KR102066526B1 - Method for TiO2 nanotube particles using mixed organic solution - Google Patents

Method for TiO2 nanotube particles using mixed organic solution Download PDF

Info

Publication number
KR102066526B1
KR102066526B1 KR1020120157546A KR20120157546A KR102066526B1 KR 102066526 B1 KR102066526 B1 KR 102066526B1 KR 1020120157546 A KR1020120157546 A KR 1020120157546A KR 20120157546 A KR20120157546 A KR 20120157546A KR 102066526 B1 KR102066526 B1 KR 102066526B1
Authority
KR
South Korea
Prior art keywords
tio
nanotubes
washing
surface area
ultrapure water
Prior art date
Application number
KR1020120157546A
Other languages
Korean (ko)
Other versions
KR20140087378A (en
Inventor
김장열
Original Assignee
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 포항산업과학연구원 filed Critical 재단법인 포항산업과학연구원
Priority to KR1020120157546A priority Critical patent/KR102066526B1/en
Publication of KR20140087378A publication Critical patent/KR20140087378A/en
Application granted granted Critical
Publication of KR102066526B1 publication Critical patent/KR102066526B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • B01J6/001Calcining
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/13Nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

본 발명에 따르면 반응에 사용되는 NaOH의 용매로 에탄올을 초순수와 혼합하여 사용하여 TiO2 나노튜브의 직경과 길이의 비(aspect ratio)와 비표면적을 제어 가능하고, 제조된 TiO2 나노튜브는 촉매, 염료감응 태양전지의 애노드(anode) 등 다양한 응용분야에 응용될 수 있다.According to the present invention with a solvent of NaOH used in the reaction by using a mixture of ethanol and pure water, and can control the ratio (aspect ratio) and the specific surface area of the diameter and length of the TiO 2 nano-tubes, fabricated TiO 2 nanotubes catalyst It can be applied to various applications such as anode of dye-sensitized solar cell.

Description

혼합용액을 이용한 Ti02 나노튜브 합성방법{Method for TiO2 nanotube particles using mixed organic solution}Method for TiO2 nanotube synthesis using mixed organic solution

본 발명은 TiO2 나노튜브의 직경과 길이의 비(aspect ratio) 및 비표면적이 조절 가능한 TiO2 나노튜브 합성방법에 관한 것이다.The present invention relates to the diameter of the TiO 2 nano-tubes and the length of the non-(aspect ratio) and a specific surface area of the adjustable TiO 2 nanotube synthesis method.

TiO2 분말은 화학적을 안정하며 활성이 크기 때문에 화장품 첨가제, 광촉매, 촉매 담체 등에 다양하게 이용되어왔다. 100nm 이하의 크기를 갖는 TiO2 나노 입자는 광전기 화학적 특성이 우수하여 환경 정화용 광촉매로 사용이 급증하였다. 또한 최근 에너지 문제 대두로 인해 수소 저장용 재료나 수소 제조용 광촉매, 태양전지 등의 소재로 TiO2가 활용되고 있다.TiO 2 powder has been widely used in cosmetic additives, photocatalysts, catalyst carriers, etc. because of its chemical stability and high activity. TiO 2 nanoparticles having a size of 100 nm or less have been rapidly used as photocatalysts for environmental purification because of excellent photoelectrochemical properties. In addition, TiO 2 has been utilized as a material for hydrogen storage, a photocatalyst for producing hydrogen, and a solar cell due to the recent rise in energy problems.

TiO2는 그 물질의 크기, 결정 구조, 형상, 비표면적 등 다양한 특성을 지니고 있으며, 특히 광촉매에 사용되는데 있어서는 비표면적이 중요하며, 구조나 형상은 전자의 흐름에 영향을 미치게 된다.TiO 2 has various characteristics such as the size, crystal structure, shape, and specific surface area of the material. Especially, when used in photocatalysts, the specific surface area is important, and the structure or shape affects the flow of electrons.

이러한 요구에 부응하여, 또 카본 나노튜브의 활발한 연구에 따라, TiO2도 나노튜브 형상으로 제조되었으며, 템플레이트를 이용하는 방법(template-assisted method), 전기화학적 양극 산화법(electrochemical anodic oxidation method) 등의 방법이 발표 되었다. 그러나 공정이 복잡하고 제조 단가가 비싸 소량의 연구용 TiO2 나노튜브 합성에만 제한적으로 이용되었다.In response to these demands, and in accordance with active research on carbon nanotubes, TiO 2 was also prepared in the form of nanotubes, and methods such as a template-assisted method and an electrochemical anodic oxidation method were used. This was released. However, the process was complicated and the manufacturing cost was high, and it was limited to only a small amount of research TiO 2 nanotube synthesis.

TiO2 분말을 NaOH용액에서 반응시켜 자기 조립화적으로 TiO2 나노튜브를 생성할 수 있는 Kasuga등에 의해 1998년에 발표된 저온 용액 화학 프로세스 방법은 보다 대량적으로 간단하게 TiO2 나노튜브를 제조 할 수 있는 장점이 있다.The low temperature solution chemistry process method, published in 1998 by Kasuga et al., Which allows TiO 2 powders to react in NaOH solutions to produce self-assembled TiO 2 nanotubes, makes TiO 2 nanotubes simpler and more bulky. There is an advantage.

NaOH 농도, TiO2 고형분, 반응 온도, 반응 시간, 수세 및 중화 등의 주요 변수로 다양한 형상의 TiO2 나노튜브를 얻을 수 있다.Various shapes of TiO 2 nanotubes can be obtained by major variables such as NaOH concentration, TiO 2 solids, reaction temperature, reaction time, water washing and neutralization.

이러한 선행의 방법에는 TiO2 분말을 알카리 용액(NaOH, KaOH)에서 용해시켜 나노튜브 형성의 전구체를 제조하는 것이 핵심이나, 나노튜브의 직경과 길이의 비(aspect ratio)나 비표면적을 제어 할 수 없는 문제가 있다.
In this prior method, the TiO 2 powder is dissolved in an alkali solution (NaOH, KaOH) to prepare a precursor for forming nanotubes, but it is possible to control the ratio or specific surface area of the diameter and length of the nanotubes. There is no problem.

본 발명의 목적은 다양한 응용 분야에 활용되는 저차원 소재인 TiO2 나노튜브의 물성을 제어하는 것이다. 조금 더 구체적으로는 저온 화학 용액 프로세스의 합성 방법에 있어서 용매로 사용되는 물에 에탄올을 첨가하여 반응시킨다. 이렇게 합성 시킨 TiO2 나노튜브의 직경과 길이의 비와 비표면적을 조절 가능하게 하는 것이다.It is an object of the present invention to control the properties of TiO 2 nanotubes, which are low dimensional materials utilized in various applications. More specifically, ethanol is added and reacted with water used as a solvent in the synthesis method of the low temperature chemical solution process. Thus, the ratio and specific surface area of the synthesized TiO 2 nanotubes can be controlled.

본 발명은 TiO2 나노튜브를 저온 용액 화학 프로세스 방법으로 합성함에 있어서 용매를 에탄올과 혼합하여 반응시킨다. 110℃에서 반응시 에탄올의 양에 따라 증발되는 용매의 양이 다르기 때문에 TiO2 원료 분말이 NaOH와 반응하는데 영향을 미치게 된다. 따라서 TiO2 나노튜브의 직경과 길이의 비 및 비표면적의 제어가 가능하게 된다.In the present invention, TiO 2 nanotubes are reacted by mixing a solvent with ethanol in synthesizing a low temperature solution chemical process. Since the amount of the evaporated solvent varies depending on the amount of ethanol during the reaction at 110 ° C., the TiO 2 raw powder affects the reaction with NaOH. Therefore, the ratio and specific surface area of the diameter and length of the TiO 2 nanotubes can be controlled.

본 발명에 따르면 반응에 사용되는 NaOH의 용매로 에탄올을 초순수와 혼합하여 사용하여 TiO2 나노튜브의 직경과 길이의 비와 비표면적을 제어 가능하고, 촉매, 염료감응 태양전지의 애노드(anode) 등 다양한 응용분야에 응용될 수 있다.According to the present invention, by using ethanol mixed with ultrapure water as a solvent of NaOH used in the reaction, it is possible to control the ratio and specific surface area of the diameter and length of the TiO 2 nanotubes, catalysts, anodes of dye-sensitized solar cells, and the like. It can be applied to various applications.

도 1은 직경과 길이의 비 및 비표면적을 제어 가능한 TiO2 나노튜브의 제조방법의 각 단계에 대한 순서도이다.
도 2는 본 발명의 제조방법에 의해 제조된 TiO2 나노튜브의 주사전자 현미경(Scanning Electron Microscope, SEM) 사진이다.
도 3은 본 발명의 제조방법에 의해 제조된 TiO2 나노튜브의 X-선 회절분석 결과이다.
1 is a flow chart for each step of the method for producing TiO 2 nanotubes capable of controlling the ratio and specific surface area of diameter and length.
Figure 2 is a scanning electron microscope (Scanning Electron Microscope, SEM) photograph of the TiO 2 nanotubes prepared by the manufacturing method of the present invention.
3 is an X-ray diffraction analysis result of TiO 2 nanotubes prepared by the method of the present invention.

본 발명의 TiO2 나노튜브의 직경과 길이의 비 및 비표면적의 제어가 가능한 TiO2 나노튜브의 제조 방법 및 TiO2 나노튜브를 이용한 염료감응 태양전지(DSSC) 셀을 첨부된 도면을 참조하여 이하 상세하게 설명하기로 한다.With reference to the accompanying drawings, a dye-sensitized solar cell (DSSC) cell using TiO 2 nanotubes and a method for producing TiO 2 nanotubes capable of controlling the ratio and specific surface area of TiO 2 nanotubes according to the present invention. It will be described in detail.

본 발명의 제1 구현예는 TiO2 나노튜브의 제조 방법에 있어서, TiO2원료를 10M NaOH 용액과 함께 가열하는 열처리 단계, 초순수로 세척하는 제1 세척 단계, 0.1M HCl 용액을 첨가하여 처리하는 단계, 초순수로 재세척하는 제2 세척 단계를 포함하는 TiO2 나노튜브의 제조 방법에 관한 것이다. According to a first embodiment of the present invention, in the method for producing TiO 2 nanotubes, a heat treatment step of heating a TiO 2 raw material with a 10M NaOH solution, a first washing step of washing with ultrapure water, and treatment by adding 0.1M HCl solution It relates to a method for producing TiO 2 nanotubes comprising a step, a second washing step of washing with ultrapure water.

본 발명의 제2 구현예는 제1 구현예에 있어서, 상기 NaOH 용액의 용매는 60~90 부피%의 초순수 및 10~40 부피%의 에탄올로 이루어진 TiO2 나노튜브의 제조 방법에 관한 것이다.In a second embodiment of the present invention, in the first embodiment, the solvent of the NaOH solution relates to a method for producing TiO 2 nanotubes consisting of 60 to 90% by volume of ultrapure water and 10 to 40% by volume of ethanol.

본 발명의 제3 구현예는 제1 구현예에 있어서, 상기 열처리 단계는 110℃에서 20 내지 62시간 동안 처리하는 TiO2 나노튜브의 제조 방법에 관한 것이다.According to a third embodiment of the present invention, in the first embodiment, the heat treatment step relates to a method for preparing TiO 2 nanotubes treated at 110 ° C. for 20 to 62 hours.

본 발명의 제4 구현예는 제1 구현예에 있어서, 상기 제1세척 단계는 전기 전도도를 70μS/cm이하가 될 때까지 세척하는 TiO2 나노튜브의 제조 방법에 관한 것이다.According to a fourth embodiment of the present invention, in the first embodiment, the first washing step relates to a method for preparing TiO 2 nanotubes, which is washed until the electrical conductivity is 70 μS / cm or less.

본 발명의 제5 구현예는 제1 구현예에 있어서, 상기 제2세척 단계는 전기 전도도를 10μS/cm이하가 될 때까지 세척하는 TiO2 나노튜브의 제조 방법에 관한 것이다.In a fifth embodiment of the present invention, in the first embodiment, the second washing step relates to a method for producing TiO 2 nanotubes, which is washed until the electrical conductivity is 10 μS / cm or less.

본 발명의 제6 구현예는 제1 구현예의 TiO2 나노튜브의 제조방법에 의해서 제조된 직경과 길이의 비(aspect ratio)가 15 내지 25이고, 표면적이 280 내지 310 m2/g 인 TiO2 나노튜브에 관한 것이다.The sixth embodiment of the present invention is a TiO 2 of claim 1, and embodiments TiO 2 is 15 to 25 nm ratio (aspect ratio) of the diameter and the length produced by the production method of the tube, a surface area of 280 to 310 m 2 / g It relates to nanotubes.

본 발명의 제7 구현예는 제6 구현예의 TiO2 나노튜브를 포함하는 애노드를 포함하는 광전 변환 장치에 관한 것이다.A seventh embodiment of the present invention relates to a photoelectric conversion device including an anode including the TiO 2 nanotubes of the sixth embodiment.

본 발명의 제8 구현예는 제7항 구현예에 있어서, 상기 광전 변환 장치는 염료감응성 태양전지인 광전 변환 장치에 관한 것이다.An eighth embodiment of the invention relates to the photoelectric conversion device according to the seventh embodiment, wherein the photoelectric conversion device is a dye-sensitized solar cell.

본 발명의 제9 구현예는 제1 구현예에 있어서, 상기 제2 세척 단계 후, TiCl4 처리단계를 추가로 포함하는 TiO2 나노튜브의 제조 방법에 관한 것이다.A ninth embodiment of the present invention relates to a method of preparing TiO 2 nanotubes, further comprising the TiCl 4 treatment step in the first embodiment, after the second washing step.

본 발명의 제10 구현예는 제9 구현예의 TiO2 나노튜브의 제조 방법에 의해서 제조된 TiO2 나노튜브를 포함하는 애노드를 포함하는 광전 변환 장치에 관한 것이다.
A tenth embodiment of the present invention relates to a photoelectric conversion device including an anode including TiO 2 nanotubes prepared by the method for preparing TiO 2 nanotubes of the ninth embodiment.

본 발명을 실시하기 위한 성분조성 및 제조공정은 아래와 같다.
Component composition and manufacturing process for carrying out the invention are as follows.

1) 성분조성1) Composition

TiO2 나노튜브의 직경과 길이의 비(aspect ratio)와 비표면적의 크기를 조절하기 위하여 합성에 쓰이는 용매를 조절하였다. NaOH의 용매로 초순수(DW)와 에탄올의 비를 부피비로 각각 100:0, 90:10, 80:20, 50:50으로 만들어 반응시킨다.
The solvent used in the synthesis was controlled to control the ratio of the diameter and length of TiO 2 nanotubes and the size of the specific surface area. The ratio of ultrapure water (DW) and ethanol is 100: 0, 90:10, 80:20, and 50:50 in volume ratio, respectively.

2) 제조공정2) manufacturing process

Kasuga등에 의해 1998년에 발표된 저온 용액 화학 프로세스 방법으로 TiO2 나노튜브의 합성법을 이용한다. 조금 더 구체적으로 도1에 나타난 바와 같이, 오일 수조(oil bath)에 위치시킨 날젠병에 TiO2 원료와 10M의 NaOH 용액을 담고 약 62시간 동안 110℃에서 끓인다. 반응시키는 동안에는 용액의 농도를 맞추기 위하여 환류기를 이용하며, 합성인 끝난 뒤에는 초순수를 이용하여 전기 전도도를 70 μS/cm이하까지 세척한다. The low temperature solution chemistry process method, published in 1998 by Kasuga et al., Uses the synthesis of TiO 2 nanotubes. More specifically, as shown in FIG. 1, a TiO 2 raw material and a 10 M NaOH solution are placed in a nalzen bottle placed in an oil bath and boiled at 110 ° C. for about 62 hours. During the reaction, reflux is used to adjust the concentration of the solution. After completion of the synthesis, ultrapure water is used to wash the electrical conductivity to 70 μS / cm or less.

이후, 0.1M의 HCl 용액을 첨가하여 처리 후, 초순수를 이용하여 전기 전도도를 10 μS/cm이하까지 세척하여, TiO2 나노튜브를 제조한다.
Then, after treatment by adding 0.1M HCl solution, the electrical conductivity is washed to 10 μS / cm or less using ultrapure water, to prepare a TiO 2 nanotubes.

이하, 실시예를 들어 본 발명에 대해 보다 상세하게 설명하나, 본 발명은 하기 실시예로 제한되지 않는다.
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples.

실시예Example 1 One

표 1과 같이 혼합 용액의 에탄올 비율에 따라 이름을 붙였다. 도 2에 나타난 바와 같이 SEM 관찰로 합성 조건에 따라 모폴로지(morphology)가 변한 것을 알 수 있다. 이 사진으로부터 TiO2 나노튜브의 직경과 길이를 각각 계산하여 TiO2 나노튜브의 직경과 길이의 비 (aspect ratio)를 산출하였다. 비표면적 측정으로 에탄올 함량이 20%일 때 가장 비표면적이 큰 TiO2 나노튜브를 제조 할 수 있었다.Named according to the ethanol ratio of the mixed solution as shown in Table 1. As shown in FIG. 2, SEM observation showed that the morphology was changed according to the synthesis conditions. Respectively calculate the diameter and length of the TiO 2 nanotubes from this picture, yielding a ratio (aspect ratio) of the diameter and length of the TiO 2 nanotubes. The specific surface area was measured to produce TiO 2 nanotubes with the largest specific surface area when the ethanol content was 20%.

TNTE0은 종래와 같이 초순수만을 사용하여 TiO2 나노튜브를 합성하였다. 도3의 X-선 회절분석으로부터 결정상을 알 수 있듯이, 에탄올 함량이 50%인 경우(TNTE50)에는 반응하는데 충분한 조건이 아니어서 도2에 나타낸 바와 같이 TiO2 나노튜브가 형성되지 않고 TiO2 아나타제 상이 그대로 남아 있었다.
TNTE0 synthesized TiO 2 nanotubes using ultrapure water as in the prior art. As can be seen from the X-ray diffraction analysis of FIG. 3, when the ethanol content is 50% (TNTE50), it is not a sufficient condition for reaction, and as shown in FIG. 2, TiO 2 nanotubes are not formed and TiO 2 anatase is shown. The statue remained.

샘플명Sample name 에탄올: 물의 비율 Ethanol: Water Ratio TiO2 나노튜브의 직경과 길이의 비
(Aspect ratio)
Ratio of Diameter and Length of TiO 2 Nanotubes
(Aspect ratio)
표면적
(62시간 합성 후)
(m2/g)
Surface area
(62 hours after synthesis)
(m 2 / g)
TNTE0TNTE0 0:1000: 100 32.1 32.1 252252 TNTE10TNTE10 10:9010:90 24.6 24.6 180180 TNTE20TNTE20 20:8020:80 15.6 15.6 310310 TNTE50TNTE50 50:5050:50 -- 278278

실시예Example 2 2

본 발명에서 표면 특성을 제어한 TiO2 나노튜브를 이용하여 염료감응 태양전지(DSSC) 셀을 제조하였고, 각각의 전기적 특성을 조사하였다. 종래 기술의 TNTE0에 비하여 TNTE20은 셀 효율(cell efficiency)이 약 10% 향상 되었다. 이것은 표 2에서 보는 바와 같이 유기용매를 물과 혼합하여 합성할 때 TiO2 나노튜브의 비표면적이 증가 한 결과에 기인한 것으로 보인다. 이에 따라 흡착된 염료의 양도 증가하였다. 10%의 알코올이 포함된 용액으로 합성한 경우는 오히려 비표면적이 작아지므로 적정양의 알코올이 TiO2 나노튜브의 비표면적에 영향을 미친다고 볼 수 있다. 그러나, 50%의 알코올이 포함된 용액은 지나치게 많은 알코올의 영향으로 TiO2 나노튜브로 변환되지 못하였다.
In the present invention, a dye-sensitized solar cell (DSSC) cell was manufactured using TiO 2 nanotubes whose surface properties were controlled, and their electrical properties were investigated. Compared to the TNTE0 of the prior art, the TNTE20 has about 10% improvement in cell efficiency. This may be due to the increase in the specific surface area of TiO 2 nanotubes when the organic solvent is mixed with water as shown in Table 2. This increased the amount of dye adsorbed. In the case of synthesis with a solution containing 10% alcohol, the specific surface area is rather small, so that the proper amount of alcohol affects the specific surface area of the TiO 2 nanotubes. However, a solution containing 50% alcohol could not be converted to TiO 2 nanotubes under the influence of too much alcohol.

샘플 명칭Sample Name 단락 전류, Jsc
(mA/cm2)
Short circuit current, Jsc
(mA / cm 2 )
열린회로 전압, Voc
(V)
Open Circuit Voltage, Voc
(V)
필 팩터, FFPeel Factor, FF 셀 효율
(%)
Cell efficiency
(%)
BET 표면적
(m2/g)
BET surface area
(m 2 / g)
흡착된 염료의 양 (mol/cm2)Amount of dye adsorbed (mol / cm 2 )
TNTE0TNTE0 7.80 7.80 0.677 0.677 0.65 0.65 3.48 3.48 252252 1.38×10-7 1.38 × 10 -7 TNTE10TNTE10 3.12 3.12 0.712 0.712 0.66 0.66 1.48 1.48 180 180 5.34×10-8 5.34 × 10 -8 TNTE20TNTE20 7.95 7.95 0.689 0.689 0.70 0.70 3.88 3.88 310310 1.95×10-7 1.95 × 10 -7 TNTE50TNTE50 1.35 1.35 0.754 0.754 0.56 0.56 0.58 0.58 278278 2.34×10-8 2.34 × 10 -8

또한 빛에 의하여 염료로부터 여기된 전자가 상대전극으로 이동하는데 있어 TiO2 나노튜브간 계면 연결에 효과적인 TiCl4 처리를 적용한 경우의 전기적 특성을 조사하였다. 표 3에서 보는 바와 같이 표 2와 비교하여 TiCl4 처리로 셀 효율이 모두 향상되었으며, 종래의 TNTE0보다도 약 24% 향상된 것을 알 수 있다.
We also investigated the electrical properties of TiCl 4 treatment, which is effective for the interfacial connection between TiO 2 nanotubes to transfer electrons excited from the dye to the counter electrode by light. As shown in Table 3, all of the cell efficiencies were improved by TiCl 4 treatment, compared to Table 2, and it can be seen that about 24% improvement compared to the conventional TNTE0.

샘플 명칭Sample Name 단락 전류, Jsc
(mA/cm2)
Short circuit current, Jsc
(mA / cm 2 )
열린회로 전압, Voc
(V)
Open Circuit Voltage, Voc
(V)
필 팩터, FFPeel Factor, FF 셀 효율
(%)
Cell efficiency
(%)
BET 표면적
(m2/g)
BET surface area
(m 2 / g)
흡착된 염료의 양 (mol/cm2)Amount of dye adsorbed (mol / cm 2 )
TNTE0TNTE0 12.4 12.4 0.679 0.679 0.61 0.61 5.19 5.19 252252 1.46×10-7 1.46 × 10 -7 TNTE10TNTE10 8.89 8.89 0.719 0.719 0.72 0.72 4.64 4.64 180180 TNTE20TNTE20 13.8 13.8 0.678 0.678 0.68 0.68 6.43 6.43 310310 TNTE50TNTE50 4.22 4.22 0.759 0.759 0.71 0.71 2.28 2.28 278278

Claims (10)

TiO2 나노튜브 제조 방법에 있어서,
TiO2원료를 10M NaOH 용액과 함께 가열하는 열처리 단계,
초순수로 세척하는 제1 세척 단계,
0.1M HCl 용액을 첨가하여 처리하는 단계,
초순수로 재세척하는 제2 세척 단계를 포함하고,
상기 NaOH 용액의 용매는 50 내지 90 부피%의 초순수, 및 10 내지 50 부피%의 에탄올로 이루어진 TiO2 나노튜브 제조 방법.
In the TiO 2 nanotube manufacturing method,
Heat treatment step of heating the TiO 2 raw material with 10M NaOH solution,
A first washing step of washing with ultrapure water,
Treating by adding 0.1M HCl solution,
A second washing step of rewashing with ultrapure water,
The solvent of the NaOH solution is 50 to 90% by volume of ultrapure water, and 10 to 50% by volume of ethanol TiO 2 nanotube manufacturing method.
제1항에 있어서,
상기 NaOH 용액의 용매는 60 내지 90 부피% 미만의 초순수, 및 10 내지 40 부피%의 에탄올로 이루어진 TiO2 나노튜브 제조 방법.
The method of claim 1,
The solvent of the NaOH solution is 60 to 90% by volume of ultrapure water, and 10 to 40% by volume of ethanol TiO 2 nanotube manufacturing method.
제1항에 있어서,
상기 열처리 단계는 110℃에서 20 내지 62시간 동안 처리하는 TiO2 나노튜브 제조 방법.
The method of claim 1,
The heat treatment step is a TiO 2 nanotubes manufacturing method which is treated at 110 ℃ for 20 to 62 hours.
제1항에 있어서,
상기 제1세척 단계는 전기 전도도를 70 μS/cm이하가 될 때까지 세척하는 TiO2 나노튜브 제조 방법.
The method of claim 1,
The first washing step is a TiO 2 nanotube manufacturing method for washing until the electrical conductivity is less than 70 μS / cm.
제1항에 있어서,
상기 제2세척 단계는 전기 전도도를 10 μS/cm이하가 될 때까지 세척하는 TiO2 나노튜브 제조 방법.
The method of claim 1,
The second washing step is a TiO 2 nanotube manufacturing method for washing until the electrical conductivity is less than 10 μS / cm.
제1항의 TiO2 나노튜브 제조방법에 의해서 제조된 직경과 길이의 비(aspect ratio)가 15 내지 25이고, 표면적이 280 내지 310 m2/g 인 TiO2 나노튜브.Paragraph (1) TiO 2 nano-tubes, and a 15 to 25 ratio (aspect ratio) of the obtained diameters and lengths by the method, a specific surface area of 280 to 310 m 2 / g of TiO 2 nano-tubes. 제6항의 TiO2 나노튜브를 포함하는 애노드를 포함하는 광전 변환 장치.A photoelectric conversion device comprising an anode comprising the TiO 2 nanotubes of claim 6. 제7항에 있어서,
상기 광전 변환 장치는 염료감응성 태양전지인 것을 특징으로 하는 광전 변환 장치.
The method of claim 7, wherein
The photoelectric conversion device is a photoelectric conversion device, characterized in that the dye-sensitized solar cell.
제1항에 있어서,
상기 제2 세척 단계 후, TiCl4 처리단계를 추가로 포함하는 TiO2 나노튜브의 제조 방법.
The method of claim 1,
After the second washing step, the TiO 2 nanotubes further comprising a TiCl 4 treatment step.
삭제delete
KR1020120157546A 2012-12-28 2012-12-28 Method for TiO2 nanotube particles using mixed organic solution KR102066526B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120157546A KR102066526B1 (en) 2012-12-28 2012-12-28 Method for TiO2 nanotube particles using mixed organic solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120157546A KR102066526B1 (en) 2012-12-28 2012-12-28 Method for TiO2 nanotube particles using mixed organic solution

Publications (2)

Publication Number Publication Date
KR20140087378A KR20140087378A (en) 2014-07-09
KR102066526B1 true KR102066526B1 (en) 2020-01-15

Family

ID=51736303

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120157546A KR102066526B1 (en) 2012-12-28 2012-12-28 Method for TiO2 nanotube particles using mixed organic solution

Country Status (1)

Country Link
KR (1) KR102066526B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108671917B (en) * 2018-04-26 2021-02-19 上海羽和新材料有限公司 Catalyst for efficiently catalyzing VOCs waste gas degradation at low temperature and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998014970A1 (en) * 1996-09-30 1998-04-09 Pinnacle Research Institute, Inc. High surface area metal nitrides or metal oxynitrides for electrical energy storage

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100664751B1 (en) * 2004-02-24 2007-01-03 한국화학연구원 Preparation of titania nanotubes
KR100931134B1 (en) * 2007-08-31 2009-12-10 현대자동차주식회사 Dye-Sensitized Solar Cell Using Titanium Oxide Nanotubes and Its Manufacturing Method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998014970A1 (en) * 1996-09-30 1998-04-09 Pinnacle Research Institute, Inc. High surface area metal nitrides or metal oxynitrides for electrical energy storage

Also Published As

Publication number Publication date
KR20140087378A (en) 2014-07-09

Similar Documents

Publication Publication Date Title
Liu et al. Piezo-photoelectronic coupling effect of BaTiO3@ TiO2 nanowires for highly concentrated dye degradation
Diab et al. Facile fabrication of NiTiO3/graphene nanocomposites for photocatalytic hydrogen generation
Ge et al. A review of TiO2 nanostructured catalysts for sustainable H2 generation
Li et al. BaTiO3/TiO2 heterostructure nanotube arrays for improved photoelectrochemical and photocatalytic activity
Liu et al. Titanium dioxide nanomaterials for photocatalysis
Jiang et al. Constructing graphite-like carbon nitride modified hierarchical yolk–shell TiO 2 spheres for water pollution treatment and hydrogen production
Yang et al. Fabrication of TiO2 hollow microspheres assembly from nanosheets (TiO2-HMSs-NSs) with enhanced photoelectric conversion efficiency in DSSCs and photocatalytic activity
Haider et al. Facile preparation of hierarchical TiO2 nano structures: growth mechanism and enhanced photocatalytic H2 production from water splitting using methanol as a sacrificial reagent
Wang et al. Synergy of Ti-O-based heterojunction and hierarchical 1D nanobelt/3D microflower heteroarchitectures for enhanced photocatalytic tetracycline degradation and photoelectrochemical water splitting
Ranganathan et al. Study of photoelectrochemical water splitting using composite films based on TiO2 nanoparticles and nitrogen or boron doped hollow carbon spheres as photoanodes
Nayak et al. Microwave-assisted greener synthesis of defect-rich tungsten oxide nanowires with enhanced photocatalytic and photoelectrochemical performance
Bashiri et al. Hierarchically SrTiO3@ TiO2@ Fe2O3 nanorod heterostructures for enhanced photoelectrochemical water splitting
Rajagopal et al. Synthesis of rGO-doped Nb4O5–TiO2 nanorods for photocatalytic and electrochemical energy storage applications
Luo et al. Nonmetal element doped g-C3N4 with enhanced H2 evolution under visible light irradiation
Wang et al. Regulation of oxygen vacancies in SrTiO3 perovskite for efficient photocatalytic nitrogen fixation
Xie et al. Enhancement of photoelectrochemical activity of Fe2O3 nanowires decorated with carbon quantum dots
Gai et al. 2D-2D heterostructured CdS–CoP photocatalysts for efficient H2 evolution under visible light irradiation
Ursu et al. Investigation of the p-type dye-sensitized solar cell based on full Cu2O electrodes
Shen et al. 2D/2D/3D architecture Z‑scheme system for simultaneous H2 generation and antibiotic degradation
Wang et al. Hierarchical P-doped TiO2 nanotubes array@ Ti plate: Towards advanced CO2 photocatalytic reduction catalysts
Liu et al. Electrospinning synthesis of InVO 4/BiVO 4 heterostructured nanobelts and their enhanced photocatalytic performance
Zhou et al. In situ fabrication of Bi 2 Ti 2 O 7/TiO 2 heterostructure submicron fibers for enhanced photocatalytic activity
Xiao et al. Fabrication of In2O3/TiO2 nanotube arrays hybrids with homogeneously developed nanostructure for photocatalytic degradation of Rhodamine B
Nie et al. One-step preparation of C-doped TiO 2 nanotubes with enhanced photocatalytic activity by a water-assisted method
Dong et al. NaBH4 reduction of TiSiO nanotubes photoanode for high-efficiency photoelectrochemical water splitting

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant