KR102096598B1 - 애니메이션 생성 방법 - Google Patents

애니메이션 생성 방법 Download PDF

Info

Publication number
KR102096598B1
KR102096598B1 KR1020190051599A KR20190051599A KR102096598B1 KR 102096598 B1 KR102096598 B1 KR 102096598B1 KR 1020190051599 A KR1020190051599 A KR 1020190051599A KR 20190051599 A KR20190051599 A KR 20190051599A KR 102096598 B1 KR102096598 B1 KR 102096598B1
Authority
KR
South Korea
Prior art keywords
data
face
network function
learning
animation
Prior art date
Application number
KR1020190051599A
Other languages
English (en)
Inventor
김영수
안수남
조영박
Original Assignee
넷마블 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 넷마블 주식회사 filed Critical 넷마블 주식회사
Priority to KR1020190051599A priority Critical patent/KR102096598B1/ko
Application granted granted Critical
Publication of KR102096598B1 publication Critical patent/KR102096598B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T13/00Animation
    • G06T13/203D [Three Dimensional] animation
    • G06K9/00268
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/168Feature extraction; Face representation
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/48Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use
    • G10L25/51Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use for comparison or discrimination
    • G10L25/63Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use for comparison or discrimination for estimating an emotional state
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30196Human being; Person
    • G06T2207/30201Face

Abstract

컴퓨터 판독가능 저장 매체에 저장되는 컴퓨터 프로그램이 개시된다. 상기 컴퓨터 프로그램은 컴퓨팅 장치의 하나 이상의 프로세서에서 실행되는 경우 얼굴 애니메이션을 생성하기 위한 동작들을 수행하도록 하며 상기 동작들은, 음성 데이터를 수신하는 동작; 상기 음성 데이터를 둘 이상의 콘볼루셔널 레이어를 포함하는 제 1 네트워크 함수를 이용하여 연산하여 얼굴 애니메이션을 생성하기 위한 얼굴 포즈에 관한 특징 벡터를 출력하는 동작; 및 상기 얼굴 포즈에 관한 특징 벡터를 둘 이상의 디콘볼루셔널 레이어를 포함하는 제 2 네트워크 함수를 이용하여 연산하여 얼굴 애니메이션을 생성하는 동작을 포함할 수 있다.

Description

애니메이션 생성 방법{METHOD TO CREATE ANIMATION}
본 발명은 애니메이션 생성 방법에 관한 것으로, 보다 구체적으로 음성 데이터에 기초하여 애니메이션을 생성하는 방법에 관한 것이다.
최근 애니메이션 관련 기술이 급격하게 발전하면서, 애니메이션을 산업 전반에 적용하는 움직임이 증가하고 있다. 만화 관련 산업 뿐만 아니라, 다양한 산업 분야에서 애니메이션을 사용하고 있다. 한편, 애니메이션을 만들기 위해서는 상당한 시간 및 비용이 들어가게 된다.
게임 산업의 경우, 성우가 게임 스토리를 기반으로 목소리를 녹음하고, 그 목소리에 기초하여 목소리에 맞는 애니메이션을 생성하여 게임 플레이어들에게 제공하게 된다. 성우가 녹음하는 게임 스토리의 양은 방대하며, 그에 기초한 애니메이션을 생성하기 위한 시간 및 비용 소모가 상당하다.
따라서, 음성 데이터에 기초하여 애니메이션을 생성하는데 시간 및 비용을 절감시키기 위한 당업계의 요구가 존재한다.
대한민국 공개 특허 제10-2019-0008137호는 다중 화자 데이터를 이용한 딥러닝 기반 음성 합성 장치 및 방법을 개시한다.
본 개시는 전술한 배경기술에 대응하여 안출 된 것으로, 애니메이션 생성 방법을 제공하는 것을 목적으로 한다.
전술한 바와 같은 과제를 실현하기 위한 본 개시의 일 실시예에 따라 컴퓨터 판독가능 저장 매체에 저장된 컴퓨터 프로그램으로서, 상기 컴퓨터 프로그램은 음성 데이터를 수신하는 동작; 상기 음성 데이터를 둘 이상의 콘볼루셔널 레이어를 포함하는 제 1 네트워크 함수를 이용하여 연산하여 얼굴 애니메이션을 생성하기 위한 얼굴 포즈에 관한 특징 벡터를 출력하는 동작; 및 상기 얼굴 포즈에 관한 특징 벡터를 둘 이상의 디콘볼루셔널 레이어를 포함하는 제 2 네트워크 함수를 이용하여 연산하여 얼굴 애니메이션을 생성하는 동작을 포함할 수 있다.
애니메이션을 생성하는 방법을 제공하기 위한 이하의 동작들을 수행하는 컴퓨터 프로그램 동작들의 대안적인 실시예에서, 상기 음성 데이터를 둘 이상의 콘볼루셔널 레이어를 포함하는 제 1 네트워크 함수를 이용하여 연산하여 얼굴 애니메이션을 생성하기 위한 얼굴 포즈에 관한 특징 벡터를 출력하는 동작은, 상기 음성 데이터를 상기 음성 데이터에 기초한 이미지 데이터로 변환하는 동작; 및 상기 이미지 데이터를 상기 제 1 네트워크 함수를 이용하여 연산하여 상기 얼굴 포즈에 관한 특징 벡터를 출력하는 동작을 포함할 수 있다.
애니메이션을 생성하는 방법을 제공하기 위한 이하의 동작들을 수행하는 컴퓨터 프로그램 동작들의 대안적인 실시예에서, 상기 제 1 네트워크 함수는 제 1 서브 네트워크 함수 및 제 2 서브 네트워크 함수를 포함하고, 그리고 상기 이미지 데이터를 상기 제 1 네트워크 함수를 이용하여 연산하여 상기 얼굴 포즈에 관한 특징 벡터를 출력하는 동작은, 상기 이미지 데이터를 상기 제 1 서브 네트워크 함수에 기초하여 연산하여 음성 특징을 출력하는 동작; 및 상기 음성 특징을 상기 제 2 서브 네트워크 함수에 기초하여 연산하여 상기 얼굴 포즈에 관한 특징 벡터를 출력하는 동작을 포함할 수 있다.
애니메이션을 생성하는 방법을 제공하기 위한 이하의 동작들을 수행하는 컴퓨터 프로그램 동작들의 대안적인 실시예에서, 상기 음성 특징을 상기 제 2 서브 네트워크 함수에 기초하여 연산하여 상기 얼굴 포즈에 관한 특징 벡터를 출력하는 동작은, 상기 음성 데이터와 관련된 감정 상태 데이터를 상기 제 2 서브 네트워크에 입력시키는 동작을 포함할 수 있다.
애니메이션을 생성하는 방법을 제공하기 위한 이하의 동작들을 수행하는 컴퓨터 프로그램 동작들의 대안적인 실시예에서, 상기 음성 특징을 상기 제 2 서브 네트워크 함수에 기초하여 연산하여 상기 얼굴 포즈에 관한 특징 벡터를 출력하는 동작은, 상기 음성 특징을 상기 제 2 서브 네트워크 함수에 기초하여 연산하여 얼굴 포즈에 관한 서브 특징 벡터를 출력하는 동작; 및 상기 얼굴 포즈에 관한 서브 특징 벡터를 상기 감정 상태 데이터에 기초하여 보정하여 상기 얼굴 포즈에 관한 특징 벡터를 출력하는 동작을 포함할 수 있다.
애니메이션을 생성하는 방법을 제공하기 위한 이하의 동작들을 수행하는 컴퓨터 프로그램 동작들의 대안적인 실시예에서, 상기 얼굴 포즈에 관한 특징 벡터를 둘 이상의 디콘볼루셔널 레이어를 포함하는 제 2 네트워크 함수를 이용하여 연산하여 얼굴 애니메이션을 생성하는 동작은, 상기 얼굴 포즈에 관한 특징 벡터를 이용하여 얼굴에 포함된 둘 이상의 버텍스(vertex)의 위치를 결정하는 동작; 및 상기 얼굴에 포함된 둘 이상의 버텍스의 위치에 기초하여 상기 얼굴 애니메이션을 생성하는 동작을 포함할 수 있다.
애니메이션을 생성하는 방법을 제공하기 위한 이하의 동작들을 수행하는 컴퓨터 프로그램 동작들의 대안적인 실시예에서, 상기 음성 데이터에 기초하여 상기 얼굴 애니메이션을 생성하는 상기 제 1 네트워크 함수 및 상기 제 2 네트워크 함수를 포함하는 얼굴 애니메이션 생성 모델은, 학습 음성 데이터를 입력으로 하고, 상기 학습 음성 데이터에 기초한 얼굴 애니메이션을 라벨로 하는 둘 이상의 학습 데이터를 포함하는 학습 데이터 세트에 기초하여 학습되고, 그리고 상기 학습 음성 데이터를 상기 얼굴 애니메이션 생성 모델의 입력으로 하여 연산하여 획득한 출력과 상기 학습 데이터에 포함된 라벨인 상기 얼굴 애니메이션의 오차에 기초하여 학습될 수 있다.
애니메이션을 생성하는 방법을 제공하기 위한 이하의 동작들을 수행하는 컴퓨터 프로그램 동작들의 대안적인 실시예에서, 상기 학습 데이터 세트는 제 1 학습 데이터 및 제 2 학습 데이터를 포함하고, 그리고 제 2 학습 데이터는, 제 1 학습 데이터의 입력인 제 1 학습 음성 데이터의 적어도 일 구간을 사전결정된 시간 단위만큼 이동하여 생성한 제 2 학습 음성 데이터를 입력으로 하고, 그리고 상기 1 학습 데이터의 라벨인 제 1 얼굴 애니메이션을 상기 제 1 학습 음성 데이터에 대응되게 변환하여 생성한 제 2 얼굴 애니메이션을 라벨로 할 수 있다.
애니메이션을 생성하는 방법을 제공하기 위한 이하의 동작들을 수행하는 컴퓨터 프로그램 동작들의 대안적인 실시예에서, 상기 오차는, 상기 출력과 상기 학습 데이터에 포함된 라벨인 상기 얼굴 애니메이션 각각의 둘 이상의 버텍스 위치의 차이 및 상기 출력된 얼굴 애니메이션에 포함된 움직임의 속도 적정 여부 중 적어도 하나에 기초하여 결정될 수 있다.
애니메이션을 생성하는 방법을 제공하기 위한 이하의 동작들을 수행하는 컴퓨터 프로그램 동작들의 대안적인 실시예에서, 상기 얼굴 애니메이션 생성 모델은, 상기 제 1 네트워크 함수에 포함된 둘 이상의 콘볼루셔널 레이어 각각에 대한 연산에 사전결정된 크기의 노이즈를 추가하여 학습될 수 있다.
애니메이션을 생성하는 방법을 제공하기 위한 이하의 동작들을 수행하는 컴퓨터 프로그램 동작들의 대안적인 실시예에서, 상기 학습 음성 데이터는, 팬그램(pangram)에 기초한 음성 데이터일 수 있다.
전술한 바와 같은 과제를 실현하기 위한 본 개시의 일 실시예에 따라 애니메이션을 생성하는 방법으로서, 음성 데이터를 수신하는 단계; 상기 음성 데이터를 둘 이상의 콘볼루셔널 레이어를 포함하는 제 1 네트워크 함수를 이용하여 연산하여 얼굴 애니메이션을 생성하기 위한 얼굴 포즈에 관한 특징 벡터를 출력하는 단계; 및 상기 얼굴 포즈에 관한 특징 벡터를 둘 이상의 디콘볼루셔널 레이어를 포함하는 제 2 네트워크 함수를 이용하여 연산하여 얼굴 애니메이션을 생성하는 단계를 포함할 수 있다.
전술한 바와 같은 과제를 실현하기 위한 본 개시의 일 실시예에 따라 애니메이션을 생성하기 위한 서버로서, 하나 이상의 코어를 포함하는 프로세서; 및 메모리를 포함하고, 상기 프로세서는, 음성 데이터를 수신하고, 상기 음성 데이터를 둘 이상의 콘볼루셔널 레이어를 포함하는 제 1 네트워크 함수를 이용하여 연산하여 얼굴 애니메이션을 생성하기 위한 얼굴 포즈에 관한 특징 벡터를 출력하고, 그리고 상기 얼굴 포즈에 관한 특징 벡터를 둘 이상의 디콘볼루셔널 레이어를 포함하는 제 2 네트워크 함수를 이용하여 연산하여 얼굴 애니메이션을 생성할 수 있다.
본 개시의 일 실시예에 따라, 음성 데이터에 기초하여 애니메이션을 제공하기 위한 방법이 제공될 수 있다.
도 1은 본 개시의 일 실시예에 따라 애니메이션 생성 방법을 제공하기 위한 동작을 수행하는 컴퓨팅 장치의 블록 구성도를 도시한 도면이다.
도 2는 본 개시의 일 실시예에 따라 얼굴 애니메이션 생성 모델을 예시적으로 도시한 도면이다.
도 3은 본 개시의 일 실시예에 따라 얼굴 애니메이션 생성 모델을 예시적으로 도시한 도면이다.
도 4는 본 개시의 일 실시예에 따라 얼굴 애니메이션 생성 모델을 예시적으로 도시한 도면이다.
도 5는 본 개시의 일 실시예에 따라 얼굴 애니메이션 생성 모델을 학습시키는 방법을 예시적으로 도시한 도면이다.
도 6은 본 개시의 일 실시예에 따라 얼굴 애니메이션 생성 모델에 기초하여 얼굴 애니메이션을 생성하는 방법에 관한 순서도이다.
도 7은 본 개시의 일 실시예에 따라 얼굴 애니메이션 생성 모델의 학습 방법에 관한 순서도이다.
도 8은 본 개시의 일 실시예에 따른 컴퓨팅 장치의 블록 구성도이다.
다양한 실시예들이 이제 도면을 참조하여 설명된다. 본 명세서에서, 다양한 설명들이 본 개시의 이해를 제공하기 위해서 제시된다. 그러나, 이러한 실시예들은 이러한 구체적인 설명 없이도 실행될 수 있음이 명백하다.
본 명세서에서 사용되는 용어 "컴포넌트", "모듈", "시스템" 등은 컴퓨터-관련 엔티티, 하드웨어, 펌웨어, 소프트웨어, 소프트웨어 및 하드웨어의 조합, 또는 소프트웨어의 실행을 지칭한다. 예를 들어, 컴포넌트는 프로세서상에서 실행되는 처리과정(procedure), 프로세서, 객체, 실행 스레드, 프로그램, 및/또는 컴퓨터일 수 있지만, 이들로 제한되는 것은 아니다. 예를 들어, 컴퓨팅 장치에서 실행되는 애플리케이션 및 컴퓨팅 장치 모두 컴포넌트일 수 있다. 하나 이상의 컴포넌트는 프로세서 및/또는 실행 스레드 내에 상주할 수 있다. 일 컴포넌트는 하나의 컴퓨터 내에 로컬화 될 수 있다. 일 컴포넌트는 2개 이상의 컴퓨터들 사이에 분배될 수 있다. 또한, 이러한 컴포넌트들은 그 내부에 저장된 다양한 데이터 구조들을 갖는 다양한 컴퓨터 판독가능한 매체로부터 실행할 수 있다. 컴포넌트들은 예를 들어 하나 이상의 데이터 패킷들을 갖는 신호(예를 들면, 로컬 시스템, 분산 시스템에서 다른 컴포넌트와 상호작용하는 하나의 컴포넌트로부터의 데이터 및/또는 신호를 통해 다른 시스템과 인터넷과 같은 네트워크를 통해 전송되는 데이터)에 따라 로컬 및/또는 원격 처리들을 통해 통신할 수 있다.
더불어, 용어 "또는"은 배타적 "또는"이 아니라 내포적 "또는"을 의미하는 것으로 의도된다. 즉, 달리 특정되지 않거나 문맥상 명확하지 않은 경우에, "X는 A 또는 B를 이용한다"는 자연적인 내포적 치환 중 하나를 의미하는 것으로 의도된다. 즉, X가 A를 이용하거나; X가 B를 이용하거나; 또는 X가 A 및 B 모두를 이용하는 경우, "X는 A 또는 B를 이용한다"가 이들 경우들 어느 것으로도 적용될 수 있다. 또한, 본 명세서에 사용된 "및/또는"이라는 용어는 열거된 관련 아이템들 중 하나 이상의 아이템의 가능한 모든 조합을 지칭하고 포함하는 것으로 이해되어야 한다.
또한, "포함한다" 및/또는 "포함하는"이라는 용어는, 해당 특징 및/또는 구성요소가 존재함을 의미하는 것으로 이해되어야 한다. 다만, "포함한다" 및/또는 "포함하는"이라는 용어는, 하나 이상의 다른 특징, 구성요소 및/또는 이들의 그룹의 존재 또는 추가를 배제하지 않는 것으로 이해되어야 한다. 또한, 달리 특정되지 않거나 단수 형태를 지시하는 것으로 문맥상 명확하지 않은 경우에, 본 명세서와 청구범위에서 단수는 일반적으로 "하나 또는 그 이상"을 의미하는 것으로 해석되어야 한다.
당업자들은 추가적으로 여기서 개시된 실시예들과 관련되어 설명된 다양한 예시 적 논리적 블록들, 구성들, 모듈들, 회로들, 수단들, 로직들, 및 알고리즘 단계들이 전자 하드웨어, 컴퓨터 소프트웨어, 또는 양쪽 모두의 조합들로 구현될 수 있음을 인식해야 한다. 하드웨어 및 소프트웨어의 상호교환성을 명백하게 예시하기 위해, 다양한 예시 적 컴포넌트들, 블록들, 구성들, 수단들, 로직들, 모듈들, 회로들, 및 단계들은 그들의 기능성 측면에서 일반적으로 위에서 설명되었다. 그러한 기능성이 하드웨어로 또는 소프트웨어로서 구현되는지 여부는 전반적인 시스템에 부과된 특정 어플리케이션(application) 및 설계 제한들에 달려 있다. 숙련된 기술자들은 각각의 특정 어플리케이션들을 위해 다양한 방법들로 설명된 기능성을 구현할 수 있다. 다만, 그러한 구현의 결정들이 본 개시내용의 영역을 벗어나게 하는 것으로 해석되어서는 안된다.
제시된 실시예들에 대한 설명은 본 개시의 기술 분야에서 통상의 지식을 가진 자가 본 발명을 이용하거나 또는 실시할 수 있도록 제공된다. 이러한 실시예들에 대한 다양한 변형들은 본 개시의 기술 분야에서 통상의 지식을 가진 자에게 명백할 것이다. 여기에 정의된 일반적인 원리들은 본 개시의 범위를 벗어남이 없이 다른 실시예들에 적용될 수 있다. 그리하여, 본 발명은 여기에 제시된 실시예들로 한정되는 것이 아니다. 본 발명은 여기에 제시된 원리들 및 신규한 특징들과 일관되는 최광의의 범위에서 해석되어야 할 것이다.
본 개시의 일 실시예에서 서버는 임의의 형태의 컴퓨팅 장치를 포함할 수 있다. 서버는 디지털 기기로서, 랩탑 컴퓨터, 노트북 컴퓨터, 데스크톱 컴퓨터, 웹 패드, 이동 전화기와 같이 프로세서를 탑재하고 메모리를 구비한 연산 능력을 갖춘 디지털 기기일 수 있다. 서버는 서비스를 처리하는 웹 서버일 수 있다. 전술한 서버의 종류는 예시일 뿐이며 본 개시는 이에 제한되지 않는다.
도 1은 본 개시의 일 실시예에 따라 애니메이션 생성 방법을 제공하기 위한 동작을 수행하는 컴퓨팅 장치의 블록 구성도를 도시한 도면이다.
본 개시의 일 실시예에 따른 얼굴 애니메이션 생성 방법 또는 얼굴 애니메이션 생성 모델의 학습 방법을 제공하기 위한 컴퓨팅 장치(100)는 네트워크부(110), 프로세서(120) 및 메모리(130)를 포함할 수 있다.
네트워크부(110)는 본 개시의 일 실시예에 따른 음성 데이터, 감정 상태 등을 다른 컴퓨팅 장치, 서버 등과 송수신할 수 있다.
프로세서(120)는 하나 이상의 코어로 구성될 수 있으며, 컴퓨팅 장치의 중앙 처리 장치(CPU: central processing unit), 범용 그래픽 처리 장치 (GPGPU: general purpose graphics processing unit), 텐서 처리 장치(TPU: tensor processing unit) 등의 얼굴 애니메이션 생성 모델을 제공하기 위한 프로세서를 포함할 수 있다. 프로세서(120)는 메모리(130)에 저장된 컴퓨터 프로그램을 판독하여 본 개시의 일 실시예에 따른 얼굴 애니메이션 생성 모델을 제공할 수 있다. 본 개시의 일 실시예에 따라 프로세서(120)는 음성 데이터에 기초하여 얼굴 애니메이션 생성을 위한 계산을 수행할 수 있다. 본 개시의 일 실시예에 따라 프로세서(120)는 얼굴 애니메이션 생성 모델을 학습시키기 위한 계산을 수행할 수 있다.
도 2는 본 개시의 일 실시예에 따라 얼굴 애니메이션 생성 모델을 예시적으로 도시한 도면이다.
본 개시의 일 실시예에 따른 얼굴 애니메이션 생성 모델(800)은, 음성 데이터(200)에 기초하여 상기 음성 데이터(200)에 대응되는 얼굴 애니메이션(600)을 생성할 수 있다.
프로세서(120)는 음성 데이터(200)를 수신할 수 있다. 음성 데이터(200)는, 사람의 음성에 대한 데이터를 포함할 수 있다. 음성 데이터(200)는 게임 중에 게임 플레이어에게 출력되는 음향 정보를 포함하는 데이터일 수 있다. 예를 들어, 음성 데이터는 음향 정보를 재생하기 위한 정보가 포함된 디지털 파일을 포함할 수 있다. 음성 데이터는 WAV, AIFF, AU, FLAC, TTA, MPE, AAC, ATRAC 등의 포맷의 형태로 저장될 수 있으나, 이에 제한되지 않는다. 음성 데이터(200)는 전술한 포맷 외에도 음향 정보의 적어도 일 부분을 포함하는 임의의 형태의 포맷의 형식으로 저장될 수 있다. 음향 정보는, 게임 플레이어의 캐릭터, NPC(Non-Player Character)에 의해 발화되는 음향 또는 한 명의 게임 플레이어 이외에 다른 게임 플레이어에 의해 플레이되는 플레이어블 캐릭터에 의해 발화되는 음향에 관한 정보일 수 있다. 예를 들어, 게임에서 퀘스트를 게임 플레이어들에게 제공하는 경우, 게임 퀘스트를 애니메이션을 이용하여 전달할 수 있다. 예를 들어, 음성 데이터(200)는 퀘스트 관련 내용을 전달하는 애니메이션 효과에서 캐릭터 또는 NPC의 음성에 관한 데이터일 수 있다. 다른 예로, 음성 데이터(200)는 게임에서 캐릭터 또는 NPC가 게임 플레이 중에 말하는 음성에 관한 데이터일 수 있다. 음성 데이터(200)는 게임 퀘스트에 관한 내용을 음성으로 녹음한 것일 수 있다. 음성 데이터(200)는 게임에 사전 저장된 데이터일 수 있다. 음성 데이터(200)는 게임 서버의 메모리에 사전에 저장된 데이터일 수 있다. 또는, 음성 데이터(200)는 게임 플레이어 또는 다른 게임 플레이어에 의해 미리 또는 실시간으로 녹음된 음성에 관한 데이터일 수 있다. 전술한 음성 데이터에 관한 기재는 예시일 뿐이며 본 개시는 이에 제한되지 않는다.
프로세서(120)는 네트워크부(110)를 통해 음성 데이터를 수신할 수 있다. 본 개시의 일 실시예에 따른 음성 데이터의 수신은, 메모리(130)에 저장된 음성 데이터를 수신하거나 또는 로딩(loading) 하는 것일 수 있다. 음성 데이터의 수신은, 유/무선 통신 수단에 기초하여 다른 저장 매체, 다른 컴퓨팅 장치, 동일한 컴퓨팅 장치 내의 별도 처리 모듈로부터 상기 음성 데이터를 수신하거나 또는 로딩 하는 것일 수 있다.
프로세서(120)는 음성 데이터(200)를 얼굴 애니메이션 생성 모델(800)에 입력하기 전에 전처리 과정을 거칠 수 있다. 음성 데이터(200)에 대한 전처리는, 얼굴 애니메이션 생성 모델(800)에 포함된 하나 이상의 네트워크 함수에서 처리되기 위한 형식으로 가공하는 과정을 의미할 수 있다. 예를 들어, 음성 데이터(200)에 대한 전처리는, 음성 데이터(200)의 적어도 일부의 데이터를 삭제하거나, 변환하거나, 애니메이션 생성 모델(800)에 입력되기 위한 포맷으로 전환하는 동작을 포함할 수 있다. 음성 데이터(200)에 대한 전처리는, 음성 데이터(200)의 파형을 일부 보정하는 것을 의미할 수 있다. 예를 들어, 음성 데이터(200)에 대한 전처리는 음성 탐지인 VAD(Voice Activity Detection)을 이용하여 음성이 존재하는 부분의 음성 데이터만을 분리하는 것을 의미할 수 있다. 또는, 음성 데이터에 대한 전처리는 신호의 잡음을 제거하거나, 신호가 존재할 수 있는 주파수 대역을 증폭시키거나, 신호가 존재할 수 있는 주파수 대역을 자르거나, 신호의 진폭을 최대 값으로 키워서 디지털 신호에 할당된 비트 수를 최대한 이용하도록 하거나, 최고 주파수 또는 최저 주파수를 사전결정된 기준에 기초하여 정규화 하거나, 또는 화이트닝(Whitening)을 수행하여 신호의 평균을 0으로, 표준편차는 1로 변경할 수 있다. 전술한 전처리에 관한 구체적인 기재는 예시일 뿐이며 본 개시는 이에 제한되지 않는다.
프로세서(120)는 음성 데이터(200)를 얼굴 애니메이션 생성 모델(800)에 입력할 수 있다. 얼굴 애니메이션 생성 모델(800)은 제 1 네트워크 함수(300) 및 제 2 네트워크 함수(500)를 포함할 수 있다. 제 1 네트워크 함수(300)는 입력된 데이터의 차원 축소를 수행할 수 있다. 제 2 네트워크 함수(500)는 입력된 데이터의 차원 확장을 수행할 수 있다. 프로세서(120)는 음성 데이터(200)를 제 1 네트워크 함수(300)에 입력하여 차원 축소 연산을 수행할 수 있다. 프로세서(120)는 제 1 네트워크 함수(300)를 이용하여 연산하여 출력한 결과를 제 2 네트워크 함수(500)의 입력으로 할 수 있다. 프로세서(120)는 제 2 네트워크 함수(500)에 입력된 데이터의 차원 확장 연산을 수행할 수 있다. 프로세서(120)는 제 2 네트워크 함수(500)의 차원 확장 연산에 기초하여 음성 데이터(200)에 기초한 얼굴 애니메이션(600)을 생성할 수 있다.
얼굴 애니메이션 생성 모델(800)에 포함된 제 1 네트워크 함수(300)는 둘 이상의 차원 축소 레이어를 포함할 수 있다. 얼굴 애니메이션 생성 모델(800)에 포함된 제 2 네트워크 함수(500)는 둘 이상의 차원 확장 레이어를 포함할 수 있다.
프로세서(120)는 음성 데이터(200)를 둘 이상의 차원 축소 레이어를 포함하는 제 1 네트워크 함수(300)를 이용하여 연산할 수 있다. 프로세서(120)는 상기 음성 데이터(200)를 둘 이상의 콘볼루셔널(convolutional) 레이어를 포함하는 제 1 네트워크 함수(300)를 이용하여 연산할 수 있다. 제 1 네트워크 함수(300)는 얼굴 애니메이션(600)을 생성하기 위한 얼굴 포즈에 관한 특징 벡터(400)를 출력할 수 있다. 얼굴 포즈에 관한 특징 벡터(400)는, 상기 음성 데이터(200)에 기초하여 얼굴의 포즈(또는, 얼굴의 생김새)에 관하여 설명하기 위한 특징 벡터일 수 있다. 얼굴 포즈에 관한 특징 벡터(400)는 음성 데이터(200)에 기초하여 얼굴 애니메이션을 생성하기 위한 특징 벡터일 수 있다. 예를 들어, 얼굴 포즈에 관한 특징 벡터(400)는, 음성 데이터(200)에 기초한 피쳐 맵의 개수, 시간 축의 차원, 음성 데이터(200)의 기초가 되는 음소의 차원에 기초하여 결정될 수 있다. 전술한 얼굴 포즈에 관한 특징 벡터에 대한 구체적인 기재는 예시일 뿐이며, 이를 연산하는 방법에 관하여는 후술하여 구체적으로 설명한다.
프로세서(120)는 얼굴 포즈에 관한 특징 벡터(400)를 둘 이상의 차원 확장 레이어를 포함하는 제 2 네트워크 함수(500)를 이용하여 연산할 수 있다. 프로세서(120)는 상기 얼굴 포즈에 관한 특징 벡터(400)를 둘 이상의 디콘볼루셔널(deconvolutional) 레이어를 포함하는 제 2 네트워크 함수(500)를 이용하여 연산하여 얼굴 애니메이션(600)을 생성할 수 있다. 제 2 네트워크 함수(500)는 둘 이상의 디콘볼루셔널 레이어를 포함할 수 있다. 프로세서(120)는 제 2 네트워크 함수(500)에 기초하여 상기 얼굴 포즈에 관한 특징 벡터(400)에 대한 리니어 변환(linear transformation)을 수행할 수 있다. 프로세서(120)는 제 2 네트워크 함수(500)에 기초하여 상기 얼굴 포즈에 관한 특징 벡터(400)를 연산할 수 있다. 프로세서(120)는 제 2 네트워크 함수(500)의 연산에 기초하여 얼굴 애니메이션을 생성하기 위한 좌표를 생성할 수 있다. 상기 좌표는, 얼굴 애니메이션의 기초가 되는 기준점일 수 있다. 예를 들어, 상기 좌표는 버텍스일 수 있다. 얼굴 애니메이션(600)을 생성하기 위한 얼굴 애니메이션 상의 버텍스(vertex) 위치를 출력할 수 있다. 프로세서(120)는 제 2 네트워크 함수(500)를 이용하여 연산한 버텍스 위치에 기초하여 얼굴 애니메이션(600)을 생성할 수 있다. 프로세서(120)는 연산한 버텍스 위치에 기초하여 얼굴 애니메이션의 버텍스를 결정하고, 그에 따른 얼굴 애니메이션(600)을 생성할 수 있다. 얼굴 애니메이션(600)은 사람, 플레이어 또는 캐릭터의 얼굴에 관한 데이터를 포함할 수 있다. 얼굴 애니메이션(600)은 게임 중에 게임 플레이어에게 출력되는 음향 정보에 기초한 애니메이션일 수 있다. 얼굴 애니메이션(600)은 게임 중에 게임 플레이어에게 출력되는 음향 정보와 매칭되는 표정을 묘사하는 애니메이션일 수 있다. 얼굴 애니메이션(600)은 플레이어의 캐릭터, NPC를 통해 표출되는 애니메이션일 수 있다. 예를 들어, 얼굴 애니메이션(600)은 퀘스트 관련 내용을 전달하는 애니메이션 효과에서 캐릭터 또는 NPC를 통해 표출되는 애니메이션일 수 있다. 다른 예로, 얼굴 애니메이션(600)은 게임 플레이 중 캐릭터 또는 NPC를 통해 표출되는 애니메이션일 수 있다. 예를 들어, 얼굴 애니메이션(600)은 3D 형태의 애니메이션일 수 있다. 전술한 얼굴 애니메이션에 관한 구체적인 기재는 예시일 뿐이며 본 개시는 이에 제한되지 않는다.
콘볼루셔널 뉴럴 네트워크는 딥 뉴럴 네트워크의 일종으로서, 콘볼루셔널 레이어를 포함하는 신경망을 포함한다. 콘볼루셔널 뉴럴 네트워크는 최소한의 전처리(preprocess)를 사용하도록 설계된 다계층 퍼셉트론(multilayer perceptron)의 한 종류이다. CNN은 하나 또는 여러 개의 콘볼루셔널 레이어와 이와 결합된 인공 신경망 계층들로 구성될 수 있다. CNN은 가중치와 풀링 레이어(pooling layer)들을 추가로 활용할 수 있다. 이러한 구조 덕분에 CNN은 2 차원 구조의 입력 데이터를 충분히 활용할 수 있다. 콘볼루셔널 뉴럴 네트워크는 이미지에서 오브젝트를 인식하기 위하여 사용될 수 있다. 콘볼루셔널 뉴럴 네트워크는 이미지 데이터를 차원을 가진 행렬로 나타내어 처리할 수 있다. 예를 들어 RGB(red-green-blue)로 인코딩 된 이미지 데이터의 경우, R, G, B 색상별로 각각 2차원(예를 들어, 2 차원 이미지 인 경우) 행렬로 나타내 질 수 있다. 즉, RGB로 인코딩된 이미지 데이터의 경우, 3 채널의 2 차원 행렬로 구성될 수 있다. 즉, 이미지 데이터의 각 픽셀의 색상 값이 행렬의 성분이 될 수 있으며 행렬의 크기는 이미지의 크기와 같을 수 있다. 따라서 이미지 데이터는 3개의 2차원 행렬로(3차원의 데이터 어레이)로 나타내질 수 있다.
콘볼루셔널 뉴럴 네트워크에서 콘볼루셔널 필터를 이동해가며 콘볼루셔널 필터와 이미지의 각 위치에서의 행렬 성분끼리 곱하는 것으로 콘볼루셔널 과정(콘볼루셔널 레이어의 입출력)을 수행할 수 있다. 콘볼루셔널 필터는 n*n 형태의 행렬로 구성될 수 있다. 콘볼루셔널 필터는 일반적으로 이미지의 전체 픽셀의 수보다 작은 고정된 형태의 필터로 구성될 수 있다. 즉, m*m 이미지를 콘볼루셔널 레이어(예를 들어, 콘볼루셔널 필터의 사이즈가 n*n인 콘볼루셔널 레이어)입력시키는 경우, 이미지의 각 픽셀을 포함하는 n*n 픽셀을 나타내는 행렬이 콘볼루셔널 필터와 성분 곱 (즉, 행렬의 각 성분끼리의 곱) 될 수 있다. 콘볼루셔널 필터와의 곱에 의하여 이미지에서 콘볼루셔널 필터와 매칭되는 성분이 추출될 수 있다. 예를 들어, 이미지에서 상하 직선 성분을 추출하기 위한 3*3 콘볼루셔널 필터는 [[0,1,0], [0,1,0], [0,1,0]] 와 같이 구성될 수 있다. 이미지에서 상하 직선 성분을 추출하기 위한 3*3 콘볼루셔널 필터가 입력 이미지에 적용되면 이미지에서 콘볼루셔널 필터와 매칭되는 상하 직선 성분이 추출되어 출력될 수 있다. 콘볼루셔널 레이어는 이미지를 나타낸 각각의 채널에 대한 각각의 행렬(즉, R, G, B 코딩 이미지의 경우, R, G, B 색상)에 콘볼루셔널 필터를 적용할 수 있다. 콘볼루셔널 레이어는 입력 이미지에 콘볼루셔널 필터를 적용하여 입력 이미지에서 콘볼루셔널 필터와 매칭되는 피쳐를 추출할 수 있다. 콘볼루셔널 필터의 필터 값(즉, 행렬의 각 성분의 값)은 콘볼루셔널 뉴럴 네트워크의 학습 과정에서 역전파에 의하여 업데이트 될 수 있다.
콘볼루셔널 레이어의 출력에는 서브샘플링 레이어가 연결되어 콘볼루셔널 레이어의 출력을 단순화하여 메모리 사용량과 연산량을 줄일 수 있다. 예를 들어, 2*2 맥스 풀링 필터를 가지는 풀링 레이어에 콘볼루셔널 레이어의 출력을 입력시키는 경우, 이미지의 각 픽셀에서 2*2 패치마다 각 패치에 포함되는 최대값을 출력하여 이미지를 압축할 수 있다. 전술한 풀링은 패치에서 최소값을 출력하거나, 패치의 평균값을 출력하는 방식일 수도 있으며 임의의 풀링 방식이 본 개시에 포함될 수 있다.
콘볼루셔널 뉴럴 네트워크는 하나 이상의 콘볼루셔널 레이어, 서브 샘플링 레이어를 포함할 수 있다. 콘볼루셔널 뉴럴 네트워크는 콘볼루셔널 과정과 서브샘플링 과정(예를 들어, 전술한 맥스 풀링 등)을 반복적으로 수행하여 이미지에서 피쳐를 추출할 수 있다. 반복적인 컨벌루션널 과정과 서브샘플링 과정을 통해 뉴럴 네트워크는 이미지의 글로벌 피쳐를 추출할 수 있다.
콘볼루셔널 레이어 또는 서브샘플링 레이어의 출력은 풀 커넥티드 레이어(fully connected layer)에 입력될 수 있다. 풀 커넥티드 레이어는 하나의 레이어에 있는 모든 뉴런과 이웃한 레이어에 있는 모든 뉴런이 연결되는 레이어이다. 풀 커넥티드 레이어는 뉴럴 네트워크에서 각 레이어의 모든 노드가 다른 레이어의 모든 노드에 연결된 구조를 의미할 수 있다.
본 개시의 일 실시예에서 음성 데이터에 기초하여 얼굴 애니메이션 생성을 위한 연산을 수행하기 위하여 뉴럴 네트워크는 디콘볼루셔널 뉴럴 네트워크(DCNN: deconvolutional neural network)를 포함할 수 있다. 디콘볼루셔널 뉴럴 네트워크는 콘볼루셔널 뉴럴 네트워크를 역방향으로 계산시킨 것과 유사한 동작을 수행한다. 디콘볼루셔널 뉴럴 네트워크는 콘볼루셔널 뉴럴 네트워크에서 추출된 피쳐를 원본 데이터와 관련된 피쳐맵으로 출력할 수 있다. 콘볼루셔널 뉴럴 네트워크 및 디콘볼루셔널 뉴럴 네트워크에 대한 구체적인 구성에 관한 설명은 본 출원에서 전체가 참조로서 통합되는 미국 등록 특허 US9870768B2에서 보다 구체적으로 논의된다. 본 개시의 일 실시예에서 설명하는 얼굴 애니메이션 생성 모델에 관한 설명은 본 출원에서 전체가 참조로서 통합되는 논문 TERO KARRAS, TIMO AILA, SAMULI LAINE, ANTTI HERVA, JAAKKO LEHTINEN “Audio-Driven Facial Animation by Joint End-to-End Learning of Pose and Emotion” July 2017에서 보다 구체적으로 논의된다.
이하에서는 얼굴 애니메이션 생성 모델(800)에 포함된 제 1 네트워크 함수(300)에 관하여 구체적으로 설명한다. 프로세서(120)는 제 1 네트워크 함수(300)를 이용하여 음성 데이터(200)에 기초하여 얼굴 포즈에 관한 특징 벡터(400)를 연산하여 출력할 수 있다.
도 3은 본 개시의 일 실시예에 따라 얼굴 애니메이션 생성 모델을 예시적으로 도시한 도면이다.
프로세서(120)는 상기 음성 데이터(200)를 둘 이상의 콘볼루셔널 레이어를 포함하는 제 1 네트워크 함수(300)를 이용하여 연산하여 얼굴 애니메이션(600)을 생성하기 위한 얼굴 포즈에 관한 특징 벡터(400)를 출력할 수 있다. 본 개시의 일 실시예에 따른 제 1 네트워크 함수에 포함된 둘 이상의 레이어는 입력에 기초하여 출력을 출력할 수 있다. 예를 들어, 출력은 (피쳐맵의 개수)*(시간 축의 차원)*(포먼트 축의 차원)으로 표현될 수 있다. 전술한 출력에 관한 구체적인 기재는 예시일 뿐이며 본 개시는 이에 제한되지 않는다.
프로세서(120)는 상기 음성 데이터(200)를 상기 음성 데이터에 기초한 이미지 데이터(310)로 변환할 수 있다. 프로세서(120)는 전처리된 음성 데이터(200)를 음성 데이터에 기초한 이미지 데이터(310)로 변환할 수 있다. 프로세서(120)는 콘볼루셔널 레이어에 기초하여 음성 데이터(200)를 연산하기 위하여, 전처리된 음성 데이터(200)를 음성 데이터에 기초한 이미지 데이터(310)로 변환할 수 있다. 이미지 데이터(310)는 음성 데이터(200)에 기초한 음향 정보를 이미지로 나타낸 데이터일 수 있다. 이미지 데이터(310)는 상기 이미지 데이터(310)의 기초가 되는 다른 음향에 기초한 다른 이미지 데이터와 상이한 이미지일 수 있다. 이미지 데이터(310)는 콘볼루셔널 레이어를 포함하는 제 1 네트워크 함수(300)에 의해 처리될 수 있다. 음성 데이터(200)를 상기 음성 데이터에 기초한 이미지 데이터(310)로 변환하는 함수는 사전결정된 이미지 데이터 변환 함수일 수 있다. 사전결정된 이미지 데이터 변환 함수는, 얼굴 애니메이션 생성 모델(800)의 학습 시 오차에 기초하여 업데이트 될 수도 있고, 또는 얼굴 애니메이션 생성 모델의 학습 시 업데이트 없이 고정적으로 이미지 데이터(310)로의 변환을 수행할 수도 있다. 사전결정된 이미지 데이터 변환 함수는, 음성 데이터(200)의 주파수에 기초하여 이미지 데이터(310)로 변환할 수 있다. 전술한 이미지 데이터 변환 함수에 관한 구체적인 기재는 예시일 뿐이며 본 개시는 이에 제한되지 않는다.
프로세서(120)는 상기 이미지 데이터(310)를 상기 제 1 네트워크 함수(300)를 이용하여 연산하여 상기 얼굴 포즈에 관한 특징 벡터(400)를 출력할 수 있다.
제 1 네트워크 함수(300)는 제 1 서브 네트워크 함수(320) 및 제 2 서브 네트워크 함수(340)를 포함할 수 있다. 제 1 서브 네트워크 함수(320) 및 제 2 서브 네트워크 함수(340) 각각은 콘볼루셔널 레이어를 포함할 수 있다. 보다 구체적으로, 제 1 서브 네트워크 함수(320)는 둘 이상의 콘볼루셔널 레이어를 포함할 수 있다. 제 2 서브 네트워크 함수(340)는 둘 이상의 콘볼루셔널 레이어 및 보정 레이어를 포함할 수 있다. 보정 레이어에 관하여 후술하여 구체적으로 설명한다.
프로세서(120)는 상기 이미지 데이터(310)를 상기 제 1 서브 네트워크 함수(320)에 기초하여 연산하여 음성 특징(330)을 출력할 수 있다. 음성 특징(330)은, 입력된 음성 데이터(200)가 다른 음성 데이터와 구별될 수 있는 특징을 의미할 수 있다. 음성 특징(330)은 게임 중에 게임 플레이어에게 출력되는 음향 정보가 다른 음향 정보와 구별될 수 있는 특징을 의미할 수 있다. 음성 특징(330)은 게임에서 캐릭터 또는 NPC가 게임 플레이 중에 말하는 음성의 특징일 수 있다. 음성 특징(330)은 얼굴 애니메이션과 관련한 음성 데이터에 기초한 피쳐(feature)일 수 있다. 예를 들어, 음성 특징(330)은 음성의 억양, 음성의 강조, 음성의 특정 음소 등에 관한 얼굴 애니메이션과 관련한 피쳐일 수 있다. 음성 특징(330)은, 상기 음성 데이터를 변환한 이미지 데이터(310)에 기초하여 연산한 정보일 수 있다. 음성 특징에 관한 구체적인 기재는 예시일 뿐이며 본 개시는 이에 제한되지 않는다.
프로세서(120)는 상기 음성 특징(330)을 상기 제 2 서브 네트워크 함수(340)에 기초하여 연산하여 상기 얼굴 포즈에 관한 특징 벡터(400)를 출력할 수 있다. 프로세서(120)는 애니메이션과 관련한 음성 데이터에 기초한 피쳐를 제 2 서브 네트워크 함수(340)에 기초하여 연산할 수 있다. 프로세서(120)는 예를 들어 음성의 억양, 음성의 강조, 음성의 특정 음소 등에 관한 피쳐를 포함하는 음성 특징(330)을 제 2 서브 네트워크 함수(340)를 이용하여 연산하여 얼굴 포즈에 관한 특징 벡터(400)를 출력할 수 있다. 음성 특징에 기초하여 얼굴 포즈에 관한 특징 벡터를 출력하는 방법에 관해서는 후술하여 구체적으로 설명한다.
도 4는 본 개시의 일 실시예에 따라 얼굴 애니메이션 생성 모델(800)을 예시적으로 도시한 도면이다.
프로세서(120)는 상기 음성 특징(330)을 상기 제 2 서브 네트워크 함수(340)에 기초하여 연산하여 상기 얼굴 포즈에 관한 특징 벡터(400)를 출력할 수 있다.
동일한 음성 특징을 가지는 경우라도, 화자의 감정 상태에 따라 얼굴 애니메이션은 상이하게 표현될 수 있다. 동일한 단어를 동일한 음 및 강조로 발음하여 생성된 음성 데이터의 경우에도 다른 감정일 경우, 얼굴 애니메이션은 상이하게 표현될 수 있다. 따라서, 얼굴 애니메이션 표현의 정확도를 높이기 위하여 음성 데이터와 관련된 감정 상태 데이터를 고려하여 얼굴 애니메이션을 생성할 수 있다.
프로세서(120)는 상기 음성 데이터(200)와 관련된 감정 상태 데이터(342)를 상기 제 2 서브 네트워크 함수(340)에 입력시킬 수 있다.
감정 상태 데이터(342)는 음성 데이터(200)에 기초하여 결정되는 데이터일 수 있다. 감정 상태 데이터(342)는 얼굴 애니메이션(600)에 표현되는 표정과 관련한 데이터일 수 있다. 감정 상태 데이터(342)는 얼굴 애니메이션(600)에 표현되는 감정 상태에 관한 분류를 나타내는 데이터일 수 있다. 감정 상태 데이터(342)는 감정 상태에 관한 분류를 나타내기 위한 N차원의 벡터일 수 있다. 감정 상태 데이터(342)는 제 2 서브 네트워크 함수(340)에 포함된 둘 이상의 결합 레이어 각각에서 연산 될 수 있는 형태의 벡터일 수 있다. 예를 들어, 감정 상태 데이터(342)는 슬픔, 기쁨, 환희 등과 관련된 벡터일 수 있다. 감정 상태 데이터(342)는 감정 상태에 관한 분류에 기초하여 메모리(130)에 저장되어 있을 수 있다. 또는, 감정 상태 데이터(342)는 다른 컴퓨팅 장치로부터 수신할 수도 있다. 전술한 감정 상태 데이터에 관한 구체적인 기재는 예시일 뿐이며 본 개시는 이에 제한되지 않는다. 예를 들어, 감정 상태 데이터가 N차원의 벡터인 경우, 제 1 레이어(343) 및 제 2 레이어(344)의 출력은 (256+N)*32*1일 수 있고, 제 3 레이어 및 제 4 레이어의 출력은 (256+N)*16*1일 수 있다. 전술한 감정 상태 데이터 및 레이어에 관한 구체적인 기재는 예시일 뿐이며 본 개시는 이에 제한되지 않는다.
본 개시의 일 실시예에 따른 감정 상태 데이터(342)는, 음성 데이터에 수동으로 라벨링된 데이터일 수 있다. 프로세서(120)는 음성 데이터에 기초하여 수동으로 라벨링된 감정 상태 데이터(342)를 얼굴 애니메이션 생성 모델(800)에 포함된 제 2 서브 네트워크 함수(340)의 입력으로 할 수 있다. 예를 들어, 사람이 직접 둘 이상의 음성 데이터 각각에 수동으로 감정 상태 데이터(342)에 관한 라벨링을 수행하여 얼굴 애니메이션 생성 모델(800)의 입력으로 할 수 있다. 예를 들어, 수동 라벨링에 기초하여 메모리(130)에 저장된 기쁨 감정 상태 데이터인 N차원 벡터가 얼굴 애니메이션 생성 모델(800)의 입력으로 입력될 수 있다. 전술한 감정 상태 데이터에 관한 구체적인 기재는 예시일 뿐이며 본 개시는 이에 제한되지 않는다.
본 개시의 일 실시예에 따른 감정 상태 데이터(342)는, 얼굴 애니메이션 생성 모델(800)의 학습에 따라 학습될 수 있다. 감정 상태 데이터(342)에 대한 초기 벡터를 랜덤(random)한 값으로 결정하고 얼굴 애니메이션 출력 값과 얼굴 애니메이션 라벨에 기초하여 감정 상태 데이터(342) 값을 업데이트하여 결정할 수 있다. 예를 들어, 감정 상태 데이터(342)에 대한 초기 벡터는 가우시안 분포(Gaussian distribution)에 기초하여 랜덤하게 결정될 수 있다. 감정 상태 데이터의 학습에 관한 구체적인 내용은 후술하여 자세히 설명한다.
프로세서(120)는 상기 음성 특징(330)을 상기 제 2 서브 네트워크 함수(340)에 기초하여 연산하여 얼굴 포즈에 관한 서브 특징 벡터를 출력할 수 있다. 프로세서(120)는 상기 얼굴 포즈에 관한 서브 특징 벡터를 상기 감정 상태 데이터(342)에 기초하여 보정하여 상기 얼굴 포즈에 관한 특징 벡터(400)를 출력할 수 있다.
프로세서(120)는 음성 특징(330) 및 감정 상태 데이터(342)를 둘 이상의 콘볼루셔널 레이어 및 결합 레이어를 포함하는 제 2 서브 네트워크 함수(340)를 이용하여 연산할 수 있다. 콘볼루셔널 레이어 및 결합 레이어는 한 쌍으로 존재하며, 콘볼루셔널 레이어, 결합 레이어, 콘볼루셔널 레이어 그리고 결합 레이어 순으로 제 2 서브 네트워크 함수(340)에 위치할 수 있다. 둘 이상의 결합 레이어 각각은, 직전 콘볼루셔널 레이어의 출력 및 감정 상태 데이터(342)에 기초하여 얼굴 포즈에 관한 서브 특징 벡터를 출력할 수 있다. 프로세서(120)는 둘 이상의 결합 레이어 각각에서 출력된 얼굴 포즈에 관한 서브 특징 벡터는 결합 레이어 다음에 위치한 콘볼루셔널 레이어의 입력으로 할 수 있고, 또는 제 2 네트워크 함수의 입력으로 할 수도 있다.
프로세서(120)는 음성 특징(330)을 제 2 서브 네트워크 함수(340)에 포함된 제 1 레이어(343)의 입력으로 하여 상기 음성 특징(330)에 기초한 제 1 얼굴 포즈에 관한 서브 특징 벡터를 출력할 수 있다. 제 1 레이어(343)는 콘볼루셔널 레이어일 수 있다.
프로세서(120)는 제 1 얼굴 포즈에 관한 서브 특징 벡터 및 감정 상태 데이터(342)를 제 2 서브 네트워크 함수(340)에 포함된 제 2 레이어(344)의 입력으로 하여 제 2 얼굴 포즈에 관한 서브 특징 벡터를 출력할 수 있다. 제 2 레이어(344)는 결합(concatenation) 레이어일 수 있다. 제 2 레이어(344)는 제 1 얼굴 포즈에 관한 서브 특징 벡터 및 감정 상태 데이터(342)에 기초하여 연산을 수행할 수 있다. 제 2 레이어(344)는 제 1 얼굴 포즈에 관한 서브 특징 벡터를 상기 감정 상태 데이터(342)에 기초하여 보정할 수 있다. 제 2 레이어(344)는 제 1 얼굴 포즈에 관한 서브 특징 벡터 및 상기 감정 상태 데이터(342)에 기초하여 제 2 얼굴 포즈에 관한 서브 특징 벡터를 출력할 수 있다.
프로세서(120)는 상기 제 2 얼굴 포즈에 관한 서브 특징 벡터를 제 3 레이어의 입력으로 하여 상기 제 3 얼굴 포즈에 관한 서브 특징 벡터를 출력할 수 있다. 제 3 레이어는 제 1 레이어(343)보다 출력 레이어에 가까운 레이어일 수 있다. 제 3 레이어는 콘볼루셔널 레이어일 수 있다. 제 3 레이어는 제 1 레이어보다 작은 크기의 서브 특징 벡터를 출력할 수 있다.
프로세서(120)는 제 3 얼굴 포즈에 관한 서브 특징 벡터 및 감정 상태 데이터(342)를 제 2 서브 네트워크 함수(340)에 포함된 제 4 레이어의 입력으로 하여 제 4 얼굴 포즈에 관한 서브 특징 벡터를 출력할 수 있다. 제 4 레이어는 결합 레이어일 수 있다 제 4 레이어는 제 2 레이어보다 작은 크기의 서브 특징 벡터를 출력할 수 있다.
예를 들어, 제 2 서브 네트워크 함수(340)에 포함된 제 1 레이어(343) 및 제 2 레이어(344)의 출력이 (256+N)*32*1일 경우, 제 3 레이어 및 제 4 레이어의 출력은 (256+N)*16*1일 수 있다. 전술한 레이어 출력의 크기에 관한 구체적인 기재는 예시일 뿐이며 본 개시는 이에 제한되지 않는다.
프로세서(120)는 상기 얼굴 포즈에 관한 특징 벡터(400)를 둘 이상의 디콘볼루셔널 레이어를 포함하는 제 2 네트워크 함수(500)를 이용하여 연산하여 얼굴 애니메이션(600)을 생성할 수 있다. 프로세서(120)는 둘 이상의 디콘볼루셔널 레이어를 포함하는 제 2 네트워크 함수(500)를 이용하여 얼굴 포즈에 관한 특징 벡터(400)를 연산할 수 있다. 제 2 네트워크 함수(500)에 포함된 둘 이상의 디콘볼루셔널 레이어의 크기는 점진적으로 커질 수 있다. 제 2 네트워크 함수(500)에 포함된 제 1 디콘볼루셔널 레이어의 크기와 상기 제 1 디콘볼루셔널 레이어와 인접한 제 2 디콘볼루셔널 레이어의 크기는 임계 값 이상 차이 나지 않는 레이어일 수 있다. 제 2 네트워크 함수(500)에 포함된 둘 이상의 디콘볼루셔널 레이어의 크기가 출력 레이어로 갈수록 점진적으로 커지므로 크기에 기초하여 점진적으로 얼굴 애니메이션을 예측할 수 있다. 전술한 둘 이상의 디콘볼루셔널 레이어를 포함하는 제 2 네트워크 함수에 관한 구체적인 기재는 예시일 뿐이며 본 개시는 이에 제한되지 않는다.
프로세서(120)는 상기 얼굴 포즈에 관한 특징 벡터(400)를 이용하여 얼굴에 포함된 둘 이상의 버텍스(vertex)의 위치를 결정할 수 있다. 버텍스는 얼굴 애니메이션의 기초가 되는 점일 수 있다. 프로세서(120)는 버텍스의 위치에 기초하여 얼굴의 음영, 윤곽 등을 결정할 수 있다. 프로세서(120)는 둘 이상의 버텍스를 연결하여 얼굴 애니메이션을 생성할 수 있다. 프로세서(120)는 상기 얼굴에 포함된 둘 이상의 버텍스의 위치에 기초하여 상기 얼굴 애니메이션을 생성할 수 있다. 예를 들어, 버텍스는 3D 애니메이션을 생성하기 위하여 결정되는 점의 좌표일 수 있다. 전술한 버텍스에 관한 구체적인 기재는 예시일 뿐이며 본 개시는 이에 제한되지 않는다.
이하에서는 본 개시의 일 실시예에 따라 얼굴 애니메이션 생성 모델을 학습시키는 방법에 관하여 설명한다.
도 5는 본 개시의 일 실시예에 따라 얼굴 애니메이션 생성 모델을 학습시키는 방법을 예시적으로 도시한 도면이다.
상기 음성 데이터(200)에 기초하여 상기 얼굴 애니메이션을 생성하는 상기 제 1 네트워크 함수(300) 및 상기 제 2 네트워크 함수(500)를 포함하는 얼굴 애니메이션 생성 모델(800)은, 학습 음성 데이터(200)를 입력으로 하고, 상기 학습 음성 데이터(200)에 기초한 얼굴 애니메이션을 라벨(604)로 하는 둘 이상의 학습 데이터를 포함하는 학습 데이터 세트에 기초하여 학습될 수 있다.
이하에서는 본 개시의 일 실시예에 따라 얼굴 애니메이션 생성 모델을 학습하기 위하여 학습 데이터 세트를 생성하는 방법에 관하여 설명한다.
프로세서(120)는 학습 음성 데이터를 입력으로 하고, 상기 학습 음성 데이터에 기초한 얼굴 애니메이션을 라벨로 하는 학습 데이터를 하나 이상 포함하는 학습 데이터 세트를 생성할 수 있다. 학습 음성 데이터는 얼굴 애니메이션 생성 모델(800) 학습의 기초가 되는 음성 데이터일 수 있다. 학습 음성 데이터는 얼굴 애니메이션 생성 모델(800) 학습의 기초가 되는 게임 플레이어에게 출력되는 음향 정보를 포함하는 데이터일 수 있다. 예를 들어, 학습 음성 데이터는 게임 플레이어의 캐릭터, NPC에 의해 발화되는 음향에 관한 데이터일 수 있다. 학습 음성 데이터에 관한 구체적인 기재는 예시일 뿐이며 본 개시는 이에 제한되지 않는다.
본 개시의 일 실시예에 따른, 얼굴 애니메이션 생성 모델(800)을 학습시키기 위한 학습 데이터 세트의 기초가 되는 학습 음성 데이터는, 팬그램(pangram)에 기초한 음성 데이터일 수 있다. 팬그램은, 언어에 포함된 모든 글자들을 사용해서 만든 문장을 의미할 수 있다. 예를 들어 영어의 경우, 영어에 포함된 모든 알파벳들을 사용해서 만든 문장에 기초하여 음성 데이터를 생성할 수 있다. 영문의 팬그램은 예를 들어, the quick brown fox jumps over the lazy dog이며, 프랑스어의 팬그램은 예를 들어, Buvez de ce whisky que le patron juge fameux 일 수 있다. 사용자가 팬그램을 소리 내어 읽은 음성이 학습 음성 데이터일 수 있다. 전술한 학습 음성 데이터에 관한 구체적인 기재는 예시일 뿐이며 본 개시는 이에 제한되지 않는다.
프로세서(120)는 얼굴 애니메이션 생성 모델(800)의 학습을 위하여 학습 음성 데이터에 대응되어, 출력되어야 하는 얼굴 애니메이션을 라벨로 결정하여 학습 데이터를 생성할 수 있다. 라벨인 얼굴 애니메이션은, 학습 음성 데이터에 기초한 애니메이션일 수 있다. 예를 들어, 라벨인 얼굴 애니메이션은, 학습 음성 데이터에 기초하여 생성된 캐릭터 또는 NPC에 의해 표출되는 애니메이션일 수 있다. 전술한 라벨에 관한 구체적인 기재는 예시일 뿐이며 본 개시는 이에 제한되지 않는다.
프로세서(120)는 학습 데이터 세트를 생성하기 위하여 학습 데이터를 증강(augmentation)시킬 수 있다.
학습 데이터 세트는 제 1 학습 데이터 및 제 2 학습 데이터를 포함할 수 있다.
제 2 학습 데이터는, 제 1 학습 데이터의 입력인 제 1 학습 음성 데이터의 적어도 일 구간을 사전결정된 시간 단위만큼 이동하여 생성한 제 2 학습 음성 데이터를 입력으로 하고, 그리고 상기 1 학습 데이터의 라벨인 제 1 얼굴 애니메이션을 상기 제 1 학습 음성 데이터에 대응되게 변환하여 생성한 제 2 얼굴 애니메이션을 라벨로 할 수 있다.
프로세서(120)는 제 1 음성 데이터의 일 구간을 사전결정된 시간 단위만큼 이동(time shift)하여 제 2 음성 데이터를 생성할 수 있다. 예를 들어, 프로세서(120)는 0초부터 10초까지에 해당하는 음성 데이터가 있을 경우, 3초부터 4초 구간의 음성 데이터를 1초씩 앞당겨서, 2초부터 3초 구간 동안은 이동된 음성 데이터와 기존의 음성 데이터가 겹치게 되고, 3초부터 4초 구간 동안은 음성 데이터가 0으로 변환되어, 제 2 음성 데이터를 생성할 수 있다. 전술한 제 2 음성 데이터에 관한 구체적인 기재는 예시일 뿐이며 본 개시는 이에 제한되지 않는다.
프로세서(120)는 제 1 음성 데이터에 기초하여 제 2 음성 데이터를 생성한 것에 대응되게, 제 1 음성 데이터의 라벨인 제 1 얼굴 애니메이션을 변환하여 제 2 얼굴 애니메이션을 생성할 수 있다. 프로세서(120)는 제 1 음성 데이터를 사전결정된 시간 단위만큼 이동한 것에 기초하여, 제 1 얼굴 애니메이션의 일 구간의 버텍스를 사전결정된 시간만큼 이동하여 제 2 얼굴 애니메이션을 생성할 수 있다. 전술한 예시에서, 제 1 음성 데이터의 3초부터 4초 구간의 음성 데이터를 1초씩 앞당겨서 제 2 음성 데이터를 생성한 경우, 3초부터 4초 구간의 얼굴 애니메이션에 대응되는 버텍스를 1초씩 앞당겨서, 2초부터 3초 구간의 얼굴 애니메이션에 대응되는 버텍스와 결합하여 제 2 얼굴 애니메이션을 생성할 수 있다. 전술한 제 2 얼굴 애니메이션에 관한 구체적인 기재는 예시일 뿐이며 본 개시는 이에 제한되지 않는다.
프로세서(120)는 상기 학습 데이터 세트에 기초하여 제 1 네트워크 함수(300) 및 제 2 네트워크 함수(500)를 포함하는 얼굴 애니메이션 생성 모델(800)을 학습시킬 수 있다. 상기 제 1 네트워크 함수(300)는 상기 학습 음성 데이터에 기초하여 얼굴 포즈에 관한 특징 벡터(400)를 출력하기 위한 네트워크 함수이고, 그리고 상기 제 2 네트워크 함수(500)는 상기 얼굴 포즈에 관한 특징 벡터(400)에 기초하여 상기 얼굴 애니메이션(600)을 생성하기 위한 네트워크 함수일 수 있다. 상기 제 1 네트워크 함수(300)는 둘 이상의 콘볼루셔널 레이어를 포함하고, 그리고 상기 제 2 네트워크 함수(500)는 둘 이상의 풀리 커넥티드 레이어를 포함할 수 있다.
프로세서(120)는 학습 음성 데이터(200)를 상기 얼굴 애니메이션 생성 모델(800)의 입력으로 하여 연산하여 획득한 출력(602)과 상기 학습 데이터에 포함된 라벨(604)인 상기 얼굴 애니메이션의 오차에 기초하여 학습될 수 있다.
오차는, 상기 출력(602)과 상기 학습 데이터에 포함된 라벨(604)인 상기 얼굴 애니메이션 각각의 둘 이상의 버텍스 위치의 차이 및 상기 출력된 얼굴 애니메이션에 포함된 움직임의 속도 적정 여부 중 적어도 하나에 기초하여 결정될 수 있다. 얼굴 애니메이션은, 둘 이상의 버텍스에 기초하여 생성될 수 있다. 오차는 출력(602)과 라벨(604) 각각의 얼굴 애니메이션에 포함된 둘 이상의 버텍스의 위치의 차이에 기초하여 결정될 수 있다. 오차는 버텍스의 위치가 차이나는 부분의 개수, 버텍스의 위치에 기초한 거리 등에 기초하여 결정될 수 있다. 출력된 얼굴 애니메이션의 시간 변화 및 시간 변화에 따른 버텍스의 위치에 기초하여 오차가 결정될 수 있다. 제 1 시간일 때의 얼굴 애니메이션에 포함된 제 1 버텍스의 위치와 제 2 시간일 때의 얼굴 애니메이션에 포함된 제 2 버텍스의 위치의 차이에 기초하여 오차가 결정될 수 있다. 사람의 안면 근육이 움직이는 속도에 기초하여 제 1 버텍스와 제 2 버텍스의 거리의 임계 값이 결정될 수 있다. 제 1 시간일때의 제 1 버텍스의 위치와 제 2 시간일 때의 제 2 버텍스의 위치의 거리의 차이가 상기 임계 값 이상인 경우, 얼굴 애니메이션 생성 모델(800)의 출력(602)과 라벨(604)의 오차가 존재하는 것으로 결정할 수 있다. 전술한 얼굴 애니메이션 생성 모델의 학습에 기초한 오차에 관한 구체적인 기재는 예시일 뿐이며 본 개시는 이에 제한되지 않는다.
얼굴 애니메이션 생성 모델(800)의 출력(602)과 라벨(604)에 기초하여 계산된 오차는 얼굴 애니메이션 생성 모델(800)에서 역방향인 출력 레이어에서 입력 레이어 방향으로 역전파 될 수 있다.
프로세서(120)는 상기 제 1 네트워크 함수(300)에 대한 가중치의 업데이트 정도 및 상기 제 2 네트워크 함수(500)에 대한 가중치의 업데이트 정도를 상이하게 설정하여 상기 얼굴 애니메이션 생성 모델(800)을 학습시킬 수 있다. 프로세서(120)는 사전결정된 에폭 동안 상기 제 1 네트워크 함수(300)에 대한 가중치의 업데이트 정도 및 상기 제 2 네트워크 함수(500)에 대한 가중치의 업데이트 정도를 상이하게 설정하여 상기 얼굴 애니메이션 생성 모델(800)을 학습시킬 수 있다. 예를 들어, 사전결정된 에폭은 학습 시작 이후 첫 10 에폭을 의미할 수 있다. 전술한 사전결정된 에폭에 관한 구체적인 기재는 예시일 뿐이며 본 개시는 이에 제한되지 않는다.
본 개시의 일 실시예에 따라, 제 1 네트워크 함수(300)의 가중치의 업데이트 정도 및 제 2 네트워크 함수(500)의 가중치의 업데이트 정도를 상이하게 설정하여 학습시키기 위한 제 2 네트워크 함수(500)는 풀리 커넥티드 레이어(fully connected layer)에 기초한 네트워크 함수일 수 있다. 제 2 네트워크 함수(500)는 둘 이상의 풀리 커넥티드 레이어를 포함할 수 있다. 얼굴 애니메이션 생성 모델에 포함된 제 2 네트워크 함수는 제 1 레이어 및 제 2 레이어를 포함할 수 있다. 제 1 레이어 및 제 2 레이어는 각각 풀리 커넥티드 레이어일 수 있다. 제 1 레이어와 상기 제 2 레이어의 크기는 상이할 수 있다. 제 1 레이어와 제 2 레이어에 기초하여 연산하여 출력한 데이터 출력의 크기는 상이할 수 있다. 예를 들어, 제 1 레이어에 기초하여 연산하여 출력한 데이터 출력의 크기는 150이고, 제 2 레이어에 기초하여 연산하여 출력한 데이터 출력의 크기는 15000일 수 있다. 제 2 레이어는 상기 제 1 레이어보다 출력 레이어에 가까운 레이어일 수 있다. 프로세서(120)는 제 1 레이어의 출력을 제 2 레이어의 입력으로 하여 연산할 수 있다. 제 1 레이어와 제 2 레이어는 인접한 레이어일 수 있다. 전술한 제 1 레이어 및 제 2 레이어에 관한 구체적인 기재는 예시일 뿐이며 본 개시는 이에 제한되지 않는다.
제 2 네트워크 함수에 포함된 둘 이상의 레이어 중 인접한 레이어의 크기가 임계 값 이상 차이나는 경우, 얼굴 애니메이션 생성 모델의 학습 시 제 2 네트워크 함수 앞 단에 위치한 제 1 네트워크 함수 가중치의 업데이트 정도에 감쇄가 있을 수 있다. 따라서, 제 1 네트워크 함수 가중치의 감쇄를 방지하기 위하여, 학습 시 사전결정된 에폭 동안 제 1 네트워크 함수와 제 2 네트워크 함수에 대한 가중치의 업데이트 정도를 각각 상이하게 설정하여 얼굴 애니메이션 생성 모델을 학습시킬 수 있다.
프로세서(120)는 상기 제 1 네트워크 함수(300)에 대한 가중치의 업데이트 정도를 상기 제 2 네트워크 함수(500)에 대한 가중치의 업데이트 정도보다 크게 설정하여 상기 얼굴 애니메이션 생성 모델(800)을 학습시킬 수 있다. 프로세서(120)는 제 2 네트워크 함수(300)에 대한 가중치의 업데이트는 수행하지 않고, 그리고 제 1 네트워크 함수(300)에 대한 가중치의 업데이트를 수행할 수 있다. 프로세서(120)는 상기 학습 음성 데이터를 상기 얼굴 애니메이션 생성 모델의 입력으로 하여 연산하여 획득한 출력과 상기 학습 데이터에 포함된 라벨인 상기 얼굴 애니메이션의 오차에 기초하여 역전파하는 경우, 상기 제 2 네트워크 함수를 제외하고 상기 제 1 네트워크 함수에 대해서만 가중치를 업데이트할 수 있다. 프로세서(120)는 오차에 기초하여 역전파하는 경우, 제 2 네트워크 함수(500)의 가중치는 업데이트 하지 않고, 제 1 네트워크 함수(300)의 가중치만 업데이트할 수 있다. 프로세서(120)는 제 1 네트워크 함수(300)만 오차에 기초하여 가중치의 업데이트를 수행할 수 있다. 프로세서(120)는 제 2 네트워크 함수(500)를 제외하고 제 1 네트워크 함수(300)에 포함된 출력 레이어로부터 하나 이상의 히든 레이어를 거쳐 입력 레이어로 오차를 전파함으로써, 둘 이상의 레이어 사이의 링크를 업데이트하는 동작을 수행할 수 있다.
프로세서(120)는 학습 데이터에 포함된 학습 음성 데이터(200)를 얼굴 애니메이션 생성 모델(800)에 포함된 제 1 네트워크 함수(300) 및 제 2 네트워크 함수(500)에 기초하여 학습 음성 데이터(200)에 대한 연산을 수행하여 출력(602) 얼굴 애니메이션을 생성할 수 있다. 프로세서(120)는 학습의 시작 이후 사전결정된 에폭 동안, 학습 음성 데이터(200)에 대한 연산은 제 1 네트워크 함수(300) 및 제 2 네트워크 함수(500)에 기초하여 수행하는 반면, 오차에 기초한 가중치의 업데이트는 제 1 네트워크 함수(300)에만 기초하고, 제 2 네트워크 함수(500)에는 기초하지 않을 수 있다. 예를 들어, 프로세서(120)는 학습이 시작된 이후 첫 10 에폭 동안 제 1 네트워크 함수(300)에 대해서만 오차에 기초하여 가중치의 업데이트를 수행할 수 있다. 전술한 사전결정된 에폭에 관한 구체적인 기재는 예시일 뿐이며 본 개시는 이에 제한되지 않는다.
프로세서(120)는 사전결정된 학습 에폭 이후에 상기 제 1 네트워크 함수(300) 및 제 2 네트워크 함수(500) 각각에 대하여 가중치의 업데이트를 수행하여 상기 얼굴 애니메이션 생성 모델(800)의 학습을 수행할 수 있다. 프로세서(120)는 사전결정된 학습 에폭 이후에 상기 제 1 네트워크 함수(300)에 대한 가중치의 업데이트 정도 및 상기 제 2 네트워크 함수(500)에 대한 가중치의 업데이트 정도를 동일하게 설정하여 상기 얼굴 애니메이션 생성 모델(800)을 학습할 수 있다. 프로세서(120)는 사전결정된 학습 에폭 동안 오차에 기초한 가중치의 업데이트를 제 1 네트워크 함수(300)에 대해서만 수행할 수 있고, 사전결정된 학습 에폭 이후의 학습에 대해서는 제 1 네트워크 함수(300) 및 제 2 네트워크 함수(500)에 대하여 가중치의 업데이트를 수행할 수 있다. 프로세서(120)는 사전결정된 학습 에폭 이후에 제 2 네트워크 함수(500)에 포함된 출력 레이어로부터 입력 레이어로 오차를 전파하고, 그리고 제 1 네트워크 함수(300)에 포함된 출력 레이어로부터 하나 이상의 히든 레이어를 거쳐 입력 레이어로 오차를 전파하여, 제 2 네트워크 함수(500) 및 제 1 네트워크 함수(300) 각각에 포함된 둘 이상의 링크의 가중치를 각각 업데이트할 수 있다. 예를 들어, 사전결정된 학습 에폭이 10 에폭인 경우, 10 에폭의 가중치 업데이트 이후의 학습에 대해서는 제 1 네트워크 함수(300) 및 제 2 네트워크 함수(500) 각각에 대하여 가중치의 업데이트를 수행할 수 있다. 전술한 학습에 관한 구체적인 기재는 예시일 뿐이며 본 개시는 이에 제한되지 않는다.
본 개시의 일 실시예에 따른 학습에서, 출력 레이어에서 입력 레이어 방향으로 역전파 된 역전파에 따라 각 레이어의 각 노드들의 연결 가중치가 업데이트 될 수 있다. 업데이트 되는 각 노드의 연결 가중치는 학습률(learning rate)에 따라 변화량이 결정될 수 있다. 입력 데이터에 대한 네트워크 함수의 계산과 에러의 역전파는 학습 사이클을 구성할 수 있다. 학습률은 네트워크 함수의 학습 사이클의 반복 횟수에 따라 상이하게 적용될 수 있다. 예를 들어, 네트워크 함수의 학습 초기에는 높은 학습률을 사용하여 네트워크 함수가 빠르게 일정 수준의 성능을 확보하도록 하여 효율성을 높일 수 있다. 예를 들어, 네트워크 함수의 학습 후기에는 낮은 학습률을 사용하여 정확도를 높일 수 있다.
프로세서(120)는 얼굴 애니메이션 생성 모델(800)을 생성하는데 있어, 과적합(overfitting)을 방지하기 위하여 히든 노드의 출력 일부가 다음 히든 노드에 전달되지 못하도록 드롭 아웃을 설정할 수 있다.
학습 에폭(epoch)은, 학습 데이터 세트에 포함된 모든 학습 데이터에 관하여 학습 음성 데이터(200)를 얼굴 애니메이션 생성 모델(800)의 하나 이상의 네트워크 함수의 입력 레이어에 포함된 하나 이상의 입력 노드 각각에 입력하고, 학습 음성 데이터(200)에 라벨링 된 얼굴 애니메이션(즉, 정답)과 얼굴 애니메이션 생성 모델의 얼굴 애니메이션(즉, 출력)를 비교하여 오차를 도출하고, 상기 도출된 오차를 얼굴 애니메이션 생성 모델의 하나 이상의 네트워크 함수의 출력 레이어로부터 하나 이상의 히든 레이어를 거쳐 입력 레이어로 전파함으로써, 각각의 링크에 설정된 가중치를 업데이트하는 동작일 수 있다. 즉, 학습 데이터 세트에 포함된 모든 학습 데이터에 대하여 얼굴 애니메이션 생성 모델(800)을 이용한 연산과 얼굴 애니메이션 생성 모델(800)에 대한 가중치 업데이트 과정을 수행한 경우 1 에폭일 수 있다.
프로세서(120)는 얼굴 애니메이션 생성 모델(800)을 생성하는데 있어, 상기 얼굴 애니메이션 생성 모델(800)을 학습시키기 위한 학습 에폭이 사전결정된 에폭 이하인 경우, 상기 얼굴 애니메이션 생성 모델(800)의 학습률을 사전 결정된 수치 이상으로 설정할 수 있다. 프로세서(120)는 얼굴 애니메이션 생성 모델(800)을 생성하는데 있어, 상기 얼굴 애니메이션 생성 모델(800)을 학습시키기 위한 학습 에폭이 사전결정된 에폭 이상인 경우, 상기 얼굴 애니메이션 생성 모델(800)의 학습률을 사전 결정된 수치 이하로 설정할 수 있다. 상기 학습률은, 가중치의 업데이트 정도를 의미할 수 있다. 예를 들어, 학습 초반에는 학습률을 높게 설정하여(즉, 가중치의 업데이트 정도를 큰 폭으로 하여), 학습 데이터에 대한 출력이 학습 데이터의 라벨에 빠르게 접근하도록 할 수 있다. 예를 들어, 학습 후반에는 학습률을 낮게 설정하여(즉, 가중치의 업데이트 정도를 작은 폭으로 하여), 학습 데이터에 대한 출력과 학습 데이터의 라벨과의 오차를 줄이도록(즉, 정확성을 높이도록)할 수 있다. 전술한 학습률에 대한 개시는 예시일 뿐이며, 본 개시는 이에 제한되지 않는다.
프로세서(120)는 얼굴 애니메이션 생성 모델(800)의 학습을 사전결정된 에폭 이상 수행한 후, 검증 데이터 세트를 이용하여 학습의 중단 여부를 결정할 수 있다. 사전 결정된 에폭은 전체 학습 목표 에폭의 일부일 수 있다. 프로세서(120)는 학습 데이터 세트의 일부를 검증 데이터 세트로 할 수 있다. 검증 데이터는 학습 데이터에 대응되는 데이터로, 학습의 중단 여부를 결정하기 위한 데이터일 수 있다. 프로세서(120)는 얼굴 애니메이션 생성 모델(800)의 학습이 사전결정된 에폭 이상 반복된 후, 검증 데이터를 이용하여 얼굴 애니메이션 생성 모델(800)의 학습 효과가 사전결정된 수준 이상인지 판단할 수 있다. 예를 들어, 프로세서(120)는 100만개의 학습 데이터를 이용하여 목표 반복 학습 횟수가 10만회인 학습을 수행하는 경우, 사전결정된 에폭인 10000회의 반복 학습을 수행한 후, 1000개의 검증 데이터를 이용하여 10회의 반복 학습(즉, 10 에폭)을 수행하여, 10회의 반복 학습 동안 신경망 출력의 변화가 사전결정된 수준 이하인 경우 더 이상의 학습이 무의미한 것으로 판단하고 학습을 종료할 수 있다. 즉, 검증 데이터는 신경망의 반복 학습에서 에폭 별 학습의 효과가 일정 이상인지 이하인지 여부에 기초하여 학습의 완료를 결정하는 데 이용될 수 있다. 전술한 학습 데이터, 검증 데이터의 수 및 반복 횟수는 예시일 뿐이며 본 개시는 이에 제한되지 않는다.
프로세서(120)는 학습 데이터 세트 중 적어도 하나를 테스트 데이터 세트로 할 수 있다. 테스트 데이터는 학습 데이터에 대응되는 데이터로, 얼굴 애니메이션 생성 모델(800)의 학습이 완료된 이후 성능을 검증하기 위해 이용되는 데이터일 수 있다. 프로세서(120)는 하나 이상의 음성 데이터 및 상기 음성 데이터에 라벨링된 얼굴 애니메이션을 테스트 데이터 세트로 할 수 있다. 프로세서(120)는 테스트 데이터 세트에 포함된 음성 데이터를 얼굴 애니메이션 생성 모델(800)에 입력하고 상기 얼굴 애니메이션 생성 모델(800)에서 출력된 출력과 상기 라벨링된 얼굴 애니메이션을 비교하여 상기 테스트 데이터 세트에 대한 상기 얼굴 애니메이션 생성 모델(800)의 정답률을 판단할 수 있다. 프로세서(120)는 테스트 데이터에 포함된 음성 데이터를 상기 얼굴 애니메이션 생성 모델(800)에 입력하고, 상기 얼굴 애니메이션 생성 모델(800)에서 출력된 얼굴 애니메이션(즉, 출력)과 상기 테스트 데이터에 포함된 얼굴 애니메이션(즉, 정답)을 비교하여, 오차가 사전 결정된 값 이하인 경우, 상기 얼굴 애니메이션 생성 모델(800)의 활성화를 결정할 수 있다. 프로세서(120)는 얼굴 애니메이션 생성 모델(800)에서 출력된 얼굴 애니메이션(즉, 출력)과 상기 테스트 데이터(즉, 정답)에 포함된 얼굴 애니메이션을 비교하여 상기 오차가 사전 결정된 값 이상인 경우, 상기 얼굴 애니메이션 생성 모델(800)의 학습을 사전 결정된 에폭 이상 더 수행하거나 상기 얼굴 애니메이션 생성 모델(800)을 비활성화할 수 있다. 프로세서(120)는 상기 얼굴 애니메이션 생성 모델(800)을 비활성화하는 경우, 상기 얼굴 애니메이션 생성 모델(800)을 폐기할 수 있다. 본 개시의 일 실시예에 따라 프로세서(120)는 각각의 얼굴 애니메이션 생성 모델(800)에 포함되는 하나 이상의 네트워크 함수들을 독립적으로 학습시켜 복수의 얼굴 애니메이션 생성 모델(800)을 생성할 수 있으며, 성능을 평가하여 일정 성능 이상의 신경망만을 얼굴 애니메이션 생성을 위해 사용할 수 있다.
본 개시의 일 실시예에 따라, 상기 얼굴 애니메이션 생성 모델(800)은, 상기 제 1 네트워크 함수(300)에 포함된 둘 이상의 콘볼루셔널 레이어 각각에 대한 연산에 사전결정된 크기의 노이즈를 추가하여 학습될 수 있다. 사전결정된 크기의 노이즈는 둘 이상의 콘볼루셔널 레이어 각각의 연산 수행 시 적용되는 노이즈일 수 있다. 전술한 연산은 곱 연산을 포함하는 임의의 연산일 수 있다. 프로세서(120)는 제 1 네트워크 함수(300)에 포함된 콘볼루셔널 레이어에서 수행되는 곱 연산에 대하여 사전결정된 크기의 노이즈를 추가하여 학습을 수행할 수 있다. 프로세서(120)는 사전결정된 크기의 노이즈를 제 1 네트워크 함수(300)에 포함된 둘 이상의 콘볼루셔널 레이어 각각에 적용할 수 있다. 프로세서(120)는 사전결정된 크기의 노이즈를 제 1 네트워크 함수(300)에 기초하여 학습되는 둘 이상의 피쳐 맵 각각에 적용할 수 있다. 전술한 학습에 관한 구체적인 기재는 예시일 뿐이며 본 개시는 이에 제한되지 않는다.
이하에서는 감정 상태 데이터를 학습하는 방법에 관하여 설명한다.
프로세서(120)는 랜덤한 감정 상태 데이터를 결정하여 얼굴 애니메이션 생성 모델(800)의 연산을 수행할 수 있다. 프로세서(120)는 음성 데이터(200) 및 초기 값으로 결정된 감정 상태 데이터에 기초하여 얼굴 애니메이션 생성 모델(800)의 연산을 통해 출력(602)한 얼굴 애니메이션과 음성 데이터(200)의 라벨(604)인 얼굴 애니메이션의 오차에 기초하여 초기 값으로 결정된 감정 상태 데이터를 변경할 수 있다. 프로세서(120)는 출력(602)과 라벨(604)의 오차에 기초하여 역전파 하여 감정 상태 데이터를 업데이트할 수 있다. 예를 들어, 슬픔과 관련한 감정 상태 데이터에 기초하여 얼굴 애니메이션 생성 모델(800)에서 출력(602)한 얼굴 애니메이션과 라벨(604)인 얼굴 애니메이션의 오차가 임계값 이상이고, 기쁨과 관련한 감정 상태 데이터에 기초하여 얼굴 애니메이션 생성 모델(800)에서 출력(602)한 얼굴 애니메이션과 라벨(604)인 얼굴 애니메이션의 오차가 임계값 미만인 경우, 음성 데이터(200)에 관련된 감정 상태 데이터는 기쁨으로 결정할 수 있다. 전술한 감정 상태 데이터의 학습에 관한 구체적인 기재는 예시일 뿐이며 본 개시는 이에 제한되지 않는다.
도 6은 본 개시의 일 실시예에 따라 얼굴 애니메이션 생성 모델에 기초하여 얼굴 애니메이션을 생성하는 방법에 관한 순서도이다.
컴퓨팅 장치(100)는 음성 데이터를 수신(610)할 수 있다. 음성 데이터(200)는, 사람의 음성에 대한 데이터를 포함할 수 있다. 예를 들어, 게임에서 퀘스트를 게임 플레이어들에게 제공하는 경우, 게임 퀘스트를 애니메이션을 이용하여 전달할 수 있다. 이때, 음성 데이터(200)는 게임 퀘스트에 관한 내용을 음성으로 녹음한 것일 수 있다. 전술한 음성 데이터에 관한 기재는 예시일 뿐이며 본 개시는 이에 제한되지 않는다.
컴퓨팅 장치(100)는 상기 음성 데이터를 둘 이상의 콘볼루셔널 레이어를 포함하는 제 1 네트워크 함수를 이용하여 연산하여 얼굴 애니메이션을 생성하기 위한 얼굴 포즈에 관한 특징 벡터를 출력(620)할 수 있다. 상기 제 1 네트워크 함수는 제 1 서브 네트워크 함수 및 제 2 서브 네트워크 함수를 포함할 수 있다.
컴퓨팅 장치(100)는 음성 데이터를 얼굴 애니메이션 생성 모델에 입력하기 전에 전처리 과정을 거칠 수 있다. 음성 데이터에 대한 전처리는, 음성 데이터의 파형을 일부 보정하는 것을 의미할 수 있다. 컴퓨팅 장치(100)는 음성의 최고 주파수 또는 최저 주파수를 사전결정된 값에 대응하도록 정규화할 수 있다.
컴퓨팅 장치(100)는 상기 음성 데이터를 상기 음성 데이터에 기초한 이미지 데이터로 변환할 수 있다. 컴퓨팅 장치(100)는 콘볼루셔널 레이어에 기초하여 음성 데이터를 연산하기 위하여, 전처리된 음성 데이터를 음성 데이터에 기초한 이미지 데이터로 변환할 수 있다. 음성 데이터를 상기 음성 데이터에 기초한 이미지 데이터로 변환하는 함수는 사전결정된 이미지 데이터 변환 함수일 수 있다. 사전결정된 이미지 데이터 변환 함수는, 얼굴 애니메이션 생성 모델의 학습 시 오차에 기초하여 업데이트 될 수도 있고, 또는 얼굴 애니메이션 생성 모델의 학습 시 업데이트 없이 고정적으로 이미지 데이터로의 변환을 수행할 수도 있다. 사전결정된 이미지 데이터 변환 함수는, 음성 데이터의 주파수에 기초하여 이미지 데이터로 변환할 수 있다.
컴퓨팅 장치(100)는 상기 이미지 데이터를 상기 제 1 네트워크 함수를 이용하여 연산하여 상기 얼굴 포즈에 관한 특징 벡터를 출력할 수 있다.
컴퓨팅 장치(100)는 상기 이미지 데이터를 상기 제 1 서브 네트워크 함수에 기초하여 연산하여 음성 특징을 출력할 수 있다. 제 1 서브 네트워크 함수는 둘 이상의 콘볼루셔널 레이어를 포함할 수 있다. 음성 특징은, 입력된 음성 데이터가 다른 음성 데이터와 구별될 수 있는 특징을 포함할 수 있다. 음성 특징은, 음성의 억양, 음성의 강조, 음성의 특정 음소 등에 관한 정보일 수 있다. 음성 특징은, 상기 음성 데이터를 변환한 이미지 데이터에 기초하여 연산한 정보일 수 있다.
컴퓨팅 장치(100)는 상기 음성 특징을 상기 제 2 서브 네트워크 함수에 기초하여 연산하여 상기 얼굴 포즈에 관한 특징 벡터를 출력할 수 있다. 제 2 서브 네트워크 함수는 둘 이상의 콘볼루셔널 레이어 및 보정 레이어를 포함할 수 있다.
컴퓨팅 장치(100)는 상기 음성 데이터와 관련된 감정 상태 데이터를 상기 제 2 서브 네트워크에 입력시킬 수 있다. 컴퓨팅 장치(100)는 상기 음성 특징을 상기 제 2 서브 네트워크 함수에 기초하여 연산하여 얼굴 포즈에 관한 서브 특징 벡터를 출력할 수 있다. 컴퓨팅 장치(100)는 상기 얼굴 포즈에 관한 서브 특징 벡터를 상기 감정 상태 데이터에 기초하여 보정하여 상기 얼굴 포즈에 관한 특징 벡터를 출력할 수 있다. 감정 상태 데이터는 감정 상태에 관한 분류를 나타내는 데이터일 수 있다. 감정 상태 데이터는 감정 상태에 관한 분류를 나타내기 위한 N차원의 벡터일 수 있다. 감정 상태 데이터는 제 2 서브 네트워크 함수에 포함된 둘 이상의 결합 레이어 각각에서 연산 될 수 있는 형태의 벡터일 수 있다. 본 개시의 일 실시예에 따른 감정 상태 데이터는, 음성 데이터에 수동으로 라벨링된 데이터일 수 있다. 본 개시의 일 실시예에 따른 감정 상태 데이터는, 얼굴 애니메이션 생성 모델의 학습에 따라 학습될 수 있다.
컴퓨팅 장치(100)는 상기 얼굴 포즈에 관한 특징 벡터를 둘 이상의 디콘볼루셔널 레이어를 포함하는 제 2 네트워크 함수를 이용하여 연산하여 얼굴 애니메이션을 생성(630)할 수 있다. 제 2 네트워크 함수에 포함된 둘 이상의 디콘볼루셔널 레이어의 크기는 점진적으로 커질 수 있다. 제 2 네트워크 함수에 포함된 제 1 디콘볼루셔널 레이어의 크기와 상기 제 1 디콘볼루셔널 레이어와 인접한 제 2 디콘볼루셔널 레이어의 크기는 임계 값 이상 차이 나지 않는 레이어일 수 있다.
컴퓨팅 장치(100)는 상기 얼굴 포즈에 관한 특징 벡터를 이용하여 얼굴에 포함된 둘 이상의 버텍스(vertex)의 위치를 결정할 수 있다. 컴퓨팅 장치(100)는 상기 얼굴에 포함된 둘 이상의 버텍스의 위치에 기초하여 상기 얼굴 애니메이션을 생성할 수 있다.
상기 음성 데이터에 기초하여 상기 얼굴 애니메이션을 생성하는 상기 제 1 네트워크 함수 및 상기 제 2 네트워크 함수를 포함하는 얼굴 애니메이션 생성 모델은, 학습 음성 데이터를 입력으로 하고, 상기 학습 음성 데이터에 기초한 얼굴 애니메이션을 라벨로 하는 둘 이상의 학습 데이터를 포함하는 학습 데이터 세트에 기초하여 학습되고, 그리고 상기 학습 음성 데이터를 상기 얼굴 애니메이션 생성 모델의 입력으로 하여 연산하여 획득한 출력과 상기 학습 데이터에 포함된 라벨인 상기 얼굴 애니메이션의 오차에 기초하여 학습된 모델일 수 있다.
상기 학습 데이터 세트는 제 1 학습 데이터 및 제 2 학습 데이터를 포함하고, 그리고 제 2 학습 데이터는, 제 1 학습 데이터의 입력인 제 1 학습 음성 데이터의 적어도 일 구간을 사전결정된 시간 단위만큼 이동하여 생성한 제 2 학습 음성 데이터를 입력으로 하고, 그리고 상기 1 학습 데이터의 라벨인 제 1 얼굴 애니메이션을 상기 제 1 학습 음성 데이터에 대응되게 변환하여 생성한 제 2 얼굴 애니메이션을 라벨로 할 수 있다. 상기 오차는, 상기 출력과 상기 학습 데이터에 포함된 라벨인 상기 얼굴 애니메이션 각각의 둘 이상의 버텍스 위치의 차이 및 상기 출력된 얼굴 애니메이션에 포함된 움직임의 속도 적정 여부 중 적어도 하나에 기초하여 결정될 수 있다.
상기 얼굴 애니메이션 생성 모델은, 상기 제 1 네트워크 함수에 포함된 둘 이상의 콘볼루셔널 레이어 각각에 대한 연산에 사전결정된 크기의 노이즈를 추가하여 학습된 모델일 수 있다.
상기 학습 음성 데이터는, 팬그램(pangram)에 기초한 음성 데이터일 수 있다.
도 7은 본 개시의 일 실시예에 따라 얼굴 애니메이션 생성 모델의 학습 방법에 관한 순서도이다.
컴퓨팅 장치(100)는 학습 음성 데이터를 입력으로 하고, 상기 학습 음성 데이터에 기초한 얼굴 애니메이션을 라벨로 하는 학습 데이터를 하나 이상 포함하는 학습 데이터 세트를 생성(710)할 수 있다.
컴퓨팅 장치(100)는 상기 학습 데이터 세트에 기초하여 제 1 네트워크 함수 및 제 2 네트워크 함수를 포함하는 얼굴 애니메이션 생성 모델을 학습(720)시킬 수 있다.
컴퓨팅 장치(100)는 상기 제 1 네트워크 함수에 대한 가중치의 업데이트 정도 및 상기 제 2 네트워크 함수에 대한 가중치의 업데이트 정도를 상이하게 설정하여 상기 얼굴 애니메이션 생성 모델을 학습(730)시킬 수 있다. 상기 제 1 네트워크 함수는 상기 학습 음성 데이터에 기초하여 얼굴 포즈에 관한 특징 벡터를 출력하기 위한 네트워크 함수이고, 그리고 상기 제 2 네트워크 함수는 상기 얼굴 포즈에 관한 특징 벡터에 기초하여 상기 얼굴 애니메이션을 생성하기 위한 네트워크 함수일 수 있다. 상기 제 1 네트워크 함수는 둘 이상의 콘볼루셔널 레이어를 포함하고, 그리고 상기 제 2 네트워크 함수는 둘 이상의 풀리 커넥티드 레이어를 포함할 수 있다.
컴퓨팅 장치(100)는 상기 제 1 네트워크 함수에 대한 가중치의 업데이트 정도를 상기 제 2 네트워크 함수에 대한 가중치의 업데이트 정도보다 크게 설정하여 상기 얼굴 애니메이션 생성 모델을 학습시킬 수 있다. 컴퓨팅 장치(100)는 상기 학습 음성 데이터를 상기 얼굴 애니메이션 생성 모델의 입력으로 하여 연산하여 획득한 출력과 상기 학습 데이터에 포함된 라벨인 상기 얼굴 애니메이션의 오차에 기초하여 역전파하는 경우, 상기 제 2 네트워크 함수를 제외하고 상기 제 1 네트워크 함수에 대해서만 가중치를 업데이트할 수 있다. 컴퓨팅 장치(100)는 사전결정된 에폭 동안 상기 제 1 네트워크 함수에 대한 가중치의 업데이트 정도 및 상기 제 2 네트워크 함수에 대한 가중치의 업데이트 정도를 상이하게 설정하여 상기 얼굴 애니메이션 생성 모델을 학습시킬 수 있다. 상기 제 2 네트워크 함수는 제 1 레이어 및 제 2 레이어를 포함하고, 그리고 상기 제 1 레이어와 상기 제 2 레이어의 크기는 상이할 수 있다. 상기 제 2 레이어는 상기 제 1 레이어보다 출력 레이어에 가까운 레이어일 수 있다.
컴퓨팅 장치(100)는 사전결정된 학습 에폭 이후에 상기 제 1 네트워크 함수에 대한 가중치의 업데이트 정도 및 상기 제 2 네트워크 함수에 대한 가중치의 업데이트 정도를 동일하게 설정하여 상기 얼굴 애니메이션 생성 모델을 학습시킬 수 있다.
도 8은 본 개시의 일 실시예에 따른 컴퓨팅 장치의 블록 구성도이다.
도 8은 본 개시의 실시예들이 구현될 수 있는 예시 적인 컴퓨팅 환경에 대한 간략하고 일반적인 개략도를 도시한다.
본 개시가 일반적으로 하나 이상의 컴퓨터 상에서 실행될 수 있는 컴퓨터 실행가능 명령어와 관련하여 전술되었지만, 당업자라면 본 개시가 기타 프로그램 모듈들과 결합되어 및/또는 하드웨어와 소프트웨어의 조합으로써 구현될 수 있다는 것을 잘 알 것이다.
일반적으로, 프로그램 모듈은 특정의 태스크를 수행하거나 특정의 추상 데이터 유형을 구현하는 루틴, 프로그램, 컴포넌트, 데이터 구조, 기타 등등을 포함한다. 또한, 당업자라면 본 개시의 방법이 단일-프로세서 또는 멀티프로세서 컴퓨터 시스템, 미니컴퓨터, 메인프레임 컴퓨터는 물론 퍼스널 컴퓨터, 핸드 헬드 컴퓨팅 장치, 마이크로프로세서-기반 또는 프로그램가능 가전 제품, 기타 등등(이들 각각은 하나 이상의 연관된 장치와 연결되어 동작할 수 있음)을 비롯한 다른 컴퓨터 시스템 구성으로 실시될 수 있다는 것을 잘 알 것이다.
본 개시의 설명된 실시예들은 또한 어떤 태스크들이 통신 네트워크를 통해 연결되어 있는 원격 처리 장치들에 의해 수행되는 분산 컴퓨팅 환경에서 실시될 수 있다. 분산 컴퓨팅 환경에서, 프로그램 모듈은 로컬 및 원격 메모리 저장 장치 둘 다에 위치할 수 있다.
컴퓨터는 통상적으로 다양한 컴퓨터 판독가능 매체를 포함한다. 컴퓨터에 의해 액세스 가능한 매체는 그 어떤 것이든지 컴퓨터 판독가능 매체가 될 수 있다. 컴퓨터 판독가능 매체는 휘발성 및 비휘발성 매체, 일시적(transitory) 및 비일시적(non-transitory) 매체, 이동식 및 비-이동식 매체를 포함한다. 제한이 아닌 예로서, 컴퓨터 판독가능 매체는 컴퓨터 판독가능 저장 매체 및 컴퓨터 판독가능 전송 매체를 포함할 수 있다. 컴퓨터 판독가능 저장 매체는 컴퓨터 판독가능 명령어, 데이터 구조, 프로그램 모듈 또는 기타 데이터와 같은 정보를 저장하는 임의의 방법 또는 기술로 구현되는 휘발성 및 비휘발성 매체, 일시적 및 비-일시적 매체, 이동식 및 비이동식 매체를 포함한다. 컴퓨터 저장 매체는 RAM, ROM, EEPROM, 플래시 메모리 또는 기타 메모리 기술, CD-ROM, DVD(digital video disk) 또는 기타 광 디스크 저장 장치, 자기 카세트, 자기 테이프, 자기 디스크 저장 장치 또는 기타 자기 저장 장치, 또는 컴퓨터에 의해 액세스될 수 있고 원하는 정보를 저장하는 데 사용될 수 있는 임의의 기타 매체를 포함하지만, 이에 한정되지 않는다.
컴퓨터 판독가능 전송 매체는 통상적으로 기타 전송 메커니즘(transport mechanism)과 같은 피변조 데이터 신호(modulated data signal)에 컴퓨터 판독가능 명령어, 데이터 구조, 프로그램 모듈 또는 기타 데이터 등을 구현하고 모든 정보 전달 매체를 포함한다. 피변조 데이터 신호라는 용어는 신호 내에 정보를 인코딩하도록 그 신호의 특성들 중 하나 이상을 설정 또는 변경시킨 신호를 의미한다. 제한이 아닌 예로서, 컴퓨터 판독가능 전송 매체는 유선 네트워크 또는 직접 배선 접속(direct-wired connection)과 같은 유선 매체, 그리고 음향, RF, 적외선, 기타 무선 매체와 같은 무선 매체를 포함한다. 상술된 매체들 중 임의의 것의 조합도 역시 컴퓨터 판독가능 전송 매체의 범위 안에 포함되는 것으로 한다.
컴퓨터(1102)를 포함하는 본 개시의 여러가지 측면들을 구현하는 예시 적인 환경(1100)이 나타내어져 있으며, 컴퓨터(1102)는 처리 장치(1104), 시스템 메모리(1106) 및 시스템 버스(1108)를 포함한다. 시스템 버스(1108)는 시스템 메모리(1106)(이에 한정되지 않음)를 비롯한 시스템 컴포넌트들을 처리 장치(1104)에 연결시킨다. 처리 장치(1104)는 다양한 상용 프로세서들 중 임의의 프로세서일 수 있다. 듀얼 프로세서 및 기타 멀티프로세서 아키텍처도 역시 처리 장치(1104)로서 이용될 수 있다.
시스템 버스(1108)는 메모리 버스, 주변장치 버스, 및 다양한 상용 버스 아키텍처 중 임의의 것을 사용하는 로컬 버스에 추가적으로 상호 연결될 수 있는 몇 가지 유형의 버스 구조 중 임의의 것일 수 있다. 시스템 메모리(1106)는 판독 전용 메모리(ROM)(1110) 및 랜덤 액세스 메모리(RAM)(1112)를 포함한다. 기본 입/출력 시스템(BIOS)은 ROM, EPROM, EEPROM 등의 비휘발성 메모리(1110)에 저장되며, 이 BIOS는 시동 중과 같은 때에 컴퓨터(1102) 내의 구성요소들 간에 정보를 전송하는 일을 돕는 기본적인 루틴을 포함한다. RAM(1112)은 또한 데이터를 캐싱하기 위한 정적 RAM 등의 고속 RAM을 포함할 수 있다.
컴퓨터(1102)는 또한 내장형 하드 디스크 드라이브(HDD)(1114)(예를 들어, EIDE, SATA)-이 내장형 하드 디스크 드라이브(1114)는 또한 적당한 섀시(도시 생략) 내에서 외장형 용도로 구성될 수 있음-, 자기 플로피 디스크 드라이브(FDD)(1116)(예를 들어, 이동식 디스켓(1118)으로부터 판독을 하거나 그에 기록을 하기 위한 것임), 및 광 디스크 드라이브(1120)(예를 들어, CD-ROM 디스크(1122)를 판독하거나 DVD 등의 기타 고용량 광 매체로부터 판독을 하거나 그에 기록을 하기 위한 것임)를 포함한다. 하드 디스크 드라이브(1114), 자기 디스크 드라이브(1116) 및 광 디스크 드라이브(1120)는 각각 하드 디스크 드라이브 인터페이스(1124), 자기 디스크 드라이브 인터페이스(1126) 및 광 드라이브 인터페이스(1128)에 의해 시스템 버스(1108)에 연결될 수 있다. 외장형 드라이브 구현을 위한 인터페이스(1124)는 USB(Universal Serial Bus) 및 IEEE 1394 인터페이스 기술 중 적어도 하나 또는 그 둘 다를 포함한다.
이들 드라이브 및 그와 연관된 컴퓨터 판독가능 매체는 데이터, 데이터 구조, 컴퓨터 실행가능 명령어, 기타 등등의 비 휘발성 저장을 제공한다. 컴퓨터(1102)의 경우, 드라이브 및 매체는 임의의 데이터를 적당한 디지털 형식으로 저장하는 것에 대응한다. 상기에서의 컴퓨터 판독가능 매체에 대한 설명이 HDD, 이동식 자기 디스크, 및 CD 또는 DVD 등의 이동식 광 매체를 언급하고 있지만, 당업자라면 집 드라이브(zip drive), 자기 카세트, 플래쉬 메모리 카드, 카트리지, 기타 등등의 컴퓨터에 의해 판독가능한 다른 유형의 매체도 역시 예시 적인 운영 환경에서 사용될 수 있으며 또 임의의 이러한 매체가 본 개시의 방법들을 수행하기 위한 컴퓨터 실행가능 명령어를 포함할 수 있다는 것을 잘 알 것이다.
운영 체제(1130), 하나 이상의 애플리케이션 프로그램(1132), 기타 프로그램 모듈(1134) 및 프로그램 데이터(1136)를 비롯한 다수의 프로그램 모듈이 드라이브 및 RAM(1112)에 저장될 수 있다. 운영 체제, 애플리케이션, 모듈 및/또는 데이터의 전부 또는 그 일부분이 또한 RAM(1112)에 캐싱될 수 있다. 본 개시가 여러가지 상업적으로 이용가능한 운영 체제 또는 운영 체제들의 조합에서 구현될 수 있다는 것을 잘 알 것이다.
사용자는 하나 이상의 유선/무선 입력 장치, 예를 들어, 키보드(1138) 및 마우스(1140) 등의 포인팅 장치를 통해 컴퓨터(1102)에 명령 및 정보를 입력할 수 있다. 기타 입력 장치(도시 생략)로는 마이크, IR 리모콘, 조이스틱, 게임 패드, 스타일러스 펜, 터치 스크린, 기타 등등이 있을 수 있다. 이들 및 기타 입력 장치가 종종 시스템 버스(1108)에 연결되어 있는 입력 장치 인터페이스(1142)를 통해 처리 장치(1104)에 연결되지만, 병렬 포트, IEEE 1394 직렬 포트, 게임 포트, USB 포트, IR 인터페이스, 기타 등등의 기타 인터페이스에 의해 연결될 수 있다.
모니터(1144) 또는 다른 유형의 디스플레이 장치도 역시 비디오 어댑터(1146) 등의 인터페이스를 통해 시스템 버스(1108)에 연결된다. 모니터(1144)에 부가하여, 컴퓨터는 일반적으로 스피커, 프린터, 기타 등등의 기타 주변 출력 장치(도시 생략)를 포함한다.
컴퓨터(1102)는 유선 및/또는 무선 통신을 통한 원격 컴퓨터(들)(1148) 등의 하나 이상의 원격 컴퓨터로의 논리적 연결을 사용하여 네트워크화 된 환경에서 동작할 수 있다. 원격 컴퓨터(들)(1148)는 워크스테이션, 컴퓨팅 디바이스 컴퓨터, 라우터, 퍼스널 컴퓨터, 휴대용 컴퓨터, 마이크로프로세서-기반 오락 기기, 피어 장치 또는 기타 통상의 네트워크 노드일 수 있으며, 일반적으로 컴퓨터(1102)에 대해 기술된 구성요소들 중 다수 또는 그 전부를 포함하지만, 간략함을 위해, 메모리 저장 장치(1150)만이 도시되어 있다. 도시되어 있는 논리적 연결은 근거리 통신망(LAN)(1152) 및/또는 더 큰 네트워크, 예를 들어, 원거리 통신망(WAN)(1154)에의 유선/무선 연결을 포함한다. 이러한 LAN 및 WAN 네트워킹 환경은 사무실 및 회사에서 일반적인 것이며, 인트라넷 등의 전사적 컴퓨터 네트워크(enterprise-wide computer network)를 용이하게 해주며, 이들 모두는 전세계 컴퓨터 네트워크, 예를 들어, 인터넷에 연결될 수 있다.
LAN 네트워킹 환경에서 사용될 때, 컴퓨터(1102)는 유선 및/또는 무선 통신 네트워크 인터페이스 또는 어댑터(1156)를 통해 로컬 네트워크(1152)에 연결된다. 어댑터(1156)는 LAN(1152)에의 유선 또는 무선 통신을 용이하게 해줄 수 있으며, 이 LAN(1152)은 또한 무선 어댑터(1156)와 통신하기 위해 그에 설치되어 있는 무선 액세스 포인트를 포함하고 있다. WAN 네트워킹 환경에서 사용될 때, 컴퓨터(1102)는 모뎀(1158)을 포함할 수 있거나, WAN(1154) 상의 통신 컴퓨팅 디바이스에 연결되거나, 또는 인터넷을 통하는 등, WAN(1154)을 통해 통신을 설정하는 기타 수단을 갖는다. 내장형 또는 외장형 및 유선 또는 무선 장치일 수 있는 모뎀(1158)은 직렬 포트 인터페이스(1142)를 통해 시스템 버스(1108)에 연결된다. 네트워크화 된 환경에서, 컴퓨터(1102)에 대해 설명된 프로그램 모듈들 또는 그의 일부분이 원격 메모리/저장 장치(1150)에 저장될 수 있다. 도시된 네트워크 연결이 예시 적인 것이며 컴퓨터들 사이에 통신 링크를 설정하는 기타 수단이 사용될 수 있다는 것을 잘 알 것이다.
컴퓨터(1102)는 무선 통신으로 배치되어 동작하는 임의의 무선 장치 또는 개체, 예를 들어, 프린터, 스캐너, 데스크톱 및/또는 휴대용 컴퓨터, PDA(portable data assistant), 통신 위성, 무선 검출가능 태그와 연관된 임의의 장비 또는 장소, 및 전화와 통신을 하는 동작을 한다. 이것은 적어도 Wi-Fi 및 블루투스 무선 기술을 포함한다. 따라서, 통신은 종래의 네트워크에서와 같이 미리 정의된 구조이거나 단순하게 적어도 2개의 장치 사이의 애드혹 통신(ad hoc communication)일 수 있다.
Wi-Fi(Wireless Fidelity)는 유선 없이도 인터넷 등으로의 연결을 가능하게 해준다. Wi-Fi는 이러한 장치, 예를 들어, 컴퓨터가 실내에서 및 실외에서, 즉 기지국의 통화권 내의 아무 곳에서나 데이터를 전송 및 수신할 수 있게 해주는 셀 전화와 같은 무선 기술이다. Wi-Fi 네트워크는 안전하고 신뢰성 있으며 고속인 무선 연결을 제공하기 위해 IEEE 802.11(a,b,g, 기타)이라고 하는 무선 기술을 사용한다. 컴퓨터를 서로에, 인터넷에 및 유선 네트워크(IEEE 802.3 또는 이더넷을 사용함)에 연결시키기 위해 Wi-Fi가 사용될 수 있다. Wi-Fi 네트워크는 비인가 2.4 및 5 GHz 무선 대역에서, 예를 들어, 11Mbps(802.11a) 또는 54 Mbps(802.11b) 데이터 레이트로 동작하거나, 양 대역(듀얼 대역)을 포함하는 제품에서 동작할 수 있다.
본 개시의 기술 분야에서 통상의 지식을 가진 자는 정보 및 신호들이 임의의 다양한 상이한 기술들 및 기법들을 이용하여 표현될 수 있다는 것을 이해할 것이다. 예를 들어, 위의 설명에서 참조될 수 있는 데이터, 지시들, 명령들, 정보, 신호들, 비트들, 심볼들 및 칩들은 전압들, 전류들, 전자기파들, 자기장들 또는 입자들, 광학장들 또는 입자들, 또는 이들의 임의의 결합에 의해 표현될 수 있다.
본 개시의 기술 분야에서 통상의 지식을 가진 자는 여기에 개시된 실시예들과 관련하여 설명된 다양한 예시 적인 논리 블록들, 모듈들, 프로세서들, 수단들, 회로들 및 알고리즘 단계들이 전자 하드웨어, (편의를 위해, 여기에서 "소프트웨어"로 지칭되는) 다양한 형태들의 프로그램 또는 설계 코드 또는 이들 모두의 결합에 의해 구현될 수 있다는 것을 이해할 것이다. 하드웨어 및 소프트웨어의 이러한 상호 호환성을 명확하게 설명하기 위해, 다양한 예시 적인 컴포넌트들, 블록들, 모듈들, 회로들 및 단계들이 이들의 기능과 관련하여 위에서 일반적으로 설명되었다. 이러한 기능이 하드웨어 또는 소프트웨어로서 구현되는지 여부는 특정한 애플리케이션 및 전체 시스템에 대하여 부과되는 설계 제약들에 따라 좌우된다. 본 개시의 기술 분야에서 통상의 지식을 가진 자는 각각의 특정한 애플리케이션에 대하여 다양한 방식들로 설명된 기능을 구현할 수 있으나, 이러한 구현 결정들은 본 개시의 범위를 벗어나는 것으로 해석되어서는 안 될 것이다.
여기서 제시된 다양한 실시예들은 방법, 장치, 또는 표준 프로그래밍 및/또는 엔지니어링 기술을 사용한 제조 물품(article)으로 구현될 수 있다. 용어 "제조 물품"은 임의의 컴퓨터-판독가능 장치로부터 액세스 가능한 컴퓨터 프로그램 또는 매체(media)를 포함한다. 예를 들어, 컴퓨터-판독가능 매체는 자기 저장 장치(예를 들면, 하드 디스크, 플로피 디스크, 자기 스트립, 등), 광학 디스크(예를 들면, CD, DVD, 등), 스마트 카드, 및 플래쉬 메모리 장치(예를 들면, EEPROM, 카드, 스틱, 키 드라이브, 등)를 포함하지만, 이들로 제한되는 것은 아니다. 또한, 여기서 제시되는 다양한 저장 매체는 정보를 저장하기 위한 하나 이상의 장치 및/또는 다른 기계-판독가능한 매체를 포함한다.
제시된 프로세스들에 있는 단계들의 특정한 순서 또는 계층 구조는 예시 적인 접근들의 일례임을 이해하도록 한다. 설계 우선순위들에 기반하여, 본 개시의 범위 내에서 프로세스들에 있는 단계들의 특정한 순서 또는 계층 구조가 재배열될 수 있다는 것을 이해하도록 한다. 첨부된 방법 청구항들은 샘플 순서로 다양한 단계들의 엘리먼트들을 제공하지만 제시된 특정한 순서 또는 계층 구조에 한정되는 것을 의미하지는 않는다.
제시된 실시예들에 대한 설명은 임의의 본 개시의 기술 분야에서 통상의 지식을 가진 자가 본 개시를 이용하거나 또는 실시할 수 있도록 제공된다. 이러한 실시예들에 대한 다양한 변형들은 본 개시의 기술 분야에서 통상의 지식을 가진 자에게 명백할 것이다. 여기에 정의된 일반적인 원리들은 본 개시의 범위를 벗어남이 없이 다른 실시예들에 적용될 수 있다. 그리하여, 본 개시는 여기에 제시된 실시예들로 한정되는 것이 아니라, 여기에 제시된 원리들 및 신규한 특징들과 일관되는 최광의의 범위에서 해석되어야 할 것이다.

Claims (13)

  1. 컴퓨터 판독가능 저장 매체에 저장된 컴퓨터 프로그램으로서, 상기 컴퓨터 프로그램은 컴퓨팅 장치의 하나 이상의 프로세서에서 실행되는 경우 얼굴 애니메이션을 생성하기 위한 동작들을 수행하도록 하며 상기 동작들은,
    음성 데이터를 수신하는 동작;
    상기 음성 데이터를 둘 이상의 콘볼루셔널 레이어를 포함하는 제 1 네트워크 함수를 이용하여 연산하여 얼굴 애니메이션을 생성하기 위한 얼굴 포즈에 관한 특징 벡터를 출력하는 동작; 및
    상기 얼굴 포즈에 관한 특징 벡터를 둘 이상의 디콘볼루셔널 레이어를 포함하는 제 2 네트워크 함수를 이용하여 연산하여 얼굴 애니메이션을 생성하는 동작;
    을 포함하는,
    컴퓨터 판독가능 저장 매체에 저장된 컴퓨터 프로그램.
  2. 제 1 항에 있어서,
    상기 음성 데이터를 둘 이상의 콘볼루셔널 레이어를 포함하는 제 1 네트워크 함수를 이용하여 연산하여 얼굴 애니메이션을 생성하기 위한 얼굴 포즈에 관한 특징 벡터를 출력하는 동작은,
    상기 음성 데이터를 상기 음성 데이터에 기초한 이미지 데이터로 변환하는 동작; 및
    상기 이미지 데이터를 상기 제 1 네트워크 함수를 이용하여 연산하여 상기 얼굴 포즈에 관한 특징 벡터를 출력하는 동작;
    을 포함하는,
    컴퓨터 판독가능 저장 매체에 저장된 컴퓨터 프로그램.
  3. 제 2 항에 있어서,
    상기 제 1 네트워크 함수는 제 1 서브 네트워크 함수 및 제 2 서브 네트워크 함수를 포함하고, 그리고
    상기 이미지 데이터를 상기 제 1 네트워크 함수를 이용하여 연산하여 상기 얼굴 포즈에 관한 특징 벡터를 출력하는 동작은,
    상기 이미지 데이터를 상기 제 1 서브 네트워크 함수에 기초하여 연산하여 음성 특징을 출력하는 동작; 및
    상기 음성 특징을 상기 제 2 서브 네트워크 함수에 기초하여 연산하여 상기 얼굴 포즈에 관한 특징 벡터를 출력하는 동작;
    을 포함하는,
    컴퓨터 판독가능 저장 매체에 저장된 컴퓨터 프로그램.
  4. 제 3 항에 있어서,
    상기 음성 특징을 상기 제 2 서브 네트워크 함수에 기초하여 연산하여 상기 얼굴 포즈에 관한 특징 벡터를 출력하는 동작은,
    상기 음성 데이터와 관련된 감정 상태 데이터를 상기 제 2 서브 네트워크 함수에 입력시키는 동작;
    을 포함하는,
    컴퓨터 판독가능 저장 매체에 저장된 컴퓨터 프로그램.
  5. 제 4 항에 있어서,
    상기 음성 특징을 상기 제 2 서브 네트워크 함수에 기초하여 연산하여 상기 얼굴 포즈에 관한 특징 벡터를 출력하는 동작은,
    상기 음성 특징을 상기 제 2 서브 네트워크 함수에 기초하여 연산하여 얼굴 포즈에 관한 서브 특징 벡터를 출력하는 동작; 및
    상기 얼굴 포즈에 관한 서브 특징 벡터를 상기 감정 상태 데이터에 기초하여 보정하여 상기 얼굴 포즈에 관한 특징 벡터를 출력하는 동작;
    을 포함하는,
    컴퓨터 판독가능 저장 매체에 저장된 컴퓨터 프로그램.
  6. 제 1 항에 있어서,
    상기 얼굴 포즈에 관한 특징 벡터를 둘 이상의 디콘볼루셔널 레이어를 포함하는 제 2 네트워크 함수를 이용하여 연산하여 얼굴 애니메이션을 생성하는 동작은,
    상기 얼굴 포즈에 관한 특징 벡터를 이용하여 얼굴에 포함된 둘 이상의 버텍스(vertex)의 위치를 결정하는 동작; 및
    상기 얼굴에 포함된 둘 이상의 버텍스의 위치에 기초하여 상기 얼굴 애니메이션을 생성하는 동작;
    을 포함하는,
    컴퓨터 판독가능 저장 매체에 저장된 컴퓨터 프로그램.
  7. 제 1 항에 있어서,
    상기 음성 데이터에 기초하여 상기 얼굴 애니메이션을 생성하는 상기 제 1 네트워크 함수 및 상기 제 2 네트워크 함수를 포함하는 얼굴 애니메이션 생성 모델은,
    학습 음성 데이터를 입력으로 하고, 상기 학습 음성 데이터에 기초한 얼굴 애니메이션을 라벨로 하는 둘 이상의 학습 데이터를 포함하는 학습 데이터 세트에 기초하여 학습되고, 그리고
    상기 학습 음성 데이터를 상기 얼굴 애니메이션 생성 모델의 입력으로 하여 연산하여 획득한 출력과 상기 학습 데이터에 포함된 라벨인 상기 얼굴 애니메이션의 오차에 기초하여 학습된,
    컴퓨터 판독가능 저장 매체에 저장된 컴퓨터 프로그램.
  8. 제 7 항에 있어서,
    상기 학습 데이터 세트는 제 1 학습 데이터 및 제 2 학습 데이터를 포함하고, 그리고
    제 2 학습 데이터는, 제 1 학습 데이터의 입력인 제 1 학습 음성 데이터의 적어도 일 구간을 사전결정된 시간 단위만큼 이동하여 생성한 제 2 학습 음성 데이터를 입력으로 하고, 그리고 상기 제 1 학습 데이터의 라벨인 제 1 얼굴 애니메이션을 상기 제 1 학습 음성 데이터에 대응되게 변환하여 생성한 제 2 얼굴 애니메이션을 라벨로 하는,
    컴퓨터 판독가능 저장 매체에 저장된 컴퓨터 프로그램.
  9. 제 7 항에 있어서,
    상기 오차는,
    상기 출력과 상기 학습 데이터에 포함된 라벨인 상기 얼굴 애니메이션 각각의 둘 이상의 버텍스 위치의 차이 및 상기 출력된 얼굴 애니메이션에 포함된 움직임의 속도 적정 여부 중 적어도 하나에 기초하여 결정된,
    컴퓨터 판독가능 저장 매체에 저장된 컴퓨터 프로그램.
  10. 제 7 항에 있어서,
    상기 얼굴 애니메이션 생성 모델은,
    상기 제 1 네트워크 함수에 포함된 둘 이상의 콘볼루셔널 레이어 각각에 대한 연산에 사전결정된 크기의 노이즈를 추가하여 학습된,
    컴퓨터 판독가능 저장 매체에 저장된 컴퓨터 프로그램.
  11. 제 7 항에 있어서,
    상기 학습 음성 데이터는, 팬그램(pangram)에 기초한 음성 데이터인,
    컴퓨터 판독가능 저장 매체에 저장된 컴퓨터 프로그램.
  12. 얼굴 애니메이션을 생성하기 위한 방법으로서,
    음성 데이터를 수신하는 단계;
    상기 음성 데이터를 둘 이상의 콘볼루셔널 레이어를 포함하는 제 1 네트워크 함수를 이용하여 연산하여 얼굴 애니메이션을 생성하기 위한 얼굴 포즈에 관한 특징 벡터를 출력하는 단계; 및
    상기 얼굴 포즈에 관한 특징 벡터를 둘 이상의 디콘볼루셔널 레이어를 포함하는 제 2 네트워크 함수를 이용하여 연산하여 얼굴 애니메이션을 생성하는 단계;
    를 포함하는,
    얼굴 애니메이션을 생성하기 위한 방법.
  13. 얼굴 애니메이션을 생성하기 위한 서버로서,
    하나 이상의 코어를 포함하는 프로세서; 및
    메모리;
    를 포함하고,
    상기 프로세서는,
    음성 데이터를 수신하고,
    상기 음성 데이터를 둘 이상의 콘볼루셔널 레이어를 포함하는 제 1 네트워크 함수를 이용하여 연산하여 얼굴 애니메이션을 생성하기 위한 얼굴 포즈에 관한 특징 벡터를 출력하고, 그리고
    상기 얼굴 포즈에 관한 특징 벡터를 둘 이상의 디콘볼루셔널 레이어를 포함하는 제 2 네트워크 함수를 이용하여 연산하여 얼굴 애니메이션을 생성하는,
    얼굴 애니메이션을 생성하기 위한 서버.

KR1020190051599A 2019-05-02 2019-05-02 애니메이션 생성 방법 KR102096598B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190051599A KR102096598B1 (ko) 2019-05-02 2019-05-02 애니메이션 생성 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190051599A KR102096598B1 (ko) 2019-05-02 2019-05-02 애니메이션 생성 방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020200037651A Division KR20200127859A (ko) 2020-03-27 2020-03-27 애니메이션 생성 방법

Publications (1)

Publication Number Publication Date
KR102096598B1 true KR102096598B1 (ko) 2020-04-03

Family

ID=70282381

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190051599A KR102096598B1 (ko) 2019-05-02 2019-05-02 애니메이션 생성 방법

Country Status (1)

Country Link
KR (1) KR102096598B1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112529161A (zh) * 2020-12-10 2021-03-19 北京百度网讯科技有限公司 生成对抗网络训练方法、生成对抗网络、人脸图像翻译方法和装置
KR20220034396A (ko) 2020-09-11 2022-03-18 주식회사 케이티 얼굴 영상 생성 장치, 방법 및 컴퓨터 프로그램

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160011620A (ko) * 2013-03-14 2016-02-01 토이토크, 인코포레이티드 상호 작용하는 합성 캐릭터 대화 시스템 및 방법
KR20190001280A (ko) * 2017-06-27 2019-01-04 한양대학교 산학협력단 생성적 대립 망 기반의 음성 대역폭 확장기 및 확장 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160011620A (ko) * 2013-03-14 2016-02-01 토이토크, 인코포레이티드 상호 작용하는 합성 캐릭터 대화 시스템 및 방법
KR20190001280A (ko) * 2017-06-27 2019-01-04 한양대학교 산학협력단 생성적 대립 망 기반의 음성 대역폭 확장기 및 확장 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
기고문: Nvidia Research *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220034396A (ko) 2020-09-11 2022-03-18 주식회사 케이티 얼굴 영상 생성 장치, 방법 및 컴퓨터 프로그램
CN112529161A (zh) * 2020-12-10 2021-03-19 北京百度网讯科技有限公司 生成对抗网络训练方法、生成对抗网络、人脸图像翻译方法和装置

Similar Documents

Publication Publication Date Title
Chatziagapi et al. Data Augmentation Using GANs for Speech Emotion Recognition.
JP7023934B2 (ja) 音声認識方法及び装置
JP6435403B2 (ja) 音声転写用のシステム及び方法
US20230123486A1 (en) Generating Facial Position Data Based on Audio Data
US9818409B2 (en) Context-dependent modeling of phonemes
CN111837178A (zh) 语音处理系统和处理语音信号的方法
US11232620B2 (en) Method to create animation
JP2019522810A (ja) ニューラルネットワークベースの声紋情報抽出方法及び装置
CN107316638A (zh) 一种诗词背诵评测方法及系统、一种终端及存储介质
KR20210041567A (ko) 신경망을 이용한 하이브리드 오디오 합성
CN110706692A (zh) 儿童语音识别模型的训练方法及系统
Lee et al. Ensemble of jointly trained deep neural network-based acoustic models for reverberant speech recognition
KR20210052380A (ko) 애니메이션 생성 방법
Deng et al. Foundations and Trends in Signal Processing: DEEP LEARNING–Methods and Applications
CN110853670A (zh) 音乐驱动的舞蹈生成方法
KR102096598B1 (ko) 애니메이션 생성 방법
CN109785846A (zh) 单声道的语音数据的角色识别方法及装置
CN111243572A (zh) 基于说话人博弈的多人语音转换方法与系统
CN114882862A (zh) 一种语音处理方法及相关设备
CN107506345A (zh) 语言模型的构建方法和装置
US11875809B2 (en) Speech denoising via discrete representation learning
Filntisis et al. Video-realistic expressive audio-visual speech synthesis for the Greek language
KR102147857B1 (ko) 모델 학습 방법
KR102439022B1 (ko) 음성 변환 방법
KR20200127917A (ko) 모델 학습 방법

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant