KR102088661B1 - Method for preparation Lead(II) chromate via electrolysis - Google Patents

Method for preparation Lead(II) chromate via electrolysis Download PDF

Info

Publication number
KR102088661B1
KR102088661B1 KR1020180136175A KR20180136175A KR102088661B1 KR 102088661 B1 KR102088661 B1 KR 102088661B1 KR 1020180136175 A KR1020180136175 A KR 1020180136175A KR 20180136175 A KR20180136175 A KR 20180136175A KR 102088661 B1 KR102088661 B1 KR 102088661B1
Authority
KR
South Korea
Prior art keywords
lead
salt
lead chromate
chromate
potassium
Prior art date
Application number
KR1020180136175A
Other languages
Korean (ko)
Inventor
조성기
Original Assignee
금오공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금오공과대학교 산학협력단 filed Critical 금오공과대학교 산학협력단
Priority to KR1020180136175A priority Critical patent/KR102088661B1/en
Application granted granted Critical
Publication of KR102088661B1 publication Critical patent/KR102088661B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/06Electrolytic coating other than with metals with inorganic materials by anodic processes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode

Abstract

The present invention relates to a method for manufacturing lead chromate through electroplating, and more specifically, to a method for manufacturing lead chromate, which manufactures lead chromate micro-rod particles in an operation electrode by immersing a ternary electrode system including the operation electrode, a counter electrode and a reference electrode in electrolyte in which lead salt, chrome salt and potassium salt are mixed. In particular, in the present method, the lead salt contained in the electrolyte has a concentration range of 2-7 mM, the electrolyte uses distilled water as a solvent, and the mole fraction of the lead salt, the chrome salt and the potassium salt is in the range of 1:1-15:15-25. Furthermore, an oxidation potential is applied on the operation electrode.

Description

전해도금을 통한 크롬산납의 제조방법{Method for preparation Lead(II) chromate via electrolysis}Method for preparation of lead chromate via electroplating {Method for preparation Lead (II) chromate via electrolysis}

본 발명은 전해도금을 통한 크롬산납의 제조방법에 관한 것으로, 전해질에서 전압을 인가하여 막대 모양의 단결정을 갖는, 광학 및 전기화학적 특성이 우수한 크롬산납(PbCrO4)의 마이크로 로드를 제조방법에 관한 것이다.The present invention relates to a method for producing lead chromate through electroplating, and to a method for manufacturing a micro rod of lead chromate (PbCrO 4 ) having excellent optical and electrochemical properties, having a rod-shaped single crystal by applying a voltage from the electrolyte. will be.

일반적으로, 광촉매로서 폭넓게 사용되고 있는 이산화티탄(TiO2)은 유기물 및 물을 분해하는데 우수한 특성을 나타내고 있는데, 태양광의 4% 정도를 포함하는 자외선 영역에서만 광촉매 반응을 유도할 수 있다는 한계를 가지고 있다. 최근에는 반도체성 금속 산화물이 광촉매 반응을 통하여 대기 오염 정화, 수질 오염 정화, 항균 기능 등을 나타내며, 유해 물질을 분해한 후에도 이차 오염을 유발하지 않는 친환경적인 오염 제거 물질로 각광받고 있다.In general, titanium dioxide (TiO 2 ), which is widely used as a photocatalyst, has excellent properties in decomposing organic matter and water, and has a limitation that it can induce a photocatalytic reaction only in the ultraviolet region containing about 4% of sunlight. Recently, semiconducting metal oxides have been spotlighted as an environmentally friendly decontamination material that exhibits air pollution purification, water pollution purification, and antibacterial functions through photocatalytic reaction and does not cause secondary pollution even after decomposing harmful substances.

반도체성 금속 산화물이란 물성적으로 단원소 반도체와 마찬가지로 두 개의 에너지 준위, 즉 가전자 밴드(VB)와 전도 밴드(CB)를 가지고 있으며, 밴드 갭(band gap) 이상의 에너지를 가지는 광자에 의해 VB의 전자가 여기되어 CB로 이동하고 전자가 빠져나간 VB에 정공이 생성되는 물질을 지칭한다. 이렇게 생성된 CB 전자와 VB 정공이 각각 금속 산화물의 표면에서 휘발성 유기화합물 등과 같은 유해 물질의 환원과 산화 반응을 일으켜 유해 물질의 분해를 촉매하는 기능을 한다.The semiconducting metal oxide physically has two energy levels, that is, a valence band (VB) and a conduction band (CB), similarly to a single element semiconductor, and VB is generated by photons having energy above the band gap. Refers to a substance in which electrons are excited to move to CB and holes are generated in VB from which electrons escape. The CB electrons and VB holes thus generated function to reduce and oxidize harmful substances such as volatile organic compounds on the surface of the metal oxide, thereby catalyzing the decomposition of harmful substances.

좁은 밴드 갭과 광촉매의 가시광선 반응성이 높은 물질로는 밴드 갭 에너지 2.4eV를 갖는 BiVO4가 대표적인 전이 금속 산화물 광촉매로 알려져 있으며, 광전기화학 물 분해 응용에 많이 연구되어 왔으나, 효율이 낮아 상용화가 되지 못하였다.BiVO 4 having a band gap energy of 2.4eV is known as a typical transition metal oxide photocatalyst as a narrow bandgap and a material having high visible light reactivity of a photocatalyst, and has been studied a lot in photoelectrochemical water decomposition applications, but is not commercialized due to its low efficiency. Did not.

노란색 안료로 이용되고 있는 크롬산납의 경우 Cr을 중심에 두고 Pb2+ 양이온이 사면체를 이루는 단사정계 결정으로 n형 반도체로서 높은 효율의 광촉매 특성을 나타낼 수 있다고 알려졌으나, 아직까지는 상용화에 적용하기 위한 광전기화학적 특성이 우수한 크롬산납이 개발되어 있지 않은 상황이다.Lead chromate, which is used as a yellow pigment, is a monoclinic crystal in which Pb 2+ cations form a tetrahedron with Cr as the center, and it is known that it can exhibit high-efficiency photocatalytic properties as an n-type semiconductor. Lead chromate, which has excellent photoelectrochemical properties, has not been developed.

1. 대한민국 공개특허 제10-2014-0098601호(2014. 08. 08. 공개)1. Republic of Korea Patent Publication No. 10-2014-0098601 (2014. 08. 08. published) 2. 대한민국 공개특허 제10-2007-0082760호(2007. 08. 22. 공개)2. Republic of Korea Patent Publication No. 10-2007-0082760 (published on August 22, 2007)

본 발명은 광전기화학적 특성이 우수한 크롬산납을 제조하는 방법 및 이에 따라 제조된 크롬산납 마이크로 로드 입자를 제공하는 것에 있다.The present invention is to provide a method for producing lead chromate having excellent photoelectrochemical properties and lead chromate microrod particles prepared accordingly.

보다 구체적으로는 크롬산납은 PbCrO4이며 1㎛의 직경을 갖는 막대형상을 갖는 마이크로 로드를 제공함으로서, 가시광선에서도 광전기화학적 특성이 우수한 크롬산납를 제조하는 방법 및 이에 따라 제조된 크롬산납을 제공하는 것에 있다.More specifically, lead chromate is PbCrO 4 and provides a micro rod having a rod shape having a diameter of 1 μm, thereby providing a method for producing lead chromate having excellent photoelectrochemical properties even in visible light, and providing lead chromate prepared accordingly. have.

본 발명의 크롬산납의 제조방법은 납염, 크롬염 및 칼륨염이 혼합하는 전해질에 작동전극, 상대전극 및 기준전극을 포함하는 3원계 전극 시스템을 침지하여 전해도금을 통해 작동전극 표면에 크롬산납을 제조하는 것을 특징으로 한다. The method for producing lead chromate of the present invention is immersed in a ternary electrode system including a working electrode, a counter electrode, and a reference electrode in an electrolyte in which lead salt, chromium salt and potassium salt are mixed, and then leads lead chromate to the working electrode surface through electroplating. It is characterized by manufacturing.

상기 전해질에 포함되는 납염은 2~7mM 농도 범위를 갖고, 전해질은 증류수을 용매로 하여 납염, 크롬염 및 칼륨염의 몰비는 1 : 1~15 : 15~25의 범위를 갖으며, 상기 전해도금은 작동전극상 산화 전위를 인가하여 수행되는 것이 바람직하다.The lead salt contained in the electrolyte has a concentration range of 2 to 7 mM, the electrolyte has distilled water as a solvent, and the molar ratio of lead salt, chromium salt, and potassium salt has a range of 1: 1 to 15: 15 to 25, and the electrolytic plating works It is preferably performed by applying an oxidation potential on the electrode.

상기 크롬산납은 구체적으로 PbCrO4인의 화학식을 가지며, 1㎛이상의 직경을 갖는 막대형상의 마이크로 로드(rod) 입자인 것을 특징으로 한다.The lead chromate has a chemical formula of PbCrO 4 phosphorus, and is characterized in that it is a rod-shaped micro rod particle having a diameter of 1 µm or more.

상기 납염은 질산납(Pb(NO3)2), 초산납(Pb(CH3COO)2), 염화납 (PbCl2), 황산납(PbSO4) 중 1종 이상 선택되고, 상기 크롬염은 질산크롬(Cr(NO3)3), 초산크롬(Cr(CH3COO)3), 염화크롬(CrCl3), 황산크롬(Cr2(SO4)3) 중 1종 이상 선택되며, 상기 칼륨염은 질산칼륨(KNO3), 초산칼륨(CH3COOK), 염화칼륨(KCl), 황산칼륨(K2SO4) 중 1종 이상 선택될 수 있다.The lead salt is at least one selected from lead nitrate (Pb (NO 3 ) 2 ), lead acetate (Pb (CH 3 COO) 2 ), lead chloride (PbCl 2 ), and lead sulfate (PbSO 4 ), and the chromium salt is nitric acid One or more of chromium (Cr (NO 3 ) 3 ), chromium acetate (Cr (CH 3 COO) 3 ), chromium chloride (CrCl 3 ), and chromium sulfate (Cr 2 (SO 4 ) 3 ) is selected, and the potassium salt Silver may be selected from one or more of potassium nitrate (KNO 3 ), potassium acetate (CH 3 COOK), potassium chloride (KCl), potassium sulfate (K 2 SO 4 ).

상기 작동전극은 FTO(Fluorine Doped Tin Oxide), AZO(aluminium doped Zinc Oxide), ATO(Aluminium doped Tin Oxide) 및 ITO(Indium Tin Oxide) 중 어느 하나가 선택될 수 있다.As the working electrode, any one of Fluorine Doped Tin Oxide (FTO), Aluminum doped Zinc Oxide (AZO), Aluminum doped Tin Oxide (ATO), and Indium Tin Oxide (ITO) may be selected.

상기 크롬산납의 제조방법에 있어서, 작동전극에는 납산화물(PbO2) 층을 미리 형성시키는 것을 특징으로 하며, 상기 납산화물 층은 납염 및 칼륨염이 혼합된 전해질에서 전해도금을 통해 형성될 수 있다. In the method of manufacturing lead chromate, the working electrode is characterized in that a lead oxide (PbO 2 ) layer is formed in advance, and the lead oxide layer may be formed through electroplating in an electrolyte mixed with lead salt and potassium salt. .

상기 납산화물 층 형성시 납염은 2~7mM 농도 범위에서 납염 및 칼륨염의 몰비가 1 : 15~25인 범위로, 전해도금은 작동전극상 산화 전위를 인가하여 수행되는 것을 특징으로 한다.When forming the lead oxide layer, the lead salt is characterized in that the molar ratio of lead salt and potassium salt in the range of 2-7 mM concentration is 1: 15 ~ 25, and electrolytic plating is performed by applying an oxidation potential on the working electrode.

본 발명의 따른 제조 방법은 간단한 전해도금, 전해도금법을 통해 1㎛이상의 직경을 갖는 막대형상의 크롬산납 마이크로 로드 단결정을 제공할 수 있다.The manufacturing method according to the present invention can provide a rod-shaped lead chromate microrod single crystal having a diameter of 1 µm or more through simple electroplating or electroplating.

상기 크롬산납 단결정은 가시광을 흡수하여 광전기화학적 특성이 우수하여 물분해 뿐만 아니라, 휘발성 유기화합물과 같은 유해 물질의 분해가 효과적으로 이루어질 수 있다The lead chromate single crystal absorbs visible light and has excellent photoelectrochemical properties, so that not only water decomposition but also decomposition of harmful substances such as volatile organic compounds can be effectively made.

또한, 본 발명의 크롬산납 마이크로 로드 단결정은 항균 제품, 자정 제품, 초친수성 제품, 대기 오염 정화기, 수질 오염 정화기 등에 광범위하게 적용하여 환경 오염을 매우 효과적으로 친환경적으로 해결할 수 있다.In addition, the lead chromate microrod single crystal of the present invention can be applied to a wide range of antibacterial products, self-cleaning products, super-hydrophilic products, air pollution purifiers, water pollution purifiers and the like to effectively and effectively solve environmental pollution.

도 1은 다양한 전위에 따라 전해도금한 크롬산의 (a) XRD 패턴 및 (b) 광전류-전압 곡선을 나타내는 결과로서 모든 박막은 전해도금 이후 1시간동안 550℃에서 열처리 하였다.
도 2은 1.3V 에서 전착 시간에 따라 형성된 크롬산납의 SEM 이미지 결과이다.
도 3은 1.3V 및 1시간 전해도금 이후 크롬산납의 (a) XRD 패턴, (b) SEM 이미지, (c) EDS 및 (d) TEM 이미지 결과이다.
도 4는 (a) 전착된 크롬산납 microrods의 UV-Vis 흡수 스펙트럼과 관련된 Tauc plot(삽입도), (b) UV-visible 빛(full xenon lamp, 100 mW/cm2)을 chopping하면서 0.1 M Na2SO3/ 0.1M Na2SO4 수용액에서 측정된 크롬산납의 Linear sweep voltammograms (scan rate: 20 mV/s)과 전착 시간에 따른 변화 및 (c) sulfite 산화반응에서 크롬산납 microrod와 nanorod의 면적당 크롬산납의 양과 광전류 변화를 나타내는 그래프이다.
도 5는 (a) FTO 기판 위의 크롬산납 nanorod의 XRD 패턴 및 SEM 이미지 및 (b) 크롬산납 nanorod로 100mW/cm2의 빛(xenon lamp 사용)을 가하면서 측정한 sulfite의 광전기화학적 산화를 나타낸 전류-전압 곡선을 나타내는 결과이다.
도 6는 (a) UV-Visible light(full xenon lamp, 100 mW/cm2)를 chopping하면서 pH 6.8 phosphate buffer 용액(0.1 M HPO4 2-/0.1 M H2PO4 -)에서, 전착 직후 및 Co-Pi decoration 된 크롬산납 microrods의 Linear sweep voltammograms (scan rate: 20 mV/s) 나타내는 그래프이다.
도 7는 광전기화학 물 산화에서 Co-Pi decorated 크롬산납 microrod의 Incident photon to current conversion efficiency (IPCE)를 나타내는 그래프이다. 광전류는 0.62 V (vs. Ag/AgCl)를 인가하면서 pH 6.8 phosphate buffer (HPO4 2-: H2PO4 -=1:1) 수용액에서 측정되었다.
도 8은 (a) UV- visible 빛(full xenon lamp, 100 mW/cm2)을 조사하면서 pH 6.8 phosphate buffer 용액에서 크롬산납 microrod (15000초 동안 1.2V vs. Ag/AgCl에서 전착)의 Chronoamperograms (b) Co-Pi decoration이 있을 때와 없을 때의 Pb 4f and Cr 2p spectra (c) 크롬산납 microrod에 UV- visible 빛(full xenon lamp, 100 mW/cm2)을 조사하면서 광전기화학적 물 산화을 일으켰을 때 계산된 패러데이 효율과 Chronocoulomertic plot (d) Co-Pi decorated 크롬산납 microrod에서 광전기화학적 물 산화를 나타낸 모식도이다.
FIG. 1 shows the results of (a) XRD pattern and (b) photocurrent-voltage curve of chromic acid electroplated according to various potentials, and all thin films were heat treated at 550 ° C. for 1 hour after electroplating.
2 is a SEM image of lead chromate formed according to the electrodeposition time at 1.3V.
Figure 3 shows the results of (a) XRD pattern, (b) SEM image, (c) EDS and (d) TEM image of lead chromate after 1.3V and 1 hour electroplating.
4 is (a) Tauc plot (insertion degree) related to UV-Vis absorption spectrum of electrodeposited lead chromate microrods, (b) 0.1 M Na while chopping UV-visible light (full xenon lamp, 100 mW / cm 2 ) Linear sweep voltammograms (scan rate: 20 mV / s) of lead chromate measured in 2 SO 3 / 0.1M Na 2 SO 4 aqueous solution and changes with electrodeposition time and (c) per lead oxide microrod and nanorod area in sulfite oxidation This graph shows the amount of lead chromate and the change in photocurrent.
5 shows (a) XRD pattern and SEM image of lead chromate nanorod on FTO substrate and (b) photoelectrochemical oxidation of sulfite measured while applying 100 mW / cm 2 light (using xenon lamp) to lead chromate nanorod It is a result showing the current-voltage curve.
Figure 6 (a) UV-Visible light (xenon full lamp, 100 mW / cm 2) a pH 6.8 phosphate buffer solution, while chopping (0.1 M HPO 4 2- /0.1 MH 2 PO 4 -) in, immediately after deposition, and Co -This graph shows the linear sweep voltammograms (scan rate: 20 mV / s) of lead-decorated lead chromate microrods.
7 is a graph showing Incident photon to current conversion efficiency (IPCE) of Co-Pi decorated lead chromate microrod in photoelectrochemical water oxidation. Photo current is 0.62 V while applying a (vs. Ag / AgCl) pH 6.8 phosphate buffer (HPO 4 2-: H 2 PO 4 - = 1: 1) was determined in an aqueous solution.
Figure 8 (a) Chronoamperograms of lead chromate microrods (electrodeposited in 1.2V vs. Ag / AgCl for 15000 seconds) in pH 6.8 phosphate buffer solution while irradiating UV-visible light (full xenon lamp, 100 mW / cm 2 ) ( b) Pb 4f and Cr 2p spectra with and without Co-Pi decoration (c) When lead-chromate microrods are irradiated with UV-visible light (full xenon lamp, 100 mW / cm 2 ) and photoelectrochemical water oxidation occurs. This is a schematic diagram showing the calculated Faraday efficiency and photoelectrochemical water oxidation in a Chronocoulomertic plot (d) Co-Pi decorated lead chromate microrod.

본 명세서 및 청구범위에서 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in the specification and claims should not be interpreted as being limited to a conventional or dictionary meaning, and the inventor can appropriately define the concept of terms in order to explain his or her invention in the best way. Based on the principle that it should be interpreted as meanings and concepts consistent with the technical spirit of the present invention.

본 발명의 크롬산납의 제조방법은 납염, 크롬염 및 칼륨염이 혼합하는 전해질에 작동전극, 상대전극 및 기준전극을 포함하는 3원계 전극 시스템을 침지하여 전해도금을 통해 작동전극 표면에 크롬산납을 제조하는 방법으로, 상기 작동전극은 FTO(Flrourine Doped Tin Oxide), AZO(aluminium doped Zinc Oxide), ATO(Aluminium doped Tin Oxide) 및 ITO(Indium Tin Oxide) 중 어느 하나가 선택될 수 있다.The method for producing lead chromate of the present invention is immersed in a ternary electrode system including a working electrode, a counter electrode, and a reference electrode in an electrolyte in which lead salt, chromium salt and potassium salt are mixed, and then leads lead chromate to the working electrode surface through electroplating. As a method of manufacturing, the working electrode may be selected from any of Fluorine Doped Tin Oxide (FTO), Aluminum doped Zinc Oxide (AZO), Aluminum doped Tin Oxide (ATO), and Indium Tin Oxide (ITO).

상기 상대전극은 백금 와이어(Pt wire)가 선택될 수 있으며, 기준전극은 Ag/AgCl이 포함될 수 있다.The counter electrode may be a platinum wire (Pt wire), the reference electrode may include Ag / AgCl.

상기 전해도금질에 포함되는 납염은 2~7 mM 농도 범위를 갖고, 전해질은 증류수을 용매로 하여 납염, 크롬염 및 칼륨염의 몰비는 1 : 1~15 : 15~25의 법위를 갖으며, 상기 한정하고 있는 농도범위 및 몰비를 벗어나는 경우에는 균일하게 1㎛이상의 직경을 갖는 막대형상의 크롬산납 마이크로 로드 입자가 형성되지 않는 문제점을 가지고 있기 때문에, 상기에서 한정하고 있는 농도 및 몰비의 범위가 바람직하다.The lead salt included in the electroplating has a concentration range of 2 to 7 mM, the electrolyte has distilled water as a solvent, and the molar ratio of lead salt, chromium salt, and potassium salt has a law of 1: 1 to 15: 15 to 25, and the above limitation When the concentration range and the molar ratio are out of range, the rod-shaped lead chromate microrod particles having a diameter of 1 µm or more are not uniformly formed, and thus the range of the concentration and molar ratio defined above is preferable.

상기 작동전극의 전해도금은 작동전극상 산화 전위를 인가하여 수행되는 것이 바람직하다. 1.2V 미만에서는 작동전극 상에 화학식 PbCrO4인을 갖는 크롬산납에 형성되지 않으며, 1.4V를 초과하는 경우에는 화학식 Pb2CrO5가 형성되므로, 광전기화학적 특성이 현저히 우수한 크롬산납에 형성되지 않는 문제점을 야기한다.Electrolytic plating of the working electrode is preferably performed by applying an oxidation potential on the working electrode. If it is less than 1.2V, it is not formed on lead chromate having phosphorus of the formula PbCrO 4 on the working electrode, and when it exceeds 1.4V, since the formula Pb 2 CrO 5 is formed, it is not formed on lead chromate having excellent photoelectrochemical properties. Causes

상기 납염은 질산납(Pb(NO3)2), 초산납(Pb(CH3COO)2), 염화납 (PbCl2), 황산납(PbSO4) 중 1종 이상 선택되고, 상기 크롬염은 질산크롬(Cr(NO3)3), 초산크롬(Cr(CH3COO)3), 염화크롬(CrCl3), 황산크롬(Cr2(SO4)3) 중 1종 이상 선택되며, 상기 칼륨염은 질산칼륨(KNO3), 초산칼륨(CH3COOK), 염화칼륨(KCl), 황산칼륨(K2SO4) 중 1종 이상 선택될 수 있으며, 이에 제한되지 않는다.The lead salt is at least one selected from lead nitrate (Pb (NO 3 ) 2 ), lead acetate (Pb (CH 3 COO) 2 ), lead chloride (PbCl 2 ), and lead sulfate (PbSO 4 ), and the chromium salt is nitric acid One or more of chromium (Cr (NO 3 ) 3 ), chromium acetate (Cr (CH 3 COO) 3 ), chromium chloride (CrCl 3 ), and chromium sulfate (Cr 2 (SO 4 ) 3 ) is selected, and the potassium salt Silver may be selected from one or more of potassium nitrate (KNO 3 ), potassium acetate (CH 3 COOK), potassium chloride (KCl), potassium sulfate (K 2 SO 4 ), but is not limited thereto.

상기 크롬산납의 제조방법에 있어서, 1㎛이상의 직경을 갖는 막대형상의 크롬산납 마이크로 로드 입자를 보다 효과적으로 형성시키기 위해서는 작동전극에는 납산화물(PbO2) 층을 추가로 형성시키는 것이 바람직하고, 납산화물 층은 납염 및 칼륨염이 혼합된 전해질에서 전해도금을 통해 형성될 수 있다. In the method for producing lead chromate, in order to more effectively form rod-shaped lead chromate microrod particles having a diameter of 1 μm or more, it is preferable to further form a lead oxide (PbO 2 ) layer on the working electrode, and lead oxide The layer may be formed through electroplating in an electrolyte mixed with lead salt and potassium salt.

상기 작동전극에 PbO2?? 층은 100 내지 200 nm 크기의 납산화물이며, 작동전극내에 형성된 납산화물은 크롬산염의 전해도금시 보다 전착이 보다 잘 될 수 있도록 유도하는 역할을 한다.PbO 2 on the working electrode ?? The layer is a lead oxide having a size of 100 to 200 nm, and the lead oxide formed in the working electrode serves to induce electrodeposition to be better than electrolytic plating of chromate.

상기 납산화물 층 형성시 납염은 2~7 mM 농도 범위에서 납염 및 칼륨염의 몰비가 1 : 15~25인 범위로, 전해도금은 작동전극상 산화 전위를 인가하여 수행되는 것을 특징으로 한다.When forming the lead oxide layer, the lead salt is characterized in that the molar ratio of lead salt and potassium salt is in the range of 2 to 7 mM in a range of 1: 15 to 25, and electrolytic plating is performed by applying an oxidation potential on the working electrode.

이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art to which the present invention pertains can easily practice. However, the present invention can be implemented in many different forms and is not limited to the embodiments described herein.

<원료><Raw material>

Pb(NO3)2 (>99%, Sigma-Aldrich), Cr(NO3)3ㅇ9H2O (>99%, Sigma-Aldrich), KNO3 (>99%, Sigma-Aldrich, St.Louis), Na2SO3 (>98%, Sigma-Aldrich), Na2SO4 (>99%, Acros Chemicals, NewJersey)를 사용하였고, 전기화학 실험에서 수용액을 준비하는 과정에서 Milli-Q deionized (DI) water를 사용하였다. F-doped tin oxide (FTO) coated glass (<14 Ω, 10 mm ㅧ 15 mm, TEC 15, WY-GMS)가 기판으로써 사용되었다.Pb (NO 3 ) 2 (> 99%, Sigma-Aldrich), Cr (NO 3 ) 3 ㅇ 9H 2 O (> 99%, Sigma-Aldrich), KNO 3 (> 99%, Sigma-Aldrich, St.Louis ), Na 2 SO 3 (> 98%, Sigma-Aldrich), Na 2 SO 4 (> 99%, Acros Chemicals, NewJersey) were used, and Milli-Q deionized (DI) in the process of preparing an aqueous solution in an electrochemical experiment ) water was used. F-doped tin oxide (FTO) coated glass (<14 Ω, 10 mm ㅧ 15 mm, TEC 15, WY-GMS) was used as the substrate.

<특성평가 분석법><Characteristic analysis method>

X-ray diffraction(XRD) 측정은 CuKα 방사선원이 장착된 SWXD diffractometer (Rigaku Co., Japan)을 사용하였고, PbCrO4은 microscopy-energy dispersive spectroscopy(FESEM-EDS, JSM-6500F, JEOL, Japan), transmission electron microscopy (TEM, JEM 2100, JEOL, Japan), X-ray photoelectron spectroscopy (K-Alpha, ThermoFisher, monochromatic Al X-ray source)을 사용하였다. TEM분석에서 PbCrO4??박막은 DI water에서 PbCrO4가 전착된 FTO 기판의 sonication함으로써 FTO로부터 분리한 후, DI water 상에 분산시키고, PbCrO4 분산 용액을 TEM grid에 떨어트려 분석했다. UV-visible 흡수 스펙트럼은 UV-visspectrophotometer(Cary 60 UV-Vis, Aglient Technologies, Santa Clara, CA, USA)를 이용하여 300-800nm의 파장에서 측정했다.For X-ray diffraction (XRD) measurement, a SWXD diffractometer (Rigaku Co., Japan) equipped with a CuKα radiation source was used, and PbCrO 4 was microscopy-energy dispersive spectroscopy (FESEM-EDS, JSM-6500F, JEOL, Japan), transmission Electron microscopy (TEM, JEM 2100, JEOL, Japan), X-ray photoelectron spectroscopy (K-Alpha, ThermoFisher, monochromatic Al X-ray source) were used. In TEM analysis, the PbCrO 4 ?? thin film was separated from the FTO by sonication of an FTO substrate on which PbCrO 4 was electrodeposited in DI water, and then dispersed on DI water, and the PbCrO 4 dispersion solution was analyzed by dropping it on a TEM grid. The UV-visible absorption spectrum was measured at a wavelength of 300-800 nm using a UV-visspectrophotometer (Cary 60 UV-Vis, Aglient Technologies, Santa Clara, CA, USA).

<전해도금을 통한 크롬산납 마이크로로드 입자의 제조><Preparation of lead chromate microrod particles through electroplating>

5 mM Pb(NO3)2 와 0.1M KNO3 를 포함한 전해질에서 20초 동안 1.5V(vs. Ag/AgCl)을 가하여(18mC/cm2) pt wire(1mm)를 상대전극으로 사용하여 FTO 기판인 작동전극에 얇은 PbO2?? 층을 형성시켰다. 이는 다공성 PbO2(100-200nm)의 작은 핵을 제공한다.5 mM Pb (NO 3) 2 was added to a 0.1M KNO 3 electrolyte 1.5V (vs. Ag / AgCl) for 20 seconds, including (18mC / cm 2) FTO substrate using the pt wire (1mm) with the counter electrode Thin PbO 2 on the phosphorus working electrode ?? A layer was formed. This gives a small nucleus of porous PbO 2 (100-200nm).

다음으로 5 mM Pb(NO3)2, 60mM Cr(NO3)3ㅇ9H2O, 0.1M KNO3으로 전해질을 제조하여 상온에서 Ag/AgCl 기준전극 대비 다양한 전위(1.1~1.7V)를 가하여 시간에 따라 FTO 기판(0.26cm2)에 PbO2 층이 형성된 작동전극에 전해도금을 실시하였다. 필요에 따라 크롬산납이 형성된 박막은 550℃에서 1시간동안 열처리되었다.Next, an electrolyte was prepared with 5 mM Pb (NO 3 ) 2 , 60mM Cr (NO 3 ) 3 ㅇ 9H 2 O, 0.1M KNO 3 , and various potentials (1.1 ~ 1.7V) were added to the Ag / AgCl reference electrode at room temperature. Electrolytic plating was performed on the working electrode in which the PbO 2 layer was formed on the FTO substrate (0.26 cm 2 ) according to time. If necessary, the thin film formed with lead chromate was heat treated at 550 ° C. for 1 hour.

<습식방법을 통한 크롬산납 나노로드 입자의 제조><Preparation of lead chromate nanorod particles through a wet method>

Pb(NO3)2, Na2Cr2O7??2H2O을 1차 증류수에 용해시켜 원료용액농도를 조절하였고, NaOH를 Na2Cr2O7??2H2O 용액에 첨가하여 크롬산납 합성용액의 pH를 조절하였다. 1 L 규격의 반응기에 증류수 500 mL를 채우고 반응온도 25 ℃, 교반속도 300 rpm에서 마이크로펌프(EYELA MP-3, Rikakikai, Japan)로 반응물질 Pb(NO3)2, Na2Cr2O7??2H2O 용액을 2 mL/min 유속으로 각각 120 mL씩 공급시켜가면서 크롬산 나노로드 입자를 제조하였고, 스핑코팅 방법을 통해 기판에 박막을 제조하였다..Pb (NO 3 ) 2 , Na 2 Cr 2 O 7 ?? 2H 2 O was dissolved in primary distilled water to adjust the raw material solution concentration, and NaOH was added to Na 2 Cr 2 O 7 ?? 2H 2 O solution to add chromium The pH of the acid lead synthetic solution was adjusted. Fill a 1 L reactor with 500 mL of distilled water and reactant Pb (NO 3 ) 2 , Na 2 Cr 2 O 7 ? With a micropump (EYELA MP-3, Rikakikai, Japan) at a reaction temperature of 25 ° C and a stirring speed of 300 rpm. Chromic acid nanorod particles were prepared while supplying 120 mL each of the 2H 2 O solution at a flow rate of 2 mL / min, and a thin film was prepared on a substrate through a sping coating method.

<광전기화학적 특성평가><Photoelectrochemical Characterization>

전착된 크롬산납의 광활성도는 광전기화학 cell에서 측정된다. 준비된 films (0.26cm2)을 작동전극으로 사용하고 전해질과 빛에 노출된다. 모든 측정은 Pt 상대전극과 Ag/AgCl 기준전극과 함께 borosilicate glass cell에서 진행되었다. UV-vis light는 Xe lamp (Oriel, Darmstadt, Germany)를 사용하여 빛을 조사하였고 조사하는 빛의 세기는 약 100mW/cm2이다. Incident photon to current conversion efficiency(IPCE) 분석은 monochromator(Cornerstone 130, Oriel, Darmstadt, Germany), photodiodedetector(918D-UV-OD3R, Newport, Irvine, CA), optical meter(1918-R, Newport, Irvine, CA)를 이용하여 진행되었다. 전해질은 0.1 M Na2SO3 / 0.1M Na2SO4 또는 0.2M phosphate buffer solution (pH 6.8, HPO4 2- : H2PO4 - = 1:1)이다. Co-Pi decoration을 위해 크롬산납은 0.05 mM Co2+가 포함된 phosphate-buffer 용액에 담그고, UV-vis 빛을 인가하면서 0.2V에서 1.0V(vs. Ag/AgCl)로 전위를 변화하며 실험하였다. The photoactivity of electrodeposited lead chromate is measured in a photoelectrochemical cell. The prepared films (0.26 cm 2 ) are used as working electrodes and exposed to electrolyte and light. All measurements were performed in a borosilicate glass cell with Pt counter electrode and Ag / AgCl reference electrode. The UV-vis light was irradiated with Xe lamp (Oriel, Darmstadt, Germany), and the intensity of the irradiated light was about 100 mW / cm 2 . Incident photon to current conversion efficiency (IPCE) analysis includes monochromator (Cornerstone 130, Oriel, Darmstadt, Germany), photodiodedetector (918D-UV-OD3R, Newport, Irvine, CA), optical meter (1918-R, Newport, Irvine, CA ). The electrolyte is 0.1 M Na 2 SO 3 / 0.1M Na 2 SO 4 or 0.2M phosphate buffer solution (pH 6.8, HPO 4 2-: H 2 PO 4 - = 1: 1) a. For Co-Pi decoration, lead chromate was immersed in a phosphate-buffer solution containing 0.05 mM Co 2+ and tested while changing the potential from 0.2 V to 1.0 V (vs. Ag / AgCl) while applying UV-vis light. .

크롬산납에서 물 산화로 인해 생성되는 산소는 scanning electrochemical microscopy(SECM)의 substrate generation-tip collection mode (SG-TC) mode 을 통해 관찰되었다. Pt ultramicroelectrode (UME, dia. 10??㎛)은 생성된 산소를 포집하는 tip 전극으로써 사용되었다. Pt UME를 준비하기 위해 10??㎛ 직경의 백금 wire(Goodfellow, 99.99% purity)는 진공 상태에서 borosilicate 유리관 (내부 직경 : 0.75mm/ 외부 직경 : 1mm)에 감싸진다. 한쪽 끝은 금속 disk가 드러날 때 까지 600 mesh 사포로 연마하고 1200mesh 연마재의 사포와 물에 포함된 50 nm이하의 알루미나 suspensions으로 평탄화 된다. SECM 측정 동안 tip의 위치는 xyz-stepper motor (T-LA28A, Zaber Technologies Inc., Vancouver, Canada)로 조절한다. 기판 전극은 Teflon cell (노출 면적 : 0.16 cm2)에서 PbCrO??가 전착되었다. tip은 stepper motor를 이용하여 초기 contact를 만들기 위해 기판에 약하게 접촉하고 그때 tip과 기판사이의 거리가 5??㎛정도였다. Oxygen generated due to water oxidation in lead chromate was observed through the substrate generation-tip collection mode (SG-TC) mode of scanning electrochemical microscopy (SECM). Pt ultramicroelectrode (UME, dia. 10 ?? ㎛) was used as a tip electrode to capture the generated oxygen. To prepare Pt UME, a platinum wire (Goodfellow, 99.99% purity) with a diameter of 10 μm is wrapped in a borosilicate glass tube (inner diameter: 0.75 mm / outer diameter: 1 mm) in a vacuum. One end is polished with a 600 mesh sandpaper until the metal disk is exposed and flattened with a sandpaper of 1200 mesh abrasive and alumina suspensions of 50 nm or less contained in water. During SECM measurement, the tip position is controlled by an xyz-stepper motor (T-LA28A, Zaber Technologies Inc., Vancouver, Canada). The substrate electrode was electrodeposited with PbCrO ?? in a Teflon cell (exposure area: 0.16 cm2). The tip contacted the substrate weakly to make the initial contact using a stepper motor, and the distance between the tip and the substrate was about 5 μm.

산소환원반응(oxygen reduction reaction, ORR)은 tip에 0.2 M sodium phosphate buffer 용액에서 -0.3V (vs. Ag/AgCl)을, 산소발생반응(oxygen evolution reaction, OER)을 위한 기판 전위는 0.62V(vs. Ag/AgCl=1.23V vs RHE)를 가했다. tip 전위는 수소발생반응(hydrogen evolution reaction, HER)같은 부수적인 반응 없이 확산되는 산소의 포집을 확실히 하기위해 충분한 음의 전위를 가했다. 광전극은 Teflon cell 의 바닥에 구멍을 통해 뒷방향으로부터 UV-vis 빛을 조사토록 하였다.The oxygen reduction reaction (ORR) is -0.3 V (vs. Ag / AgCl) in 0.2 M sodium phosphate buffer solution at the tip, and the substrate potential for the oxygen evolution reaction (OER) is 0.62 V ( vs. Ag / AgCl = 1.23V vs RHE). The tip potential was applied to a sufficient negative potential to ensure the capture of diffused oxygen without ancillary reactions such as a hydrogen evolution reaction (HER). The photoelectrode was irradiated with UV-vis light from the rear side through a hole in the bottom of the Teflon cell.

<평가결과 분석><Analysis of evaluation results>

미리 전착된 납산화물은 비록 납산화물 층이 동시에 전착되는 높은 전위에서는 전류 차이는 아주 미미해지지만 낮은 전위(<1.3V vs. Ag/AgCl)에서 전류가 눈에 띄게 차이를 보이며, 전해도금을 인가전압 1.1V 미만에서 수행하는 경우, 작동전극 표면에 전착된 크롬산납이 관찰되지 않았다. 크롬산납의 전해도금의 경우 1.2V이상에서 형성이 되는데, 전위가 높은 경우에는 크롬산납이 PbCrO4에서 Pb2CrO5로 전착되는 것을 도 1로부터 확인할 수 있다.The pre-electrodeposited lead oxide shows a noticeable difference in current at a low potential (<1.3 V vs. Ag / AgCl), although the current difference is very small at a high potential at which the lead oxide layer is electrodeposited at the same time. When performing at less than 1.1 V, lead chromate electrodeposited on the working electrode surface was not observed. In the case of electrolytic plating of lead chromate, it is formed at 1.2 V or higher. When the potential is high, it can be confirmed from FIG. 1 that lead chromate is electrodeposited from PbCrO 4 to Pb 2 CrO 5 .

도 1의 (a) XRD 패턴을 참조하여 보면, 전압이 1.2~1.4V에서는 PbCrO4 화학식을 갖는 크롬산납이 형성되고 있는 반면에, 1.5V에서는 Pb2CrO5이 형성되는 것을 확인할 수 있다. 즉, 1.5V에서 전착은 Pb2CrO5로 완벽히 전환되었고 더 높은 전위에서는 PbO로의 전환이 일어난다. Pb2CrO5로의 변화는 색깔 변화를 일으키고(노란색에서 주황색으로, 도 1의 (b) 삽입그림) PbCrO4의 밴드갭보다 더 좁기 때문에(2.1eV) UV-vis 스펙트럼에서 흡수대가 red shift한다. PbCrO4와 비교했을 때 Pb2CrO5는 빛을 더 강하게 흡수함에도 불구하고 광활성도는 PbCrO4보다 낮았고 이는 Pb2CrO5의 낮은 전도성 때문일 것이다.Referring to the XRD pattern of (a) of FIG. 1, it can be confirmed that lead chromate having the formula PbCrO 4 is formed at a voltage of 1.2 to 1.4 V, whereas Pb 2 CrO 5 is formed at 1.5 V. That is, at 1.5V, electrodeposition was completely converted to Pb 2 CrO 5 and at higher potentials, conversion to PbO occurred. The change to Pb 2 CrO 5 causes a color change (yellow to orange, inset in Fig. 1 (b)) and is narrower than the band gap of PbCrO 4 (2.1eV), resulting in a red shift of the absorption band in the UV-vis spectrum. When compared to PbCrO 4 , Pb 2 CrO 5 absorbs light more strongly, but photoactivity is lower than PbCrO 4 , which may be due to the low conductivity of Pb 2 CrO 5 .

도 2은 1.2V 에서 전착 시간에 따라 형성된 크롬산납의 SEM 이미지 결과로서 전착 시간이 증가할수록 크롬납 마이크로로드가 현저히 증가하고 있는 것을 확인할 수 있다. 전해도금 과정을 통해 막내의 크기는 최대 21ㅁ0.3㎛까지 성장되었고, 크기보다 밀집도(deposit coverage)가 전착 시간에 따라 현저히 증가하고 있음을 알수 있다.2 is a SEM image of lead chromate formed according to the electrodeposition time at 1.2V, and it can be seen that as the electrodeposition time increased, the lead chromate microrod increased significantly. Through the electroplating process, the size of the membrane was grown to a maximum of 21 ㅁ 0.3 µm, and it can be seen that the deposition coverage was significantly increased according to the electrodeposition time.

도 3은 1.2V에서 1시간 전해도금 이후 형성된 크롬산납 마이크로드의 분석결과로서 XRD 패턴상 크롬산납이 PbCrO4 단일 구조임을 알수 있고, SEM 이미지는 전착된 크롬산납이 직사각형 단면을 가진 다면체가 형성되었음을 확인할 수 있다. 전해도금 과정을 통해 막내의 크기는 최대 21ㅁ0.3㎛까지 성장되었고, 크기보다 밀집도(deposit coverage)가 전착 시간에 따라 증가하였다. EDS분석을 통해 Pb와 Cr의 비율이 1:1 원자 비율로 확인(도 3 (c))되고, TEM 이미지의 selected-area electron diffraction(SAED)은 크롬산납이 단결정임을 확인(도 3 (d))할 수 있다. 단결정 마이크로로드를 열처리 없이 전해도금을 통해 제조할 수 있음을 알 수 있다.3 is an analysis result of lead chromate microd formed after electroplating at 1.2V for 1 hour. It can be seen that lead chromate is a single structure of PbCrO 4 in XRD pattern, and SEM image shows that electrodeposited lead chromate has a polyhedron having a rectangular cross section. Can be confirmed. Through the electroplating process, the size of the membrane grew to a maximum of 21 ㅁ 0.3 µm, and the deposition coverage increased with the electrodeposition time. Through the EDS analysis, the ratio of Pb and Cr is confirmed at a 1: 1 atomic ratio (FIG. 3 (c)), and the selected-area electron diffraction (SAED) of the TEM image confirms that lead chromate is a single crystal (FIG. 3 (d)) )can do. It can be seen that single crystal microrods can be produced through electroplating without heat treatment.

Self-organization을 통해 전해도금된 반도체는 추가적인 재결정 단계 없이 좋은 물리적 특성을 가지기 때문에 전착된 크롬산납??microrods는 전기적 band 구조를 가지며, 높은 빛의 흡수와 광활성도를 가진다. 도 4를 참조하여 보면, UV-vis spectrum에서 빛 흡수의 시작점은 550nm 파장 근처로 나타났고(도 4(a)) Tauc plot에서 크롬산납의 band gap이 2.3eV로 보고된 값과 같다(도 4(a)삽입그림). FTO위에 전해도금된 크롬산납?? microrods의 광활성도는 광전기화학 cell에서 측정되었고, 빛으로 유도된 sulfite(SO3 2-)의 산화반응은 full Xenon lamp light의 조사로 관찰되었다(도 4(b)). 크롬산납의 전착 양이 늘어날수록 coverage와 두께가 증가하기 때문에 광전류(jph)는 증가했고, 0.6mA/cm??2까지 도달한 것을 확인(도 4(c))할 수 있다. 이는 크롬산납 nanorods와 비교해 볼 때, 확실히 microrods는 더 나은 광반응성을 보였고 이는 크롬산납 nanorod보다 6배나 더 높았다. Microrods에 반해서 nanorods의 광반응성은 양에 의해 변하지 않았고 이는 빛의 흡수보다 크롬산납에서 전하의 분리와 이동이 광활성도를 제한함을 의미한다. 나노 결정으로 이루어진 광전극 film은 내부 particle 전하 이동에 의한 장벽으로 인해 더 큰 저항성을 띄기 때문에 전해도금된 크롬산납의 높은 광활성도는 전하이동을 강화시키고 이는 self-organized 결정 구조에서 minority carrier 확산 길이를 증가에 기인한다.Electroplated semiconductors through self-organization have good physical properties without additional recrystallization steps, so electrodeposited lead chromate microrods have an electrical band structure and high light absorption and photoactivity. Referring to FIG. 4, the starting point of light absorption in the UV-vis spectrum was shown near the wavelength of 550 nm (FIG. 4 (a)), and the band gap of lead chromate in the Tauc plot was the same as the value reported as 2.3 eV (FIG. 4). (a) Insert picture). Lead chromate electroplated on FTO ?? The photoactivity of the microrods was measured in a photoelectrochemical cell, and the oxidation reaction of sulfite (SO 3 2- ) induced by light was observed by irradiation of full Xenon lamp light (FIG. 4 (b)). As the amount of electrodeposited lead chromate increased, the coverage and thickness increased, so the photocurrent (j ph ) increased, and 0.6mA / cm ?? It can be confirmed that it has reached 2 (FIG. 4 (c)). Compared with lead chromate nanorods, it is clear that microrods have better photoreactivity, which is 6 times higher than lead chromate nanorods. In contrast to microrods, the photoreactivity of nanorods did not change positively, which means that the separation and transfer of charge in lead chromate rather than absorption of light limits photoactivity. Since the photoelectrode film made of nanocrystals exhibits greater resistance due to the barrier due to internal particle charge transfer, the high photoactivity of electroplated lead chromate enhances charge transfer, which increases the diffusion length of the minority carrier in the self-organized crystal structure. Is caused by an increase.

도 6(a)는 0.2M sodium phosphate buffer (PH 7)에서 UV-vis가 입사하면서 전착된 크롬산납 microrods의 linear sweep voltammograms인데, 물 산화에 참여하는 광산화 전류발생은 크롬산납 microrod에서 발견되었다. 광전류의 증가와 크롬산납 microrod의 Co-Pi decoration은 Fe2O3??와 BiVO4??상에서의 Co-Pi 효과와 유사하게 이해된다. PbCrO4 microrods에서 광전기화학 물 산화는 SECM을 통해 산소의 발생을 확인할 수 있으며, 도 6(b) 결과와 같이 광전극에서 물 산화 반응의 특성을 성공적으로 확인하였다. 크롬산납 microrods에서 산소 발생은 FTO의 뒷 쪽으로 빛을 조사했고, 이 때 크롬산납 기판위에 5??㎛떨어진 pt disk UME로 확산되고 환원으로 대전된 UME에서 산소가 환원된다. 크롬산납 microrod로 빛을 가해 산화 전류가 발생할 때 Pt UME에서 환원 전류의 발생이 관찰 된다. 산화 전류와는 다르게 느리게 생성되고 소멸되는데 이는 pt 표면으로 산소의 확산과 관련이 있다고 볼 수 있다.6 (a) is a linear sweep voltammograms of electrodeposited lead chromate microrods when UV-vis is incident in 0.2M sodium phosphate buffer (PH 7), and the generation of photooxidation currents participating in water oxidation was found in lead chromate microrod. The increase of the photocurrent and the co-pi decoration of the lead chromate microrod are understood to be similar to the effect of Co-Pi on Fe 2 O 3 ?? and BiVO 4 ??. The photoelectrochemical water oxidation in PbCrO 4 microrods can confirm the generation of oxygen through SECM, and the properties of the water oxidation reaction in the photoelectrode are successfully confirmed as shown in FIG. 6 (b). Oxygen generation in lead chromate microrods was irradiated with light toward the back of the FTO. At this time, it diffused into a pt disk UME 5 ?? μm above the lead chromate substrate and oxygen was reduced in the UME charged with reduction. When an oxidation current is generated by applying light with a lead chromate microrod, a reduction current is observed in Pt UME. Unlike the oxidizing current, it is produced and dissipated slowly, which can be considered to be related to the diffusion of oxygen to the pt surface.

Co-Pi decorated 크롬산납 microrod에서 단파장 빛을 가할 때 0.62V vs. Ag/AgCl(=1.23V vs RHE)에서 광전기화학적 물 산화의 정상 상태 광전류를 측정해 IPCE를 확인할 수 있다. 도 7의 IPCE spectrum을 참조하여 보면, 광반응성은 2.3eV band gap과 상응되는 550nm에서 나타나고 이는데, 도 4(a)는 광학적 band gap 결과와 일치한다는 점을 확인할 수 있다.When applying short wavelength light from Co-Pi decorated lead chromate microrod 0.62V vs. IPCE can be determined by measuring the steady-state photocurrent of photoelectrochemical water oxidation in Ag / AgCl (= 1.23V vs RHE). Referring to the IPCE spectrum of FIG. 7, the photoreactivity appears at 550 nm corresponding to the 2.3eV band gap, and it can be seen that FIG. 4 (a) is consistent with the optical band gap result.

도 8을 참조하여 보면, 1.23V vs. RHE로 크롬산납 microrod에서 계속적인 물 산화를 일으킬 때 광전류의 점진적인 감소가 관찰되고 이는 불안정성을 의미하는 반면에, Co-Pi decorated 크롬산납 microrod는 전류가 증가할 뿐만 아니라 상대적으로 안정한 광전류를 보이고 있다. 빛을 가하지 않았을 때 크롬산납의 CV에서 표면과 관련된 peak는 1.0~1.3V (vs.Ag/AgCl)의 범위에서 일반적으로 관찰되는데, 이는 산화납에서의 Pb4+/Pb2+의 산화환원 peak와 비슷하다. 따라서 크롬산납의 Pb2+??는 물의 광산화와 동시에 높은 산화수(PbO2의 Pb4+)로 광전기화학적 산화되어진다. 빛을 차단한 후에 높은 환원 전류를 가하면 Pb2+??로 다시 환원되는 역반응이 일어난다. 반면에 Co-Pi decorated 크롬산납 microrod는 환원 전류가 매우 미미하다는 점을 도 8(a)에 확인할 수 있다. 도 8(b)의 크롬산납의 XPS분석 결과에서는 Pb 4f peak가 물 산화 이후에 더 낮은 binding energy로 이동했고, 이는 PbO2에서 Pb 4f로 변화한 것이며, 물 산화 이후 Cr 2p peak의 소멸은 크롬산납에서 PbO2로의 광분해를 의미한다. 반면에 Co-Pi decorated 크롬산납 microrod에서의 Cr은 intensity가 감소했지만 여전히 측정되었다. 도 8(c)는 크롬산납 microrod의 물 산화 전하와 측정된 패러데이 효율을 나타내고 있다. Co-Pi decoration으로 안정성이 향상되었기 때문에 패러데이 효율은 기존의 크롬산납과 반대로 계속적으로 증가한다. 빛을 차단한 후에 환원 전류는 광산화된 Pb의 양을 추정했고 Co-Pi decorated 크롬산납 microrods에서 Pb2+와 물의 산화 외의 다른 반응이 일어나지 않다고 가정했을 때 패러데이 효율을 추측한 결과, 크롬산납 광분해의 감소 때문에 거의 100%에 가까운 패러데이 효율을 보였다. Referring to Figure 8, 1.23V vs. When RHE causes continuous water oxidation in the lead chromate microrod, a gradual decrease in photocurrent is observed, indicating instability, while the Co-Pi decorated lead chromate microrod shows a relatively stable photocurrent as well as an increase in current. In the CV of lead chromate when no light is applied, the surface-related peak is generally observed in the range of 1.0 to 1.3 V (vs.Ag/AgCl), which is the redox peak of Pb 4+ / Pb 2+ in lead oxide. Is similar to Therefore, Pb 2+ ?? of lead chromate is photoelectrochemically oxidized with high oxidation water (Pb 4+ of PbO 2 ) at the same time as water oxidation. When a high reduction current is applied after blocking the light, a reverse reaction occurs that is reduced back to Pb 2+ ??. On the other hand, it can be seen from FIG. 8 (a) that the reduction current of the Co-Pi decorated lead chromate microrod is very small. In the XPS analysis result of lead chromate in FIG. 8 (b), the Pb 4f peak shifted to lower binding energy after water oxidation, which was changed from PbO 2 to Pb 4f, and the disappearance of Cr 2p peak after water oxidation was chromium. It means photolysis from acid lead to PbO 2 . On the other hand, Cr in the Co-Pi decorated lead chromate microrod decreased in intensity but was still measured. Fig. 8 (c) shows the water oxidation charge of the lead chromate microrod and the measured Faraday efficiency. Since stability has been improved with Co-Pi decoration, Faraday efficiency continues to increase as opposed to conventional lead chromate. After blocking the light, the reduction current estimated the amount of photo-oxidized Pb, and assuming Faraday efficiency assuming that there was no reaction other than oxidation of Pb 2+ and water in Co-Pi decorated lead chromate microrods, Because of the decrease, it showed a Faraday efficiency of almost 100%.

도 8(d)는 Co-Pi decorated 크롬산납 microrods에서 광전기화학적 물 산화의 모식도는 나태고 있다. 광생성된 홀이 크롬산납에서 Pb2+ 산화에 기여하고(Path 1) Co-Pi decoration으로 증가된 물 산화 속도는 산소 발생을 위해 급격히 증가한다 (Path 2). 그럼에도 불구하고 Co-Pi decorated 크롬산납 microrod의 광전류가 약간 감소하고, 페러데이효율이 1500초 후에 0.04% 감소(도 8(c)했으므로 Co-Pi decoration 은 크롬산납 microrod의 광분해를 완벽하게 감소시키지 못하였다. 크롬산납 microrod는 광산화의 안정성의 증가한다는 점을 알 수 있다.Fig. 8 (d) shows a schematic diagram of photoelectrochemical water oxidation in Co-Pi decorated lead chromate microrods. The photogenerated hole contributes to Pb 2+ oxidation in lead chromate (Path 1), and the increased water oxidation rate with Co-Pi decoration increases rapidly for oxygen generation (Path 2). Nevertheless, the photocurrent of the Co-Pi decorated lead chromate microrods slightly decreased, and the Faraday efficiency decreased by 0.04% after 1500 seconds (Fig. 8 (c)), so Co-Pi decoration did not completely reduce the photolysis of lead chromate microrods. It can be seen that lead chromate microrods increase the stability of photooxidation.

결론적으로 본 발명의 크롬산납 microrod는 비록 광부식이 관찰되었으나 물 산화에서 눈에 띄는 광전류와 전환 효율로써 광전기화학적 활성을 보였고 Co-Pi decoration은 광활성도 뿐만 아니라 안정성을 증가시킬 수 있었다.In conclusion, the lead chromate microrod of the present invention showed photoelectrochemical activity as a noticeable photocurrent and conversion efficiency in water oxidation although light corrosion was observed, and Co-Pi decoration was able to increase stability as well as photoactivity.

Claims (16)

납염, 크롬염 및 칼륨염이 혼합된 전해질에 작동전극을 침지하여 전해도금으로 작동전극 표면에 크롬산납을 제조하는 것을 특징을 하는 크롬산납의 제조방법A method for producing lead chromate, characterized in that lead chromate is prepared on the surface of the working electrode by electroplating by immersing the working electrode in an electrolyte mixed with lead salt, chromium salt and potassium salt. 제1항에 있어서,
상기 전해도금은 상대전극 및 기준전극을 포함하는 3원계 전극 시스템을 인 것을 특징으로 하는 크롬산납의 제조방법
According to claim 1,
The electrolytic plating is a method of manufacturing lead chromate, characterized in that the ternary electrode system comprising a counter electrode and a reference electrode
제1항에 있어서,
상기 납염은 2~7 mM 농도인 것을 특징으로 하는 크롬산납의 제조방법
According to claim 1,
The lead salt is a method of producing lead chromate, characterized in that 2 to 7 mM concentration
제1항에 있어서,
상기 납염, 크롬염 및 칼륨염의 몰비는 1 : 1~15 : 15~25인 것을 특징으로 하는 크롬산납의 제조방법
According to claim 1,
Method for producing lead chromate, characterized in that the molar ratio of the lead salt, the chromium salt and the potassium salt is 1: 1 to 15: 15 to 25.
제1항에 있어서,
상기 전해도금은 작동전극상 산화 전위를 인가하여 수행되는 것을 특징으로 하는 크롬산납의 제조방법
According to claim 1,
The electroplating is a method of manufacturing lead chromate, characterized in that is performed by applying an oxidation potential on the working electrode
제1항에 있어서,
상기 크롬산납은 PbCrO4인 것을 특징으로 하는 크롬산납의 제조방법
According to claim 1,
The lead chromate is a method for producing lead chromate, characterized in that PbCrO 4
제6항에 있어서,
상기 크롬산납은 1㎛의 직경을 갖는 막대형상의 마이크로로드 입자인 것을 특징으로 하는 크롬산납의 제조방법
The method of claim 6,
The lead chromate is a method for producing lead chromate, characterized in that the rod-shaped micro-rod particles having a diameter of 1㎛
제1항에 있어서,
상기 납염은 질산납(Pb(NO3)2), 초산납(Pb(CH3COO)2), 염화납 (PbCl2), 황산납(PbSO4) 중 1종 이상 선택되는 것을 특징으로 하는 크롬산납의 제조방법
According to claim 1,
The lead salt is selected from lead nitrate (Pb (NO 3 ) 2 ), lead acetate (Pb (CH 3 COO) 2 ), lead chloride (PbCl 2 ), and lead sulfate (PbSO 4 ). Manufacturing method
제1항에 있어서,
상기 크롬은 질산크롬(Cr(NO3)3), 초산크롬(Cr(CH3COO)3), 염화크롬(CrCl3), 황산크롬(Cr2(SO4)3) 중 1종 이상 선택되는 것을 특징으로 하는 크롬산납의 제조방법
According to claim 1,
The chromium is selected from one or more of chromium nitrate (Cr (NO 3 ) 3 ), chromium acetate (Cr (CH 3 COO) 3 ), chromium chloride (CrCl 3 ), and chromium sulfate (Cr 2 (SO 4 ) 3 ). Method for producing lead chromate, characterized in that
제1항에 있어서,
상기 칼륨염은 질산칼륨(KNO3), 초산칼륨(CH3COOK), 염화칼륨(KCl), 황산칼륨(K2SO4) 중 1종 이상 선택되는 것을 특징으로 하는 크롬산납의 제조방법
According to claim 1,
The potassium salt is a method for producing lead chromate, characterized in that at least one selected from potassium nitrate (KNO 3 ), potassium acetate (CH 3 COOK), potassium chloride (KCl), and potassium sulfate (K 2 SO 4 ) is selected.
제1항에 있어서,
상기 작동전극은 FTO(Fluorine Doped Tin Oxide), AZO(aluminium doped Zinc Oxide), ATO(Aluminium doped Tin Oxide) 및 ITO(Indium Tin Oxide) 중 어느 하나가 선택되는 것을 특징으로 하는 크롬산납의 제조방법
According to claim 1,
The working electrode is a method of manufacturing lead chromate, characterized in that any one selected from Fluorine Doped Tin Oxide (FTO), Aluminum doped Zinc Oxide (AZO), Aluminum doped Tin Oxide (ATO) and Indium Tin Oxide (ITO) is selected.
제1항에 있어서,
상기 작동전극에는 납산화물(PbO2) 층이 형성되는 것을 특징을 하는 크롬산납의 제조방법
According to claim 1,
A method for producing lead chromate, characterized in that a lead oxide (PbO 2 ) layer is formed on the working electrode.
제12항에 있어서,
상기 납산화물 층은 납염 및 칼륨염이 혼합된 전해질에서 전해도금을 통해 형성되는 것을 특징을 하는 크롬산납의 제조방법
The method of claim 12,
The lead oxide layer is a method of manufacturing lead chromate, characterized in that formed by electroplating in an electrolyte mixed with lead salt and potassium salt
제13항에 있어서,
상기 납염은 2~7 mM 농도인 것을 특징으로 하는 크롬산납의 제조방법
The method of claim 13,
The lead salt is a method of producing lead chromate, characterized in that 2 to 7 mM concentration
제13항에 있어서,
상기 납염 및 칼륨염의 몰비는 1 : 15~25인 것을 특징으로 하는 크롬산납의 제조방법
The method of claim 13,
The lead salt and potassium salt molar ratio of 1: 15 to 25, characterized in that the method for producing lead chromate
제12항에 있어서,
상기 납산화물 층의 전해도금은 작동전극상 산화 전위를 인가하여 수행되는 것을 특징으로 하는 크롬산납의 제조방법
The method of claim 12,
Electrolytic plating of the lead oxide layer is performed by applying an oxidation potential on the working electrode, the method of manufacturing lead chromate
KR1020180136175A 2018-11-07 2018-11-07 Method for preparation Lead(II) chromate via electrolysis KR102088661B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180136175A KR102088661B1 (en) 2018-11-07 2018-11-07 Method for preparation Lead(II) chromate via electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180136175A KR102088661B1 (en) 2018-11-07 2018-11-07 Method for preparation Lead(II) chromate via electrolysis

Publications (1)

Publication Number Publication Date
KR102088661B1 true KR102088661B1 (en) 2020-03-13

Family

ID=69938316

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180136175A KR102088661B1 (en) 2018-11-07 2018-11-07 Method for preparation Lead(II) chromate via electrolysis

Country Status (1)

Country Link
KR (1) KR102088661B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220059599A (en) * 2020-11-03 2022-05-10 금오공과대학교 산학협력단 Method of manufacturing lead chromate thin film by solution synthesis and lead chromate thin film manufactured by the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070082760A (en) 2006-02-17 2007-08-22 삼성전자주식회사 MANUFACTURING METHOD OF TRANSITION METAL ION ADDED AND 10nm MEAN PARTICLE DIAMETER SIZED METAL OXIDE HAVING SEMICONDUCTOR CHARACTERISTIC, MATERIAL MANUFACTURED THEREBY, AND FILTER, FAN FILTER UNIT AND CLEAN ROOM SYSTEM HAVING THE SAME MATERIAL
KR20140098601A (en) 2013-01-31 2014-08-08 선문대학교 산학협력단 Visible light sensitive compound, A photocatalyst including the compound and The manufacturing method of the same
KR20180097670A (en) * 2015-12-22 2018-08-31 아르셀러미탈 Method and system for determining the mass of feed material on a conveyor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070082760A (en) 2006-02-17 2007-08-22 삼성전자주식회사 MANUFACTURING METHOD OF TRANSITION METAL ION ADDED AND 10nm MEAN PARTICLE DIAMETER SIZED METAL OXIDE HAVING SEMICONDUCTOR CHARACTERISTIC, MATERIAL MANUFACTURED THEREBY, AND FILTER, FAN FILTER UNIT AND CLEAN ROOM SYSTEM HAVING THE SAME MATERIAL
KR20140098601A (en) 2013-01-31 2014-08-08 선문대학교 산학협력단 Visible light sensitive compound, A photocatalyst including the compound and The manufacturing method of the same
KR20180097670A (en) * 2015-12-22 2018-08-31 아르셀러미탈 Method and system for determining the mass of feed material on a conveyor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220059599A (en) * 2020-11-03 2022-05-10 금오공과대학교 산학협력단 Method of manufacturing lead chromate thin film by solution synthesis and lead chromate thin film manufactured by the same
KR102460587B1 (en) 2020-11-03 2022-10-27 금오공과대학교 산학협력단 Method of manufacturing lead chromate thin film by solution synthesis and lead chromate thin film manufactured by the same

Similar Documents

Publication Publication Date Title
Park et al. Progress in bismuth vanadate photoanodes for use in solar water oxidation
US10406516B2 (en) Electrode for water-splitting reaction and method for producing the same
Guan et al. Enhanced photoelectrochemical performances of ZnS-Bi2S3/TiO2/WO3 composite film for photocathodic protection
Sene et al. Fundamental photoelectrocatalytic and electrophoretic mobility studies of TiO2 and V-doped TiO2 thin-film electrode materials
Mali et al. Synthesis of nanoporous Mo: BiVO 4 thin film photoanodes using the ultrasonic spray technique for visible-light water splitting
Zhang et al. Construction of a high-performance photocatalytic fuel cell (PFC) based on plasmonic silver modified Cr-BiOCl nanosheets for simultaneous electricity production and pollutant removal
Chen et al. Properties of sol–gel SnO2/TiO2 electrodes and their photoelectrocatalytic activities under UV and visible light illumination
Majumder et al. Facile fabrication of BiVO4/Bi2S3/NiCoO2 for significant photoelectrochemical water splitting
Ng et al. Gallium-doped tungsten trioxide thin film photoelectrodes for photoelectrochemical water splitting
Augustynski et al. Nanostructured thin-film tungsten trioxide photoanodes for solar water and sea-water splitting
Minggu et al. Bilayer n-WO3/p-Cu2O photoelectrode with photocurrent enhancement in aqueous electrolyte photoelectrochemical reaction
Wang et al. Bi 2 Se 3 sensitized TiO 2 nanotube films for photogenerated cathodic protection of 304 stainless steel under visible light
Zhang et al. Novel Y doped BiVO4 thin film electrodes for enhanced photoelectric and photocatalytic performance
Zhang et al. Stable and efficient self-sustained photoelectrochemical desalination based on CdS QDs/BiVO4 heterostructure
He et al. A novel and facile solvothermal-and-hydrothermal method for synthesis of uniform BiVO4 film with high photoelectrochemical performance
Park et al. Photoelectrochemical H 2 evolution on WO 3/BiVO 4 enabled by single-crystalline TiO 2 overlayer modulations
US20200354844A1 (en) Alkali metal doped bismuth vanadate photoanode for hydrogen production by photoelectrochemical water splitting
Kim et al. Growth of BiVO 4 nanoparticles on a WO 3 porous scaffold: Improved water-splitting by high band-edge light harvesting
Vasilyeva et al. Ti/TiO2-CoWO4-Co3 (PO4) 2 composites: Plasma electrolytic synthesis, optoelectronic properties, and solar light-driven photocatalytic activity
Pareek et al. Efficiency and stability aspects of CdS photoanode for solar hydrogen generation technology
CN108511198A (en) Ni-doped BiVO4Thin-film photoelectric anode, preparation method and application thereof
JP6270884B2 (en) Method for producing electrode for photohydrolysis reaction
KR102088661B1 (en) Method for preparation Lead(II) chromate via electrolysis
Balachandran et al. Photo-electrocatalytic activity of praseodymium oxide modified titania nanorods
Carrera-Crespo et al. Photoelectrochemical hydrogen generation on TiO2 nanotube arrays sensitized with CdS@ Sb2S3 core shell particles

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant