KR102079536B1 - Microbial community with excellent soil crude oil resolution - Google Patents

Microbial community with excellent soil crude oil resolution Download PDF

Info

Publication number
KR102079536B1
KR102079536B1 KR1020180114156A KR20180114156A KR102079536B1 KR 102079536 B1 KR102079536 B1 KR 102079536B1 KR 1020180114156 A KR1020180114156 A KR 1020180114156A KR 20180114156 A KR20180114156 A KR 20180114156A KR 102079536 B1 KR102079536 B1 KR 102079536B1
Authority
KR
South Korea
Prior art keywords
crude oil
experimental group
tph
soil
ucm
Prior art date
Application number
KR1020180114156A
Other languages
Korean (ko)
Inventor
강구영
조재창
홍진경
김태인
양동진
이성종
Original Assignee
한국외국어대학교 연구산학협력단
금호산업 주식회사
(주)동명엔터프라이즈
(주)비룡
이성종
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국외국어대학교 연구산학협력단, 금호산업 주식회사, (주)동명엔터프라이즈, (주)비룡, 이성종 filed Critical 한국외국어대학교 연구산학협력단
Priority to KR1020180114156A priority Critical patent/KR102079536B1/en
Application granted granted Critical
Publication of KR102079536B1 publication Critical patent/KR102079536B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/10Reclamation of contaminated soil microbiologically, biologically or by using enzymes

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Soil Sciences (AREA)
  • Mycology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

The present invention relates to a microbial community (KWEN-DT) capable of decomposing contaminated soil, obtained from soil in crude oil contaminated area in Kuwait, including microorganisms such as Achromobacter sp., Bacillus sp., Pseudoxanthomonas sp., and Stenotrophomonas sp. According to the present invention, it is possible to overcome shortcomings of the actual process application of single species of microbial agents or complex microbial agents to the actual crude oil contaminants, and also to contribute to biological environment purification for contaminated environment using the microbial groups in Korea and abroad.

Description

토양 원유 분해능이 우수한 미생물 커뮤니티 {MICROBIAL COMMUNITY WITH EXCELLENT SOIL CRUDE OIL RESOLUTION}Microbial Community with High Soil Crude Resolution {MICROBIAL COMMUNITY WITH EXCELLENT SOIL CRUDE OIL RESOLUTION}

본 발명은 원유 분해 능력이 있는 미생물 커뮤니티에 관한 것으로서, 더욱 상세하게는 토양 원유 분해능이 우수한 미생물 커뮤니티를 이용하여 토양 원유 분해를 하는 것이다.The present invention relates to a microbial community having a crude oil decomposition capability, and more particularly to the decomposition of soil crude oil using a microbial community having excellent soil crude oil decomposition capability.

수십 년간 지구상에는 원유 혹은 정제과정을 거친 석유류의 유출로 인하여 토양이나 해양오염이 야기되었으며 원유 혹은 석유류에 오염된 환경은 석유계(Petroleum) 탄화수소(hydrocarbon)의 농도가 급증하며 생태계 변화가 일어난다. 원유의 조성은 생산 지역에 따라 다르지만 보편적으로 n-alkanes 및 iso-alkanes이 15~30%, 고리형 alkanes 30~50%, 방향족 화합물이 5~20%로 구성 되어있으며(Arima, Kakinuma, & Tamura, 1968), 발암성 물질을 포함하고 있을 뿐 아니라 독성을 내포하고 있어 환경에 오염 시 기존 환경 생태계가 급격히 파괴된다. Decades of crude oil or refined petroleum spilled on the planet for decades have caused soil or marine pollution, and the environment contaminated with crude oil or petroleum increases the concentration of Petroleum hydrocarbons and changes in ecosystems. Crude oil composition varies depending on the production region, but is generally composed of 15-30% n-alkanes and iso-alkanes, 30-50% cyclic alkanes, and 5-20% aromatic compounds (Arima, Kakinuma, & Tamura). (1968), as well as containing carcinogenic substances, contains toxicities, which can quickly destroy existing environmental ecosystems.

토양, 퇴적물과 같은 입자상 매질로의 원유 오염은 토양세척, 열처리 및 굴착과 같은 물리 화학적 기술을 사용하여 처리할 수 있다. 토양 세척법은 화학적 세정제를 사용하여 토양을 세척하는 방법으로 입자로부터의 원유 제거를 용이하게 한다. 토양 세척법의 문제점은 세척 후 남겨진 화학 제제의 독성에 의한 2차 피해를 입을 수 있다는 점이다. 열처리 방법 중 고형화 방법은 오염물질의 용해도를 낮추어 고정시키는 방법으로 오염물질의 고형화 유지기간을 예측하는 것이 어려우며, 무기한으로 고정된다 하더라도 처리 토양의 보관비용이 상당하다는 하계점이 있다. 오염 지역의 범위가 적거나, 오염 물질이 소량인 경우, 또한 오염 물질이 인체에 직접적인 해를 가할 경우에는 토양 소각이나 굴착과 같은 방법을 사용하여 신속하게 오염 물질을 처리해왔다. 하지만 두 방법 모두 화학적 처리 기법에 비해 많은 양의 토양을 대상으로 하므로, 처리 비용이 높고 비실용적이라 평가될 뿐 아니라 대기로의 2차 오염 가능성이 높아 점차 사용이 줄어들고 있는 추세다. 따라서 최근에는 많은 연구자, 개발자들이 비용이 적게 들고, 실용적일 뿐 아니라 환경 친화적인 처리 기술을 개발하고자 노력하고 있으며, 생물학적 처리가 그 대안으로 제시되고 있다. Crude oil contamination with particulate media such as soils and sediments can be treated using physicochemical techniques such as soil washing, heat treatment and excavation. Soil washing facilitates the removal of crude oil from particles by cleaning the soil with chemical cleaners. The problem with soil washing is that it can be subjected to secondary damage from the toxicity of chemicals left behind after washing. The solidification method of the heat treatment method is a method of lowering and fixing the solubility of the pollutants, and it is difficult to predict the solidification retention period of the pollutants, and there is a lower point that the storage cost of the treated soil is significant even if it is fixed indefinitely. In the case of small areas of contaminated area, small amounts of contaminants, and contaminants that directly harm the human body, methods such as soil incineration or excavation have been used to expedite contaminants. However, since both methods target a larger amount of soil than chemical treatment methods, they are not only considered to be expensive and impractical, but are also increasingly being used due to the possibility of secondary pollution to the atmosphere. Recently, many researchers and developers have been trying to develop a low-cost, practical and environmentally friendly treatment technology, and biological treatment has been proposed as an alternative.

생물학적 처리는 생물의 대사활동으로 오염 물질을 분해하는 방법을 말하며, 많은 연구가 미생물을 주 생물학적 제제로서 사용해왔다. 미생물을 이용한 유기 화합물의 생물학적 분해는 모든 화합물을 미생물이 기질로 사용하며 산화를 초래하는 일련의 생물학적 분해 경로로 생각할 수 있다. 생물학적 처리의 방법에는 biosparging, bioaugmentation과 같은 in situ 방법과 land farming, gioreactor와 같은 ex situ 방법이 있다. biosparging은 산소 이용률이 제한된 지역에 주로 사용되며 vacuum pump로 토양의 공기 순환 능력을 극대화 시키고 지하수 층 아래로 air를 공급하여 산소 농도를 증가시키고 오염지역에서의 혼합효과를 동반하는 처리 방법이다. bioaugmentation은 오염 물질의 분해 속도를 높이는데 필요한 미생물군집, 혹은 분해균의 성장에 도움이 되는 미생물을 추가하여 분해과정의 효율성을 향상시키는 생물학적 방법으로 다른 생물학적 처리와 융합하여 많이 사용된다. Land farming 공정은 오염된 부지의 토양을 발굴하여 10~35 cm로 넓게 퍼뜨려 경작하는 방법으로 주기적으로 토양을 경작하여 폭기 및 교반을 진행한다. 주로 오염 농도가 높지 않거나, 오염물이 침전될 우려가 있을 때 사용된다. bioreactor는 오염 물질에 따라 여러 조건을 설정하여 오염 물질을 효과적으로 분해하거나, 분해에 제한이 되는 요소를 제거하는 방법이다. 이러한 생물학적 정화를 성공적으로 적용하기 위해서는 환경 조건, 오염 물질 및 영양 물질 이용 가능성, 분해 미생물의 존재와 같은 핵심 요소가 중요하다. Biological treatment refers to the method of breaking down pollutants by biological metabolism, and many studies have used microorganisms as the main biological agent. Biodegradation of organic compounds using microorganisms can be thought of as a series of biological degradation pathways where all compounds are used as substrates and cause oxidation. Methods of biological treatment include in situ methods such as biosparging and bioaugmentation and ex situ methods such as land farming and gioreactor. Biosparging is mainly used in areas where oxygen utilization is limited. It is a treatment method that maximizes the air circulation capacity of the soil with a vacuum pump, increases the oxygen concentration by supplying air below the groundwater layer, and has a mixing effect in the contaminated area. Bioaugmentation is a biological method that improves the efficiency of the degradation process by adding microorganisms necessary to speed up the decomposition of contaminants or microorganisms that help the growth of degraded bacteria. Land farming process is to excavate the soil of contaminated site and spread it to 10 ~ 35 cm to cultivate the soil periodically to aeration and agitation. It is mainly used when the concentration of pollutants is not high or there is a fear of contaminants to settle. Bioreactor is a method of effectively decomposing contaminants or removing elements that limit the decomposition by setting various conditions according to contaminants. Key factors such as environmental conditions, the availability of pollutants and nutrients, and the presence of degraded microorganisms are important for the successful application of these biological purifications.

석유계 탄화수소에 오염된 지역의 경우 오염물질이 다양한 물질의 혼합물이기에 수용성, 독성, 생물학적 이용률 등이 굉장히 다양하다. 때문에 분해 균 또한 여러 균주가 있으며, 분해를 담당하는 균이 아니더라도 같은 군집 속에서 상호작용을 통해 군집의 대사활동을 원활히 해주는 균주가 존재한다. 이러한 점에 의거하여 단일 균주 혹은 복합 미생물체가 bioaugmentation으로 사용될 때 제한적인 요소가 미생물 커뮤니티에 비해 방대하다. 따라서 본 발명에서는 다양한 생물학적 처리와 함께 사용될 수 있는 bioaugmentation의 미생물 제제를 미생물 커뮤니티로서 제안하고자 한다. In areas contaminated with petroleum hydrocarbons, pollutants are a mixture of various substances, so the water solubility, toxicity and bioavailability vary widely. Therefore, there are also several strains of degrading bacteria, and even if the bacteria are not responsible for degradation, there are strains that facilitate the metabolic activity of the colony by interacting in the same community. In this respect, when a single strain or complex microorganism is used for bioaugmentation, the limiting factor is vast compared to the microbial community. Accordingly, the present invention proposes a microbial preparation of bioaugmentation that can be used with various biological treatments as a microbial community.

한국 공개특허공보 제10-2011-0009403호(2011.01.28.)Korean Laid-Open Patent Publication No. 10-2011-0009403 (2011.01.28.)

Arima, K., Kakinuma, A., & Tamura, G. (1968). Surfactin, a crystalline peptidelipid surfactant produced by Bacillussubtilis: Isolation, characterization and its inhibition of fibrin clot formation. Biochemical and biophysical research communications, 31(3), 488-494. Arima, K., Kakinuma, A., & Tamura, G. (1968). Surfactin, a crystalline peptidelipid surfactant produced by Bacillussubtilis: Isolation, characterization and its inhibition of fibrin clot formation. Biochemical and biophysical research communications, 31 (3), 488-494. Deng, M. C., Li, J., Hong, Y. H., Xu, X. M., Chen, W. X., Yuan, J. P., . . . Wang, J. H. (2016). Characterization of a novel biosurfactant produced by marine hydrocarbon?degrading bacterium Achromobacter sp. HZ01. Journal of applied microbiology, 120(4), 889-899. Deng, M. C., Li, J., Hong, Y. H., Xu, X. M., Chen, W. X., Yuan, J. P.,. . . Wang, J. H. (2016). Characterization of a novel biosurfactant produced by marine hydrocarbon? Degrading bacterium Achromobacter sp. HZ01. Journal of applied microbiology, 120 (4), 889-899. Mangwani, N., Shukla, S., Kumari, S., Rao, T., & Das, S. (2014). Characterization of Stenotrophomonas acidaminiphila NCW?702 biofilm for implication in the degradation of polycyclic aromatic hydrocarbons. Journal of applied microbiology, 117(4), 1012-1024. Mangwani, N., Shukla, S., Kumari, S., Rao, T., & Das, S. (2014). Characterization of Stenotrophomonas acidaminiphila NCW? 702 biofilm for implication in the degradation of polycyclic aromatic hydrocarbons. Journal of applied microbiology, 117 (4), 1012-1024. Varma, S. S., Lakshmi, M. B., RAJAGOPAL, P., & Velan, M. (2017). Degradation of Total Petroleum Hydrocarbon (TPH) in Contaminated Soil Using Bacillus pumilus MVSV3. Biocontrol science, 22(1), 17-23. Varma, S. S., Lakshmi, M. B., RAJAGOPAL, P., & Velan, M. (2017). Degradation of Total Petroleum Hydrocarbon (TPH) in Contaminated Soil Using Bacillus pumilus MVSV3. Biocontrol science, 22 (1), 17-23. Youssef, N. H., Duncan, K. E., Nagle, D. P., Savage, K. N., Knapp, R. M., & McInerney, M. J. (2004). Comparison of methods to detect biosurfactant production by diverse microorganisms. Journal of Microbiological Methods, 56(3), 339-347. Youssef, N. H., Duncan, K. E., Nagle, D. P., Savage, K. N., Knapp, R. M., & McInerney, M. J. (2004). Comparison of methods to detect biosurfactant production by diverse microorganisms. Journal of Microbiological Methods, 56 (3), 339-347. Quantitative oil analysis method (Canada K1A 0H3), (1994), Vancouver (Colombie-britannique)Quantitative oil analysis method (Canada K1A 0H3), (1994), Vancouver (Colombie-britannique)

본 발명의 목적은, 실제 환경에서 미생물은 군집 형태로 존재하며, 군집 내 미생물 종간의 상호작용이 해당 군집의 대사활동에 중요한 동력이 된다는 점에 착안하여 쿠웨이트 원유 오염 지역의 토양에 원유만을 탄소원으로 제공하여 원유 오염에 분해 능력을 가진 미생물 군집을 농화배양하여 그 전체 미생물 군집을 하나의 미생물 제제로 제안함으로써, 실제 원유 오염물질에 대한 단일 종의 미생물 제제 혹은 복합 미생물 제제의 실 공정 적용의 한계점을 극복하고자 함에 있다.It is an object of the present invention that microorganisms exist in a clustered form in a real environment, and the interaction between microbial species in the clusters is an important power for metabolic activity of the clusters. By enriching and cultivating microbial communities that are capable of degrading crude oil pollution and suggesting the entire microbial community as a single microbial agent, it is possible to limit the practical application of a single microbial agent or a complex microbial agent to actual crude oil contaminants. To overcome.

상기 목적을 달성하기 위하여, 본 발명은 토양 원유 분해능이 우수한 미생물 커뮤니티 KWEC-DT [KCTC18648P]를 제공한다. In order to achieve the above object, the present invention provides a microbial community KWEC-DT [KCTC18648P] excellent in soil crude oil resolution.

상기 미생물 커뮤니티(KWEC-DT)는 아크로모박터 속(Achromobacter sp.), 바실러스 속(Bacillus sp.), 수도산토모나스 속(Pseudoxanthomonas sp.), 및 스테노트로포모나스 속(Stenotrophomonas sp.)을 포함한다. The microbial community (KWEC-DT) is a genus of Achromobacter sp., Bacillus sp., Pseudoxanthomonas sp., And Stenotrophomonas sp. Include.

상기 미생물 커뮤니티 KWEC-DT [KCTC18648P]는 한국생명공학연구원 유전자은행에 2017년 12월 15일자로 기탁번호 KCTC18648P로 기탁되었다.The microbial community KWEC-DT [KCTC18648P] was deposited with the Korea Biotechnology Research Institute Gene Bank on Dec. 15, 2017 with accession number KCTC18648P.

상기 미생물 커뮤니티 KWEC-DT [KCTC18648P]는 원유 내 탄화수소 성분의 생물학적 분해를 수행하거나 생물 계면활성제를 생산하는 것으로 보고된 미생물 종의 다수가 석유계 탄화수소에 의한 오염이 오랜 시간 지속된 토양으로부터 획득되었다. The microbial community KWEC-DT [KCTC18648P] has been obtained from soils that have long been contaminated with petroleum hydrocarbons, many of which are reported to perform biodegradation of hydrocarbon components in crude oil or produce biosurfactants.

상기 석유계 탄화수소에 의한 오염이 오랜 시간 지속된 토양은 쿠웨이트 토양을 사용하였다. Kuwait soil was used as the soil for a long time contamination by the petroleum hydrocarbon.

상기와 같은 본 발명에 따르면, 본 발명은 토양 원유 분해능이 우수한 미생물 커뮤니티 KWEC-DT [KCTC18648P]를 제공함으로써, 실제 원유 오염물질에 대한 단일 종의 미생물 제제 혹은 복합 미생물 제제의 실 공정 적용의 한계점을 극복하고, 국내뿐만 아니라 국외의 미생물군을 이용한 오염 환경에 생물적 환경정화에 기여하는 효과가 있다.According to the present invention as described above, the present invention provides a microbial community KWEC-DT [KCTC18648P] excellent in soil crude oil resolution, thereby limiting the practical process of applying a single species of microbial agent or complex microbial agent to actual crude oil contaminants. Overcoming, there is an effect that contributes to the biological environmental purification to the polluted environment using microbial groups as well as domestic.

도 1 는 GC-FID chromatograph이다.
도 2 은 4주간 TPH 농도이다.
도 3 는 4주간 UCM 농도이다.
도 4 은 4주간 N-alkane 농도이다.
1 is a GC-FID chromatograph.
2 is TPH concentration for 4 weeks.
3 is UCM concentration for 4 weeks.
4 is N-alkane concentration for 4 weeks.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 일 형태에 따른 토양 원유 분해능이 우수한 미생물 커뮤니티 KWEC-DT [KCTC18648P]를 제공한다. Provided is a microbial community KWEC-DT [KCTC18648P] excellent in soil crude oil resolution according to one embodiment of the present invention.

상기 미생물 커뮤니티 KWEC-DT [KCTC18648P]는 아크로모박터 속(Achromobacter sp.), 바실러스 속(Bacillus sp.), 수도산토모나스 속(Pseudoxanthomonas sp.), 및 스테노트로포모나스 속(Stenotrophomonas sp.)을 포함한다.The microbial community KWEC-DT [KCTC18648P] is a genus of Achromobacter sp., Bacillus sp., Pseudoxanthomonas sp., And Stenotrophomonas sp. It includes.

상기 미생물 커뮤니티 KWEC-DT [KCTC18648P]는 한국생명공학연구원 유전자은행에 2017년 12월 15일자로 기탁번호 KCTC18648P로 기탁되었다.The microbial community KWEC-DT [KCTC18648P] was deposited with the Korea Biotechnology Research Institute Gene Bank on Dec. 15, 2017 with accession number KCTC18648P.

상기 미생물 커뮤니티 KWEC-DT [KCTC18648P]는 원유 내 탄화수소 성분의 생물학적 분해를 수행하거나 생물계면활성제를 생산하는 것으로 보고된 미생물 종의 다수가 석유계 탄화수소에 의한 오염이 오랜 시간 지속된 토양으로부터 획득되었다. The microbial community KWEC-DT [KCTC18648P] has been obtained from soils with a long duration of contamination by petroleum hydrocarbons, many of which are reported to carry out biodegradation of hydrocarbon components in crude oil or to produce biosurfactants.

상기 석유계 탄화수소에 의한 오염이 오랜 시간 지속된 토양은 쿠웨이트 토양을 사용하였다. Kuwait soil was used as the soil for a long time contamination by the petroleum hydrocarbon.

상기 쿠웨이트 토양은 약 26년 이상 원유 오염이 지속된 특징을 가지고 있다. The Kuwait soils are characterized by continued oil pollution for about 26 years.

상기 미생물 커뮤니티 KWEC-DT [KCTC18648P]는 쿠웨이트의 원유 오염 지역의 토양으로부터 획득한 원유 분해 농화 배양체의 실제 원유 분해 활성을 분석함과 동시에 해당 농화배양체 내 미생물 종 다양성을 순수 분리 및 16S rRNA 유전자의 계통학적 분석을 통해 조사한 내용을 바탕으로 Surfactant 생산 균주 및 TPH 분해 균주를 포함하고 있다.The microbial community KWEC-DT [KCTC18648P] analyzes the actual crude oil degradation activity of crude oil enrichment cultures obtained from the soil of crude oil contaminated area in Kuwait, and simultaneously isolates the diversity of microbial species in the enrichment cultures and isolates the lines of 16S rRNA gene. Based on the findings from the analysis, it includes Surfactant producing strains and TPH degrading strains.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention, it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as being limited by these examples.

실시예 1. Example 1.

농화배양액의 종 다양성 확인을 위해 순수분리를 통해 조사하였다. 배양액 0.1ml를 nutrient agar (DifcoTM, 212300, beef extract 3.0g/L, peptone 5.0g/L, agar 15.0g/L)에 접종 후 순수분리를 하여 단일 미생물을 분리하였다. 분리된 단일 미생물의 동정을 위해 16S rRNA 유전자를 PCR기법(1. 94℃의 denaturation 단계는 이중가닥의 DNA를 단일가닥으로 분리하는 단계, 2. 55℃ annealing단계에서 증폭할 부분의 시작점과 끝점에 대해 알려주는 primer을 단일가닥 DNA에 부착하는 단계, 3. 72℃ extension는 DNA taq polymerase가 DNA를 복제하여 증폭하는 단계)으로 30회 반복(초기 변성 및 최종 연장과정 제외)하여 증폭하였다. 증폭된 16S rRNA 유전자를 agarose gel electrophoresis(실험조건: 100V, 0.05A, 50min)로 검증한 뒤 ㈜마크로젠에 의뢰하여 염기서열을 획득하였다. 획득된 염기서열은 RDP(rdp.cme.msu.edu)의 classifier, NCBI(ncbi.nlm.nih.gov)의 blast를 이용하여 동정하였다. The purpose of this study was to investigate the species diversity of the concentrated culture broth by pure separation. 0.1 ml of the culture was inoculated in nutrient agar (DifcoTM, 212300, beef extract 3.0g / L, peptone 5.0g / L, agar 15.0g / L) and purely separated to isolate a single microorganism. In order to identify single microorganism, 16S rRNA gene was PCR method (1. 94 ℃ denaturation step is to separate double-stranded DNA into single strand, 2. 55 ℃ annealing step is to start and end point of amplification part. Attach the primer to the single-stranded DNA, 3. 72 ℃ extension was amplified by 30 iterations (except for the initial denaturation and final extension) in the DNA taq polymerase DNA replication and amplification step. The amplified 16S rRNA gene was verified by agarose gel electrophoresis (experimental conditions: 100V, 0.05A, 50min), and then queried by Macrogen to obtain a nucleotide sequence. The obtained nucleotide sequence was identified using a classifier of RDP (rdp.cme.msu.edu) and a blast of NCBI (ncbi.nlm.nih.gov).

genus 수준의 동정결과 genus Achromobacter sp., Arthrobacter sp., Bacillus sp., Georgenia sp., Lysinibacillus sp., Nitratireductor sp., Ochrobactrum sp., Paenibacillus sp., Pseudomonas sp., Pseudoxanthomonas sp., Pusillimonas sp., Staphylococcus sp., Stenotrophomonas sp.가 확인되었으며, 그 중 Bacillus sp., Pseudoxanthomonas sp., Stenotrophomonas sp.는 TPH 분해와 생물계면활성제를 생산하는 균주임을 기존의 연구를 통해 확인하였다. Genus Achromobacter sp., Arthrobacter sp., Bacillus sp., Georgenia sp., Lysinibacillus sp., Nitratireductor sp., Ochrobactrum sp., Paenibacillus sp., Pseudomonas sp., Pseudoxanthomonas sp., Pusillimonas sp., Staphylococcus sp., Stenotrophomonas sp. Were identified, and Bacillus sp., Pseudoxanthomonas sp., And Stenotrophomonas sp. Were strains that produced TPH degradation and biosurfactants.

실시예 1의 동정결과와 TPH 분해능력과 생물 계면활성제를 생산능력을 하기 표 1에 정리하였다. The identification results of Example 1 and the production capacity of TPH degradability and biosurfactant are summarized in Table 1 below.

  점유율
(%)
Share
(%)
TPH
분해능
TPH
Resolution
PAHs
분해능
PAHs
Resolution
n-alkane
분해능
n-alkane
Resolution
biosurfactant
생산능
biosurfactant
Productivity
Achromobacter sp. Achromobacter sp. 19.519.5 OO   OO OO Atrhrobacter sp. Atrhrobacter sp. 5.25.2       OO Bacillus sp. Bacillus sp. 19.519.5 OO OO   OO Georgenia sp. Georgenia sp. 1.31.3         Lysinibacillus sp. Lysinibacillus sp. 3.93.9         Nitratireductor sp. Nitratireductor sp. 3.93.9         Ochrobactrum sp. Ochrobactrum sp. 1.31.3         Paenibacillus sp. Paenibacillus sp. 14.314.3   OO     Pseudomonas sp. Pseudomonas sp. 1.31.3         Pseudoxanthomonas sp. Pseudoxanthomonas sp. 14.314.3 OO OO   OO Pusillimonas sp. Pusillimonas sp. 1.31.3         Staphylococcus sp. Staphylococcus sp. 7.87.8       OO Stenotrophomonas sp. Stenotrophomonas sp. 6.56.5 OO OO   OO

실시예 2.Example 2.

생물 계면활성제를 생산하는 균 일부가 hemolytic한 특성에 의해 blood agar에서 clear zone을 생성하였다 (Youssef et al., 2004). 따라서 본 발명에서는 순수 분리된 미생물을 blood agar(㈜코메드생명과학, 500101, digest of casein 15.0g/L, pancreatic digest of soybean meal 5.0g/L, NaCl 5.0g/L, agar 15.0g/L, sheep blood 50ml/L)에서 배양하여 clear zone 생성 여부를 확인하였다. Bacillus sp., Stenotrophomonas sp., Pseudoxanthomonas sp.의 미생물이 blood agar에서 clear zone을 형성하였고 해당 미생물의 단일 균주 원유 분해 능력 평가를 실시하였다. 원유 분해 능력 평가방법은 실시예 3의 미생물 커뮤니티와 동일하게 진행하였으며, 측정은 측정예 1과 동일하게 진행하였으며, 이를 기준으로 농도산출 1과 같은 계산식으로 농도를 계산하였다. 그 결과는 하기 표 2에 도시하였다. Some of the bacteria producing biosurfactants produced clear zones in the blood agar due to their hemolytic properties (Youssef et al., 2004). Therefore, in the present invention, the purely isolated microorganisms are blood agar (Comede Life Science, Inc., 500101, digest of casein 15.0g / L, pancreatic digest of soybean meal 5.0g / L, NaCl 5.0g / L, agar 15.0g / L, Sheep blood cultured in 50ml / L) was confirmed whether the clear zone generation. Microorganisms of Bacillus sp., Stenotrophomonas sp., And Pseudoxanthomonas sp. Formed a clear zone in the blood agar and were evaluated for the ability to degrade crude oil of single strains. Crude oil decomposition capacity evaluation method was carried out in the same manner as in the microbial community of Example 3, the measurement was carried out in the same manner as in Measurement Example 1, based on this concentration was calculated by the same formula. The results are shown in Table 2 below.

genusgenus TPH 분해율 (%)TPH decomposition rate (%) Bacillus sp.Bacillus sp. 24.1%24.1% Stenotrophomonas sp.Stenotrophomonas sp. 14.1%14.1% Pseudoxanthomonas sp.Pseudoxanthomonas sp. 25.8%25.8%

실시예 3.Example 3.

쿠웨이트 원유 오염 토양은 멸균된 유리병에 채취한 뒤 밀봉하여 실험실로 운반하였다. 농화 배양은 기본 배지 I (basal medium I, 표 3(a)) 300ml에 쿠웨이트 원유 오염 토양 10g을 접종하여 진행하였으며, 배양 조건은 온도 28℃, 100RPM으로 )진탕하였다. 농화 배양을 진행하는 동안 60일 마다 탄소원으로 원유 1ml를 공급하였으며 기본 배지 II (basal medium Ⅱ, 표 3(b))로 배양액의 부피를 300ml로 유지하였다. Kuwait crude oil contaminated soil was collected in sterile glass bottles, sealed and transported to the laboratory. Thickening culture was inoculated with 10 g of Kuwait crude oil contaminated soil in 300 ml of basal medium I (Table 3 (a)), and the culture conditions were agitated at a temperature of 28 ° C. and 100 RPM. During the enrichment culture, 1 ml of crude oil was supplied to the carbon source every 60 days, and the volume of the culture solution was maintained at 300 ml in basal medium II (Table 3 (b)).

기본 배지 I과 기본 배지 II 성분은 아래 표 3에 도시하였다. Basal medium I and basal medium II components are shown in Table 3 below.

(a) 기본 배지 I(a) Basic Badge I (b) 기본 배지 II(b) Basic Badge II 총 부피Total volume 1 L1 L 총 부피Total volume 1 L1 L PeptoneEptone 10.0 g10.0 g NaClNaCl 5.0 g5.0 g NaClNaCl 5.0 g5.0 g CaCl2·2H2OCaCl2 · 2H2O 0.1 g0.1 g CaCl2·2H2OCaCl2 · 2H2O 0.1 g0.1 g

원유 분해 능력은 실제 원유와 농화 배양액을 혼합 한 뒤 잔류 석유계 총탄화수소의 농도를 측정하여 평가하기로 하였다. 원유 2.2 g을 헥산(hexane) 100ml에 희석하고 20개의 시험관에 1ml씩 소분한 후 무균작업대(clean bench)에서 24시간동안 상온에서 건조하였다. 건조된 5개의 원유 시험관에는 증류수 5ml를 각각 넣어 대조군으로 하였고, 15개의 시험관에는 농화 배양액(OD600nm=0.550) 5ml를 넣었다. 생물학적 분해는 4주간 진행하였다. 농화배양액을 넣은 원유 시험관은 상온에 거치되었으며, 24시간 간격으로 시험관을 와류혼합하고 공기를 공급하였다. Crude oil decomposition capacity was determined by measuring the concentration of residual petroleum-based total hydrocarbons after mixing the crude oil and the concentrated culture medium. 2.2 g of crude oil was diluted in 100 ml of hexane, subdivided into 1 ml into 20 test tubes, and dried at room temperature for 24 hours on a clean bench. 5 ml of dried crude oil test tubes were put in 5ml of distilled water as a control, and 5ml of concentrated culture medium (OD600nm = 0.550) was added to 15 test tubes. Biodegradation proceeded for 4 weeks. Crude test tube containing the concentrated culture solution was placed at room temperature, and the test tubes were vortex mixed and supplied with air at intervals of 24 hours.

측정예 1. Measurement Example 1.

일주일 간격으로 1개의 대조군과 3개의 실험군의 잔류 석유계 총 탄화수소를 분석했다. 실험군과 대조군의 석유계 총 탄화수소의 농도를 측정하기 위하여 원유-농화배양액 혼합 시료는 액체-액체 추출 (Liquid-Liquid Extraction)법을 통해 석유계 탄화수소를 추출하였으며 “Quantitative oil analysis method (Canada K1A 0H3)”에 따라 정제하였다. 정제 시료의 석유계 총 탄화수소의 농도는 수소 불꽃 이온화 검출기(flame ionization detector)가 장착된 가스 크로마토그래프 (gas chromatograph, GC-FID, Aglient 6890N, Agilent, DE, USA)로 측정하였다. Residual petroleum total hydrocarbons from one control group and three experimental groups were analyzed at weekly intervals. In order to measure the concentration of petroleum-based total hydrocarbons in the experimental and control groups, the crude oil-rich culture liquid sample was extracted with petroleum-based hydrocarbons by Liquid-Liquid Extraction method. Purification according to ”. The concentration of petroleum-based total hydrocarbons in the purified samples was measured by gas chromatograph (GC-FID, Aglient 6890N, Agilent, DE, USA) equipped with a hydrogen flame ionization detector.

TPH, UCM 및 n-alkane의 계산을 위한 측정예 1의 측정 값은 표4 내지 표 11에 도시하였으며, 측정 결과는 도 1에 그래프로 도시하였다. 이때 도 1(a)는 대조군의 측정결과이며, 도 1(b)는 실험군의 측정결과이다. The measured values of Measurement Example 1 for the calculation of TPH, UCM and n-alkane are shown in Tables 4 to 11, and the measurement results are shown graphically in FIG. At this time, Figure 1 (a) is the measurement result of the control group, Figure 1 (b) is the measurement result of the experimental group.

도 1를 참조하면, 대조군 chromatograph에 비해 4주 후 실험군의 chromatograph은 surrogate 와 ISTD(Internal standard) 외 유의미한 peak가 없는 것을 확인 할 수 있다. 상기 유의미한 peak는 n-alkanes을 의미하는 peak가 뚜렷히 보이지 않음을 말하며, 대조군에서는 peak가 보이지만 실험군에서는 보이지 않는 것으로 보아, 대부분의 n-alkanes가 미생물에 의해 분해되었음을 의미한다.Referring to FIG. 1, the chromatograph of the experimental group after 4 weeks compared to the control chromatograph can be confirmed that there is no significant peak other than surrogate and ISTD (Internal standard). The significant peak means that the peak, which means n-alkanes, is not clearly seen, and the peak is visible in the control group but not visible in the experimental group, indicating that most of the n-alkanes are degraded by the microorganism.

농도 산출 1. (TPH 및 UCM의 농도산출)Concentration calculation 1. (Calculation of concentration of TPH and UCM)

상기 측정예 1의 측정값을 기준으로 하여 계산식 1에 의거하여 석유계 총 탄화수소(TPH) 및 UCM(Unresolved Complex mixture)의 농도를 산출하였다.The concentrations of petroleum-based total hydrocarbons (TPH) and UCM (Unresolved Complex mixture) were calculated based on Formula 1 based on the measured values of Measurement Example 1.

[계산식 1][Calculation 1]

TPH(UCM) Amount (μg) = (A×WIS×D×F)/(AIS×average RRF)TPH (UCM) Amount (μg) = (A × W IS × D × F) / (A IS × average RRF)

RRF = (A×CIS)/(AIS×C)RRF = (A × C IS ) / (A IS × C)

average RRF = 0.91 (표 7을 바탕으로 계산된 평균 값)average RRF = 0.91 (average calculated based on Table 7)

A = target area, A = target area,

AIS=internal standard area,A IS = internal standard area,

CIS=internal standard concentrationC IS = internal standard concentration

C = target concentration C = target concentration

WIS = Spiked amount in sample ( 4 ug)W IS = Spiked amount in sample (4 ug)

D = Dilution factor (no dilution = 1), D = Dilution factor (no dilution = 1),

F = Fractionation (volume factor = 2) F = Fractionation (volume factor = 2)

하기에 WIS값을 계산한 값을 표4에 도시하였다. Table 4 shows the calculated values of W IS .

  Spiked amount in sample (WIS)Spiked amount in sample (W IS ) Stock(ug/ml)Stock (ug / ml) mlml Amount (ug)Amount (ug) OTP (Surrogate std.)OTP (Surrogate std.) 4 ug4 ug 8080 0.050.05 44 5a-Andro. (GC-IS.)5a-Andro. (GC-IS.) 4 ug4 ug 8080 0.050.05 44

농도 산출 2. (n-alkane의 농도)Concentration output 2. (concentration of n-alkane)

상기 측정예 1의 측정값을 기준으로 하여 계산식 2에 의거하여 n-alkane의 농도를 산출하였다.Based on the measured value of the said measurement example 1, the concentration of n-alkane was computed based on Formula 2.

[계산식 2][Calculation 2]

Amount (μg) = (A×WIS×D×F)/(AIS×each compound RRF) Amount (μg) = (A × W IS × D × F) / (A IS × each compound RRF)

상기에 RRF(Relative Response Factor)값 계산을 위해 각 탄화수소의 standard solution을 이용하여 target area, internal standard concentration, internal standard area 및 target concentration을 측정한 값을 하기에 표5 내지 표6에 도시하였으며, 이를 바탕으로 계산한 RRF(Relative Response Factor)값을 하기에 표 7에 도시하였다.(CAL 1 = TPH standard 1ppm, CAL 2 = 5ppm, CAL 3 = 10ppm, CAL 4 = 50ppm)The target area, internal standard concentration, internal standard area, and target concentration were measured by using a standard solution of each hydrocarbon for calculating RRF (relative response factor) values, which are shown in Tables 5 to 6 below. The calculated RRF (Relative Response Factor) value is shown in Table 7 below. (CAL 1 = TPH standard 1 ppm, CAL 2 = 5 ppm, CAL 3 = 10 ppm, CAL 4 = 50 ppm)

분석물Analytes AreaArea RTRT CAL1CAL1 CAL2CAL2 CAL3CAL3 CAL4CAL4 RT. (min)RT. (min) 1One 55 1010 5050 5α-Androstane5α-Androstane 5a-Andro. (GC-IS.)5a-Andro. (GC-IS.) 20.782 20.782 16.900 16.900 16.800 16.800 16.400 16.400 16.400 16.400 o-Terphenylo-Terphenyl OTP (Surrogate std.)OTP (Surrogate std.) 19.768 19.768 16.700 16.700 16.600 16.600 16.100 16.100 15.100 15.100 n-Octanen-Octane C8 C 8 5.222 5.222 3.70 3.70 19.20 19.20 40.30 40.30 192.40 192.40 n-Decanen-Decane C10 C 10 9.607 9.607 4.10 4.10 20.40 20.40 41.10 41.10 198.60 198.60 n-Dodecanen-Dodecane C12 C 12 12.579 12.579 4.20 4.20 20.70 20.70 41.00 41.00 197.10 197.10 n-Tetradecanen-Tetradecane C14 C 14 14.898 14.898 4.30 4.30 20.70 20.70 40.30 40.30 194.20 194.20 n-Hexadecanen-Hexadecane C16 C 16 16.896 16.896 4.10 4.10 20.20 20.20 38.60 38.60 188.30 188.30 n-Octadecanen-Octadecane C18 C 18 18.683 18.683 4.00 4.00 19.60 19.60 36.90 36.90 184.10 184.10 o-Terphenylo-Terphenyl OTPOTP 19.768 19.768 16.70 16.70 16.60 16.60 16.10 16.10 15.10 15.10 n-Eicosanen-Eicosane C20 C 20 20.302 20.302 4.10 4.10 19.80 19.80 36.70 36.70 183.60 183.60 5α-Androstane5α-Androstane 5a-Andro.5a-Andro. 20.782 20.782 16.90 16.90 16.80 16.80 16.40 16.40 16.40 16.40 n-Docosanen-Docosane C22 C 22 21.782 21.782 4.10 4.10 19.50 19.50 36.80 36.80 183.30 183.30 n-Tetracosanen-Tetracosane C24 C 24 23.143 23.143 4.30 4.30 19.60 19.60 36.80 36.80 180.70 180.70 n-Hexacosanen-Hexacosane C26 C 26 24.402 24.402 4.30 4.30 19.50 19.50 37.00 37.00 180.80 180.80 n-Octacosanen-Octacosane C28 C 28 25.572 25.572 4.30 4.30 19.60 19.60 37.50 37.50 183.00 183.00 n-Triacontanen-Triacontane C30 C 30 26.665 26.665 4.20 4.20 19.60 19.60 37.80 37.80 184.20 184.20 n-Dotriacontanen-Dotriacontane C32 C 32 27.693 27.693 3.90 3.90 19.20 19.20 37.20 37.20 181.00 181.00 n-Tetratriacontanen-Tetratriacontane C34 C 34 28.822 28.822 4.00 4.00 18.80 18.80 36.80 36.80 178.50 178.50 n-Hexatriacontanen-Hexatriacontane C36 C 36 30.231 30.231 3.80 3.80 17.80 17.80 35.20 35.20 168.30 168.30 n-Octatriacontanen-Octatriacontane C38 C 38 32.084 32.084 3.40 3.40 16.10 16.10 32.80 32.80 152.10 152.10 n-Tetracontanen-Tetracontane C40 C 40 34.599 34.599 2.60 2.60 13.10 13.10 27.60 27.60 126.00 126.00

분석물Analytes Concentrations (ug/mL)Concentrations (ug / mL) RTRT CAL1CAL1 CAL2CAL2 CAL3CAL3 CAL4CAL4 RT. (min)RT. (min) 1One 55 1010 5050 5α-Androstane5α-Androstane 5a-Andro. (GC-IS.)5a-Andro. (GC-IS.) 20.782 20.782 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 o-Terphenylo-Terphenyl OTP (Surrogate std.)OTP (Surrogate std.) 19.768 19.768 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 n-Octanen-Octane C8 C 8 5.222 5.222 1.0 1.0 5.0 5.0 10.0 10.0 50.0 50.0 n-Decanen-Decane C10 C 10 9.607 9.607 1.0 1.0 5.0 5.0 10.0 10.0 50.0 50.0 n-Dodecanen-Dodecane C12 C 12 12.579 12.579 1.0 1.0 5.0 5.0 10.0 10.0 50.0 50.0 n-Tetradecanen-Tetradecane C14 C 14 14.898 14.898 1.0 1.0 5.0 5.0 10.0 10.0 50.0 50.0 n-Hexadecanen-Hexadecane C16 C 16 16.896 16.896 1.0 1.0 5.0 5.0 10.0 10.0 50.0 50.0 n-Octadecanen-Octadecane C18 C 18 18.683 18.683 1.0 1.0 5.0 5.0 10.0 10.0 50.0 50.0 o-Terphenylo-Terphenyl OTPOTP 19.768 19.768 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 n-Eicosanen-Eicosane C20 C 20 20.302 20.302 1.0 1.0 5.0 5.0 10.0 10.0 50.0 50.0 5α-Androstane5α-Androstane 5a-Andro.5a-Andro. 20.782 20.782 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 n-Docosanen-Docosane C22 C 22 21.782 21.782 1.0 1.0 5.0 5.0 10.0 10.0 50.0 50.0 n-Tetracosanen-Tetracosane C24 C 24 23.143 23.143 1.0 1.0 5.0 5.0 10.0 10.0 50.0 50.0 n-Hexacosanen-Hexacosane C26 C 26 24.402 24.402 1.0 1.0 5.0 5.0 10.0 10.0 50.0 50.0 n-Octacosanen-Octacosane C28 C 28 25.572 25.572 1.0 1.0 5.0 5.0 10.0 10.0 50.0 50.0 n-Triacontanen-Triacontane C30 C 30 26.665 26.665 1.0 1.0 5.0 5.0 10.0 10.0 50.0 50.0 n-Dotriacontanen-Dotriacontane C32 C 32 27.693 27.693 1.0 1.0 5.0 5.0 10.0 10.0 50.0 50.0 n-Tetratriacontanen-Tetratriacontane C34 C 34 28.822 28.822 1.0 1.0 5.0 5.0 10.0 10.0 50.0 50.0 n-Hexatriacontanen-Hexatriacontane C36 C 36 30.231 30.231 1.0 1.0 5.0 5.0 10.0 10.0 50.0 50.0 n-Octatriacontanen-Octatriacontane C38 C 38 32.084 32.084 1.0 1.0 5.0 5.0 10.0 10.0 50.0 50.0 n-Tetracontanen-Tetracontane C40 C 40 34.599 34.599 1.0 1.0 5.0 5.0 10.0 10.0 50.0 50.0

분석물Analytes Calibration, RRF=(A*CIS)/(AIS*C)Calibration, RRF = (A * C IS ) / (A IS * C) RRFRRF RTRT CAL1CAL1 CAL2CAL2 CAL3CAL3 CAL4CAL4 RT. (min)RT. (min) 5α-Androstane5α-Androstane 5a-Andro. (GC-IS.)5a-Andro. (GC-IS.) 20.782 20.782 -- -- -- -- -- o-Terphenylo-Terphenyl OTP (Surrogate std.)OTP (Surrogate std.) 19.768 19.768 0.99 0.99 0.99 0.99 0.98 0.98 0.92 0.92 0.97 0.97 n-Octanen-Octane C8 C 8 5.222 5.222 0.88 0.88 0.91 0.91 0.98 0.98 0.94 0.94 0.93 0.93 n-Decanen-Decane C10 C 10 9.607 9.607 0.97 0.97 0.97 0.97 1.00 1.00 0.97 0.97 0.98 0.98 n-Dodecanen-Dodecane C12 C 12 12.579 12.579 0.99 0.99 0.99 0.99 1.00 1.00 0.96 0.96 0.99 0.99 n-Tetradecanen-Tetradecane C14 C 14 14.898 14.898 1.02 1.02 0.99 0.99 0.98 0.98 0.95 0.95 0.98 0.98 n-Hexadecanen-Hexadecane C16 C 16 16.896 16.896 0.97 0.97 0.96 0.96 0.94 0.94 0.92 0.92 0.95 0.95 n-Octadecanen-Octadecane C18 C 18 18.683 18.683 0.95 0.95 0.93 0.93 0.90 0.90 0.90 0.90 0.92 0.92 o-Terphenylo-Terphenyl OTPOTP 19.768 19.768 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 n-Eicosanen-Eicosane C20 C 20 20.302 20.302 0.97 0.97 0.94 0.94 0.90 0.90 0.90 0.90 0.93 0.93 5α-Androstane5α-Androstane 5a-Andro.5a-Andro. 20.782 20.782 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 n-Docosanen-Docosane C22 C 22 21.782 21.782 0.97 0.97 0.93 0.93 0.90 0.90 0.89 0.89 0.92 0.92 n-Tetracosanen-Tetracosane C24 C 24 23.143 23.143 1.02 1.02 0.93 0.93 0.90 0.90 0.88 0.88 0.93 0.93 n-Hexacosanen-Hexacosane C26 C 26 24.402 24.402 1.02 1.02 0.93 0.93 0.90 0.90 0.88 0.88 0.93 0.93 n-Octacosanen-Octacosane C28 C 28 25.572 25.572 1.02 1.02 0.93 0.93 0.91 0.91 0.89 0.89 0.94 0.94 n-Triacontanen-Triacontane C30 C 30 26.665 26.665 0.99 0.99 0.93 0.93 0.92 0.92 0.90 0.90 0.94 0.94 n-Dotriacontanen-Dotriacontane C32 C 32 27.693 27.693 0.92 0.92 0.91 0.91 0.91 0.91 0.88 0.88 0.91 0.91 n-Tetratriacontanen-Tetratriacontane C34 C 34 28.822 28.822 0.95 0.95 0.90 0.90 0.90 0.90 0.87 0.87 0.90 0.90 n-Hexatriacontanen-Hexatriacontane C36 C 36 30.231 30.231 0.90 0.90 0.85 0.85 0.86 0.86 0.82 0.82 0.86 0.86 n-Octatriacontanen-Octatriacontane C38 C 38 32.084 32.084 0.80 0.80 0.77 0.77 0.80 0.80 0.74 0.74 0.78 0.78 n-Tetracontanen-Tetracontane C40 C 40 34.599 34.599 0.62 0.62 0.62 0.62 0.67 0.67 0.61 0.61 0.63 0.63

상기 측정예 1에 따라 측정된 대조군과 실시예 1 내지 3의 Area 값 및 TPH, UCM 의 Area값을 표 8 내지 표 12에 도시하였다.Area values of the control group and Examples 1 to 3, and TPH and UCM area values measured according to Measurement Example 1 are shown in Tables 8 to 12.

0 주차0 parking 분석물Analytes RTRT 대조군Control 실험군1Experimental Group 1 실험군2Experimental Group 2 실험군3Experimental Group 3 5α-Androstane5α-Androstane 5a-Andro. (GC-IS.)5a-Andro. (GC-IS.) 20.782 20.782 16.516.5 16.616.6 16.616.6 16.416.4 o-Terphenylo-Terphenyl OTP
(Surrogate std.)
OTP
(Surrogate std.)
19.768 19.768 3.83.8 3.93.9 3.93.9 3.73.7
n-Octanen-Octane C8 C 8 6.425 6.425         n-Decanen-Decane C10 C 10 10.504 10.504         n-Dodecanen-Dodecane C12 C 12 13.386 13.386         n-Tetradecanen-Tetradecane C14 C 14 15.673 15.673 3.80 3.80 3.80 3.80 3.90 3.90 3.40 3.40 n-Hexadecanen-Hexadecane C16 C 16 17.656 17.656 7.20 7.20 6.70 6.70 6.20 6.20 5.60 5.60 n-Octadecanen-Octadecane C18 C 18 19.430 19.430 6.90 6.90 6.70 6.70 6.80 6.80 6.10 6.10 o-Terphenylo-Terphenyl OTPOTP 20.558 20.558 3.80 3.80 3.90 3.90 3.90 3.90 3.70 3.70 n-Eicosanen-Eicosane C20 C 20 21.039 21.039 5.40 5.40 5.30 5.30 5.60 5.60 4.90 4.90 5α-Androstane5α-Androstane 5a-Andro.5a-Andro. 21.596 21.596 16.50 16.50 16.60 16.60 16.60 16.60 16.40 16.40 n-Docosanen-Docosane C22 C 22 22.510 22.510 4.10 4.10 4.00 4.00 4.10 4.10 3.70 3.70 n-Tetracosanen-Tetracosane C24 C 24 23.862 23.862 3.90 3.90 4.30 4.30 4.50 4.50 4.00 4.00 n-Hexacosanen-Hexacosane C26 C 26 25.114 25.114 3.70 3.70 3.80 3.80 3.90 3.90 3.50 3.50 n-Octacosanen-Octacosane C28 C 28 26.276 26.276 2.50 2.50 2.10 2.10 2.50 2.50 2.00 2.00 n-Triacontanen-Triacontane C30 C 30 27.361 27.361         n-Dotriacontanen-Dotriacontane C32 C 32 28.462 28.462         n-Tetratriacontanen-Tetratriacontane C34 C 34 29.780 29.780         n-Hexatriacontanen-Hexatriacontane C36 C 36 31.464 31.464         n-Octatriacontanen-Octatriacontane C38 C 38 33.716 33.716         n-Tetracontanen-Tetracontane C40 C 40 36.792 36.792         TotalPetroleum HydrocarbonsTotalPetroleum Hydrocarbons TPHTPH   721.06 721.06 730.52 730.52 748.29 748.29 636.20 636.20 Sum of Resolved PeaksSum of Resolved Peaks GCRTPHGCRTPH   281.40 281.40 335.80 335.80 331.48 331.48 321.74 321.74 Unresolved Complex MixtureUnresolved Complex Mixture UCMUCM   439.66 439.66 394.72 394.72 416.81 416.81 314.46 314.46

1 주차1 parking 분석물Analytes RTRT 대조군Control 실험군1Experimental Group 1 실험군2Experimental Group 2 실험군3Experimental Group 3 5α-Androstane5α-Androstane 5a-Andro. (GC-IS.)5a-Andro. (GC-IS.) 20.782 20.782 16.516.5 18.618.6 17.817.8 17.917.9 o-Terphenylo-Terphenyl OTP
(Surrogate std.)
OTP
(Surrogate std.)
19.768 19.768 3.83.8 5.35.3 4.54.5 2.22.2
n-Octanen-Octane C8 C 8 6.425 6.425         n-Decanen-Decane C10 C 10 10.504 10.504         n-Dodecanen-Dodecane C12 C 12 13.386 13.386       1.90 1.90 n-Tetradecanen-Tetradecane C14 C 14 15.673 15.673 3.80 3.80 5.00 5.00 2.70 2.70 6.70 6.70 n-Hexadecanen-Hexadecane C16 C 16 17.656 17.656 7.30 7.30 5.80 5.80 3.40 3.40 7.30 7.30 n-Octadecanen-Octadecane C18 C 18 19.430 19.430 7.50 7.50 4.90 4.90 3.90 3.90 5.30 5.30 o-Terphenylo-Terphenyl OTPOTP 20.558 20.558 3.80 3.80 5.30 5.30 4.50 4.50 2.20 2.20 n-Eicosanen-Eicosane C20 C 20 21.039 21.039 5.50 5.50 3.10 3.10 2.90 2.90 3.60 3.60 5α-Androstane5α-Androstane 5a-Andro.5a-Andro. 21.596 21.596 16.50 16.50 18.60 18.60 17.80 17.80 17.90 17.90 n-Docosanen-Docosane C22 C 22 22.510 22.510 4.40 4.40 2.10 2.10 2.30 2.30 2.50 2.50 n-Tetracosanen-Tetracosane C24 C 24 23.862 23.862 3.70 3.70 2.10 2.10 2.50 2.50 2.30 2.30 n-Hexacosanen-Hexacosane C26 C 26 25.114 25.114 3.50 3.50       n-Octacosanen-Octacosane C28 C 28 26.276 26.276 2.20 2.20       n-Triacontanen-Triacontane C30 C 30 27.361 27.361         n-Dotriacontanen-Dotriacontane C32 C 32 28.462 28.462         n-Tetratriacontanen-Tetratriacontane C34 C 34 29.780 29.780         n-Hexatriacontanen-Hexatriacontane C36 C 36 31.464 31.464         n-Octatriacontanen-Octatriacontane C38 C 38 33.716 33.716         n-Tetracontanen-Tetracontane C40 C 40 36.792 36.792         TotalPetroleum HydrocarbonsTotalPetroleum Hydrocarbons TPHTPH   720.68 720.68 679.85 679.85 620.36 620.36 679.15 679.15 Sum of Resolved PeaksSum of Resolved Peaks GCRTPHGCRTPH   297.37 297.37 354.51 354.51 249.34 249.34 313.05 313.05 Unresolved Complex MixtureUnresolved Complex Mixture UCMUCM   423.31 423.31 325.34 325.34 371.02 371.02 366.10 366.10

2 주차2 parking 분석물Analytes RTRT 대조군Control 실험군1Experimental Group 1 실험군2Experimental Group 2 실험군3Experimental Group 3 5α-Androstane5α-Androstane 5a-Andro. (GC-IS.)5a-Andro. (GC-IS.) 20.782 20.782 18.218.2 18.218.2 18.218.2 18.318.3 o-Terphenylo-Terphenyl OTP (Surrogate std.)OTP (Surrogate std.) 19.768 19.768 5.25.2 4.54.5 4.34.3 4.64.6 n-Octanen-Octane C8 C 8 6.425 6.425         n-Decanen-Decane C10 C 10 10.504 10.504   0.37 0.37     n-Dodecanen-Dodecane C12 C 12 13.386 13.386       1.40 1.40 n-Tetradecanen-Tetradecane C14 C 14 15.673 15.673 3.30 3.30 2.70 2.70 2.00 2.00 2.70 2.70 n-Hexadecanen-Hexadecane C16 C 16 17.656 17.656 6.40 6.40 1.20 1.20 1.30 1.30 1.60 1.60 n-Octadecanen-Octadecane C18 C 18 19.430 19.430 7.00 7.00 0.94 0.94 1.10 1.10 1.40 1.40 o-Terphenylo-Terphenyl OTPOTP 20.558 20.558 5.20 5.20 4.50 4.50 4.30 4.30 4.60 4.60 n-Eicosanen-Eicosane C20 C 20 21.039 21.039 5.40 5.40 0.97 0.97 1.30 1.30 1.50 1.50 5α-Androstane5α-Androstane 5a-Andro.5a-Andro. 21.596 21.596 18.20 18.20 18.20 18.20 18.20 18.20 18.30 18.30 n-Docosanen-Docosane C22 C 22 22.510 22.510 4.20 4.20 0.86 0.86 1.40 1.40 1.30 1.30 n-Tetracosanen-Tetracosane C24 C 24 23.862 23.862 4.10 4.10 0.87 0.87 1.20 1.20 1.20 1.20 n-Hexacosanen-Hexacosane C26 C 26 25.114 25.114 3.70 3.70 1.50 1.50 1.60 1.60 1.70 1.70 n-Octacosanen-Octacosane C28 C 28 26.276 26.276 2.30 2.30 0.65 0.65 0.78 0.78 0.88 0.88 n-Triacontanen-Triacontane C30 C 30 27.361 27.361   0.25 0.25 0.36 0.36 0.41 0.41 n-Dotriacontanen-Dotriacontane C32 C 32 28.462 28.462   0.30 0.30 0.46 0.46 0.47 0.47 n-Tetratriacontanen-Tetratriacontane C34 C 34 29.780 29.780   0.73 0.73     n-Hexatriacontanen-Hexatriacontane C36 C 36 31.464 31.464         n-Octatriacontanen-Octatriacontane C38 C 38 33.716 33.716         n-Tetracontanen-Tetracontane C40 C 40 36.792 36.792         TotalPetroleum HydrocarbonsTotalPetroleum Hydrocarbons TPHTPH   811.72 811.72 496.74 496.74 435.04 435.04 490.23 490.23 Sum of Resolved PeaksSum of Resolved Peaks GCRTPHGCRTPH   283.73 283.73 181.46 181.46 179.77 179.77 199.07 199.07 Unresolved Complex MixtureUnresolved Complex Mixture UCMUCM   527.99 527.99 315.28 315.28 255.27 255.27 291.16 291.16

3 주차3 parking 분석물Analytes RTRT 대조군Control 실험군1Experimental Group 1 실험군2Experimental Group 2 실험군3Experimental Group 3 5α-Androstane5α-Androstane 5a-Andro. (GC-IS.)5a-Andro. (GC-IS.) 20.782 20.782 21.321.3 19.519.5 20.220.2 21.521.5 o-Terphenylo-Terphenyl OTP (Surrogate std.)OTP (Surrogate std.) 19.768 19.768 3.03.0 3.33.3 3.43.4 3.53.5 n-Octanen-Octane C8 C 8 6.425 6.425         n-Decanen-Decane C10 C 10 10.504 10.504         n-Dodecanen-Dodecane C12 C 12 13.386 13.386 1.10 1.10       n-Tetradecanen-Tetradecane C14 C 14 15.673 15.673 7.80 7.80 1.90 1.90 1.50 1.50 1.50 1.50 n-Hexadecanen-Hexadecane C16 C 16 17.656 17.656 7.80 7.80 2.40 2.40   1.90 1.90 n-Octadecanen-Octadecane C18 C 18 19.430 19.430 6.70 6.70 2.50 2.50 1.40 1.40 1.30 1.30 o-Terphenylo-Terphenyl OTPOTP 20.558 20.558 3.00 3.00 3.30 3.30 3.40 3.40 3.50 3.50 n-Eicosanen-Eicosane C20 C 20 21.039 21.039 5.30 5.30 2.00 2.00 1.00 1.00   5α-Androstane5α-Androstane 5a-Andro.5a-Andro. 21.596 21.596 21.30 21.30 19.50 19.50 20.20 20.20 21.50 21.50 n-Docosanen-Docosane C22 C 22 22.510 22.510 4.00 4.00 1.50 1.50     n-Tetracosanen-Tetracosane C24 C 24 23.862 23.862 3.60 3.60 1.50 1.50     n-Hexacosanen-Hexacosane C26 C 26 25.114 25.114 3.30 3.30 1.80 1.80     n-Octacosanen-Octacosane C28 C 28 26.276 26.276 2.10 2.10 0.99 0.99 4.10 4.10   n-Triacontanen-Triacontane C30 C 30 27.361 27.361 2.10 2.10 1.50 1.50     n-Dotriacontanen-Dotriacontane C32 C 32 28.462 28.462         n-Tetratriacontanen-Tetratriacontane C34 C 34 29.780 29.780         n-Hexatriacontanen-Hexatriacontane C36 C 36 31.464 31.464         n-Octatriacontanen-Octatriacontane C38 C 38 33.716 33.716         n-Tetracontanen-Tetracontane C40 C 40 36.792 36.792         TotalPetroleum HydrocarbonsTotalPetroleum Hydrocarbons TPHTPH   913.23 913.23 500.91 500.91 440.50 440.50 355.18 355.18 Sum of Resolved PeaksSum of Resolved Peaks GCRTPHGCRTPH   457.26 457.26 322.75 322.75 306.98 306.98 186.20 186.20 Unresolved Complex MixtureUnresolved Complex Mixture UCMUCM   455.97 455.97 178.16 178.16 133.52 133.52 168.98 168.98

4 주차4 parking 분석물Analytes RTRT 대조군Control 실험군1Experimental Group 1 실험군2Experimental Group 2 실험군3Experimental Group 3 5α-Androstane5α-Androstane 5a-Andro. (GC-IS.)5a-Andro. (GC-IS.) 20.782 20.782 22.222.2 20.820.8 21.121.1 22.622.6 o-Terphenylo-Terphenyl OTP (Surrogate std.)OTP (Surrogate std.) 19.768 19.768 3.23.2 3.73.7 3.73.7 3.63.6 n-Octanen-Octane C8 C 8 6.425 6.425         n-Decanen-Decane C10 C 10 10.504 10.504         n-Dodecanen-Dodecane C12 C 12 13.386 13.386 1.70 1.70     0.67 0.67 n-Tetradecanen-Tetradecane C14 C 14 15.673 15.673 7.80 7.80 0.93 0.93 0.99 0.99 0.81 0.81 n-Hexadecanen-Hexadecane C16 C 16 17.656 17.656 7.00 7.00 1.40 1.40 1.40 1.40 1.10 1.10 n-Octadecanen-Octadecane C18 C 18 19.430 19.430 6.10 6.10 0.80 0.80 1.00 1.00 0.70 0.70 o-Terphenylo-Terphenyl OTPOTP 20.558 20.558 3.20 3.20 3.70 3.70 3.70 3.70 3.60 3.60 n-Eicosanen-Eicosane C20 C 20 21.039 21.039 4.80 4.80     0.33 0.33 5α-Androstane5α-Androstane 5a-Andro.5a-Andro. 21.596 21.596 22.20 22.20 20.80 20.80 21.10 21.10 22.60 22.60 n-Docosanen-Docosane C22 C 22 22.510 22.510 3.70 3.70       n-Tetracosanen-Tetracosane C24 C 24 23.862 23.862 3.30 3.30       n-Hexacosanen-Hexacosane C26 C 26 25.114 25.114 3.10 3.10       n-Octacosanen-Octacosane C28 C 28 26.276 26.276 1.80 1.80       n-Triacontanen-Triacontane C30 C 30 27.361 27.361 2.00 2.00       n-Dotriacontanen-Dotriacontane C32 C 32 28.462 28.462         n-Tetratriacontanen-Tetratriacontane C34 C 34 29.780 29.780         n-Hexatriacontanen-Hexatriacontane C36 C 36 31.464 31.464         n-Octatriacontanen-Octatriacontane C38 C 38 33.716 33.716         n-Tetracontanen-Tetracontane C40 C 40 36.792 36.792         TotalPetroleum HydrocarbonsTotalPetroleum Hydrocarbons TPHTPH   892.02 892.02 344.68 344.68 313.56 313.56 301.37 301.37 Sum of Resolved PeaksSum of Resolved Peaks GCRTPHGCRTPH   330.97 330.97 186.00 186.00 170.25 170.25 163.45 163.45 Unresolved Complex MixtureUnresolved Complex Mixture UCMUCM   561.05 561.05 158.68 158.68 143.31 143.31 137.92 137.92

상기 표 8 내지 표 12의 대조군과 실시예 1 내지 3의 Area값을 바탕으로 계산된 각각의 탄화수소의 양 및 TPH, UCM 의 양을 표 13 내지 표 17에 도시하였다.Tables 13 to 17 show the amount of each hydrocarbon and the amount of TPH and UCM calculated based on the control values of Tables 8 to 12 and Area values of Examples 1 to 3.

0 주차 (단위: μg)0 parking (unit: μg) 분석물 Analytes 대조군Control 실험군1Experimental Group 1 실험군2Experimental Group 2 실험군3Experimental Group 3 o-Terphenylo-Terphenyl OTP (Surrogate std.)OTP (Surrogate std.) 2424 2424 2424 2323 n-Octanen-Octane C8 C 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n-Decanen-Decane C10 C 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n-Dodecanen-Dodecane C12 C 12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n-Tetradecanen-Tetradecane C14 C 14 1.87 1.87 1.86 1.86 1.91 1.91 1.69 1.69 n-Hexadecanen-Hexadecane C16 C 16 3.68 3.68 3.41 3.41 3.15 3.15 2.88 2.88 n-Octadecanen-Octadecane C18 C 18 3.64 3.64 3.51 3.51 3.56 3.56 3.24 3.24 n-Eicosanen-Eicosane C20 C 20 2.83 2.83 2.76 2.76 2.91 2.91 2.58 2.58 5a-Andro. (GC-IS.)5a-Andro. (GC-IS.)   4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 n-Docosanen-Docosane C22 C 22 2.15 2.15 2.09 2.09 2.14 2.14 1.96 1.96 n-Tetracosanen-Tetracosane C24 C 24 2.03 2.03 2.22 2.22 2.33 2.33 2.09 2.09 n-Hexacosanen-Hexacosane C26 C 26 1.92 1.92 1.96 1.96 2.02 2.02 1.83 1.83 n-Octacosanen-Octacosane C28 C 28 1.29 1.29 1.08 1.08 1.28 1.28 1.04 1.04 n-Triacontanen-Triacontane C30 C 30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n-Dotriacontanen-Dotriacontane C32 C 32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n-Tetratriacontanen-Tetratriacontane C34 C 34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n-Hexatriacontanen-Hexatriacontane C36 C 36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n-Octatriacontanen-Octatriacontane C38 C 38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n-Tetracontanen-Tetracontane C40 C 40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Total Petroleum HydrocarbonsTotal petroleum hydrocarbons TPHTPH 385.70 385.70 388.40 388.40 397.85 397.85 342.38 342.38 Unresolved Complex MixtureUnresolved Complex Mixture UCMUCM 235.18 235.18 209.87 209.87 221.61 221.61 169.23 169.23

1 주차 (단위: μg)1 parking unit (μg) 분석물 Analytes 대조군Control 실험군1Experimental Group 1 실험군2Experimental Group 2 실험군3Experimental Group 3 o-Terphenylo-Terphenyl OTP (Surrogate std.)OTP (Surrogate std.) 2424 2929 2626 1313 n-Octanen-Octane C8 C 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n-Decanen-Decane C10 C 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n-Dodecanen-Dodecane C12 C 12 0.00 0.00 0.00 0.00 0.00 0.00 0.86 0.86 n-Tetradecanen-Tetradecane C14 C 14 1.87 1.87 2.19 2.19 1.23 1.23 3.04 3.04 n-Hexadecanen-Hexadecane C16 C 16 3.73 3.73 2.63 2.63 1.61 1.61 3.44 3.44 n-Octadecanen-Octadecane C18 C 18 3.95 3.95 2.29 2.29 1.91 1.91 2.58 2.58 n-Eicosanen-Eicosane C20 C 20 2.88 2.88 1.44 1.44 1.41 1.41 1.74 1.74 5a-Andro. (GC-IS.)5a-Andro. (GC-IS.)   4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 n-Docosanen-Docosane C22 C 22 2.31 2.31 0.98 0.98 1.12 1.12 1.21 1.21 n-Tetracosanen-Tetracosane C24 C 24 1.92 1.92 0.97 0.97 1.20 1.20 1.10 1.10 n-Hexacosanen-Hexacosane C26 C 26 1.82 1.82 0.00 0.00 0.00 0.00 0.00 0.00 n-Octacosanen-Octacosane C28 C 28 1.14 1.14 0.00 0.00 0.00 0.00 0.00 0.00 n-Triacontanen-Triacontane C30 C 30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n-Dotriacontanen-Dotriacontane C32 C 32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n-Tetratriacontanen-Tetratriacontane C34 C 34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n-Hexatriacontanen-Hexatriacontane C36 C 36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n-Octatriacontanen-Octatriacontane C38 C 38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n-Tetracontanen-Tetracontane C40 C 40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Total Petroleum HydrocarbonsTotal petroleum hydrocarbons TPHTPH 385.50 385.50 322.60 322.60 307.60 307.60 334.87 334.87 Unresolved Complex MixtureUnresolved Complex Mixture UCMUCM 226.43 226.43 154.38 154.38 183.97 183.97 180.51 180.51

2 주차 (단위: μg)2 parking units (μg) 분석물Analytes 대조군Control 실험군1Experimental Group 1 실험군2Experimental Group 2 실험군3Experimental Group 3 o-Terphenylo-Terphenyl OTP (Surrogate std.)OTP (Surrogate std.) 2929 2525 2424 2626 n-Octanen-Octane C8 C 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n-Decanen-Decane C10 C 10 0.00 0.00 0.17 0.17 0.00 0.00 0.00 0.00 n-Dodecanen-Dodecane C12 C 12 0.00 0.00 0.00 0.00 0.00 0.00 0.62 0.62 n-Tetradecanen-Tetradecane C14 C 14 1.47 1.47 1.21 1.21 0.89 0.89 1.20 1.20 n-Hexadecanen-Hexadecane C16 C 16 2.97 2.97 0.56 0.56 0.60 0.60 0.74 0.74 n-Octadecanen-Octadecane C18 C 18 3.35 3.35 0.45 0.45 0.53 0.53 0.67 0.67 n-Eicosanen-Eicosane C20 C 20 2.56 2.56 0.46 0.46 0.62 0.62 0.71 0.71 5a-Andro. (GC-IS.)5a-Andro. (GC-IS.)   4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 n-Docosanen-Docosane C22 C 22 2.00 2.00 0.41 0.41 0.67 0.67 0.62 0.62 n-Tetracosanen-Tetracosane C24 C 24 1.93 1.93 0.41 0.41 0.57 0.57 0.56 0.56 n-Hexacosanen-Hexacosane C26 C 26 1.74 1.74 0.71 0.71 0.75 0.75 0.80 0.80 n-Octacosanen-Octacosane C28 C 28 1.08 1.08 0.30 0.30 0.36 0.36 0.41 0.41 n-Triacontanen-Triacontane C30 C 30 0.00 0.00 0.12 0.12 0.17 0.17 0.19 0.19 n-Dotriacontanen-Dotriacontane C32 C 32 0.00 0.00 0.15 0.15 0.22 0.22 0.23 0.23 n-Tetratriacontanen-Tetratriacontane C34 C 34 0.00 0.00 0.36 0.36 0.00 0.00 0.00 0.00 n-Hexatriacontanen-Hexatriacontane C36 C 36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n-Octatriacontanen-Octatriacontane C38 C 38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n-Tetracontanen-Tetracontane C40 C 40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Total Petroleum HydrocarbonsTotal petroleum hydrocarbons TPHTPH 393.64 393.64 240.89 240.89 210.97 210.97 236.43 236.43 Unresolved Complex MixtureUnresolved Complex Mixture UCMUCM 256.04 256.04 152.89 152.89 123.79 123.79 140.42 140.42

3 주차 (단위: μg)3 parking units (μg) 분석물Analytes 대조군Control 실험군1Experimental Group 1 실험군2Experimental Group 2 실험군3Experimental Group 3 o-Terphenylo-Terphenyl OTP (Surrogate std.)OTP (Surrogate std.) 1515 1717 1717 1717 n-Octanen-Octane C8 C 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n-Decanen-Decane C10 C 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n-Dodecanen-Dodecane C12 C 12 0.42 0.42 0.00 0.00 0.00 0.00 0.00 0.00 n-Tetradecanen-Tetradecane C14 C 14 2.98 2.98 0.79 0.79 0.60 0.60 0.57 0.57 n-Hexadecanen-Hexadecane C16 C 16 3.09 3.09 1.04 1.04 0.00 0.00 0.75 0.75 n-Octadecanen-Octadecane C18 C 18 2.74 2.74 1.12 1.12 0.60 0.60 0.53 0.53 n-Eicosanen-Eicosane C20 C 20 2.15 2.15 0.89 0.89 0.43 0.43 0.00 0.00 5a-Andro. (GC-IS.)5a-Andro. (GC-IS.)   4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 n-Docosanen-Docosane C22 C 22 1.63 1.63 0.67 0.67 0.00 0.00 0.00 0.00 n-Tetracosanen-Tetracosane C24 C 24 1.45 1.45 0.66 0.66 0.00 0.00 0.00 0.00 n-Hexacosanen-Hexacosane C26 C 26 1.33 1.33 0.79 0.79 0.00 0.00 0.00 0.00 n-Octacosanen-Octacosane C28 C 28 0.84 0.84 0.43 0.43 1.73 1.73 0.00 0.00 n-Triacontanen-Triacontane C30 C 30 0.84 0.84 0.66 0.66 0.00 0.00 0.00 0.00 n-Dotriacontanen-Dotriacontane C32 C 32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n-Tetratriacontanen-Tetratriacontane C34 C 34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n-Hexatriacontanen-Hexatriacontane C36 C 36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n-Octatriacontanen-Octatriacontane C38 C 38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n-Tetracontanen-Tetracontane C40 C 40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Total Petroleum HydrocarbonsTotal petroleum hydrocarbons TPHTPH 378.41 378.41 226.72 226.72 192.47 192.47 145.80 145.80 Unresolved Complex MixtureUnresolved Complex Mixture UCMUCM 188.94 188.94 80.64 80.64 58.34 58.34 69.37 69.37

4 주차 (단위: μg)4 parking (unit: μg) 분석물 Analytes 대조군Control 실험군1Experimental Group 1 실험군2Experimental Group 2 실험군3Experimental Group 3 o-Terphenylo-Terphenyl OTP (Surrogate std.)OTP (Surrogate std.) 1515 1818 1818 1616 n-Octanen-Octane C8 C 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n-Decanen-Decane C10 C 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n-Dodecanen-Dodecane C12 C 12 0.62 0.62 0.00 0.00 0.00 0.00 0.24 0.24 n-Tetradecanen-Tetradecane C14 C 14 2.86 2.86 0.36 0.36 0.38 0.38 0.29 0.29 n-Hexadecanen-Hexadecane C16 C 16 2.66 2.66 0.57 0.57 0.56 0.56 0.41 0.41 n-Octadecanen-Octadecane C18 C 18 2.39 2.39 0.33 0.33 0.41 0.41 0.27 0.27 n-Eicosanen-Eicosane C20 C 20 1.87 1.87 0.00 0.00 0.00 0.00 0.13 0.13 5a-Andro. (GC-IS.)5a-Andro. (GC-IS.)   4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 n-Docosanen-Docosane C22 C 22 1.45 1.45 0.00 0.00 0.00 0.00 0.00 0.00 n-Tetracosanen-Tetracosane C24 C 24 1.28 1.28 0.00 0.00 0.00 0.00 0.00 0.00 n-Hexacosanen-Hexacosane C26 C 26 1.20 1.20 0.00 0.00 0.00 0.00 0.00 0.00 n-Octacosanen-Octacosane C28 C 28 0.69 0.69 0.00 0.00 0.00 0.00 0.00 0.00 n-Triacontanen-Triacontane C30 C 30 0.77 0.77 0.00 0.00 0.00 0.00 0.00 0.00 n-Dotriacontanen-Dotriacontane C32 C 32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n-Tetratriacontanen-Tetratriacontane C34 C 34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n-Hexatriacontanen-Hexatriacontane C36 C 36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n-Octatriacontanen-Octatriacontane C38 C 38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n-Tetracontanen-Tetracontane C40 C 40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Total Petroleum HydrocarbonsTotal petroleum hydrocarbons TPHTPH 354.64 354.64 146.26 146.26 131.16 131.16 117.69 117.69 Unresolved Complex MixtureUnresolved Complex Mixture UCMUCM 223.05 223.05 67.33 67.33 59.95 59.95 53.86 53.86

상기 표 8 내지 17을 바탕으로 계산된 대조군과 실시예 1 내지 3의 농도 및, 계산식 1과 계산식 2를 이용하여 계산된 TPH, UCM 및 n-alkane의 농도를 표 18 내지 22에 도시하였다. The concentrations of the control groups and Examples 1 to 3 calculated on the basis of Tables 8 to 17, and the concentrations of TPH, UCM and n-alkane calculated using Formula 1 and Formula 2 are shown in Tables 18 to 22.

0 주차 (단위 : μg/ml)0 parking (unit: μg / ml) 분석물Analytes 대조군Control 실험군1Experimental Group 1 실험군2Experimental Group 2 실험군3Experimental Group 3 n-Octanen-Octane C8 C 8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 n-Decanen-Decane C10 C 10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 n-Dodecanen-Dodecane C12 C 12 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 n-Tetradecanen-Tetradecane C14 C 14 1.873 1.873 1.862 1.862 1.911 1.911 1.686 1.686 n-Hexadecanen-Hexadecane C16 C 16 3.682 3.682 3.406 3.406 3.152 3.152 2.881 2.881 n-Octadecanen-Octadecane C18 C 18 3.638 3.638 3.511 3.511 3.564 3.564 3.236 3.236 n-Eicosanen-Eicosane C20 C 20 2.827 2.827 2.758 2.758 2.914 2.914 2.581 2.581 n-Docosanen-Docosane C22 C 22 2.154 2.154 2.089 2.089 2.141 2.141 1.956 1.956 n-Tetracosanen-Tetracosane C24 C 24 2.028 2.028 2.222 2.222 2.326 2.326 2.092 2.092 n-Hexacosanen-Hexacosane C26 C 26 1.923 1.923 1.964 1.964 2.015 2.015 1.831 1.831 n-Octacosanen-Octacosane C28 C 28 1.290 1.290 1.077 1.077 1.282 1.282 1.038 1.038 n-Triacontanen-Triacontane C30 C 30 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 n-Dotriacontanen-Dotriacontane C32 C 32 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 n-Tetratriacontanen-Tetratriacontane C34 C 34 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 n-Hexatriacontanen-Hexatriacontane C36 C 36 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 n-Octatriacontanen-Octatriacontane C38 C 38 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 n-Tetracontanen-Tetracontane CC 4040 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Total Petroleum HydrocarbonsTotal petroleum hydrocarbons TPHTPH 385.7 385.7 388.4 388.4 397.9 397.9 342.4 342.4 Unresolved Complex MixtureUnresolved Complex Mixture UCMUCM 235.2 235.2 209.9 209.9 221.6 221.6 169.2 169.2 Total n-alkaneTotal n-alkane C8~C40C8 ~ C40 19.42 19.42 18.89 18.89 19.31 19.31 17.30 17.30

1 주차 (단위 : μg/ml)1 parking (unit: μg / ml) 분석물Analytes 대조군Control 실험군1Experimental Group 1 실험군2Experimental Group 2 실험군3Experimental Group 3 n-Octanen-Octane C8 C 8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 n-Decanen-Decane C10 C 10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 n-Dodecanen-Dodecane C12 C 12 0.000 0.000 0.000 0.000 0.000 0.000 0.862 0.862 n-Tetradecanen-Tetradecane C14 C 14 1.873 1.873 2.187 2.187 1.234 1.234 3.045 3.045 n-Hexadecanen-Hexadecane C16 C 16 3.733 3.733 2.631 2.631 1.612 1.612 3.441 3.441 n-Octadecanen-Octadecane C18 C 18 3.955 3.955 2.292 2.292 1.906 1.906 2.576 2.576 n-Eicosanen-Eicosane C20 C 20 2.880 2.880 1.440 1.440 1.408 1.408 1.738 1.738 n-Docosanen-Docosane C22 C 22 2.312 2.312 0.979 0.979 1.120 1.120 1.211 1.211 n-Tetracosanen-Tetracosane C24 C 24 1.924 1.924 0.969 0.969 1.205 1.205 1.102 1.102 n-Hexacosanen-Hexacosane C26 C 26 1.819 1.819 0.000 0.000 0.000 0.000 0.000 0.000 n-Octacosanen-Octacosane C28 C 28 1.135 1.135 0.000 0.000 0.000 0.000 0.000 0.000 n-Triacontanen-Triacontane C30 C 30 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 n-Dotriacontanen-Dotriacontane C32 C 32 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 n-Tetratriacontanen-Tetratriacontane C34 C 34 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 n-Hexatriacontanen-Hexatriacontane C36 C 36 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 n-Octatriacontanen-Octatriacontane C38 C 38 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 n-Tetracontanen-Tetracontane CC 4040 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Total Petroleum HydrocarbonsTotal petroleum hydrocarbons TPHTPH 385.5 385.5 322.6 322.6 307.6 307.6 334.9 334.9 Unresolved Complex MixtureUnresolved Complex Mixture UCMUCM 226.4 226.4 154.4 154.4 184.0 184.0 180.5 180.5 Total n-alkaneTotal n-alkane C8~C40C8 ~ C40 19.63 19.63 10.50 10.50 8.48 8.48 13.97 13.97

2 주차 (단위 : μg/ml)2 parking (unit: μg / ml) 분석물Analytes 대조군Control 실험군1Experimental Group 1 실험군2Experimental Group 2 실험군3Experimental Group 3 n-Octanen-Octane C8 C 8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 n-Decanen-Decane C10 C 10 0.000 0.000 0.166 0.166 0.000 0.000 0.000 0.000 n-Dodecanen-Dodecane C12 C 12 0.000 0.000 0.000 0.000 0.000 0.000 0.621 0.621 n-Tetradecanen-Tetradecane C14 C 14 1.475 1.475 1.207 1.207 0.894 0.894 1.200 1.200 n-Hexadecanen-Hexadecane C16 C 16 2.967 2.967 0.556 0.556 0.603 0.603 0.738 0.738 n-Octadecanen-Octadecane C18 C 18 3.346 3.346 0.449 0.449 0.526 0.526 0.666 0.666 n-Eicosanen-Eicosane C20 C 20 2.563 2.563 0.460 0.460 0.617 0.617 0.708 0.708 n-Docosanen-Docosane C22 C 22 2.001 2.001 0.410 0.410 0.667 0.667 0.616 0.616 n-Tetracosanen-Tetracosane C24 C 24 1.933 1.933 0.410 0.410 0.566 0.566 0.563 0.563 n-Hexacosanen-Hexacosane C26 C 26 1.744 1.744 0.707 0.707 0.754 0.754 0.797 0.797 n-Octacosanen-Octacosane C28 C 28 1.076 1.076 0.304 0.304 0.365 0.365 0.409 0.409 n-Triacontanen-Triacontane C30 C 30 0.000 0.000 0.117 0.117 0.169 0.169 0.191 0.191 n-Dotriacontanen-Dotriacontane C32 C 32 0.000 0.000 0.145 0.145 0.223 0.223 0.227 0.227 n-Tetratriacontanen-Tetratriacontane C34 C 34 0.000 0.000 0.356 0.356 0.000 0.000 0.000 0.000 n-Hexatriacontanen-Hexatriacontane C36 C 36 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 n-Octatriacontanen-Octatriacontane C38 C 38 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 n-Tetracontanen-Tetracontane CC 4040 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Total Petroleum HydrocarbonsTotal petroleum hydrocarbons TPHTPH 393.6 393.6 240.9 240.9 211.0 211.0 236.4 236.4 Unresolved Complex MixtureUnresolved Complex Mixture UCMUCM 256.0 256.0 152.9 152.9 123.8 123.8 140.4 140.4 Total n-alkaneTotal n-alkane C8~C40C8 ~ C40 17.10 17.10 5.29 5.29 5.38 5.38 6.74 6.74

3 주차 (단위 : μg/ml)3 parking (unit: μg / ml) 분석물Analytes 대조군Control 실험군1Experimental Group 1 실험군2Experimental Group 2 실험군3Experimental Group 3 n-Octanen-Octane C8 C 8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 n-Decanen-Decane C10 C 10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 n-Dodecanen-Dodecane C12 C 12 0.419 0.419 0.000 0.000 0.000 0.000 0.000 0.000 n-Tetradecanen-Tetradecane C14 C 14 2.979 2.979 0.793 0.793 0.604 0.604 0.568 0.568 n-Hexadecanen-Hexadecane C16 C 16 3.090 3.090 1.039 1.039 0.000 0.000 0.746 0.746 n-Octadecanen-Octadecane C18 C 18 2.737 2.737 1.115 1.115 0.603 0.603 0.526 0.526 n-Eicosanen-Eicosane C20 C 20 2.150 2.150 0.886 0.886 0.428 0.428 0.000 0.000 n-Docosanen-Docosane C22 C 22 1.628 1.628 0.667 0.667 0.000 0.000 0.000 0.000 n-Tetracosanen-Tetracosane C24 C 24 1.450 1.450 0.660 0.660 0.000 0.000 0.000 0.000 n-Hexacosanen-Hexacosane C26 C 26 1.329 1.329 0.792 0.792 0.000 0.000 0.000 0.000 n-Octacosanen-Octacosane C28 C 28 0.839 0.839 0.432 0.432 1.728 1.728 0.000 0.000 n-Triacontanen-Triacontane C30 C 30 0.842 0.842 0.657 0.657 0.000 0.000 0.000 0.000 n-Dotriacontanen-Dotriacontane C32 C 32 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 n-Tetratriacontanen-Tetratriacontane C34 C 34 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 n-Hexatriacontanen-Hexatriacontane C36 C 36 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 n-Octatriacontanen-Octatriacontane C38 C 38 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 n-Tetracontanen-Tetracontane CC 4040 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Total Petroleum HydrocarbonsTotal petroleum hydrocarbons TPHTPH 378.4 378.4 226.7 226.7 192.5 192.5 145.8 145.8 Unresolved Complex MixtureUnresolved Complex Mixture UCMUCM 188.9 188.9 80.6 80.6 58.3 58.3 69.4 69.4 Total n-alkaneTotal n-alkane C8~C40C8 ~ C40 17.46 17.46 7.04 7.04 3.36 3.36 1.84 1.84

4 주차 (단위 : μg/ml)4 parking (unit: μg / ml) 분석물Analytes 대조군Control 실험군1Experimental Group 1 실험군2Experimental Group 2 실험군3Experimental Group 3 n-Octanen-Octane C8 C 8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 n-Decanen-Decane C10 C 10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 n-Dodecanen-Dodecane C12 C 12 0.622 0.622 0.000 0.000 0.000 0.000 0.241 0.241 n-Tetradecanen-Tetradecane C14 C 14 2.858 2.858 0.364 0.364 0.382 0.382 0.292 0.292 n-Hexadecanen-Hexadecane C16 C 16 2.661 2.661 0.568 0.568 0.560 0.560 0.411 0.411 n-Octadecanen-Octadecane C18 C 18 2.391 2.391 0.335 0.335 0.412 0.412 0.269 0.269 n-Eicosanen-Eicosane C20 C 20 1.868 1.868 0.000 0.000 0.000 0.000 0.126 0.126 n-Docosanen-Docosane C22 C 22 1.445 1.445 0.000 0.000 0.000 0.000 0.000 0.000 n-Tetracosanen-Tetracosane C24 C 24 1.275 1.275 0.000 0.000 0.000 0.000 0.000 0.000 n-Hexacosanen-Hexacosane C26 C 26 1.198 1.198 0.000 0.000 0.000 0.000 0.000 0.000 n-Octacosanen-Octacosane C28 C 28 0.690 0.690 0.000 0.000 0.000 0.000 0.000 0.000 n-Triacontanen-Triacontane C30 C 30 0.769 0.769 0.000 0.000 0.000 0.000 0.000 0.000 n-Dotriacontanen-Dotriacontane C32 C 32 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 n-Tetratriacontanen-Tetratriacontane C34 C 34 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 n-Hexatriacontanen-Hexatriacontane C36 C 36 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 n-Octatriacontanen-Octatriacontane C38 C 38 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 n-Tetracontanen-Tetracontane CC 4040 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Total Petroleum HydrocarbonsTotal petroleum hydrocarbons TPHTPH 354.6 354.6 146.3 146.3 131.2 131.2 117.7 117.7 Unresolved Complex MixtureUnresolved Complex Mixture UCMUCM 223.1 223.1 67.3 67.3 59.9 59.9 53.9 53.9 Total n-alkaneTotal n-alkane C8~C40C8 ~ C40 15.78 15.78 1.27 1.27 1.35 1.35 1.34 1.34

TPH와 UCM의 농도계산 방법의 원리는 같아 식이 유사하다. 그러나 TPH(석유계 총 탄화수소)는 UCM + N-alkanes + a(중간물질 혹은 unknown peak)로 볼 수 있으며, 오래 풍화될수록 생물학적 처리에 중점이 되는 부분은 UCM이다. The principle of the concentration calculation method of TPH and UCM is the same. However, TPH (petroleum-based total hydrocarbons) can be seen as UCM + N-alkanes + a (intermediate or unknown peak), and the longer it is weathered, the more the focus of biological treatment is UCM.

주수별 평균 석유계 총 탄화수소(TPH) 농도 및 주수별 평균 석유계 총 탄화수소(TPH) 분해율Average Petroleum Total Hydrocarbons (TPH) Concentration by Week and Average Petroleum Total Hydrocarbons (TPH) Degradation Rate by Week

상기 표 8 내지 표 22을 이용하여 주수별 평균 석유계 총 탄화수소(TPH) 농도 및 이를 바탕으로 한 주수별 평균 석유계 총 탄화수소(TPH) 분해율을 계산식3을 통해 계산하여 표 23에 도시하였으며, 이를 도식화하여 도 2 에 도시하였다. Using the Tables 8 to 22, the average petroleum total hydrocarbon (TPH) concentrations per week and the average petroleum total hydrocarbon (TPH) decomposition rate for each week based on this were calculated by Equation 3 and shown in Table 23. Schematically shown in FIG.

[계산식 3] [Calculation 3]

TPH 분해율 = 100 - (각 주차의 실험군 / 대조군 값의 평균 × 100)TPH degradation rate = 100-(average of experimental / control values for each parking × 100)

Amount (μg/ml)Amount (μg / ml) 0주Week 0 1주1 week 2주2 weeks 3주3 weeks 4주4 Weeks 대조군Control 385.7385.7 385.5385.5 393.6393.6 378.4378.4 354.6354.6 실험군Experimental group 376.2376.2 321.7321.7 229.44229.44 188.3188.3 131.7131.7 TPH분해율(%)TPH decomposition rate (%) 0.90.9 15.315.3 39.639.6 50.450.4 65.365.3

주수별 평균 석유계 총 UCM(Unresolved Complex mixture) 농도 및 주수별 평균 석유계 총 UCM(Unresolved Complex mixture) 분해율Degradation rate of total petroleum-based unresolved complex mixture (UCM) by liquor and mean petroleum-based total unresolved complex mixture (UCM) decomposition by liquor

상기 표 8 내지 표 22을 이용하여 주수별 평균 UCM(Unresolved Complex mixture) 농도 및 이를 바탕으로 한 UCM(Unresolved Complex mixture) 분해율은 계산식 4를 통해 계산하여 표 24에 도시하였으며, 이를 도식화하여 도 3에 도시하였다. The average unresolved complex mixture (UCM) concentration and the unresolved complex mixture (UCM) decomposition rate based on the week numbers using Tables 8 to 22 were calculated in Equation 4, and are shown in Table 24. Shown.

[계산식 4] [Calculation 4]

UCM 분해율 = 100 - (각 주차의 실험군 / 대조군 값의 평균 × 100)UCM degradation rate = 100-(average of experimental / control values for each parking × 100)

Amount (μg/ml)Amount (μg / ml) 0주Week 0 1주1 week 2주2 weeks 3주3 weeks 4주4 Weeks 대조군Control 235.2235.2 226.4226.4 256.0256.0 188.9188.9 223.1223.1 실험군Experimental group 200.2200.2 173.0173.0 139.0139.0 69.469.4 60.460.4 UCM분해율(%)UCM decomposition rate (%) 11.411.4 23.423.4 38.538.5 39.339.3 73.373.3

주수별 평균 석유계 총 n-alkane 농도 및 주수별 평균 석유계 총 n-alkane 분해율Average n-alkane Concentration by Week and Average n-alkane Degradation Rate by Week

상기 표 8 내지 표 22을 이용하여 주수별 평균 n-alkane의 농도 및 이를 바탕으로 한 n-alkane의 분해율은 하기 계산식 5를 통해 계산하여 표 25에 도시하였으며, 이를 도식화하여 도 4에 도시하였다. The average concentration of n-alkane per week and the decomposition rate of n-alkane based on the same using Tables 8 to 22 were calculated in Equation 5 and shown in Table 25, and are shown in FIG. 4.

[계산식 5] [Calculation 5]

n-alkanes 분해율 = 100- (각 주차의 실험군 / 각 주차의 대조군 × 100)n-alkanes decomposition rate = 100- (experimental group of each parking / control group of each parking × 100)

Amount (μg/ml)Amount (μg / ml) 0주Week 0 1주1 week 2주2 weeks 3주3 weeks 4주4 Weeks 대조군Control 19.419.4 19.619.6 17.117.1 17.517.5 15.815.8 실험군Experimental group 18.518.5 11.011.0 5.85.8 4.14.1 1.31.3 n-alkanes 분해율(%)n-alkanes decomposition rate (%) -3.5-3.5 38.638.6 67.567.5 77.277.2 92.692.6

도 1 및 표 23를 참조하면, 4주 동안 대조군의 TPH 농도는 평균 379.6 ± 14.9 ㎍/ml 인 반면 실험군의 경우 시간에 따라 지속적인 농도감소가 확인 되었으며 4주 후 최종 TPH 농도는 대조군 대비 65.3%(131.7 ± 14.3 ㎍/ml) 의 분해효율을 보이고 있음을 확인할 수 있다. Referring to FIG. 1 and Table 23, the average TPH concentration of the control group during the four weeks was 379.6 ± 14.9 ㎍ / ml, while in the experimental group it was confirmed that the concentration decreases over time and the final TPH concentration after 4 weeks was 65.3% ( 131.7 ± 14.3 ㎍ / ml) it can be seen that the degradation efficiency.

도 2, 표 24 및 도 3, 표 25을 참조하면, UCM 및 N-alkanes 또한 대조군 대비 각각 73.3%, 92.6%의 분해 효율을 보이고 있음을 확인할 수 있다. Referring to Figure 2, Table 24 and Figure 3, Table 25, it can be seen that UCM and N-alkanes also showed degradation efficiency of 73.3% and 92.6%, respectively, compared to the control.

오염 토양으로부터 토착 미생물의 농화배양을 통해 얻은 미생물 커뮤니티의 경우 오염물질 분해에 관여하지 않지만 분해균과의 상호작용을 통해 효율을 높이는 사례를 미루어 보아 본 실험에서 농화배양한 미생물 커뮤니티는 원유 분해에 직접 관여하진 않지만 원유 분해 미생물 혹은 생물 계면활성제 생산 미생물과 상호작용을 통해 효율이 증대 된 것으로 사료된다. The microbial community obtained through enrichment of indigenous microorganisms from contaminated soil is not involved in pollutant degradation, but the case of increasing efficiency through interaction with decomposing bacteria shows that the microbial community enriched in this experiment directly Although not involved, the efficiency is thought to be increased by interacting with crude microorganisms or microbial surfactant producing microorganisms.

이상, 본 발명내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의해 정의된다고 할 것이다. As mentioned above, specific parts of the present invention have been described in detail, and it is apparent to those skilled in the art that such specific descriptions are merely preferred embodiments, and thus the scope of the present invention is not limited thereto. something to do. Therefore, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (2)

패니바실러스 속(Paenibacillus sp.)과 포도상구균 속(Staphylococcus sp.)을 포함하는 토양 원유 분해능이 우수한 미생물 커뮤니티 KWEC-DT [KCTC18648P].

Microbial community KWEC-DT [KCTC18648P], a microorganism with excellent degradable soil crude oil, including the genus Paenibacillus sp. And Staphylococcus sp .

제1항에 있어서,
상기 미생물 커뮤니티 KWEC-DT [KCTC18648P]는 아크로모박터 속(Achromobacter sp.), 바실러스 속(Bacillus sp.), 수도산토모나스 속(Pseudoxanthomonas sp.), 및 스테노트로포모나스 속(Stenotrophomonas sp.)을 더 포함하는 토양 원유 분해능이 우수한 미생물 커뮤니티 KWEC-DT [KCTC18648P].
The method of claim 1,
The microbial community KWEC-DT [KCTC18648P] is a genus of Achromobacter sp. , Bacillus sp ., Pseudoxanthomonas sp. , And Stenotrophomonas sp. The microbial community KWEC-DT [KCTC18648P] with excellent soil crude oil resolution further comprising.
KR1020180114156A 2018-09-21 2018-09-21 Microbial community with excellent soil crude oil resolution KR102079536B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180114156A KR102079536B1 (en) 2018-09-21 2018-09-21 Microbial community with excellent soil crude oil resolution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180114156A KR102079536B1 (en) 2018-09-21 2018-09-21 Microbial community with excellent soil crude oil resolution

Publications (1)

Publication Number Publication Date
KR102079536B1 true KR102079536B1 (en) 2020-03-10

Family

ID=69800710

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180114156A KR102079536B1 (en) 2018-09-21 2018-09-21 Microbial community with excellent soil crude oil resolution

Country Status (1)

Country Link
KR (1) KR102079536B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230031804A (en) * 2021-08-27 2023-03-07 재단법인 농축산용미생물산업육성지원센터 Composition for decomposing pesticides

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100837877B1 (en) * 2007-03-23 2008-06-13 한국생명공학연구원 Functional microbial community FMC-JW12 being capable of degrading diesel oil
KR20100123513A (en) * 2009-05-15 2010-11-24 한국생명공학연구원 Functional microbial community being capable of degrading high level diesel oil
KR20110009403A (en) 2009-07-22 2011-01-28 한국생명공학연구원 Functional microbial community being capable of degrading petroleum contaminated ocean environment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100837877B1 (en) * 2007-03-23 2008-06-13 한국생명공학연구원 Functional microbial community FMC-JW12 being capable of degrading diesel oil
KR20100123513A (en) * 2009-05-15 2010-11-24 한국생명공학연구원 Functional microbial community being capable of degrading high level diesel oil
KR20110009403A (en) 2009-07-22 2011-01-28 한국생명공학연구원 Functional microbial community being capable of degrading petroleum contaminated ocean environment

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
Arima, K., Kakinuma, A., & Tamura, G. (1968). Surfactin, a crystalline peptidelipid surfactant produced by Bacillussubtilis: Isolation, characterization and its inhibition of fibrin clot formation. Biochemical and biophysical research communications, 31(3), 488-494.
Deng, M. C., Li, J., Hong, Y. H., Xu, X. M., Chen, W. X., Yuan, J. P., . . . Wang, J. H. (2016). Characterization of a novel biosurfactant produced by marine hydrocarbon?degrading bacterium Achromobacter sp. HZ01. Journal of applied microbiology, 120(4), 889-899.
In book: Microbial Biotechnology, Chapter.13, pp.275-301(2018.02.23.) *
Mangwani, N., Shukla, S., Kumari, S., Rao, T., & Das, S. (2014). Characterization of Stenotrophomonas acidaminiphila NCW?702 biofilm for implication in the degradation of polycyclic aromatic hydrocarbons. Journal of applied microbiology, 117(4), 1012-1024.
Quantitative oil analysis method (Canada K1A 0H3), (1994), Vancouver (Colombie-britannique)
The Open Biotechnology Journal, Vol.10(Suppl-2, M9), pp.363-378(2016.)* *
Varma, S. S., Lakshmi, M. B., RAJAGOPAL, P., & Velan, M. (2017). Degradation of Total Petroleum Hydrocarbon (TPH) in Contaminated Soil Using Bacillus pumilus MVSV3. Biocontrol science, 22(1), 17-23.
Youssef, N. H., Duncan, K. E., Nagle, D. P., Savage, K. N., Knapp, R. M., & McInerney, M. J. (2004). Comparison of methods to detect biosurfactant production by diverse microorganisms. Journal of Microbiological Methods, 56(3), 339-347.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230031804A (en) * 2021-08-27 2023-03-07 재단법인 농축산용미생물산업육성지원센터 Composition for decomposing pesticides
KR102520249B1 (en) 2021-08-27 2023-04-11 재단법인 농축산용미생물산업육성지원센터 Composition for decomposing pesticides

Similar Documents

Publication Publication Date Title
Cunliffe et al. Effect of Sphingobium yanoikuyae B1 inoculation on bacterial community dynamics and polycyclic aromatic hydrocarbon degradation in aged and freshly PAH-contaminated soils
Zheng et al. Characterization of bacterial composition and diversity in a long-term petroleum contaminated soil and isolation of high-efficiency alkane-degrading strains using an improved medium
Shokrollahzadeh et al. Biodegradation potential and bacterial diversity of a petrochemical wastewater treatment plant in Iran
Hassanshahian et al. Isolation and characterization of alkane degrading bacteria from petroleum reservoir waste water in Iran (Kerman and Tehran provenances)
Ganesh et al. Diesel degradation and biosurfactant production by Gram-positive isolates
CN103981119B (en) The application of oily sludge petrochina efficient degrading bacteria and bacterium group
Qiao et al. Bioremediation of highly contaminated oilfield soil: Bioaugmentation for enhancing aromatic compounds removal
Prakash et al. Biodegradation potential of petroleum hydrocarbons by bacteria and mixed bacterial consortium isolated from contaminated sites
Kumar et al. Bioremediation of agro-based pulp mill effluent by microbial consortium comprising autochthonous bacteria
Yao et al. Successful bioaugmentation of an activated sludge reactor with Rhodococcus sp. YYL for efficient tetrahydrofuran degradation
Chikere Culture-independent analysis of bacterial community composition during bioremediation of crude oil-polluted soil
Luo et al. Analysis of community structure of a microbial consortium capable of degrading benzo (a) pyrene by DGGE
Beaudet et al. Anaerobic biodegradation of pentachlorophenol in a contaminated soil inoculated with a methanogenic consortium or with Desulfitobacterium frappieri strain PCP-1
CN106906158B (en) Oil-containing sludge degradation functional bacteria and application thereof
KR101300348B1 (en) Liquid composition of microorganisms for bioremediation of hydrocarbon-contaminated soil, method of preparing the same, and Bioremediation using the same
Ichor et al. Biodegradation of total petroleum hydrocarbon by a consortium of Cyanobacteria isolated from crude oil polluted brackish waters of bodo creeks in Ogoniland, Rivers State
CN1718721A (en) Method of treating oil contaminated soil and its special bacterin group
KR102079536B1 (en) Microbial community with excellent soil crude oil resolution
Yang et al. Bioaugmentation of diesel-contaminated soil with Pseudomonas sp. DTF1
Zrafi-Nouira et al. Molecular diversity analysis and bacterial population dynamics of an adapted seawater microbiota during the degradation of Tunisian zarzatine oil
Nwankwegu et al. Ex Situ biodegradation of crude oil using bacterial isolates from palm oil mill effluent
Benchouk et al. Petroleum-hydrocarbons biodegradation by pseudomonas strains isolated from hydrocarbon-contaminated soil
CN113957018B (en) Flora with petroleum degrading function under low temperature condition and application thereof
Samadi et al. Biodegradation of Polychlorinated Biphenyls by and Isolated from Contaminated Soil
KR101198103B1 (en) Novel microorganisms having biodegradation ability for oil and bioremediation method for oil-contaminated sites by using the same

Legal Events

Date Code Title Description
N231 Notification of change of applicant
GRNT Written decision to grant