치(300)로부터 동시에 출력될 수 있다. 이를 위해, SLM(100)의 제2 화소(Peven2)는 제2 변조광(AeiΦ2(⊙))의 위상을 Φ'만큼 더 지연시켜 출력할 수 있다. Φ'는 수학식 2와 같이 산출될 수 있다.
Figure 112013086008549-pat00002
수학식 2에서, d1은 제1 변조광(AeiΦ1(↕))의 이동거리, d2는 제2 변조광(AeiΦ2(⊙))의 이동거리, n은 광 결합장치(300)의 스페이서(330)의 굴절률을 의미한다.
SLM(100)이 제2 변조광(AeiΦ2(⊙))의 위상을 Φ'만큼 더 지연시키기 위해, 제어부(600)는 제2 화소(Peven2)에 공급될 디지털 데이터(DATA)에 보상 데이터(CDATA)만큼을 합산하여 데이터 구동회로에 공급하고, 데이터 구동회로는 보상 데이터(CDATA)가 합산된 디지털 데이터(DATA)를 데이터 전압으로 변환하여 제2 화소(Peven2)에 공급한다. 보상 데이터(CDATA)는 수학식 2에 의해 산출된 Φ'를 고려하여 사전 실험을 통해 미리 결정될 수 있다. 또한, 제어부(600)는 보상 데이터(CDATA)를 저장하는 메모리를 포함할 수 있다.
편광판(500)은 광 결합장치(300)로부터 결합되어 출력되는 제1 변조광(Ae1(↕))과 제2 변조광(Aei Φ2(⊙)) 중에서 +45도 편광 또는 -45도 편광만을 통과시킨다. 이로 인해, 제1 변조광(Aei Φ1(↕))과 제2 변조광(AeiΦ2(⊙))은 편광판(500)을 통과한 후, 편광 방향이 같아진다. 따라서, 제1 변조광(Aei Φ1(↕))과 제2 변조광(Aei Φ2(⊙))은 편광판(500)을 통과한 후 수학식 2와 같이 복소 변조된다.
Figure 112013086008549-pat00003
수학식 3에서, A는 진폭, φ1은 제1 변조광의 위상, φ2은 제2 변조광의 위상이다. 수학식 3에 의하면, 결합광(CL)은 2Acos[(φ12)/2]의 진폭 성분과 ei (φ1+φ2)/2의 위상 성분을 갖는다.
이상에서 살펴본 바와 같이, 본 발명은 백라이트 유닛으로부터 출력된 광에 대해서 하나의 SLM을 이용하여 위상만을 변조한다. 특히, 본 발명은 인접한 두 화소에서 광의 위상을 서로 다르게 변조하고, 위상이 서로 다른 두 개의 광을 복소 변조하여 진폭과 위상을 조정함으로써 공간상에 홀로그래픽 이미지를 형성할 수 있다. 그 결과, 본 발명은 하나의 SLM을 이용하므로, 디지털 홀로그램 영상 표시장치의 제조비용을 절감할 수 있고, 그의 구동이 단순해지며, 그의 두께를 줄일 수 있다.
도 6은 도 5의 광 결합장치를 상세히 보여주는 일 예시도면이다. 도 6을 참조하면, 광 결합장치(300)는 제1 광경로 변환필름(310), 제1 투명 기판(311), 제2 광경로 변환필름(320), 제2 투명 기판(321), 스페이서(330), 및 블랙 패턴(340)을 포함한다.
제1 광경로 변환필름(310)은 도 5에서 설명한 바와 같이 제1 변조광(AeiΦ1(↕))의 광경로를 변환하여 출력하고, 제2 변조광(AeiΦ2(⊙))의 광경로를 변환하지 않고 그대로 출력한다. 도 5에서는 제1 변조광(AeiΦ1(↕))이 수직 편광(↕)이고, 제2 변조광(Aei Φ2(⊙))이 수평 편광(⊙)인 것을 중심으로 설명하였음에 주의하여야 한다.
제1 투명 기판(311)은 제1 광경로 변환필름(310)을 지지한다. 제1 투명 기판(311)은 빛이 입사했을 때 감속(retardation) 없이 진행할 수 있는 글래스(glass), 폴리 카보네이트(polycarbonate), 및 TAC(tri-acetyl cellulose) 중 어느 하나로 구현될 수 있다.
제2 광경로 변환필름(320)은 도 5에서 설명한 바와 같이 제1 광경로 변환필름(310)으로부터 광경로가 변환되어 제1 각도(θ1)로 입사되는 제1 변조광(AeiΦ1(↕))의 광경로를 변환함으로써, 제1 변조광(AeiΦ1(↕))과 제2 변조광(AeiΦ2(⊙))을 결합하여 출력한다. 제2 광경로 변환필름(320)에 비스듬하게 입사되는 제1 각도(θ1)는 제2 광경로 변환필름(320)의 입사 경계면의 수직 법선에서 측정한 각도이다. 도 5에서는 제1 변조광(AeiΦ1(↕))이 수직 편광(↕)이고, 제2 변조광(AeiΦ2(⊙))이 수평 편광(⊙)인 것을 중심으로 설명하였음에 주의하여야 한다.
제2 투명 기판(321)은 제2 광경로 변환필름(320)을 지지한다. 제2 투명 기판(321)은 빛이 입사했을 때 감속(retardation) 없이 진행할 수 있는 글래스(glass), 폴리 카보네이트(polycarbonate), 및 TAC(tri-acetyl cellulose) 중 어느 하나로 형성될 수 있다.
스페이서(330)는 제1 광경로 변환필름(310)에 의해 광경로가 변환된 제1 변조광(Aei Φ1(↕))이 제2 변조광(AeiΦ2(⊙))과 결합될 수 있도록 제1 광경로 변환필름(310)과 제2 광경로 변환필름(320) 사이에 공간을 마련한다.
스페이서(330)의 굴절률은 제1 및 제2 광경로 변환필름들(310, 320)과 동일하게 구현될 수 있다. 예를 들어, 제1 및 제2 광경로 변환필름들(310, 320)의 굴절률과 스페이서(330)의 굴절률은 1.5일 수 있다. 또한, 스페이서(330)는 복굴절이 발생하지 않는 비복굴절(non-birefringence) 재료로 형성될 수 있다. 예를 들어, 스페이서(330)는 폴리 카보네이트(polycarbonate), 및 TAC(tri-acetyl cellulose) 중 어느 하나로 형성될 수 있다.
블랙 패턴(340)은 제2 투명 기판(321) 상에서 SLM(100)의 기수 라인들에 대향되는 영역에 형성된다. 이로 인해, 블랙 패턴(340)은 도 5와 같이 제1 변조광(Aei Φ1(↕)) 중에서 제1 광경로 변환필름(310)에 의해 광경로가 변환되지 않고 직진하는 일부 광을 차단할 수 있다.
한편, 제1 광경로 변환필름(310)의 중심에서부터 제2 광경로 변환필름(320)의 중심까지의 거리를 d 라 하고, 제1 변조광(AeiΦ1(↕))의 수직 방향(y축 방향) 이동 거리를 h 라 할 때, tanθ1은 수학식 4와 같이 산출될 수 있다.
Figure 112013086008549-pat00004
또한, 스페이서(330)의 두께를 B 라 하고, 제1 광경로 변환필름(310)의 두께를 a 라 하며, 제2 광경로 변환필름(320)의 두께를 c라 할 때, 제1 광경로 변환필름(310)의 중심에서부터 제2 광경로 변환필름(320)의 중심까지의 거리(d)는 수학식 5와 같이 산출될 수 있다.
Figure 112013086008549-pat00005
수학식 4와 수학식 5를 정리하면, 스페이서의 두께(B)는 수학식 6과 같이 산출될 수 있다.
Figure 112013086008549-pat00006
결국, 본 발명은 제1 광경로 변환필름(310)의 두께(a), 제2 광경로 변환필름(320)의 두께(b), 제1 변조광(AeiΦ1(↕))의 수직 방향(y축 방향) 이동 거리(h) 및 tanθ1에 따라 스페이서(330)의 두께(B)를 설계할 수 있다. 예를 들어, 제1 광경로 변환필름(310)의 두께(a)와 제2 광경로 변환필름(320)의 두께(b)가 각각 20㎛이고, 제1 변조광(Ae 1(↕))의 수직 방향(y축 방향) 이동 거리(h)가 135㎛이며, θ1이 60 도인 경우, 스페이서(330)의 두께(B)는 대략 58㎛로 설계될 수 있다.
도 7은 본 발명의 제1 실시 예에 따른 광 결합장치의 제조 방법을 보여주는 흐름도이다. 도 8a 내지 도 8c는 도 7의 광 결합장치의 제조 방법의 일 예를 보여주는 예시도면들이다. 도 7 및 도 8a 내지 도 8c를 결부하여 본 발명의 제1 실시 예에 따른 광 결합장치의 제조 방법을 상세히 설명한다.
첫 번째로, 제1 광경로 변환필름(310)에 광경로 패턴을 형성한다. 제1 광경로 변환필름(310)은 광중합체(photopolymer)의 기록 매질을 포함하며, 이 기록 매질에 광경로 패턴이 기록된다. 제1 광경로 변환필름(310)은 제1 투명 기판(311)에 의해 지지될 수 있다.
구체적으로, 도 8a와 같이 제1 광경로 변환필름(310)의 입사 면에 수직으로 제1 평행광(PL1)을 입사시킨다. 또한, 제1 광경로 변환필름(310)의 입사 면에 제1 각도(θ1)로 비스듬하게 제2 평행광(PL2)을 입사시킨다. 제1 광경로 변환필름(310)에 비스듬하게 입사되는 제1 각도(θ1)는 제1 광경로 변환필름(310)의 입사 경계면의 수직 법선에서 측정한 각도이다. 제1 평행광(PL1)과 제2 평행광(PL2)은 도 8a와 같이 제1 투명 기판(311)을 통해 제1 광경로 변환필름(310)에 입사될 수 있다. 제1 평행광(PL1)과 제2 평행광(PL2)은 동일한 편광 방향을 가지며, 예를 들어 수직 편광(↕) 또는 수평 편광(⊙)일 수 있다. 제1 평행광(PL1)과 제2 평행광(PL2)은 레이저 광원으로부터 출사되는 평행광일 수 있다.
제1 평행광(PL1)과 제2 평행광(PL2)이 동시에 제1 광경로 변환필름(310)의 기록 매질에 입사되는 경우, 제1 평행광(PL1)과 제2 평행광(PL2)에 의한 간섭 패턴이 제1 광경로 변환필름(310)의 기록 매질에 기록된다. 이로 인해, 제1 평행광(PL1)이 제1 광경로 변환필름(310)에 입사되는 경우, 제1 평행광(PL1)은 제1 각도(θ1)만큼 회절되어 출력된다. 또한, 제2 평행광(PL2)이 제1 광경로 변환필름(310)에 입사되는 경우, 제2 평행광(PL2)은 제1 각도(θ1)만큼 회절되어 출력된다.
한편, 제1 평행광(PL1)과 제2 평행광(PL2)이 수직 편광(↕)인 경우, 제1 광경로 변환필름(310)은 수직 편광(↕)의 평행광이 입사되는 경우에만 회절 효과를 가지며, 수평 편광(⊙)의 평행광이 입사되는 경우에는 회절 효과 없이 그대로 통과시킴에 주의하여야 한다. 또한, 제1 평행광(PL1)과 제2 평행광(PL2)이 수평 편광(⊙)인 경우, 제1 광경로 변환필름(310)은 수평 편광(⊙)의 평행광이 입사되는 경우에만 회절 효과를 가지며, 수직 편광(↕)의 평행광이 입사되는 경우에는 회절 효과 없이 그대로 통과시킴에 주의하여야 한다. 따라서, 제1 광경로 변환필름(310)은 도 5와 같이 수직으로 입사되는 제1 변조광(AeiΦ1(↕))을 제1 각도(θ1)만큼 회절시켜 출력함과 동시에 제2 변조광(Aei Φ2(⊙))의 광경로를 변환하지 않고 그대로 출력할 수 있다. (S101)
두 번째로, 제2 광경로 변환필름(320)에 광경로 패턴을 형성한다. 제2 광경로 변환필름(320)은 광중합체(photopolymer)의 기록 매질을 포함하며, 이 기록 매질에 광경로 패턴이 기록된다. 제2 광경로 변환필름(320)은 제2 투명 기판(312)에 의해 지지될 수 있다.
구체적으로, 도 8b와 같이 제2 광경로 변환필름(320)의 입사 면에 수직으로 제1 평행광(PL1)을 입사시킨다. 또한, 제2 광경로 변환필름(320)의 입사 면에 제1 각도(θ1)로 비스듬하게 제2 평행광(PL2)을 입사시킨다. 제2 광경로 변환필름(320)에 비스듬하게 입사되는 제1 각도(θ1)는 제2 광경로 변환필름(320)의 입사 경계면의 수직 법선에서 측정한 각도이다. 제1 평행광(PL1)과 제2 평행광(PL2)은 도 8b와 같이 제2 투명 기판(321)을 거치지 않고 제2 광경로 변환필름(320)에 바로 입사될 수 있다. 제1 평행광(PL1)과 제2 평행광(PL2)은 동일한 편광 방향을 가지며, 예를 들어 수직 편광(↕) 또는 수평 편광(⊙)일 수 있다. 제1 평행광(PL1)과 제2 평행광(PL2)은 레이저 광원으로부터 출사되는 평행광일 수 있다.
제1 평행광(PL1)과 제2 평행광(PL2)이 동시에 제2 광경로 변환필름(320)의 기록 매질에 입사되는 경우, 제1 평행광(PL1)과 제2 평행광(PL2)에 의한 간섭 패턴이 제2 광경로 변환필름(320)의 기록 매질에 기록된다. 이로 인해, 제1 평행광(PL1)이 제2 광경로 변환필름(320)에 입사되는 경우, 제1 평행광(PL1)은 제1 각도(θ1)만큼 회절되어 출력된다. 또한, 제2 평행광(PL2)이 제2 광경로 변환필름(320)에 입사되는 경우, 제2 평행광(PL2)은 제1 각도(θ1)만큼 회절되어 출력된다.
한편, 제1 평행광(PL1)과 제2 평행광(PL2)이 수직 편광(↕)인 경우, 제2 광경로 변환필름(320)은 수직 편광(↕)의 평행광이 입사되는 경우에만 회절 효과를 가지며, 수평 편광(⊙)의 평행광이 입사되는 경우에는 회절 효과 없이 그대로 통과시킴에 주의하여야 한다. 또한, 제1 평행광(PL1)과 제2 평행광(PL2)이 수평 편광(⊙)인 경우, 제2 광경로 변환필름(320)은 수평 편광(⊙)의 평행광이 입사되는 경우에만 회절 효과를 가지며, 수직 편광(↕)의 평행광이 입사되는 경우에는 회절 효과 없이 그대로 통과시킴에 주의하여야 한다. 따라서, 제2 광경로 변환필름(320)은 도 5와 같이 제1 각도(θ1)로 비스듬하게 입사되는 제1 변조광(Aei Φ1(↕))을 제1 각도(θ1)만큼 회절시켜 출력함과 동시에 제2 변조광(AeiΦ2(⊙))의 광경로를 변환하지 않고 그대로 출력할 수 있다. (S102)
세 번째로, 광경로 패턴이 기록 매질에 기록된 제1 광경로 변환필름(310)과 제2 광경로 변환필름(320)을 스페이서(330)에 접착한다. 구체적으로, 도 8c와 같이 스페이서(330)의 일 측면에 제1 광경로 변환필름(310)을 접착하고, 타 측면에 제2 광경로 변환필름(320)을 접착한다. 이때, OCA(optically clear adhesive)가 접착 물질로 사용될 수 있다. (S103)
도 9는 본 발명의 제2 실시 예에 따른 광 결합장치의 제조 방법을 보여주는 흐름도이다. 도 10은 도 9의 광 결합장치의 제조 방법의 일 예를 보여주는 예시도면이다. 도 9 및 도 10을 결부하여 본 발명의 제2 실시 예에 따른 광 결합장치의 제조 방법을 상세히 설명한다.
첫 번째로, 스페이서(330)에 제1 광경로 변환필름(310)과 제2 광경로 변환필름(320)을 접착한다. 구체적으로, 스페이서(330)의 일 측면에 제1 광경로 변환필름(310)을 접착하고, 타 측면에 제2 광경로 변환필름(320)을 접착한다. 스페이서(330)가 부착된 제1 광경로 변환필름(310)의 일 측면의 반대 면에는 제1 광경로 변환필름(310)을 지지하기 위한 제1 투명 기판(311)이 접착될 수 있다. 또한, 스페이서(330)가 부착된 제2 광경로 변환필름(320)의 일 측면의 반대 면에는 제2 광경로 변환필름(320)을 지지하기 위한 제2 투명 기판(321)이 접착될 수 있다. 이때, OCA(optically clear adhesive)가 접착 물질로 사용될 수 있다. (S201)
두 번째로, 제1 및 제2 광경로 변환필름들(310, 320)에 동시에 광경로 패턴을 형성한다. 제1 및 제2 광경로 변환필름들(310, 320) 각각은 광중합체(photopolymer)의 기록 매질을 포함하며, 이 기록 매질에 광경로 패턴이 기록된다.
구체적으로, 도 10과 같이 제1 및 제2 광경로 변환필름들(310, 320)의 입사 면에 수직으로 제1 평행광(PL1)을 입사시킨다. 또한, 제1 및 제2 광경로 변환필름들(310, 320)의 입사 면에 제1 각도(θ1)로 비스듬하게 제2 평행광(PL2)을 입사시킨다. 제1 및 제2 광경로 변환필름들(310, 320)에 비스듬하게 입사되는 제1 각도(θ1)는 제1 및 제2 광경로 변환필름(310, 320)의 입사 경계면의 수직 법선에서 측정한 각도이다. 제1 평행광(PL1)과 제2 평행광(PL2)은 동일한 편광 방향을 가지며, 예를 들어 수직 편광(↕) 또는 수평 편광(⊙)일 수 있다. 제1 평행광(PL1)과 제2 평행광(PL2)은 레이저 광원으로부터 출사되는 평행광일 수 있다.
제1 평행광(PL1)과 제2 평행광(PL2)이 동시에 제1 광경로 변환필름(310)의 기록 매질에 입사되는 경우, 제1 평행광(PL1)과 제2 평행광(PL2)에 의한 간섭 패턴이 제1 광경로 변환필름(310)의 기록 매질에 기록된다. 이로 인해, 제1 평행광(PL1)이 제1 광경로 변환필름(310)에 입사되는 경우, 제1 평행광(PL1)은 제1 각도(θ1)만큼 회절되어 출력된다. 또한, 제2 평행광(PL2)이 제1 광경로 변환필름(310)에 입사되는 경우, 제2 평행광(PL2)은 제1 각도(θ1)만큼 회절되어 출력된다.
제1 평행광(PL1)과 제2 평행광(PL2)이 동시에 제2 광경로 변환필름(320)의 기록 매질에 입사되는 경우, 제1 평행광(PL1)과 제2 평행광(PL2)에 의한 간섭 패턴이 제2 광경로 변환필름(320)의 기록 매질에 기록된다. 이로 인해, 제1 평행광(PL1)이 제2 광경로 변환필름(320)에 입사되는 경우, 제1 평행광(PL1)은 제1 각도(θ1)만큼 회절되어 출력된다. 또한, 제2 평행광(PL2)이 제2 광경로 변환필름(320)에 입사되는 경우, 제2 평행광(PL2)은 제1 각도(θ1)만큼 회절되어 출력된다.
한편, 제1 평행광(PL1)과 제2 평행광(PL2)이 수직 편광(↕)인 경우, 제1 및 제2 광경로 변환필름들(310, 320)은 수직 편광(↕)의 평행광이 입사되는 경우에만 회절 효과를 가지며, 수평 편광(⊙)의 평행광이 입사되는 경우에는 회절 효과 없이 그대로 통과시킴에 주의하여야 한다. 또한, 제1 평행광(PL1)과 제2 평행광(PL2)이 수평 편광(⊙)인 경우, 제1 및 제2 광경로 변환필름들(310, 320)은 수평 편광(⊙)의 평행광이 입사되는 경우에만 회절 효과를 가지며, 수직 편광(↕)의 평행광이 입사되는 경우에는 회절 효과 없이 그대로 통과시킴에 주의하여야 한다. 따라서, 제1 광경로 변환필름(310)은 도 5와 같이 수직으로 입사되는 제1 변조광(AeiΦ1(↕))을 제1 각도(θ1)만큼 회절시켜 출력함과 동시에 제2 변조광(AeiΦ2(⊙))의 광경로를 변환하지 않고 그대로 출력할 수 있다. 또한, 제2 광경로 변환필름(320)은 도 5와 같이 제1 각도(θ1)로 비스듬하게 입사되는 제1 변조광(AeiΦ1(↕))을 제1 각도(θ1)만큼 회절시켜 출력함과 동시에 제2 변조광(AeiΦ2(⊙))의 광경로를 변환하지 않고 그대로 출력할 수 있다. (S202)
본 발명의 제2 실시 예에 따른 광 결합장치의 제조 방법은 제1 및 제2 광경로 변환필름들(310, 320)에 광경로 패턴을 동시에 기록하므로, 본 발명의 제1 실시 예에 비해 제조 시간을 줄일 수 있는 장점이 있다. 또한, 본 발명의 제2 실시 예에 따른 광 결합장치의 제조 방법은 제1 및 제2 광경로 변환필름들(310, 320)이 제1 및 제2 투명 기판(311, 312) 뿐만 아니라 스페이서(330)에 의해서도 지지되므로, 본 발명의 제1 실시 예에 비해 광경로 패턴을 기록할 때 제1 및 제2 광경로 필름들(310, 320)이 수축(shrink)되는 것을 방지할 수 있는 장점이 있다.
이상에서 살펴본 바와 같이, 본 발명은 백라이트 유닛으로부터 출력된 광에 대해서 하나의 SLM을 이용하여 위상만을 변조한다. 특히, 본 발명은 인접한 두 화소에서 광의 위상을 서로 다르게 변조하고, 위상이 서로 다른 두 개의 광을 복소 변조하여 진폭과 위상을 조정함으로써 공간상에 홀로그래픽 이미지를 형성할 수 있다. 그 결과, 본 발명은 하나의 SLM을 이용하므로, 디지털 홀로그램 영상 표시장치의 제조비용을 절감할 수 있고, 그의 구동이 단순해지며, 그의 두께를 줄일 수 있다.
이상 설명한 내용을 통해 당업자라면 본 발명의 기술사상을 일탈하지 아니하는 범위에서 다양한 변경 및 수정이 가능함을 알 수 있을 것이다. 따라서, 본 발명의 기술적 범위는 명세서의 상세한 설명에 기재된 내용으로 한정되는 것이 아니라 특허 청구의 범위에 의해 정하여져야만 할 것이다.
00: SLM 110: SLM 구동부
200: 백라이트 유닛 210: 백라이트 구동부
300: 광 결합장치 310: 제1 광경로 변환필름
320: 제2 광경로 변환필름 330: 스페이서
340: 블랙 패턴 400: 위상 지연판
500: 편광판 600: 제어부

Claims (19)

  1. 삭제
  2. 삭제
  3. 삭제
  4. 삭제
  5. 삭제
  6. 삭제
  7. 삭제
  8. 입사되는 제1 선편광의 위상을 변조하여 제1 변조광을 출력하는 제1 화소와, 상기 제1 화소와 이웃하고 상기 제1 선편광의 위상을 상기 제1 변조광과 다르게 변조하여 제2 변조광을 출력하는 제2 화소를 포함하는 공간 광변조기; 및
    상기 제1 화소로부터 출력된 상기 제1 변조광의 광경로를 변환함으로써, 상기 제1 변조광과 상기 제2 변조광을 결합하여 출력하는 광 결합장치를 포함하는 디지털 홀로그램 영상 표시장치.
  9. 제 8 항에 있어서,
    상기 공간 광변조기의 배면에 위치하여 상기 공간 광변조기에 상기 제1 선편광을 조사하는 광원들을 포함하는 백라이트 유닛; 및
    상기 공간 광변조기와 상기 광 결합장치 사이에 위치하고, 상기 제1 화소로부터 출력된 상기 제1 변조광을 그대로 통과시키는 통과층과, 상기 제2 화소로부터 출력된 상기 제2 변조광의 위상을 λ/2 만큼 지연시키는 λ/2 지연층을 포함하는 위상 지연판을 더 포함하는 디지털 홀로그램 영상 표시장치.
  10. 제 9 항에 있어서,
    상기 통과층은 상기 제1 화소와 대향되고, 상기 λ/2 지연층은 상기 제2 화소와 대향되는 것을 특징으로 하는 디지털 홀로그램 영상 표시장치.
  11. 제 8 항에 있어서,
    상기 광 결합장치로부터 출력되는 상기 제1 변조광과 상기 제2 변조광 중에서 +45도 편광 또는 -45도 편광만을 통과시키는 편광판을 더 포함하는 디지털 홀로그램 영상 표시장치.
  12. 제 8 항에 있어서,
    상기 광 결합장치는,
    상기 제1 변조광의 광경로를 제1 각도만큼 변환하여 출력하고, 상기 제2 변조광의 광경로를 변환하지 않고 그대로 출력하는 제1 광경로 변환필름;
    상기 제2 변조광의 광경로를 변환하지 않고 그대로 출력하고, 상기 제1 광경로 변환필름에 의해 상기 제1 각도만큼 비스듬하게 입사되는 제1 변조광의 광경로를 상기 제1 각도만큼 변환하여 상기 제1 선편광과 제2 선편광을 결합하여 출력하는 제2 광경로 변환필름; 및
    상기 제1 광경로 변환필름과 상기 제2 광경로 변환필름 사이에 위치하는 스페이서를 포함하는 것을 특징으로 하는 디지털 홀로그램 영상 표시장치.
  13. 제 12 항에 있어서,
    상기 제1 화소는 상기 공간 광변조기의 기수 라인에 형성되고, 상기 제2 화소는 상기 공간 광변조기의 우수 라인에 형성된 것을 특징으로 하는 디지털 홀로그램 영상 표시장치.
  14. 제 12 항에 있어서,
    상기 광 결합장치는,
    상기 제2 광경로 변환필름상에서 상기 공간 광변조기의 기수 라인들에 대향되는 영역에 형성된 블랙 패턴을 더 포함하는 것을 특징으로 하는 디지털 홀로그램 영상 표시장치.
  15. 제 9 항에 있어서,
    상기 광원들은 평행광을 출력하는 레이저 광원들인 것을 특징으로 하는 디지털 홀로그램 영상 표시장치.
  16. 제 8 항에 있어서,
    상기 공간 광변조기는,
    상부 기판과 하부 기판 사이에 개재되어 굴절율 이방성에 의해 입사되는 상기 제1 선편광의 위상을 0에서 2π까지 변화시키는 액정층을 포함하는 것을 특징으로 하는 디지털 홀로그램 영상 표시장치.
  17. 제 8 항에 있어서,
    상기 제2 화소에 입력될 디지털 데이터에 보상 데이터를 합산하여 상기 제2 화소에 공급하도록 제어하는 제어부를 포함하고,
    상기 보상 데이터는 상기 광 결합장치에서 상기 제1 변조광의 이동거리와 상기 제2 변조광의 이동거리를 고려하여 상기 제2 변조광의 위상을 더 지연시키기 위해 산출된 데이터인 것을 특징으로 하는 디지털 홀로그램 영상 표시장치.
  18. 제 12 항에 있어서,
    상기 제1 선편광의 편광 방향과 상기 제2 선편광의 편광 방향은 서로 수직인 것을 특징으로 하는 디지털 홀로그램 영상 표시장치.
  19. 제 12 항에 있어서,
    상기 제1 및 제2 광경로 변환필름들 각각은 광경로 패턴을 기록하는 기록 매질을 포함하고, 상기 기록 매질은 광중합체인 것을 특징으로 하는 디지털 홀로그램 영상 표시장치.
KR1020130112799A 2012-10-31 2013-09-23 광 결합장치, 그의 제조 방법, 및 그를 포함한 디지털 홀로그램 영상 표시장치 KR102102905B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20120122732 2012-10-31
KR1020120122732 2012-10-31

Publications (2)

Publication Number Publication Date
KR20140055974A KR20140055974A (ko) 2014-05-09
KR102102905B1 true KR102102905B1 (ko) 2020-04-21

Family

ID=50546726

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130112799A KR102102905B1 (ko) 2012-10-31 2013-09-23 광 결합장치, 그의 제조 방법, 및 그를 포함한 디지털 홀로그램 영상 표시장치

Country Status (4)

Country Link
US (1) US9442460B2 (ko)
KR (1) KR102102905B1 (ko)
CN (1) CN103792826B (ko)
TW (1) TWI464457B (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009044910A1 (de) * 2009-06-23 2010-12-30 Seereal Technologies S.A. Räumliche Lichtmodulationseinrichtung zum Modulieren eines Wellenfeldes mit komplexer Information
US9904251B2 (en) 2015-01-15 2018-02-27 Electronics And Telecommunications Research Institute Holographic display apparatus and method of driving the same
US20160209809A1 (en) * 2015-01-15 2016-07-21 Electronics And Telecommunications Research Institute Holographic display device
CN106227017B (zh) * 2016-09-09 2018-12-25 京东方科技集团股份有限公司 一种反射式全息显示装置及其显示方法
CN107505824B (zh) 2017-08-30 2020-12-01 京东方科技集团股份有限公司 一种光学调制方法及装置、一种全息显示设备
TWI691739B (zh) * 2018-02-22 2020-04-21 陳台國 具有多重景深顯像的近眼顯示方法
CN111837068A (zh) * 2018-03-01 2020-10-27 海思智财控股有限公司 具有多重景深显像的近眼显示方法
CN111722513B (zh) * 2020-06-12 2021-07-30 北京邮电大学 基于频率分解的全息显示方法、系统、设备及存储介质

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120092735A1 (en) * 2009-06-23 2012-04-19 Seereal Technologies S.A. Three-dimensional light modulation arrangement for modulating a wave field having complex information

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4416505A (en) * 1981-10-26 1983-11-22 International Business Machines Corporation Method for making holographic optical elements with high diffraction efficiencies
US5416618A (en) 1992-11-10 1995-05-16 The United States Of America As Represented By The Administrator Of The National Aeronautics & Space Administration Full complex modulation using two one-parameter spatial light modulators
JPH0746633A (ja) * 1993-02-23 1995-02-14 Fujitsu Ltd 偏光制御型空間光スイッチ
US20050237896A1 (en) * 2002-08-01 2005-10-27 Pioneer Corporation Hologram recording/reproducing device and hologram recording medium
KR100589592B1 (ko) * 2004-05-10 2006-06-19 주식회사 대우일렉트로닉스 홀로그래픽 디지털 데이터 시스템의 미러 각도 측정 및서보 장치
DE502006001767D1 (de) * 2005-05-13 2008-11-20 Seereal Technologies Gmbh Projektionsvorrichtung und verfahren zur holographischen rekonstruktion von szenen
DE102007021774B4 (de) * 2007-04-30 2013-01-17 Seereal Technologies S.A. Lichtmodulator zur Darstellung komplexwertiger Informationen
CN201083965Y (zh) * 2007-09-13 2008-07-09 浙江师范大学 数字全息图制作与输出装置
GB0720484D0 (en) * 2007-10-19 2007-11-28 Seereal Technologies Sa Cells
WO2011015843A2 (en) * 2009-08-07 2011-02-10 Light Blue Optics Ltd Head up displays
US9129295B2 (en) * 2010-02-28 2015-09-08 Microsoft Technology Licensing, Llc See-through near-eye display glasses with a fast response photochromic film system for quick transition from dark to clear
KR20120020955A (ko) * 2010-08-31 2012-03-08 엘지디스플레이 주식회사 디지털 홀로그램 영상 재생 장치
KR101778962B1 (ko) * 2011-10-19 2017-09-19 삼성전자주식회사 고속으로 홀로그램을 생성하는 방법 및 장치

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120092735A1 (en) * 2009-06-23 2012-04-19 Seereal Technologies S.A. Three-dimensional light modulation arrangement for modulating a wave field having complex information

Also Published As

Publication number Publication date
KR20140055974A (ko) 2014-05-09
TW201416717A (zh) 2014-05-01
CN103792826A (zh) 2014-05-14
US9442460B2 (en) 2016-09-13
CN103792826B (zh) 2016-09-07
TWI464457B (zh) 2014-12-11
US20140118508A1 (en) 2014-05-01

Similar Documents

Publication Publication Date Title
KR102102905B1 (ko) 광 결합장치, 그의 제조 방법, 및 그를 포함한 디지털 홀로그램 영상 표시장치
KR101507202B1 (ko) 투과형 액정표시패널을 이용한 공간 광 변조 패널 및 이를 이용한 입체 영상 표시장치
KR102040653B1 (ko) 홀로그래피 입체 영상 표시장치
US10551795B2 (en) Spatial light modulator providing improved image quality and holographic display apparatus including the same
US20120019883A1 (en) Holographic displays with high resolution
KR102050504B1 (ko) 복합 공간 광 변조기 및 이를 포함한 3차원 영상 표시 장치
KR102336298B1 (ko) 홀로그램 프로젝터
KR102028987B1 (ko) 홀로그램 영상 표시 장치
US20140176671A1 (en) Apparatus for displaying a hologram
KR102040663B1 (ko) 디지털 홀로그램 영상 표시장치
KR102022529B1 (ko) 홀로그램 표시 시스템
KR20120069480A (ko) 홀로그램 영상 재생 장치 및 홀로그램 영상 재생 방법
KR20180050453A (ko) 공간 광 변조기 및 이를 이용한 입체 영상 표시장치
JP7439175B2 (ja) 液晶表示装置を使用するホログラム表示
KR20130054110A (ko) 패턴드 반파장 지연판을 이용한 광 결합 패널 및 그 제조 방법
KR102047829B1 (ko) 백라이트 유닛과 그를 이용한 홀로그램 영상 표시장치
KR20130106723A (ko) 박막 필름 기반의 투과형 액정표시패널을 이용한 공간 광 변조기 및 이를 이용한 입체 영상 표시장치
KR102099142B1 (ko) 공간 광 변조 패널 및 이를 이용한 입체 영상 표시장치
JP2003140108A (ja) 光学装置
CN110442006B (zh) 全息再现装置、全息再现系统和全息显示系统
KR101951941B1 (ko) 홀로그램 표시 시스템
JPH05323123A (ja) 光学装置
KR20150077180A (ko) 능동 박막 평판형 광 편향장치
JP2013003531A (ja) 液晶表示パネルの電極構造およびホログラム記録装置

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant