KR102095858B1 - Clay Mineral Having Layered Structure-Based Adsorbent for Simultaneously Removing Cesium and Strontium and Method of Preparing the Same - Google Patents
Clay Mineral Having Layered Structure-Based Adsorbent for Simultaneously Removing Cesium and Strontium and Method of Preparing the Same Download PDFInfo
- Publication number
- KR102095858B1 KR102095858B1 KR1020170179872A KR20170179872A KR102095858B1 KR 102095858 B1 KR102095858 B1 KR 102095858B1 KR 1020170179872 A KR1020170179872 A KR 1020170179872A KR 20170179872 A KR20170179872 A KR 20170179872A KR 102095858 B1 KR102095858 B1 KR 102095858B1
- Authority
- KR
- South Korea
- Prior art keywords
- clay mineral
- layered clay
- strontium
- cesium
- based adsorbent
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/04—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
- B01J20/041—Oxides or hydroxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28057—Surface area, e.g. B.E.T specific surface area
- B01J20/28059—Surface area, e.g. B.E.T specific surface area being less than 100 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28057—Surface area, e.g. B.E.T specific surface area
- B01J20/28061—Surface area, e.g. B.E.T specific surface area being in the range 100-500 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28069—Pore volume, e.g. total pore volume, mesopore volume, micropore volume
- B01J20/28071—Pore volume, e.g. total pore volume, mesopore volume, micropore volume being less than 0.5 ml/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28078—Pore diameter
- B01J20/2808—Pore diameter being less than 2 nm, i.e. micropores or nanopores
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28078—Pore diameter
- B01J20/28083—Pore diameter being in the range 2-50 nm, i.e. mesopores
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3042—Use of binding agents; addition of materials ameliorating the mechanical properties of the produced sorbent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3071—Washing or leaching
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3078—Thermal treatment, e.g. calcining or pyrolizing
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/04—Treating liquids
- G21F9/06—Processing
- G21F9/12—Processing by absorption; by adsorption; by ion-exchange
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
Abstract
본 발명은 층상점토광물 기반 흡착제 및 이의 제조방법에 관한 것으로, 보다 상세하게는 층상점토광물과 알칼리 물질의 고체 상태의 열반응을 조절하여 층상점토광물의 표면적과 미세 기공 및 양이온 교환 용량을 높임으로써 용매를 이용하지 않고 고체 상태의 반응을 이용하는 단순한 방법으로 제조되며 경제적으로 생산을 지속할 수 있는 장점이 있을 뿐만 아니라, 세슘 및 스트론튬에 대한 흡착 용량이 크게 상승하였으며, 방사선 조사 후에도 안정적으로 세슘 및 스트론튬을 제거할 수 있어 실제 방사성 핵종 제거 공정에 적용하기 위한 흡착제로서의 효용성이 있다.The present invention relates to a layered clay mineral-based adsorbent and a method for manufacturing the same, and more specifically, by controlling the thermal reaction in the solid state of the layered clay mineral and the alkali material, thereby increasing the surface area, fine pores, and cation exchange capacity of the layered clay mineral. Manufactured by a simple method using a solid state reaction without using a solvent, and has the advantage of being able to continue production economically, and the adsorption capacity for cesium and strontium is greatly increased, and cesium and strontium are stably stabilized even after irradiation. Since it can be removed, it has utility as an adsorbent to be applied to the actual radionuclide removal process.
Description
본 발명은 세슘과 스트론튬을 동시에 제거하는 층상점토광물 기반 흡착제 및 그 제조방법에 관한 것으로, 보다 상세하게는 층상점토광물과 알칼리 물질의 고체 상태의 열반응을 조절하여 층상점토광물의 표면적과 미세 기공 및 양이온 교환 용량을 높임으로써 스트론튬과 세슘을 동시에 제거하는 흡착 소재로 사용할 수 있는 층상점토광물 기반 흡착제 및 그 제조방법에 관한 것이다.The present invention relates to a layered clay mineral-based adsorbent that simultaneously removes cesium and strontium, and a method for manufacturing the same, more specifically, by controlling the thermal reaction of the layered clay mineral and the alkali material in a solid state, the surface area and fine pores of the layered clay mineral And a layered clay mineral-based adsorbent that can be used as an adsorption material for simultaneously removing strontium and cesium by increasing a cation exchange capacity, and a method for manufacturing the same.
탄소 배출 저감효과와 높은 발전 효율로 인해 각광받아왔던 원자력 발전소는 최근 원전 사고에 대한 위험 의식과 대량으로 발생하는 방사성 폐기물에 대한 관리의 어려움으로 인해 폐로 및 해체 추세에 있다. 이로 인해 최근 들어 효과적인 폐기물 처리 방안에 대한 연구가 활발히 이루어지고 있다. 방사성 폐기물에서 가장 문제시 되는 원소는 세슘(137Cs)과 스트론튬(90Sr)으로, 강한 감마선을 방출하며 30년에 달하는 긴 반감기를 가지고 있어 오랜 기간 생태계에 피해를 끼친다. 또한 이들은 물에 대한 높은 용해도를 가지고 있어 쉽게 생태계 및 인체에 유입될 수 있다.Nuclear power plants, which have been in the spotlight due to the carbon emission reduction effect and high power generation efficiency, are currently in a decommissioning and dismantling trend due to the danger of nuclear accidents and the difficulty in managing radioactive waste generated in large quantities. For this reason, studies on effective waste treatment methods have been actively conducted in recent years. The most problematic elements in radioactive waste are cesium ( 137 Cs) and strontium ( 90 Sr), which emit strong gamma rays and have a long half-life of 30 years, damaging the ecosystem for a long time. In addition, they have a high solubility in water, so they can easily enter the ecosystem and the human body.
이러한 방사성 핵종들의 효과적인 제거를 위해 제올라이트, 헥사시아노철산염, 티타노실리케이트 등의 무기물 기반의 흡착제들이 사용되어 왔다. 이들은 각각 제조 편의성, 세슘 혹은 스트론튬에 대한 선택적 제거 성능 측면에서 장점을 보이며 연구되어 왔다. 이에 반해 양이온 교환 능력을 가지는 점토는 자연에 풍부하게 존재하여 탁월한 경제성을 가짐에도 불구하고, 세슘 및 스트론튬에 대한 흡착 용량, 선택성 측면에서 상기 흡착제들에 비해 부족함이 있어 실제 응용에 어려움이 있다.In order to effectively remove these radionuclides, inorganic-based adsorbents such as zeolite, hexacyanoferrate, and titanosilicate have been used. They have been studied with advantages in terms of manufacturing convenience and selective removal performance for cesium or strontium, respectively. On the other hand, although the clay having a cation exchange ability is abundant in nature and has excellent economic feasibility, it has a difficulty in practical application due to its lack of adsorption capacity and selectivity for cesium and strontium.
점토 기반 흡착제 중 높은 양이온 교환 용량을 가지는 몬모릴로나이트(Montmorillonite)는 알루미나 층을 실리카 층으로 둘러싼 형태의 단위 층 사이에 마그네슘, 소듐, 포타슘 등의 양이온이 존재하는 형태의 층상구조를 가진다. 이 단위 층 사이에 존재하는 양이온들이 수용액 상에 존재하는 양이온들과 교환되며 폐액의 정화가 이루어진다. 몬모릴로나이트의 공정 활용성을 높이기 위해 자성 나노입자를 도입하거나(S. Yang et al., Journal of Hazardous Materials, 2016, 301, 8-16), 흡착 용량을 높이기 위해 헥사시아노철산염을 도입(H. Zhang et al., Journal of Materials Chemistry A, 2017, 5, 15130)하는 등 성능 개선에 대한 연구가 지속적으로 이루어지고 있으나, 몬모릴로나이트의 경제적 장점을 유지하면서 성능을 크게 개선하지는 못하여 여전히 어려움을 갖는다.Among clay-based adsorbents, montmorillonite having a high cation exchange capacity has a layered structure in which cations such as magnesium, sodium, and potassium are present between unit layers in the form surrounding the alumina layer with a silica layer. The cations present between the unit layers are exchanged with the cations present in the aqueous solution and purification of the waste liquid is achieved. Introduce magnetic nanoparticles to increase process availability of montmorillonite (S. Yang et al., Journal of Hazardous Materials, 2016, 301, 8-16), or introduce hexacyanoferrite to increase adsorption capacity (H Zhang et al., Journal of Materials Chemistry A, 2017, 5, 15130), etc., have been continuously researching performance improvement, but still have difficulties because they do not significantly improve performance while maintaining the economic advantages of montmorillonite.
이에, 본 발명자들은 상기 문제점을 해결하기 위해 예의 노력한 결과, 몬모릴로나이트 고체상의 간단한 염기 처리를 통해 물리적 안정성을 유지함과 동시에 반응 전 몬모릴로나이트에 비해 표면적이 늘어나면서 세슘과 스트론튬에 대한 흡착 용량이 크게 상승함을 확인함으로써, 본 발명을 완성하게 되었다.Thus, the present inventors tried to solve the above problems, as a result, while maintaining physical stability through a simple base treatment of montmorillonite solids, while increasing the surface area compared to montmorillonite before reaction, the adsorption capacity for cesium and strontium is greatly increased. By confirming, the present invention was completed.
본 발명의 목적은 세슘 및 스트론튬을 특이적으로 대량 흡착할 수 있는 층상점토광물 기반 흡착제 및 그 제조방법을 제공하는데 있다.An object of the present invention is to provide a layered clay mineral-based adsorbent capable of specifically adsorbing cesium and strontium in a large amount and a method for manufacturing the same.
본 발명은 다른 목적은 상기 흡착제를 이용한 세슘 및 스트론튬의 개별 및 동시 흡착방법을 제공하는데 있다.Another object of the present invention is to provide a method for individually and simultaneously adsorbing cesium and strontium using the adsorbent.
상기 목적을 달성하기 위하여, 본 발명은 층상점토광물의 표면에 존재하는 산소 함유 작용기에 알칼리 물질이 부착되어 있는 것을 특징으로 하는 층상점토광물 기반 흡착제를 제공한다.In order to achieve the above object, the present invention provides a layered clay mineral based adsorbent characterized in that an alkali substance is attached to an oxygen-containing functional group present on the surface of the layered clay mineral.
본 발명은 또한, (a) 층상점토광물과 알칼리 물질을 혼합하는 단계; 및 (b) 혼합물을 가열하여 반응시켜 층상점토광물 기반 흡착제를 제조하는 단계를 포함하는 층상점토광물 기반 흡착제의 제조방법을 제공한다.The present invention further comprises: (a) mixing a layered clay mineral with an alkali material; And (b) provides a method for producing a layered clay mineral based adsorbent comprising the step of heating the mixture to react to produce a layered clay mineral based adsorbent.
본 발명은 또한, 상기 층상점토광물 기반 흡착제를 이용한 세슘 또는 스트론튬의 흡착방법을 제공한다.The present invention also provides a method for adsorbing cesium or strontium using the layered clay mineral-based adsorbent.
본 발명에 따른 고상으로 염기 처리된 층상점토광물 기반 흡착제는 용매를 필요로 하지 않는 고체상의 간단한 반응을 통해 생산되어 제조법이 간단하며, 원료로 저가의 몬모릴로나이트와 알칼리 수산화물이 사용되기 때문에 경제적으로 대량 생산할 수 있다는 장점이 있다.The layered clay mineral-based adsorbent base-treated with a solid phase according to the present invention is produced through a simple reaction of a solid phase that does not require a solvent, so the manufacturing method is simple, and low-cost montmorillonite and alkali hydroxide are used as raw materials, so economical mass production is possible. It has the advantage of being able to.
또한, 본 발명에 따른 고상으로 염기 처리된 활성 몬모릴로나이트는 미세 기공이 다량 존재하여 빠른 시간 내에 세슘 및 스트론튬을 제거할 수 있고, 대량 생산된 표면 작용기로 인해 높은 흡착 용량을 가지고 있어, 실제 공정에 적용할 수 있는 흡착제로서의 효용성이 있다.In addition, the active montmorillonite base-treated as a solid phase according to the present invention has a large amount of fine pores, so it can remove cesium and strontium in a short time, and has a high adsorption capacity due to the mass-produced surface functional group, which is applied to actual processes It has utility as an adsorbent that can be used.
도 1은 본 발명의 일 실시예에 따른 수산화 소듐 처리된 활성 몬모릴로나이트를 제조하는 공정을 도식화하여 나타낸 도면이다.
도 2(a)는 몬모릴로나이트(MT)와 수산화소듐 처리된 활성 몬모릴로나이트(NaMT1)의 세슘 흡착 평형 데이터와 그에 따른 랭뮤어(Langmuir) 흡착 등온선을 나타낸 것이며, 도 2(b)는 상기 흡착제들의 스트론튬 흡착 평형 데이터와 랭뮤어 흡착 등온선을 나타낸 것이다.FIG. 1 is a diagram schematically showing a process for preparing an active montmorillonite treated with sodium hydroxide according to an embodiment of the present invention.
FIG. 2 (a) shows the cesium adsorption equilibrium data of montmorillonite (MT) and sodium hydroxide-treated active montmorillonite (NaMT1) and the corresponding Langmuir adsorption isotherm, and FIG. 2 (b) shows strontium adsorption of the adsorbents. Equilibrium data and Langmuir adsorption isotherms are shown.
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by a person skilled in the art to which the present invention pertains. In general, the nomenclature used herein is well known and commonly used in the art.
본 발명에서는 몬모릴로나이트와 알칼리 수산화물의 고체상의 간단한 염기 반응을 통해 반응 전 몬모릴로나이트에 비해 표면적이 늘어나면서 세슘과 스트론튬에 대한 흡착 용량이 크게 상승시켰고 이에 따라 세슘과 스트론튬의 제거효율을 향상시킬 수 있음을 확인하였다.In the present invention, it was confirmed that through a simple base reaction of montmorillonite and alkali hydroxide in a solid phase, the surface area increased compared to montmorillonite before the reaction, and the adsorption capacity for cesium and strontium was significantly increased, thereby improving the removal efficiency of cesium and strontium. Did.
따라서, 본 발명은 일 관점에서, 층상점토광물의 표면에 존재하는 산소 함유 작용기에 알칼리 물질이 부착되어 있는 것을 특징으로 하는 층상점토광물 기반 흡착제에 관한 것이다.Therefore, in one aspect, the present invention relates to a layered clay mineral based adsorbent characterized in that an alkali substance is attached to an oxygen-containing functional group present on the surface of the layered clay mineral.
본 발명은 다른 관점에서, (a) 층상점토광물과 알칼리 물질을 혼합하는 단계; 및 (b) 혼합물을 가열하여 반응시켜 층상점토광물 기반 흡착제를 제조하는 단계를 포함하는 층상점토광물 기반 흡착제의 제조방법에 관한 것이다.In another aspect, the present invention, (a) mixing a layered clay mineral and an alkali material; And (b) reacting the mixture by heating to prepare a layered clay mineral-based adsorbent.
본 발명에 있어서, 상기 층상점토광물은 몬모릴로나이트, 스멕타이트, 카올리나이트, 벤토나이트, 헥토라이트, 불화헥토라이트, 바이델라이트, 사포나이트, 논트로나이트, 버미큘라이트, 마카다이트 및 마이카로 구성된 군에서 1종 이상 선택될 수 있으며, 바람직하게는 몬모릴로나이트를 사용할 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the layered clay mineral is one or more from the group consisting of montmorillonite, smectite, kaolinite, bentonite, hectorite, hectorite fluorite, videlite, saponite, nontronite, vermiculite, macadamite and mica. It may be selected, preferably montmorillonite may be used, but is not limited thereto.
본 발명에 있어서, 상기 상기 알칼리 물질은 알칼리수산화물일 수 있으며, 상기 알칼리수산화물은 수산화소듐(NaOH), 수산화포타슘(KOH) 및 수산화칼슘(Ca(OH)2)으로 구성된 군에서 선택된 1종 이상 선택될 수 있으며, 바람직하게는 수산화소듐을 사용할 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the alkali material may be an alkali hydroxide, and the alkali hydroxide may be selected from one or more selected from the group consisting of sodium hydroxide (NaOH), potassium hydroxide (KOH) and calcium hydroxide (Ca (OH) 2 ). Sodium hydroxide may be used, but is not limited thereto.
본 발명에 있어서, 상기 알칼리 물질은 상기 층상점토광물 100중량부에 대하여 50~200중량부일 수 있다. 상기 알칼리 물질이 상기 층상점토광물 100중량부에 대하여 50중량부 미만일 때는 기공 생성 및 표면 활성화 효과가 부족한 문제점이 있고, 200중량부를 초과할 때는 표면 활성화 효과가 증가하지 않는다.In the present invention, the alkali material may be 50 to 200 parts by weight based on 100 parts by weight of the layered clay mineral. When the alkali material is less than 50 parts by weight based on 100 parts by weight of the layered clay mineral, there is a problem of insufficient pore generation and surface activation effect, and when it exceeds 200 parts by weight, the surface activation effect does not increase.
본 발명에 있어서, 상기 층상점토광물은 15~150m2/g의 표면적, 0.05~0.5cm3/g의 미세기공체적 및 1~12nm의 미세기공크기를 가질 수 있으며, 바람직하게는 120~150m2/g의 표면적, 0.3~0.5cm3/g의 미세기공체적 및 1~2nm의 미세기공크기를 가질 수 있다.In the present invention, the layered clay mineral may have a surface area of 15 to 150 m2 / g, a micropore volume of 0.05 to 0.5 cm3 / g, and a micropore size of 1 to 12 nm, preferably 120 to 150 m2 / g. It may have a surface area, a micropore volume of 0.3 to 0.5 cm3 / g, and a micropore size of 1 to 2 nm.
본 발명의 제조방법에 있어서, 층상점토광물과 알칼리 물질을 수용액상에서 혼합한 후에 건조시키거나 고체 상태로 혼합하여 층상점토광물과 알칼리 물질의 혼합물을 수득할 수 있다.In the manufacturing method of the present invention, the layered clay mineral and the alkali material are mixed in an aqueous solution and then dried or mixed in a solid state to obtain a mixture of the layered clay mineral and the alkali material.
상기 (b) 단계는 5~10℃/min의 가열속도로 200~400℃의 온도에서 1~2시간 동안 수행할 수 있다.The step (b) may be performed for 1 to 2 hours at a temperature of 200 to 400 ° C at a heating rate of 5 to 10 ° C / min.
상기 (b) 단계는 비활성기체인 질소 또는 아르곤을 흘려주면서 0.05~50기압을 유지하면서 수행할 수 있다.The step (b) can be performed while maintaining 0.05 to 50 atmospheres while flowing nitrogen or argon as an inert gas.
본 발명의 제조방법에 있어서, (c) 상기 (b) 단계 후에 110~150℃의 온도에서 15~30℃의 물로 냉각시켜 반응을 종료하는 단계를 추가로 포함할 수 있다.In the production method of the present invention, (c) after the step (b) may further include the step of terminating the reaction by cooling with water of 15 ~ 30 ℃ at a temperature of 110 ~ 150 ℃.
본 발명의 제조방법에 있어서, (d) 상기 (c) 단계 후에 pH 8 이하가 될 때까지 온수 또는 냉수로 세척하는 단계를 추가로 포함하여 합성과정에 포함될 수 있는 불순물 염을 제거할 수 있다.In the manufacturing method of the present invention, it may further remove the impurity salts that may be included in the synthesis process, further comprising washing with hot or cold water until the pH is 8 or less after step (c).
본 발명의 제조방법에 있어서, (e) 상기 (d) 단계 후에 절대압력 0~1기압, 50~90℃에서 건조하는 단계를 추가로 포함할 수 있다.In the production method of the present invention, (e) after the step (d) may further include a step of drying at an absolute pressure of 0 to 1 atmosphere and 50 to 90 ° C.
본 발명의 바람직한 실시예에 따른 몬트모릴로나이트와 고체 상태의 알칼리수산화물 간의 반응을 통해 생성되는 고상으로 염기 처리된 활성 몬모릴로나이트의 제조공정을 도 1에 나타내었다.1 shows a process for preparing active montmorillonite base-treated with a solid phase produced through a reaction between montmorillonite and a solid alkali hydroxide according to a preferred embodiment of the present invention.
본 발명의 실시예에서 상기 방법으로 제조된 고상으로 염기 처리된 활성 몬모릴로나이트는 처리 전 몬모릴로나이트에 비하여 2배 이상의 세슘 및 스트론튬에 대한 흡착 용량을 가지며, 다량의 경쟁이온이 존재하는 지하수 조건에서도 세슘을 선택적으로 제거하는 우수한 성능을 나타내는 것을 확인하였다.In the embodiment of the present invention, the active montmorillonite base-treated with the solid phase prepared by the above method has adsorption capacity for cesium and strontium that is more than twice that of montmorillonite before treatment, and selects cesium even in groundwater conditions where a large amount of competitive ions are present. It was confirmed that it shows excellent performance to remove.
따라서, 본 발명은 또 다른 관점에서, 상기 흡착제를 이용한 세슘 및 스트론튬의 흡착 방법에 관한 것이다.Therefore, in another aspect, the present invention relates to a method for adsorbing cesium and strontium using the adsorbent.
이하 본 발명을 실시예에 의하여 더욱 상세하게 설명한다. 이들 실시예는 단지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail by examples. These examples are only for explaining the present invention in more detail, it will be apparent to those skilled in the art that the scope of the present invention is not limited to these examples.
실시예Example 1: 수산화소듐을 이용한 고상으로 1: Solid phase using sodium hydroxide 염기처리된Base-treated 활성 몬모릴로나이트의 제조 Preparation of active montmorillonite
수산화소듐(NaOH)와 몬모릴로나이트를 이용하여 반응 정도를 조절하여 고상으로 염기처리된 활성 몬모릴로나이트를 제조하는 방법을 다음과 같이 구체적으로 기재한다.A method of preparing active montmorillonite base-treated in a solid phase by controlling the degree of reaction using sodium hydroxide (NaOH) and montmorillonite is described in detail as follows.
1.5g의 몬모릴로나이트를 일정량의 수산화소듐과 물리적으로 20분간 혼합하였는데, 이 때 수산화소듐은 표 1에 기재된 바와 같이 몬모릴로나이트의 질량 대비 50~200%의 질량을 가졌다. 이후 혼합물을 알루미나 도가니에 담은 뒤 반응기(furnace)에 넣고 질소(N2, > 99%)를 30분간 50 mL/min으로 흘리며 기체 조성을 맞추었다. 이후 반응기의 온도는 5℃/min으로 25℃에서 300℃까지 올려준 뒤 1시간 동안 300℃로 유지하였다. 반응이 끝난 후 자연적으로 반응기의 온도가 냉각되도록 하였으며, 작용기의 유지를 위해 반응기 온도가 135℃가 되었을 때 25℃의 냉수를 사용하여 혼합물을 급속히 냉각하였다. 제조된 고상으로 염기 처리된 활성 몬모릴로나이트는 잔여 수산화소듐과 불순물 염을 제거하기 위하여 냉수를 이용하여 세척하였다. 일련의 냉수 세척 및 원심 분리 과정 후 원심 분리 상층액의 pH가 8 이하가 되면 제조된 고상으로 염기 처리된 활성 몬모릴로나이트를 오븐에서 80℃로 건조하였다.1.5 g of montmorillonite was physically mixed with a certain amount of sodium hydroxide for 20 minutes. At this time, sodium hydroxide had a mass of 50 to 200% compared to the mass of montmorillonite as shown in Table 1. Thereafter, the mixture was placed in an alumina crucible, placed in a reactor, and nitrogen (N 2 ,> 99%) was flowed at 50 mL / min for 30 minutes to adjust the gas composition. After that, the temperature of the reactor was raised from 25 ° C to 300 ° C at 5 ° C / min and maintained at 300 ° C for 1 hour. After the reaction was completed, the temperature of the reactor was allowed to cool naturally, and to maintain the functional group, the mixture was rapidly cooled using 25 ° C of cold water when the reactor temperature became 135 ° C. Active montmorillonite base-treated with the prepared solid phase was washed with cold water to remove residual sodium hydroxide and impurity salts. After a series of cold water washing and centrifugation, when the pH of the centrifuged supernatant became 8 or less, the active montmorillonite base-treated with the prepared solid phase was dried in an oven at 80 ° C.
상기 과정을 통해 반응 정도가 다른 고상으로 염기 처리된 활성 몬모릴로나이트를 제조하였으며, 제조과정을 도 1에 도식화하였다.Through the above process, active montmorillonite base-treated with a solid phase having a different reaction degree was prepared, and the manufacturing process is schematically illustrated in FIG. 1.
실시예Example 2: 세슘 및 스트론튬의 개별적 흡착 평형 실험 2: Separate adsorption equilibrium experiment of cesium and strontium
세슘 및 스트론튬 이온에 대한 흡착 평형 실험을 실시예 1을 통해 제조된 수산화소듐을 이용한 활성 몬모릴로나이트 중 수산화소듐/몬모릴로나이트 질량비가 1인 흡착제(NaMT1)와 수산화소듐 처리를 거치지 않은 몬모릴로나이트(MT)에 대해 수행하였다. 흡착 평형 실험은 염화세슘(CsCl)과 염화스트론튬(SrCl2)을 각각 증류수에 녹여 농도가 다른 세슘 및 스트론튬 용액(5~1000mg/L)을 제조하고 해당 용액 0.02L에 0.02g의 흡착제를 넣어 25℃에서 24시간 동안 200rpm으로 교반하여 수행하였다. 이후 용액을 0.45㎛의 기공 크기를 가지는 마이크로 필터를 이용하여 여과하였고, 초기 농도 C0와 최종 평형 농도 Ce를 ICP-MS를 통해 측정하여 하기 수학식 1을 통해 흡착용량(Qe, mg/g)을 계산하였다.Adsorption equilibrium experiments for cesium and strontium ions were performed on an adsorbent having a sodium hydroxide / montmorillonite mass ratio of 1 (NaMT1) and montmorillonite (MT) without sodium hydroxide treatment among active montmorillonite prepared using Example 1. Did. In the adsorption equilibrium experiment, cesium chloride (CsCl) and strontium chloride (SrCl 2 ) were dissolved in distilled water to prepare cesium and strontium solutions (5 to 1000 mg / L) with different concentrations, and 0.02 g of adsorbent was added to 0.02 L of the solution. It was performed by stirring at 200 rpm for 24 hours at ℃. Thereafter, the solution was filtered using a micro filter having a pore size of 0.45 μm, and the initial concentration C 0 and the final equilibrium concentration C e were measured by ICP-MS, and the adsorption capacity (Q e , mg / g) was calculated.
[수학식 1][Equation 1]
이때 V는 세슘 혹은 스트론튬 용액의 부피(L), m은 흡착제의 질량(g)을 의미한다.In this case, V is the volume of the cesium or strontium solution (L), and m is the mass of the adsorbent (g).
실험을 통해 얻은 흡착용량 Qe를 최종 평형 농도 Ce에 따라 도시하면 도 2와 같다. 표 2 및 도 2a는 세슘 흡착 평형 실험에 관한 것이며, 표 3 및 도 2b는 스트론튬 흡착 평형 실험에 관한 것이다. 각각의 데이터는 랭뮤어 흡착등온선을 이용하여 근사하였으며 이를 통해 얻어지는 최대 흡착 용량 파라미터를 표를 통해 도 2에 포함하였다. 분석 결과, NaMT1는 대조군으로 사용된 MT에 비해 세슘 및 스트론튬에 대한 흡착 용량이 크게 상승하여, 세슘 최대 흡착 용량 및 스트론튬 최대 흡착 용량을 보였다. 이를 통해 알칼리 수산화물과의 반응을 통해 몬모릴로나이트의 흡착 성능이 크게 상승함을 확인할 수 있다.The adsorption capacity Q e obtained through the experiment is shown in FIG. 2 according to the final equilibrium concentration C e . Tables 2 and 2a relate to cesium adsorption equilibrium experiments, and Tables 3 and 2b relate to strontium adsorption equilibrium experiments. Each data was approximated using a Langmuir adsorption isotherm and the maximum adsorption capacity parameter obtained through this was included in FIG. 2 through a table. As a result of the analysis, NaMT1 significantly increased the adsorption capacity for cesium and strontium compared to the MT used as a control group, and showed the maximum adsorption capacity for cesium and the maximum adsorption capacity for strontium. Through this, it can be seen that the adsorption performance of montmorillonite is greatly increased through reaction with alkali hydroxide.
실시예 3: 세슘 및 스트론튬의 동시 제거 효율Example 3: Efficiency of simultaneous removal of cesium and strontium
세슘 및 스트론튬 이온이 혼합되어 있는 용액에 대한 흡착 실험을 수행하였다. 이 실험에 사용한 실험군은 1) 실시예 1을 통해 제조된 수산화소듐을 이용한 활성 몬모릴로나이트 중 수산화소듐/몬모릴로나이트 질량비가 1인 흡착제(NaMT1), 2) 수산화 포타슘을 이용하여 실시예 1과 같은 방법으로 제조한 활성 몬모릴로나이트(KMT), 3) 수산화 포타슘과 수산화소듐의 혼합물을 이용하여 실시예 1과 같은 방법으로 제조한 활성 몬모릴로나이트(KNaMT)이다.Adsorption experiments were performed on a solution containing a mixture of cesium and strontium ions. The experimental group used in this experiment was 1) prepared by the same method as in Example 1 using an adsorbent having a sodium hydroxide / montmorillonite mass ratio of 1 in active montmorillonite using sodium hydroxide prepared in Example 1 (NaMT1), 2) potassium hydroxide. One active montmorillonite (KMT), 3) Active montmorillonite (KNaMT) prepared in the same manner as in Example 1 using a mixture of potassium hydroxide and sodium hydroxide.
우선 염화 세슘(CsCl)과 염화 스트론튬(SrCl2)을 같이 증류수에 녹여 농도가 다른 세슘 및 스트론튬 용액(0.7~15mg/L)을 제조하고 해당 용액 0.02L에 0.02g의 흡착제를 넣어 25℃에서 24시간 동안 200rpm으로 교반하여 수행하였다. 이후 용액을 0.45㎛의 기공 크기를 가지는 마이크로 필터를 이용하여 여과하였고, 초기 농도 C0와 최종 평형 농도 Ce를 ICP-MS를 통해 측정하여 하기 수학식 2와 수학식 3을 통해 제거효율(RE, %)과 분배 계수(Kd, mL/g)를 계산하였다.First, cesium chloride (CsCl) and strontium chloride (SrCl 2 ) are dissolved in distilled water to prepare cesium and strontium solutions of different concentrations (0.7 to 15 mg / L). It was carried out by stirring at 200 rpm for an hour. Thereafter, the solution was filtered using a micro filter having a pore size of 0.45 μm, and the initial concentration C 0 and the final equilibrium concentration C e were measured by ICP-MS to remove the removal efficiency (RE) through Equations 2 and 3 below. ,%) And partition coefficient (K d , mL / g).
[수학식 2][Equation 2]
[수학식 3][Equation 3]
실험을 통해 얻은 제거효율과 분배계수를 표 4에 나타내었다.Table 4 shows the removal efficiency and distribution coefficient obtained through the experiment.
표 4에 나타낸 바와 같이, 각 실험군에 대하여 세슘 및 스트론튬 제거효율이 모두 85% 이상으로 높게 나타났으며, 스트론튬 제거효율이 세슘 제거효율 보다 다소 높은 것으로 나타났다. 또한 수산화소듐이 제조방법에 포함된 실험군이 세슘 제거에 효과적이었다.As shown in Table 4, the cesium and strontium removal efficiencies were higher than 85% for each experimental group, and the strontium removal efficiency was somewhat higher than the cesium removal efficiency. In addition, the experimental group in which sodium hydroxide was included in the manufacturing method was effective in removing cesium.
실시예 4: 경쟁이온 존재 하에서의 세슘 및 스트론튬 제거 효율Example 4: Cesium and strontium removal efficiency in the presence of competitive ions
경쟁이온이 존재하는 지하수 조건에서의 세슘 및 스트론튬에 대한 선택적 흡착 실험을 실시예 1을 통해 제조된 수산화소듐을 이용한 고상으로 염기 처리된 활성 몬모릴로나이트 중 수산화소듐/몬모릴로나이트 질량비가 1인 흡착제(NaMT1)와 수산화소듐 처리를 거치지 않은 몬모릴로나이트(MT)에 대해 수행하였다. 경쟁이온에 대한 실험을 위해 약 세슘과 스트론튬이 약 1 ppm으로 존재하는 용액에 Na+를 약 145 ppm, K+를 약 230ppm, Ca2 +를 약 25 ppm의 농도가 되도록 NaCl, KCl, CaCl2를 각각 용해하여 지하수 조건의 용액을 준비하였다. 상기 준비된 용액 0.02 L에 대해서 0.02 g의 NaMT1과 MT를 각각 넣고 24 시간동안 25℃에서 200 rpm으로 교반하여 흡착 실험을 수행하였다. 이후 용액을 0.45㎛의 기공 크기를 가지는 마이크로 필터를 이용하여 여과하였고, 초기 농도 C0와 최종 평형 농도 Ce를 ICP-MS를 통해 측정하여 하기 수학식 2와 수학식 3을 통해 제거효율 (RE, %)과 분배 계수 (Kd, mL/g)를 계산하였다.Selective adsorption experiments for cesium and strontium in a groundwater condition in which competitive ions are present, an adsorbent (NaMT1) having a sodium hydroxide / montmorillonite mass ratio of 1 in active montmorillonite base-treated with solid phase using sodium hydroxide prepared in Example 1 It was performed on montmorillonite (MT) without sodium hydroxide treatment. For the for the experiment for the competitive ion for Na + in the solution is about cesium and strontium present in from about 1 ppm about 145 ppm, K + from about 230ppm, Ca 2 + at a concentration of about 25 ppm NaCl, KCl, CaCl 2 Each was dissolved to prepare a solution for groundwater conditions. 0.02 g of NaMT1 and MT were added to 0.02 L of the prepared solution, respectively, and the adsorption experiment was performed by stirring at 200 rpm at 25 ° C. for 24 hours. Thereafter, the solution was filtered using a micro filter having a pore size of 0.45 μm, and the initial concentration C 0 and the final equilibrium concentration C e were measured by ICP-MS to remove the removal efficiency (Equation 2 and 3). ,%) And partition coefficient (K d , mL / g).
[수학식 2][Equation 2]
[수학식 3][Equation 3]
실험을 통해 얻은 분배계수와 제거효율을 표 5에 나타내었다.Table 5 shows the distribution coefficient and removal efficiency obtained through the experiment.
표 5에 나타낸 바와 같이, 염기 처리 전인 MT는 다량의 양이온이 존재하는 지하수 조건에서 20% 미만의 세슘 및 스트론튬을 제거하는 데에 그친 것에 비하여, 염기 처리 후인 NaMT1은 세슘 및 스트론튬을 선택적으로 60% 이상 제거했다. 분배계수 또한 NaMT1이 MT에 비하여 약 10배 높게 나타났다.As shown in Table 5, MT before base treatment was only used to remove less than 20% of cesium and strontium in groundwater conditions where a large amount of cations were present, whereas NaMT1 after base treatment was selectively 60% of cesium and strontium. It was removed abnormally. The distribution coefficient also showed that NaMT1 was about 10 times higher than MT.
실시예 5: 방사선 조사 이후의 세슘 및 스트론튬 제거 효율Example 5: cesium and strontium removal efficiency after irradiation
세슘 및 스트론튬이 존재하는 혼합용액에서의 흡착 실험을 감마선이 조사된 흡착제를 이용하여 수행하였다. 이 때 사용된 흡착제는 실시예 1을 통해 제조된 수산화소듐을 이용한 고상으로 염기 처리된 활성 몬모릴로나이트 중 수산화소듐/몬모릴로나이트 질량비가 1인 흡착제(NaMT1)와 수산화소듐 처리를 거치지 않은 몬모릴로나이트(MT)이다. 실험을 위하여 NaMT1과 MT에 조사된 감마선원으로는 질량수 137을 가지는 세슘 동위원소를 사용하였으며, 6 Gy/h로 30분간 조사되었다. 상기 감마선이 조사된 NaMT1과 MT 각각 0.02 g을 세슘 및 스트론튬이 약 15 ppm으로 존재하는 혼합용액 0.02 L에 넣고 24시간동안 25℃에서 200 rpm으로 교반하여 흡착 실험을 수행하였다. 이후 용액을 0.45㎛ 의 기공 크기를 가지는 마이크로 필터를 이용하여 여과하였고, 초기 농도 C0와 최종 평형 농도 Ce를 ICP-MS를 통해 측정하여 상기 수학식 3을 통해 제거효율을 계산하였다.Adsorption experiments in a mixed solution containing cesium and strontium were performed using an adsorbent irradiated with gamma rays. The adsorbent used at this time is an adsorbent (NaMT1) having a sodium hydroxide / montmorillonite mass ratio of 1 among the active montmorillonite base-treated in a solid phase using sodium hydroxide prepared in Example 1 and montmorillonite (MT) without sodium hydroxide treatment. For the experiment, a cesium isotope having a mass number of 137 was used as the gamma ray source irradiated to NaMT1 and MT, and irradiated at 6 Gy / h for 30 minutes. The adsorption experiment was performed by adding 0.02 g of NaMT1 and MT irradiated with gamma rays to 0.02 L of a mixed solution containing cesium and strontium at about 15 ppm and stirring at 200 ° C at 25 ° C for 24 hours. Then, the solution was filtered using a micro filter having a pore size of 0.45 μm, and the initial concentration C 0 and the final equilibrium concentration C e were measured through ICP-MS to calculate removal efficiency through Equation 3.
실험을 통해 얻은 제거효율을 표 6에 나타내었다.Table 6 shows the removal efficiency obtained through the experiment.
표 6에 나타낸 바와 같이, 방사선 조사 후 NaMT1은 세슘 및 스트론튬을 각각 86%, 92% 제거하여 우수한 흡착 성능을 나타냈다. 또한 NaMT1과 MT는 모두 방사선 조사 전과 비교하여 흡착 성능에 큰 차이를 보이지 않았다. 이는 염기 반응이 몬모릴로나이트의 흡착 성능과 구조적 안정성을 저해하지 않음을 보여주었다.As shown in Table 6, after irradiation, NaMT1 removed cesium and strontium 86% and 92%, respectively, and showed excellent adsorption performance. In addition, both NaMT1 and MT showed no significant difference in adsorption performance compared to before irradiation. This showed that the base reaction did not inhibit the adsorption performance and structural stability of montmorillonite.
따라서 실제 원전 폐기물 내 존재하는 미량의 세슘 및 스트론튬을 제거하는 데 있어서 실시예에 의한 고상으로 염기 처리된 활성 몬모릴로나이트는 방사선과 경쟁이온 조건 하에서도 세슘 및 스트론튬을 효과적으로 제거할 수 있음을 확인할 수 있다.Therefore, it can be seen that in the removal of trace amounts of cesium and strontium present in the actual nuclear power plant waste, the active montmorillonite base-treated as a solid phase according to the embodiment can effectively remove cesium and strontium even under conditions of radiation and competition ions.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.Since the specific parts of the present invention have been described in detail above, for those skilled in the art, it is obvious that this specific technique is only a preferred embodiment, and the scope of the present invention is not limited thereby. something to do. Therefore, the substantial scope of the present invention will be defined by the appended claims and their equivalents.
Claims (14)
(a) 층상점토광물과 상기 층상점토광물 100중량부에 대하여 50~200중량부의 고체상의 알칼리 물질을 혼합하는 단계; 및
(b) 5~10℃/min의 가열속도로 200~400℃의 온도에서 1~2시간 동안 혼합물을 가열하여 반응시켜 층상점토광물 기반 흡착제를 제조하는 단계;
(c) 상기 (b) 단계 후에 110~150℃의 온도에서 15~30℃의 물로 냉각시켜 반응을 종료하는 단계;
(d) 상기 (c) 단계 후에 pH 8 이하가 될 때까지 온수 또는 냉수로 세척하는 단계; 및
(e) 상기 (d) 단계 후에 절대압력 0~1기압, 50~90℃에서 건조하는 단계,
상기 층상점토광물 기반 흡착제는 층상점토광물의 표면에 존재하는 산소 함유 작용기에 알칼리 물질이 부착되어 있고, 15~150m2/g의 표면적, 0.05~0.5cm3/g의 미세기공체적 및 1~12nm의 미세기공크기를 가지는 것을 특징으로 함.
Method for producing a layered clay mineral based adsorbent comprising the following steps:
(a) mixing 50 to 200 parts by weight of a solid alkali material with respect to 100 parts by weight of the layered clay mineral and the layered clay mineral; And
(b) preparing a layered clay mineral-based adsorbent by heating and reacting the mixture for 1 to 2 hours at a temperature of 200 to 400 ° C at a heating rate of 5 to 10 ° C / min;
(c) after the step (b), cooling with water of 15 to 30 ° C at a temperature of 110 to 150 ° C to terminate the reaction;
(d) washing with hot or cold water until pH 8 or less after step (c); And
(e) drying after the step (d) at an absolute pressure of 0 to 1 atmosphere, 50 to 90 ° C,
The layered clay mineral-based adsorbent has an alkali substance attached to an oxygen-containing functional group present on the surface of the layered clay mineral, a surface area of 15 to 150 m 2 / g, a micropore volume of 0.05 to 0.5 cm 3 / g, and 1 to 12 nm. Characterized by having a micropore size of.
The layered clay mineral is 1 selected from the group consisting of montmorillonite, smectite, kaolinite, bentonite, hectorite, hectorite fluoride, videlite, saponite, nontronite, vermiculite, macadamite and mica. Method of manufacturing a layered clay mineral based adsorbent, characterized in that more than species.
The method of claim 1, wherein the alkali material is an alkali hydroxide.
The method according to claim 3, wherein the alkali hydroxide is at least one selected from the group consisting of sodium hydroxide, potassium hydroxide and calcium hydroxide.
The method of claim 1, wherein the step (b) is carried out while maintaining 0.05 to 50 atmospheres while flowing an inert gas.
The method of claim 1, wherein the layered clay mineral based adsorbent is used for adsorption of cesium or strontium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170179872A KR102095858B1 (en) | 2017-12-26 | 2017-12-26 | Clay Mineral Having Layered Structure-Based Adsorbent for Simultaneously Removing Cesium and Strontium and Method of Preparing the Same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170179872A KR102095858B1 (en) | 2017-12-26 | 2017-12-26 | Clay Mineral Having Layered Structure-Based Adsorbent for Simultaneously Removing Cesium and Strontium and Method of Preparing the Same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20190078124A KR20190078124A (en) | 2019-07-04 |
KR102095858B1 true KR102095858B1 (en) | 2020-04-02 |
Family
ID=67259237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020170179872A KR102095858B1 (en) | 2017-12-26 | 2017-12-26 | Clay Mineral Having Layered Structure-Based Adsorbent for Simultaneously Removing Cesium and Strontium and Method of Preparing the Same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102095858B1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220119886A (en) * | 2021-02-22 | 2022-08-30 | 포항공과대학교 산학협력단 | A radon removal sorbent, a manufacturing method thereof and a radon removal method using the same |
KR20230091513A (en) | 2021-12-16 | 2023-06-23 | 고려대학교 산학협력단 | Food and wood waste gasification biochar capable of effectively removing radionuclides from water, manufacturing method thereof, and radionuclide adsorbent composition comprising the same |
KR102607866B1 (en) * | 2023-07-07 | 2023-11-30 | 주식회사 제이엔오빌 | Tea Bag For Cesium Adsorption, Tea Bag Package, Device For Removing Cesium Including The Same, And Method for Removing Cesium |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001122608A (en) * | 1999-10-26 | 2001-05-08 | Tokyo Gas Co Ltd | Activated carbon controlled in fine pore structure and method of manufacturing the same |
JP2007529299A (en) | 2004-03-17 | 2007-10-25 | ジーエム グローバル テクノロジー オペレーションズ,インク. | Method for improving NOx reduction efficiency of automobile |
JP2009084132A (en) * | 2007-10-02 | 2009-04-23 | Yamaguchi Unmo Kogyosho:Kk | Modified clay mineral powder, and method for producing the same |
JP2013000696A (en) * | 2011-06-20 | 2013-01-07 | Fujifilm Corp | Water purification method |
JP2013244481A (en) * | 2012-05-29 | 2013-12-09 | Kurita Water Ind Ltd | Method and apparatus for treating strontium-containing wastewater, and strontium adsorbent slurry |
JP5622667B2 (en) * | 2011-06-14 | 2014-11-12 | 黒崎白土工業株式会社 | Base material for pet litter |
-
2017
- 2017-12-26 KR KR1020170179872A patent/KR102095858B1/en active IP Right Grant
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001122608A (en) * | 1999-10-26 | 2001-05-08 | Tokyo Gas Co Ltd | Activated carbon controlled in fine pore structure and method of manufacturing the same |
JP2007529299A (en) | 2004-03-17 | 2007-10-25 | ジーエム グローバル テクノロジー オペレーションズ,インク. | Method for improving NOx reduction efficiency of automobile |
JP2009084132A (en) * | 2007-10-02 | 2009-04-23 | Yamaguchi Unmo Kogyosho:Kk | Modified clay mineral powder, and method for producing the same |
JP5622667B2 (en) * | 2011-06-14 | 2014-11-12 | 黒崎白土工業株式会社 | Base material for pet litter |
JP2013000696A (en) * | 2011-06-20 | 2013-01-07 | Fujifilm Corp | Water purification method |
JP2013244481A (en) * | 2012-05-29 | 2013-12-09 | Kurita Water Ind Ltd | Method and apparatus for treating strontium-containing wastewater, and strontium adsorbent slurry |
Also Published As
Publication number | Publication date |
---|---|
KR20190078124A (en) | 2019-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102095858B1 (en) | Clay Mineral Having Layered Structure-Based Adsorbent for Simultaneously Removing Cesium and Strontium and Method of Preparing the Same | |
KR102636706B1 (en) | Synthesis of molecular sieve SSZ-98 | |
US9776883B2 (en) | Producing calcium oxides | |
Noh et al. | Titanosilicates: Giant exchange capacity and selectivity for Sr and Ba | |
KR101415656B1 (en) | adsorbent for adsorption treatment of anion in waste water, and method for manufacturing the adsorbent | |
US10857528B2 (en) | Porous decontamination removal composition | |
KR20150137201A (en) | A method for preparing silicotitanate and Cs adsorbent | |
KR101641136B1 (en) | Zeolite Rho absorbent for removing radionuclide and manufacturing method thereof | |
KR102035801B1 (en) | Titanosilicate Adsorbent Having Sodium and Potassium for Simultaneously Removing Cesium and Strontium and Method of Preparing the Same | |
US7097772B2 (en) | Method of purifying a waste stream using a microporous composition | |
JP2014106181A (en) | Radioactive substance sorption agent and manufacturing method of the same | |
JP2013248555A (en) | Cesium adsorbing material, and method for manufacturing the same | |
Al-Rahmani et al. | Hierarchical structures incorporating carbon and zeolite to remove radioactive contamination | |
KR101927610B1 (en) | Synthesis of Microporous Zeolite Using Metal Ions and Primary Organic Amines | |
KR101459008B1 (en) | A porous nickel phosphate molecular sieve, the preparing method thereof and the method of removing heavy metal using the same | |
KR102218847B1 (en) | Fabrication method of organic-inorganic nanoporous material adsorbent and organic-inorganic nanoporous material adsorbent using it | |
KR101721243B1 (en) | Method for preparing titanosilicate substituted pentavalance cation and titanosilicate absorbent for removing radioactive nuclides prepared thereby | |
KR102654512B1 (en) | Adsorbent for removing radionuclides and manufacturing method thereof | |
KR101041903B1 (en) | Silicotitanate with high surface area for nuclear wastewater and heavy metal wastewater treatment and a method of manufacturing the same | |
JP2004262677A (en) | Preparation method of three-dimensional highly regular mesoporous silicate | |
KR20240109925A (en) | Ion exchange adsorbent synthesized using organic silane surfactant and method for manufacturing the same | |
Hwu | A New Class of Hybrid Materials via Salt‐inclusion Synthesis | |
González et al. | Application of raw and modified Uruguayan clays to phosphate adsorption for water remediation | |
KR20150003623A (en) | Clay ball with chloride and method for fabricating the same and method for regeneration of the same | |
KR20230172888A (en) | A zeolite molded article for removing sulfur-introduced radionuclides and a method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
X701 | Decision to grant (after re-examination) |