KR102098856B1 - Method for preparing tetrahydrodicyclopentadiene and tetrahydrotricyclopentadiene using ruthenium catalyst - Google Patents

Method for preparing tetrahydrodicyclopentadiene and tetrahydrotricyclopentadiene using ruthenium catalyst Download PDF

Info

Publication number
KR102098856B1
KR102098856B1 KR1020180136192A KR20180136192A KR102098856B1 KR 102098856 B1 KR102098856 B1 KR 102098856B1 KR 1020180136192 A KR1020180136192 A KR 1020180136192A KR 20180136192 A KR20180136192 A KR 20180136192A KR 102098856 B1 KR102098856 B1 KR 102098856B1
Authority
KR
South Korea
Prior art keywords
catalyst
tetrahydrotricyclopentadiene
tetrahydrodicyclopentadiene
tricyclopentadiene
ruthenium
Prior art date
Application number
KR1020180136192A
Other languages
Korean (ko)
Inventor
권태수
서동욱
한정식
전종기
유용인
박유리
Original Assignee
국방과학연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국방과학연구소 filed Critical 국방과학연구소
Priority to KR1020180136192A priority Critical patent/KR102098856B1/en
Application granted granted Critical
Publication of KR102098856B1 publication Critical patent/KR102098856B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • B01J35/1019
    • B01J35/1023
    • B01J35/1061
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/47Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with a bicyclo ring system containing ten carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/62Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with more than three condensed rings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

The present invention relates to a method for manufacturing tetrahydrodicyclopentadiene and tetrahydrotricyclopentadiene by hydrogenating dicyclopentadiene and tricyclopentadiene. More specifically, the present invention relates to a method for manufacturing tetrahydrodicyclopentadiene and tetrahydrotricyclopentadiene by hydrogenating dicyclopentadiene and tricyclopentadiene by using a catalyst on which ruthenium is carried on regular mesoporous silica.

Description

루테늄 촉매를 이용한 테트라하이드로디시클로펜타디엔 및 테트라하이드로트리시클로펜타디엔 제조방법{Method for preparing tetrahydrodicyclopentadiene and tetrahydrotricyclopentadiene using ruthenium catalyst}Method for preparing tetrahydrodicyclopentadiene and tetrahydrotricyclopentadiene using ruthenium catalyst

본 발명은 규칙적인 메조기공 실리카에 루테늄을 담지시킨 촉매를 사용하여 디시클로펜타디엔과 트리시클로펜타디엔을 수소화시켜서 테트라하이드로디시클로펜타디엔과 테트라하이드로트리시클로펜타디엔을 제조하는 방법에 관한 것이다.The present invention relates to a method for preparing tetrahydrodicyclopentadiene and tetrahydrotricyclopentadiene by hydrogenating dicyclopentadiene and tricyclopentadiene using a catalyst supporting ruthenium on regular mesoporous silica.

고에너지밀도 연료는 고용적에너지함량과 뛰어난 안정성으로 인하여 미사일과 로켓 등의 용적이 제한된 비행체의 연료로서 많은 주목을 받고 있는데, 디시클로펜타디엔과 트리시클로펜타디엔은 치밀한 구조로 인하여 밀도가 높고 추가적인 변형 에너지를 야기하기 때문에 이상적인 고에너지밀도 연료의 후보이다. 고용적에너지 함량과 낮은 어는점을 가져야 하는 고에너지밀도 연료로 사용 중인 엑소-테트라하이드로디시클로펜타디엔(exo-THDCPD)은 밀도(0.94 g/ml)와 발열량 수준(142,000 Btu/gal)이 낮아 밀도와 발열량을 개선하려는 노력이 경주되고 있다. 최근에 고에너지밀도 연료로 사용이 가능한 다환탄화수소 중에서 트리시클로펜타디엔이 유력한 후보로 개발되고 있다. High-energy-density fuel has attracted much attention as a fuel for aircraft with limited volumes such as missiles and rockets due to its high energy content and excellent stability. Dicyclopentadiene and tricyclopentadiene are dense and additional due to their compact structure. It is an ideal high energy density fuel candidate because it causes strain energy. Exo-tetrahydrodicyclopentadiene (exo-THDCPD), which is used as a high energy density fuel that must have a high energy content and low freezing point, has low density (0.94 g / ml) and low calorific value (142,000 Btu / gal). And efforts are being made to improve the calorific value. Recently, tricyclopentadiene is being developed as a strong candidate among polycyclic hydrocarbons that can be used as a high energy density fuel.

디시클로펜타디엔은 기존 석유화학 공정의 C5 유분에서 생산 가능한 원료이며, 이를 적절한 소중합/이성화 촉매반응 공정을 적용하면 테트라하이드로트리시클로펜타디엔(Tetrahydrotricyclopentadiene, THTCPD) 등의 고에너지밀도 연료로 적용할 수 있다. exo-THTCPD의 어는점, 발열량, 밀도는 각각 -40 oC 이하, 160,000 BTU/gal, 1.04 g/ml로 고에너지밀도 연료로서 우수하다고 알려져 있다.Dicyclopentadiene is a raw material that can be produced from the C 5 fraction of the existing petrochemical process, and it is applied as a high energy density fuel such as Tetrahydrotricyclopentadiene (THTCPD) when an appropriate small polymerization / isomerization catalytic reaction process is applied. can do. It is known that exo-THTCPD has a freezing point, calorific value, and density of -40 o C or less, 160,000 BTU / gal, and 1.04 g / ml, respectively, and is excellent as a high energy density fuel.

석유화학 공정의 C5 유분에서 정제 분리된 시클로펜타디엔은 열역학적으로 안정하지 않아 endo-디시클로펜타디엔으로 존재하게 된다. endo-디시클로펜타디엔을 이성화공정을 거쳐서 exo-디시클로펜타디엔으로 전환시킨 후에, 수소화 공정을 거치면 엑소-테트라하이드로디시클로펜타디엔(exo-THDCPD)이 제조되며 이는 고에너지밀도 연료로 사용할 수 있다.Cyclopentadiene purified and separated from the C 5 fraction of the petrochemical process is not thermodynamically stable and thus exists as endo-dicyclopentadiene. After converting endo-dicyclopentadiene to exo-dicyclopentadiene after isomerization, hydrogenation process produces exo-tetrahydrodicyclopentadiene (exo-THDCPD), which can be used as a high energy density fuel. have.

테트라하이드로트리시클로펜타디엔 제조는 시클로펜타디엔과 디시클로펜타디엔으로부터 2단계 공정을 거쳐서 제조될 수 있다. 첫 번째는 시클로펜타디엔과 디시클로펜타디엔의 이량화를 위한 딜스-알더 추가(Diels-Alder addition) 반응이다. 연료로의 저장안정성을 지니게 하기 위해서는 분자 결합내에 이중결합이 존재하지 않아야하므로, 2단계에서 수소화 반응을 거쳐 보유하고 있던 C=C 이중결합은 C-C의 단일결합의 형태로 전환하여 트리시클로펜타디엔에서 테트라하이드로트리시클로펜타디엔을 제조한다.Tetrahydrotricyclopentadiene production can be produced through a two-step process from cyclopentadiene and dicyclopentadiene. The first is the Diels-Alder addition reaction for the dimerization of cyclopentadiene and dicyclopentadiene. In order to have storage stability as fuel, there must be no double bond in the molecular bond, so the C = C double bond held in the hydrogenation reaction in step 2 is converted into the single bond form of CC and converted from tricyclopentadiene. Tetrahydrotricyclopentadiene is prepared.

첫 번째 반응인 디시클로펜타디엔과 시클로펜타디엔의 이량화 반응은 디시클로펜타디엔에 존재하는 2가지의 이중 결합 중 노보닐 고리(norbonyl ring)에 있는 C=C 이중 결합과 시클로펜틸(cyclopentyl)의 C=C 이중 결합 중에서 어느 이중 결합에 시클로펜타디엔이 반응하는가에 따라서 NB 첨가 또는 CP 첨가반응으로 구분된다. 원료인 디시클로펜타디엔의 96%이상은 endo형으로 존재하고, 노보닐(norbonyl) 이중결합이 시클로펜틸(cyclopentyl) 이중결합보다 반응성이 매우 높아 NB 첨가반응이 CP 첨가반응보다 우선적으로 진행된다. 따라서 생성된 트리시클로펜타디엔은 endo-exo-endo형의 입체화학적 구조를 지니는 NB 첨가물이 얻어지게 된다. Endo-exo-endo형 트리시클로펜타디엔을 이성화 반응을 거치게 되면 exo-exo-exo형의 트리시클로펜타디엔 (exo-TCPD)를 얻게 된다. Endo-exo-endo형 트리시클로펜타디엔 또는 exo-exo-exo형 트리시클로펜타디엔을 원료로 사용하여 수소화 공정을 거친 테트라하이드로트리시클로펜타디엔은 고에너지밀도 연료로 사용가능하다. The first reaction, the dimerization of dicyclopentadiene and cyclopentadiene, is a C = C double bond in the norbonyl ring and cyclopentyl among the two double bonds present in dicyclopentadiene. According to which of the C = C double bonds, cyclopentadiene reacts, it is classified into NB addition or CP addition reaction. More than 96% of the raw material dicyclopentadiene exists in the endo form, and the norbonyl double bond is more reactive than the cyclopentyl double bond, so the NB addition reaction proceeds preferentially over the CP addition reaction. Therefore, the resulting tricyclopentadiene is obtained with an NB additive having an endo-exo-endo type stereochemical structure. When the endo-exo-endo type tricyclopentadiene undergoes an isomerization reaction, an exo-exo-exo type tricyclopentadiene (exo-TCPD) is obtained. Tetrahydrotricyclopentadiene, which has undergone hydrogenation using Endo-exo-endo type tricyclopentadiene or exo-exo-exo type tricyclopentadiene as a raw material, can be used as a high energy density fuel.

테트라하이드로디시클로펜타디엔과 테트라하이드로트리시클로펜타디엔 제조를 위해서 알려진 수소화 반응으로는 키젤구어(Kieselguhr) 지지체에 니켈을 담지한 촉매를 사용하여 트리시클로펜타디엔으로부터 테트라하이드로트리시클로펜타디엔을 제조하는 기술이 미국특허 제 4401837에 알려져 있으나, 촉매의 활성이 낮아 반응 시간이 오래 소요되는 단점이 있다. 또한, 팔라듐-붕소/감마-알루미나 촉매를 사용하여 트리시클로펜타디엔으로부터 테트라하이드로트리시클로펜타디엔을 제조하는 기술이 Catalysis Communications 8, 571-575 (2007) 에 알려져 있으나, 고가의 팔라듐을 촉매로 사용하기 때문에 촉매의 가격을 낮출 필요가 있다. Hydrogenation reactions known for the production of tetrahydrodicyclopentadiene and tetrahydrotricyclopentadiene include the preparation of tetrahydrotricyclopentadiene from tricyclopentadiene using a catalyst carrying nickel on a Kiselguhr support. Although the technology is known from U.S. Patent No. 4401837, there is a disadvantage that the reaction time is long due to low activity of the catalyst. In addition, a technique for preparing tetrahydrotricyclopentadiene from tricyclopentadiene using a palladium-boron / gamma-alumina catalyst is known from Catalysis Communications 8, 571-575 (2007), but expensive palladium is used as a catalyst. Therefore, it is necessary to lower the price of the catalyst.

이에, 본 발명자들은 상술한 문제를 해결하기 위하여 연구 노력한 결과, 규칙적인 메조기공 실리카에 루테늄을 담지시킨 촉매를 사용하여 디시클로펜타디엔과 트리시클로펜타디엔을 수소화시켜서 테트라하이드로디시클로펜타디엔과 테트라하이드로트리시클로펜타디엔을 제조할 수 있음을 확인함으로써 본 발명을 완성하게 되었다. As a result, the present inventors tried to solve the above-mentioned problems, and, as a result, hydrogenated dicyclopentadiene and tricyclopentadiene using a catalyst supporting ruthenium on regular mesoporous silica to tetrahydrodicyclopentadiene and tetra The present invention was completed by confirming that hydrotricyclopentadiene can be prepared.

따라서, 본 발명의 목적은 디시클로펜타디엔과 트리시클로펜타디엔을 수소화시켜서 테트라하이드로디시클로펜타디엔과 테트라하이드로트리시클로펜타디엔을 제조하는 방법을 제공하는 데 있다. Accordingly, an object of the present invention is to provide a method for preparing tetrahydrodicyclopentadiene and tetrahydrotricyclopentadiene by hydrogenating dicyclopentadiene and tricyclopentadiene.

상기 목적을 달성하기 위한 디시클로펜타디엔과 트리시클로펜타디엔을 수소화시켜서 테트라하이드로디시클로펜타디엔과 테트라하이드로트리시클로펜타디엔을 제조하는 방법은 규칙적인 메조기공 실리카에 루테늄을 담지시킨 촉매를 사용하여 디시클로펜타디엔과 트리시클로펜타디엔을 수소화시켜서 테트라하이드로디시클로펜타디엔과 테트라하이드로트리시클로펜타디엔을 제조하는 방법으로 구성된다. A method of preparing tetrahydrodicyclopentadiene and tetrahydrotricyclopentadiene by hydrogenating dicyclopentadiene and tricyclopentadiene to achieve the above object is to use a catalyst in which ruthenium is supported on regular mesoporous silica. It consists of a method for producing tetrahydrodicyclopentadiene and tetrahydrotricyclopentadiene by hydrogenating dicyclopentadiene and tricyclopentadiene.

이하, 본 발명을 상세히 설명하면 다음과 같다. Hereinafter, the present invention will be described in detail.

전술한 바와 같이, 본 발명은 규칙적인 메조기공 실리카에 루테늄을 담지시킨 촉매를 사용하여 디시클로펜타디엔과 트리시클로펜타디엔을 수소화시켜서 테트라하이드로디시클로펜타디엔과 테트라하이드로트리시클로펜타디엔을 제조하는 방법에 관한 것이다.As described above, the present invention is to prepare tetrahydrodicyclopentadiene and tetrahydrotricyclopentadiene by hydrogenating dicyclopentadiene and tricyclopentadiene using a catalyst in which ruthenium is supported on regular mesoporous silica. It's about how.

본 발명에 따른 촉매에 있어서, 상기 규칙적인 메조기공 실리카는 규칙적으로 정렬된 메조기공을 갖는 것으로서, 상기 규칙적으로 정렬된 메조기공을 통해 불규칙하게 정렬된 다른 지지체에 비해 촉매 기공 내 활성점으로의 빠른 물질 확산 효과를 갖게 되어 촉매 활성을 높이게 된다. In the catalyst according to the present invention, the regular mesoporous silica has regularly aligned mesopores, and is faster to the active point in the catalyst pores compared to other supports that are irregularly aligned through the regularly aligned mesopores. It has a material diffusion effect, thereby increasing catalytic activity.

상기 메조기공 실리카로는, 해당 분야에서 사용되는 메조기공 실리카이면 특히 한정되는 것은 아니나, KIT(Korea Advanced Institute of Science and Technology) 및 SBA(Santa barbara Amorphous)의 시리즈 중 KIT-6 및 SBA-15를 메조기공 실리카로서 사용할 수 있다.The mesoporous silica is not particularly limited as long as it is a mesoporous silica used in the field, but KIT-6 and SBA-15 of the series of KIT (Korea Advanced Institute of Science and Technology) and SBA (Santa barbara Amorphous) It can be used as mesoporous silica.

상기 메조기공 실리카로서 KIT-6 또는 SBA-15는 계면활성제 미셀과 규산염 종 사이의 조합으로 생성하며, 입방 구조의 메조기공을 갖는 실리카인 상기 KIT-6 및 육각형 구조의 메조기공을 갖는 실리카인 상기 SBA-15는 계면활성제 미셀을 통해 기공의 직경을 조정할 수 있으며, 상기 메조기공 실리카는 표면적이 넓기 때문에 촉매 지지체로서 유용하고, 큰 기공 직경으로 크기가 큰 분자들의 물질전달이 용이하다는 장점이 있다.As the mesoporous silica, KIT-6 or SBA-15 is produced by the combination between surfactant micelles and silicate species, the KIT-6 being silica having mesopores having cubic structure, and the silica having mesopores having hexagonal structure. SBA-15 can adjust the pore diameter through the surfactant micelle, and the mesoporous silica is useful as a catalyst support because of its large surface area, and has the advantage of easy mass transfer of molecules with large pore diameters.

본 발명에서 촉매는 상기 KIT-6 또는 SBA-15 중 선택되는 어느 하나인 메조기공 실리카에 루테늄을 담지시킨 루테늄 촉매를 이용한다.In the present invention, the catalyst uses a ruthenium catalyst carrying ruthenium on mesoporous silica, which is any one selected from KIT-6 or SBA-15.

규칙적인 메조기공 실리카 지지체인 KIT-6 또는 SBA-15 지지체 위에 담지법을 사용하여 루테늄을 담지하여 사용하였다. 본 발명에서 사용한 KIT-6 지지체에 루테늄을 담지한 촉매는 기공크기가 5 ~ 9 nm인 규칙적인 메조기공을 갖는 지지체인데, 표면적이 450 m2/g ~ 520 m2/g이다. 또한 본 발명에서 사용한 SBA-15 지지체에 루테늄을 담지한 촉매는 기공크기가 6 ~ 9 nm인 메조기공을 갖는 지지체인데, 표면적이 400 m2/g ~ 500 m2/g이다. 본 발명에서 사용한 규칙적인 메조기공 실리카에 루테늄을 담지시킨 촉매는 기공의 크기가 5 ~ 9 ㎚인 메조기공을 갖기 때문에 디시클로펜타디엔과 트리시클로펜타디엔의 촉매 기공 내의 확산이 빨라서 촉매 기공 내의 표면 활성점에 도달하기 용이하다는 장점이 있다.A ruthenium was used on a regular mesoporous silica support KIT-6 or SBA-15 support using a loading method. The catalyst supporting ruthenium on the KIT-6 support used in the present invention is a support having regular mesopores having a pore size of 5 to 9 nm, and a surface area of 450 m 2 / g to 520 m 2 / g. In addition, the catalyst supporting ruthenium on the SBA-15 support used in the present invention is a support having mesopores having a pore size of 6 to 9 nm, and a surface area of 400 m 2 / g to 500 m 2 / g. Since the catalyst in which ruthenium is supported on the regular mesoporous silica used in the present invention has mesopores having a pore size of 5 to 9 nm, diffusion of dicyclopentadiene and tricyclopentadiene into the catalyst pores is fast, so that the surface within the catalyst pores It has the advantage of being easy to reach the active point.

본 발명의 일 실시예에 따르면, 상기 KIT-6에 루테늄을 담지할 때, 루테늄의 중량%는 0.5 ~ 5.0 중량%로 사용하는 것이 바람직하며, 상기 SBA-15에 루테늄을 담지할 경우도 상기 담지량을 따르며, 상기 루테늄의 중량%가 0.5 중량% 미만이면 촉매로서의 효과가 나타나지 않는 경향이 있고, 5.0 중량%를 초과하면 촉매의 표면적과 기공크기가 감소하여 촉매로서의 효과가 나타나지 않고 촉매의 가격이 비싸지는 경향이 있다. According to one embodiment of the present invention, when carrying ruthenium on the KIT-6, it is preferable to use 0.5% to 5.0% by weight of ruthenium, and when carrying ruthenium on the SBA-15 When the weight% of the ruthenium is less than 0.5% by weight, the effect as a catalyst tends not to appear, and when it exceeds 5.0% by weight, the surface area and pore size of the catalyst decreases, so that the effect as a catalyst does not appear and the price of the catalyst increases. Tend to

본 발명의 일 실시예에 따르면, 루테늄 전구체의 일종인 질산루테늄 (1.5 wt%) 31.85 g을 정량하여 증류수 400 ml에 혼합한다. 상기 루테늄 전구체 예로서는 질산루테늄, 염화루테늄 및 루테늄 아세틸아세토네이트 등으로부터 선택된다. 메조기공 실리카 지지체인 KIT-6 또는 SBA-15 10 g을 상기에서 제조한 용액에 넣고, 감압회전식 증류기(rotary vacuum evaporator)를 사용하여 함침법으로 루테늄을 담지하였다. 그 후 100℃의 오븐에서 충분히 건조시킨 후, 550℃에서 3시간동안 소성하여 메조기공 실리카에 루테늄을 담지시킨 촉매를 얻는다. According to an embodiment of the present invention, 31.85 g of ruthenium nitrate (1.5 wt%), which is a kind of ruthenium precursor, is quantified and mixed in 400 ml of distilled water. Examples of the ruthenium precursor are selected from ruthenium nitrate, ruthenium chloride and ruthenium acetylacetonate. 10 g of mesoporous silica support KIT-6 or SBA-15 was added to the solution prepared above, and ruthenium was supported by an impregnation method using a rotary vacuum evaporator. Then, after sufficiently drying in an oven at 100 ° C, calcination is performed at 550 ° C for 3 hours to obtain a catalyst carrying ruthenium on mesoporous silica.

이렇게 얻어진 촉매는 디시클로펜타디엔과 트리시클로펜타디엔을 반응물로 이용한 수소화 반응을 촉진시키기 위해 가루 형태의 촉매를 그대로 사용하거나, 바인더를 혼합하여 펠렛 형태로 제조하여 사용할 수 있다. 펠렛으로 성형하기 위한 조건은 하기와 같다.The catalyst thus obtained may be used in the form of a powdered catalyst as it is or in the form of pellets by mixing a binder to promote a hydrogenation reaction using dicyclopentadiene and tricyclopentadiene as reactants. The conditions for molding into pellets are as follows.

가루 형태의 촉매와 유기바인더인 메틸셀룰로오스 혼합하고 증류수를 섞어서 반죽하였다. 이 반죽을 유압식 피스톤 압출기를 이용하여 펠렛 형태의 촉매를 제조하고 일정한 길이로 절단한 후, 건조시킨 후, 650 ℃에서 소성시킨다. 소성을 거친 촉매는 수소 분위기에서 환원을 시킨다. 촉매를 고정층 촉매반응기에 투입하고 450℃에서 2시간 동안 30 mml/min의 유속으로 수소를 흘려서 환원 시킨 후 상온까지 온도를 내려주었다. 그 후 수소를 차단하고 질소를 흘린 후에, 산소의 농도가 5%인 산소와 질소 혼합가스를 105 cc/min의 유속으로 10분간 흘려서 패시베이션(passivation) 시켰다.The catalyst in the form of powder was mixed with methyl cellulose, an organic binder, and distilled water was mixed to knead. The dough is prepared by using a hydraulic piston extruder to prepare a pellet type catalyst, cut into a certain length, dried, and then fired at 650 ° C. The calcined catalyst is reduced in a hydrogen atmosphere. The catalyst was introduced into a fixed bed catalytic reactor and reduced by flowing hydrogen at a flow rate of 30 mml / min for 2 hours at 450 ° C, and then lowered to room temperature. Then, after blocking hydrogen and flowing nitrogen, an oxygen and nitrogen mixed gas having an oxygen concentration of 5% was flowed for 10 minutes at a flow rate of 105 cc / min to passivation.

상기 규칙적인 메조기공 실리카에 루테늄을 담지시킨 촉매는 디시클로펜타디엔과 트리시클로펜타디엔의 수소화 반응에 다음과 같은 반응조건에서 적용될 수 있다. 본 발명에서 디시클로펜타디엔과 트리시클로펜타디엔의 수소화 반응은 촉매 바스켓이 장착된 회분식 반응기에서 100~140 ℃, 바람직하게는 110~130℃의 반응온도에서 수행되는데, 상기 반응온도가 100℃ 미만이면 반응활성이 낮아지고, 130℃를 초과하면 반응물이 중합반응을 통해서 고분자 물질로 전환되기 때문에 테트라하이드로디시틀로펜타디엔과 테트라하이드로트리시틀로펜타디엔의 수율이 감소한다. 또한, 촉매의 양은 반응물 대비 1 ~ 20 wt%, 바람직하게는 5~15 wt%이며, 1wt% 미만에서는 활성이 낮고, 20 wt%를 초과하면 반응물과 촉매 혼합물로 이루어진 슬러리의 점도가 너무 커서 반응기 운전이 용이하지 않게 된다. The catalyst in which ruthenium is supported on the regular mesoporous silica can be applied to the hydrogenation reaction of dicyclopentadiene and tricyclopentadiene under the following reaction conditions. In the present invention, the hydrogenation reaction of dicyclopentadiene and tricyclopentadiene is performed at a reaction temperature of 100 to 140 ° C, preferably 110 to 130 ° C, in a batch reactor equipped with a catalyst basket, wherein the reaction temperature is less than 100 ° C. When the reaction activity is lowered and the temperature exceeds 130 ° C, the yields of tetrahydrodiscitropentadiene and tetrahydrotrisitlopentadiene decrease because the reactants are converted to polymer materials through polymerization. In addition, the amount of the catalyst is 1 to 20 wt%, preferably 5 to 15 wt%, compared to the reactants, the activity is low at less than 1 wt%, and when it exceeds 20 wt%, the viscosity of the slurry composed of the reactant and the catalyst mixture is too large to react Driving is not easy.

본 발명에서 디시클로펜타디엔과 트리시클로펜타디엔의 수소화 반응은 촉매 바스켓이 장착된 회분식 반응기에서 상기 반응 조건에서 30분 ~ 24 시간, 바람직하게는 1 ~ 12 시간동안 반응을 하는데, 30분 미만에서는 반응 활성이 낮고, 24시간 이상에서는 분자량이 큰 소중합체가 다량 생성되어 고상의 생성물이 생성되기 때문에 바람직하지 않다. In the present invention, the hydrogenation reaction of dicyclopentadiene and tricyclopentadiene is reacted for 30 minutes to 24 hours, preferably 1 to 12 hours under the above reaction conditions in a batch reactor equipped with a catalyst basket. Since the reaction activity is low and a polymer having a large molecular weight is generated in a large amount at 24 hours or more, it is not preferable because a solid product is produced.

전술한 바와 같은 본 발명의 제조방법은, 루테늄 촉매를 통해 디시클로펜타디엔과 트리시클로펜타디엔을 수소화 반응 시켜 고에너지 밀도 연료인 테트라하이드로디시클로펜타디엔 및 테트라하이드로트리시클로펜타디엔을 효율적으로 제조할 수 있는 효과가 있다.The manufacturing method of the present invention as described above, the hydrogenation reaction of dicyclopentadiene and tricyclopentadiene through a ruthenium catalyst to efficiently produce tetrahydrodicyclopentadiene and tetrahydrotricyclopentadiene, which are high energy density fuels. There is an effect that can be done.

이하, 실시예를 통해 본 발명을 좀 더 구체적으로 설명하나, 이에 본 발명의 범주가 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail through examples, but the scope of the present invention is not limited thereto.

비교예Comparative example

120 ml 용량의 회분식 반응기에 장착된 촉매바스켓에 Ru(1.5 wt%)/Kieselguhr 촉매 펠렛 4.0 g을 충진하고 디시클로펜타디엔과 트리시클로펜타디엔이 각각 40wt%씩 포함된 혼합물 40 g을 투입하고 수소를 가압하여 반응 실험을 실시하였다. 이때 촉매의 지지체로 사용한 Kieselguhr는 규조 퇴적물로부터 얻어지는 비정질 실리카로서 수소화 반응용 촉매의 지지체로 널리 사용된다. 반응기의 온도는 120 ℃, 반응 압력은 10 bar로 유지하였다. 반응 시작 6시간 후에 반응생성물을 가스 크로마토그래프 (gas chromatograph)를 사용하여 분석한 결과, 디시클로펜타디엔과 트리시클로펜타디엔 수소화 반응 전환율은 각각 23.1%와 11.9 %이었다.Filled with 4.0 g of Ru (1.5 wt%) / Kieselguhr catalyst pellets into a catalyst basket mounted in a 120 ml batch reactor, 40 g of a mixture containing 40% by weight of dicyclopentadiene and tricyclopentadiene, respectively, and hydrogen The reaction experiment was performed by pressing. At this time, Kieselguhr used as a catalyst support is an amorphous silica obtained from a diatom sediment and is widely used as a support for a catalyst for a hydrogenation reaction. The temperature of the reactor was maintained at 120 ° C and the reaction pressure was 10 bar. 6 hours after the start of the reaction, the reaction products were analyzed using a gas chromatograph, and the conversion rates of the dicyclopentadiene and tricyclopentadiene hydrogenation reactions were 23.1% and 11.9%, respectively.

실시예1 Example 1

상기 비교예에서 Ru(1.5 wt%)/KIT-6 촉매 펠렛 4.0g을 충진한 것을 제외하고 동일한 조건에서 반응실험을 수행하였다. 반응 시작 6시간 후에 반응생성물을 가스 크로마토그래프 (gas chromatograph)를 사용하여 분석한 결과, 디시클로펜타디엔과 트리시클로펜타디엔 수소화 반응 전환율은 각각 68.7%와 47.8 %이었다.In the comparative example, a reaction experiment was performed under the same conditions, except that 4.0 g of Ru (1.5 wt%) / KIT-6 catalyst pellet was filled. As a result of analyzing the reaction product 6 hours after the start of the reaction using a gas chromatograph, the conversion rates of dicyclopentadiene and tricyclopentadiene hydrogenation reactions were 68.7% and 47.8%, respectively.

실시예2 Example 2

상기 비교예에서 Ru(1.5 wt%)/SBA-15 촉매 펠렛 4.0g을 충진한 것을 제외하고 동일한 조건에서 반응실험을 수행하였다. 반응 시작 6시간 후에 반응생성물을 가스 크로마토그래프 (gas chromatograph)를 사용하여 분석한 결과, 디시클로펜타디엔과 트리시클로펜타디엔 수소화 반응 전환율은 각각 78.1%와 60.6 %이었다. In the comparative example, a reaction experiment was performed under the same conditions, except that 4.0 g of Ru (1.5 wt%) / SBA-15 catalyst pellet was filled. As a result of analyzing the reaction product 6 hours after the start of the reaction using a gas chromatograph, the conversion rates of dicyclopentadiene and tricyclopentadiene hydrogenation reactions were 78.1% and 60.6%, respectively.

본 발명의 실시예 및 비교예에 따른 디시클로펜타디엔과 트리시클로펜타디엔을 수소화시켜서 테트라하이드로디시틀로펜타디엔과 테트라하이드로트리시클로펜타디엔을 제조하는 반응 결과를 표 1 에 정리하였다.Table 1 summarizes the reaction results of preparing dihydropentacyclodiediene and tetrahydrotricyclopentadiene by hydrogenating dicyclopentadiene and tricyclopentadiene according to Examples and Comparative Examples of the present invention.

구분division 촉매 catalyst 촉매
형태
catalyst
shape
반응
온도
(℃)
reaction
Temperature
(℃)
반응
시간
(h)
reaction
time
(h)
DCPD 전환율 (%)DCPD conversion rate (%) TCPD 전환율 (%)TCPD conversion rate (%)
비교예 Comparative example Ru(1.5 wt%)/KieselguhrRu (1.5 wt%) / Kieselguhr pellet pellet 120120 66 23.123.1 11.911.9 실시예 1Example 1 Ru(1.5 wt%)/KIT-6 Ru (1.5 wt%) / KIT-6 pellet pellet 120120 66 68.768.7 47.847.8 실시예 2Example 2 Ru(1.5 wt%)/SBA-15 Ru (1.5 wt%) / SBA-15 pelletpellet 120120 66 78.178.1 60.660.6

※ DCPD : 디시클로펜타디엔※ DCPD: Dicyclopentadiene

※ TCPD : 트리시클로펜타디엔※ TCPD: Tricyclopentadiene

상기 표 1에 나타낸 바와 같이, 본 발명에 따른 실시예 1 및 실시예 2의 촉매를 사용한 경우에 트리시클로펜타디엔 수소화반응의 전환율을 높이는데 효과가 있음을 확인할 수 있었다. As shown in Table 1, it was confirmed that when the catalysts of Examples 1 and 2 according to the present invention were used, it was effective in increasing the conversion rate of the tricyclopentadiene hydrogenation reaction.

Claims (6)

메조기공 실리카 지지체에 루테늄을 담지시킨 촉매를 사용하여 디시클로펜타디엔과 트리시클로펜타디엔의 혼합물을 수소화 반응시켜서 테트라하이드로디시틀로펜타디엔과 테트라하이드로트리시클로펜타디엔을 제조하는 방법에 있어서,
상기 메조기공 실리카 지지체는 KIT-6 또는 SBA-15 중 선택된 어느 하나이고,
상기 KIT-6에 루테늄을 담지한 촉매의 경우 기공크기는 5 ~ 9 nm이고, 그 촉매의 표면적은 450m2/g ~ 520m2/g이거나 또는, 상기 SBA-15에 루테늄을 담지한 촉매의 경우 기공크기는 6 ~ 9 nm이고, 그 촉매의 표면적은 400m2/g ~ 500m2/g인 것을 특징으로 하는 테트라하이드로디시클로펜타디엔 및 테트라하이드로트리시클로펜타디엔의 제조방법.
In the method for producing tetrahydrodicitropentadiene and tetrahydrotricyclopentadiene by hydrogenating a mixture of dicyclopentadiene and tricyclopentadiene using a catalyst supporting ruthenium on a mesoporous silica support,
The mesoporous silica support is any one selected from KIT-6 or SBA-15,
In the case of a catalyst supporting ruthenium on the KIT-6, the pore size is 5 to 9 nm, and the surface area of the catalyst is 450 m 2 / g to 520 m 2 / g, or in the case of a catalyst supporting ruthenium on the SBA-15 The pore size is 6 to 9 nm, and the surface area of the catalyst is 400 m 2 / g to 500 m 2 / g, wherein the method for producing tetrahydrodicyclopentadiene and tetrahydrotricyclopentadiene is characterized.
삭제delete 제 1항에 있어서, 상기 메조기공 실리카 지지체에 루테늄을 담지시킨 촉매 중 루테늄 담지량은 0.5~5.0 중량%인 것을 특징으로 하는 테트라하이드로디시클로펜타디엔 및 테트라하이드로트리시클로펜타디엔의 제조방법The method for preparing tetrahydrodicyclopentadiene and tetrahydrotricyclopentadiene according to claim 1, wherein the ruthenium loading amount of the catalyst supporting ruthenium on the mesoporous silica support is 0.5 to 5.0% by weight. 제 1항에 있어서, 상기 수소화 반응은 반응시간이 30분 ~ 24 시간인 것을 특징으로 하는 테트라하이드로디시클로펜타디엔 및 테트라하이드로트리시클로펜타디엔의 제조방법.The method of claim 1, wherein the hydrogenation reaction is 30 minutes to 24 hours of reaction time, characterized in that tetrahydrodicyclopentadiene and tetrahydrotricyclopentadiene. 제 1항에 있어서, 상기 수소화 반응은 반응온도가 100 ~ 140 ℃인 것을 특징으로 하는 테트라하이드로디시클로펜타디엔 및 테트라하이드로트리시클로펜타디엔의 제조방법.The method for preparing tetrahydrodicyclopentadiene and tetrahydrotricyclopentadiene according to claim 1, wherein the hydrogenation reaction has a reaction temperature of 100 to 140 ° C. 삭제delete
KR1020180136192A 2018-11-07 2018-11-07 Method for preparing tetrahydrodicyclopentadiene and tetrahydrotricyclopentadiene using ruthenium catalyst KR102098856B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180136192A KR102098856B1 (en) 2018-11-07 2018-11-07 Method for preparing tetrahydrodicyclopentadiene and tetrahydrotricyclopentadiene using ruthenium catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180136192A KR102098856B1 (en) 2018-11-07 2018-11-07 Method for preparing tetrahydrodicyclopentadiene and tetrahydrotricyclopentadiene using ruthenium catalyst

Publications (1)

Publication Number Publication Date
KR102098856B1 true KR102098856B1 (en) 2020-04-08

Family

ID=70275567

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180136192A KR102098856B1 (en) 2018-11-07 2018-11-07 Method for preparing tetrahydrodicyclopentadiene and tetrahydrotricyclopentadiene using ruthenium catalyst

Country Status (1)

Country Link
KR (1) KR102098856B1 (en)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Catalysis Communications, Vol.9, pp.2612-2615 (2008)* *
Ind. Eng. Chem. Res., Vol.46, pp.4415-4420 (2007)* *

Similar Documents

Publication Publication Date Title
CN101269343B (en) Composite mesoporous molecular sieve hydrocracking catalyst and uses thereof
KR101589140B1 (en) Ordered mesoporous-silica based catalysts for the production of 1,3-butadiene and production method of 1,3-butadiene using thereof
JPS6158453B2 (en)
CN102773106A (en) Catalyst for preparing low carbon olefin by synthetic gas as well as preparation method and application of catalyst
KR102098856B1 (en) Method for preparing tetrahydrodicyclopentadiene and tetrahydrotricyclopentadiene using ruthenium catalyst
KR101553899B1 (en) Preparation method for oligomer of dicyclopentadiene and cyclopentadiene using aluminium silicate catalyst, aluminium silicate catalyst, and preparing method for the same
KR101468377B1 (en) Ordered mesoporous carbon based catalysts for the production of oxygenated carbon compound and production method of oxygenated carbon compound using thereof
CN113856743B (en) Catalyst for propylene production and environment-friendly process for propylene production
CN110550993A (en) Preparation method of alkyl-substituted tetrahydrodicyclopentadiene dimer and application of alkyl-substituted tetrahydrodicyclopentadiene dimer as jet fuel
CN107913718A (en) The ferrum-based catalyst of the direct synthesizing low-carbon alkene of synthesis gas
CN107617446B (en) Catalyst for preparing gasoline fraction hydrocarbon by directly converting synthesis gas and preparation and application thereof
KR101616071B1 (en) Method for producing norbornadiene dimer using hetorogneous catalyst
CN1915938A (en) Method for producing ethene and hexene through dismutation of butylene
KR101897712B1 (en) Catalysts for converting reaction of high carbon compound using ABE fermentation products and preparation method of high carbon compound using the same
KR20070109489A (en) Process for the selective production of 1-butene from 2-butene
CN1044900C (en) Process for synthesis of chemical industry type methyl t-butyl ether
CN105080535A (en) Butene disproportionation catalyst
KR101564404B1 (en) Hydrocracking method of a Fischer-Tropsch wax using the platinum Al-SBA-15 catalyst
KR20210158492A (en) Highly active complex catalyst for one-pot hydrogenation reaction to produce jet fuel from bio-oil
KR101821182B1 (en) Catalyst for hydrodeoxygenation and method for preparing biofuel using the same
CN104275193A (en) Double decomposition catalyst
CN114870890B (en) Catalyst for deeply removing olefin in aromatic hydrocarbon and preparation method thereof
KR101551399B1 (en) The method for preparation of catalysts for the production of oxygenated carbon compound and production method of oxygenated carbon compound using thereof
KR20230097547A (en) Ruthenium-titanium oxide aerogel catalyst, method for preparing the same, and method for hydrogenation and hydrodeoxygenation using the same
CN108421547B (en) Catalyst for preparing oil by carbon dioxide hydrogenation and preparation method and application thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant
GRNT Written decision to grant