KR102062439B1 - Tank internal pressure suppression device - Google Patents

Tank internal pressure suppression device Download PDF

Info

Publication number
KR102062439B1
KR102062439B1 KR1020177014419A KR20177014419A KR102062439B1 KR 102062439 B1 KR102062439 B1 KR 102062439B1 KR 1020177014419 A KR1020177014419 A KR 1020177014419A KR 20177014419 A KR20177014419 A KR 20177014419A KR 102062439 B1 KR102062439 B1 KR 102062439B1
Authority
KR
South Korea
Prior art keywords
gas
lng
tank
refrigerant gas
low temperature
Prior art date
Application number
KR1020177014419A
Other languages
Korean (ko)
Other versions
KR20170063974A (en
Inventor
마사루 오카
Original Assignee
미츠비시 조우센 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 미츠비시 조우센 가부시키가이샤 filed Critical 미츠비시 조우센 가부시키가이샤
Publication of KR20170063974A publication Critical patent/KR20170063974A/en
Application granted granted Critical
Publication of KR102062439B1 publication Critical patent/KR102062439B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • F25J1/0025Boil-off gases "BOG" from storages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0045Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/007Primary atmospheric gases, mixtures thereof
    • F25J1/0072Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0204Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a single flow SCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0229Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock
    • F25J1/023Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock for the combustion as fuels, i.e. integration with the fuel gas system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0277Offshore use, e.g. during shipping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0283Gas turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0285Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
    • F25J1/0288Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings using work extraction by mechanical coupling of compression and expansion of the refrigerant, so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • F17C2265/066Fluid distribution for feeding engines for propulsion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/62Separating low boiling components, e.g. He, H2, N2, Air

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

탱크에서 발생하는 보일오프가스를 이용하는 장치를 보다 용이하게 제작한다. 압축공기를 이용하여, LNG 탱크(1)의 내부에서 발생한 보일오프가스를 연소시킴으로써 가압 배기가스를 생성하는 가스연소기(31)와, 공기압축용 가스터빈(34)에 의하여 가압 배기가스의 팽창 과정에서 생성되는 동력을 이용하여 공기를 압축함으로써 압축공기를 생성하는 압축기(36)와, 공기압축용 가스터빈(34)과 상이한 동력회수 가스터빈(35)에 의하여 가압 배기가스를 이용하여 생성되는 회수동력을 이용하는 부하(37)를 구비하고 있다. 이와 같은 탱크내압 억제장치는, 공기압축용 가스터빈(34)에 의하여 생성되는 동력을 부하(37)가 이용하는 다른 탱크내압 억제장치(10)와 비교하여, 보다 용이하게 구성할 수 있다.The apparatus using the boil-off gas which arises from a tank is manufactured more easily. Expansion process of pressurized exhaust gas by the gas combustor 31 which produces pressurized exhaust gas by burning the boil-off gas which generate | occur | produced inside the LNG tank 1 using compressed air, and the gas compressor 34 for air compression. Recovery generated by the pressurized exhaust gas by the compressor 36 which generates compressed air by compressing the air by using the power generated in the air, and the power recovery gas turbine 35 which is different from the air compression gas turbine 34. A load 37 using power is provided. Such a tank internal pressure suppression apparatus can be configured more easily than the other tank internal pressure suppression apparatus 10 used by the load 37 for the power generated by the air compression gas turbine 34.

Figure R1020177014419
Figure R1020177014419

Description

탱크내압 억제장치{TANK INTERNAL PRESSURE SUPPRESSION DEVICE}Tank pressure suppression device {TANK INTERNAL PRESSURE SUPPRESSION DEVICE}

본 발명은, 탱크내압 억제장치에 관한 것으로, 특히, LNG를 저장하는 탱크의 내압의 상승을 억제하는 탱크내압 억제장치에 관한 것이다.TECHNICAL FIELD This invention relates to a tank internal pressure suppression apparatus. Specifically, It is related with the tank internal pressure suppression apparatus which suppresses the raise of the internal pressure of the tank which stores LNG.

LNG(Liquefied Natural Gas:액화 천연가스)를 저장하는 LNG 탱크가 알려져 있다. LNG 탱크는, LNG 탱크의 내부에서 보일오프가스가 발생함으로써 내압이 상승한다. 그 내압이 LNG 탱크의 허용압력을 넘지 않도록 보일오프가스를 빼내 처리할 필요가 있다.LNG tanks for storing LNG (Liquefied Natural Gas) are known. In an LNG tank, internal pressure rises because the boil-off gas generate | occur | produces inside an LNG tank. It is necessary to remove and process the boil-off gas so that the internal pressure may not exceed the allowable pressure of an LNG tank.

일본 특허공보 제4859980호에는, LNG 탱크에서 발생하는 보일오프가스를 이용하는 LNG 냉열이용 가스터빈이 개시되어 있다. 이와 같은 LNG 냉열이용 가스터빈은, LNG 탱크로부터 보일오프가스의 일부를 빼냄으로써, 내압을 감압시켜, LNG 탱크의 건전성을 유지할 수 있다.Japanese Patent No. 4859980 discloses an LNG cold heat gas turbine using a boil off gas generated in an LNG tank. Such a LNG cooling gas turbine can reduce the internal pressure and maintain the integrity of the LNG tank by removing a part of the boil-off gas from the LNG tank.

특허문헌 1: 일본 특허공보 제4859980호Patent Document 1: Japanese Patent No. 4859980

LNG 탱크에서 발생하는 보일오프가스는, 공기냉각식 소각로에서 연소 폐기하거나, 선박의 보일러로 연료로서 공급하여 잉여가 된 증기를 해수로 냉각 응축시켜 폐기하는 경우가 많아, 유효하게 이용하는 것이 요망되고 있다. 한편, 보일오프가스를 이용하는 장치는, 선박에서 이용하기 위해서는, 보다 단순한 구성인 것이 요망되고 있다.In many cases, the boiler-off gas generated in the LNG tank is burned and discarded in an air-cooled incinerator, or is supplied as fuel to a ship's boiler, and the excess steam is cooled and condensed by sea water, which is desired to be effectively used. . On the other hand, the apparatus using the boil-off gas is desired to have a simpler configuration in order to use in a ship.

본 발명의 과제는, 탱크에서 발생하는 보일오프가스를 유효하게 이용하며, 또한, 보다 용이하게 구성되는 탱크내압 억제장치를 제공하는 것에 있다.An object of the present invention is to provide a tank internal pressure suppression apparatus which effectively utilizes a boil-off gas generated in a tank and is more easily configured.

본 발명에 의한 탱크내압 억제장치는, 가스연소기와 복수의 가스터빈과 압축기와 부하를 구비하고 있다. 가스연소기는, 압축공기를 이용하여, 탱크의 내부에서 발생한 보일오프가스를 연소시킴으로써 가압 배기가스를 생성한다. 복수의 가스터빈은, 이 가압 배기가스를 이용하여 복수의 동력을 각각 생성한다. 압축기는, 이들 복수의 가스터빈 중 공기압축용 가스터빈에 의하여 생성되는 동력을 이용하여 공기를 압축함으로써 압축공기를 생성한다. 부하는, 상기 복수의 가스터빈 중 공기압축용 가스터빈과 상이한 동력회수 가스터빈에 의하여 생성되는 회수동력을 이용한다.The tank internal pressure suppression apparatus according to the present invention includes a gas burner, a plurality of gas turbines, a compressor, and a load. The gas combustor uses pressurized air to burn pressurized off gas generated inside the tank to generate pressurized exhaust gas. A plurality of gas turbines respectively generate a plurality of powers using this pressurized exhaust gas. The compressor generates compressed air by compressing air by using power generated by the gas compressor for air compression among the plurality of gas turbines. The load utilizes recovery power generated by a power recovery gas turbine different from the air compression gas turbine among the plurality of gas turbines.

이와 같은 탱크내압 억제장치는, 선내에서 필요한 회전 구동동력을 공급하는 것에 유효하게 이용된다. 즉, 보일오프가스를 가스연소기에서 압축공기로 연소시킴으로써 생성되는 가압 배기가스 유량이, 그 압축공기를 생성하는 공기압축용 가스터빈이 필요로 하는 가압 배기가스 유량보다 많을 때에, 본 장치가 성립하며, 그 이상의 잉여가 된 가압 배기가스 유량을 공기압축용 가스터빈과 별체의 동력회수 가스터빈에 의하여 생성되는 회수동력으로 하여, 다른 부하에 유효하게 이용할 수 있다. 이와 같은 탱크내압 억제장치는, 회수동력을 공기압축 이외의 용도로서의 다른 부하가 이용할 수 있다. 이로써, 가스연소기에서 필요한 압축공기를 다른 구동원을 이용한 공기압축용 가스터빈에 의하여 생성되도록 구성한 다른 탱크내압 억제장치와 비교하여, 다른 구동원이 불필요해지므로, 보다 단순한 구성으로 할 수 있다.Such a tank internal pressure suppression apparatus is effectively used for supplying a rotational driving power necessary inboard. That is, the apparatus is established when the pressurized exhaust gas flow rate generated by burning the boil-off gas with compressed air in the gas burner is higher than the pressurized exhaust gas flow rate required by the air compression gas turbine generating the compressed air. The surplus pressurized exhaust gas flow rate can be effectively used for other loads by using the recovery power generated by the air compression gas turbine and the separate power recovery gas turbine. In such a tank internal pressure suppression apparatus, the recovery power can be used by other loads as applications other than air compression. As a result, other driving sources are not required as compared with other tank internal pressure suppressing devices configured to generate the compressed air required by the gas combustor by means of an air compression gas turbine using another driving source, so that a simpler configuration can be achieved.

상기 가스연소기는, 상기 복수의 가스터빈에 대응하는 복수의 가스연소기 요소를 구비하고 있어도 된다. 이 때, 상기 복수의 가스터빈 중 임의의 가스터빈은, 상기 복수의 가스연소기 요소 중 이 임의의 가스터빈에 대응하는 대응 가스연소기 요소에 의하여 생성되는 가압 배기가스를 이용하여 동력을 생성한다.The gas burner may be provided with a plurality of gas burner elements corresponding to the plurality of gas turbines. At this time, any of the plurality of gas turbines generates power by using pressurized exhaust gas generated by the corresponding gas burner element corresponding to the arbitrary gas turbine of the plurality of gas burner elements.

이와 같은 탱크내압 억제장치는, 보일오프가스가 복수의 가스연소기 요소에 각각 공급량을 변화시켜 공급함으로써, 복수의 가스터빈이 각각 생성하는 복수의 동력을 변화시킬 수 있다. 이들 복수의 동력을 이용하는 부하를 보다 적합하게 변화시킬 수 있으므로, 보다 단순한 구성으로 할 수 있다.Such a tank internal pressure suppression apparatus can change the plural powers generated by the plural gas turbines by supplying the boyoff gas to the plural gas combustor elements in varying amounts. Since the load using these several powers can be changed more suitably, a simpler structure can be attained.

본 발명에 의한 탱크내압 억제장치는, 고압 냉매가스를 이용한 냉동사이클로 LNG를 냉각함으로써 생성된 저온 LNG를 상기 탱크에 공급하는 냉동기를 더 구비하고 있어도 된다. 이 때, 상기 부하는, 잉여동력을 이용하여 저압 냉매가스를 압축함으로써 상기 고압 냉매가스를 생성한다.The tank internal pressure suppression apparatus according to the present invention may further include a refrigerator for supplying the tank with low temperature LNG generated by cooling the LNG in a refrigeration cycle using a high-pressure refrigerant gas. At this time, the load generates the high pressure refrigerant gas by compressing the low pressure refrigerant gas using surplus power.

이와 같은 탱크내압 억제장치는, 고압 냉매가스를 생성하기 위한 동력이 동력회수 가스터빈으로 회수된 잉여동력을 이용함으로써, 고압 냉매가스를 생성하기 위한 동력이 전력을 이용한 전동모터 등에서 생성되는 다른 장치와 비교하여, 전력에너지의 소비량을 저감할 수 있다.Such a tank internal pressure suppression apparatus is a power source for generating high pressure refrigerant gas by using the surplus power recovered by the power recovery gas turbine, and the power for generating high pressure refrigerant gas is generated from an electric motor or the like using electric power. In comparison, the power consumption can be reduced.

상기 냉동기는, 상기 고압 냉매가스를 냉각함으로써 저온 고압 냉매가스를 생성하는 제1 열교환기와, 이 저온 고압 냉매가스를 단열 팽창시킴으로써 저온 저압 냉매가스를 생성하는 팽창터빈과, 이 저온 저압 냉매가스를 이용하여, 탱크에 저장되는 LNG를 냉각함으로써 저온 LNG를 생성하는 제2 열교환기를 구비하고 있어도 된다. 이 때, 제1 열교환기와 제2 열교환기는, 또한, 상기 저온 저압 냉매가스를 가열함으로써 상기 저압 냉매가스를 생성한다.The refrigerator uses a first heat exchanger that cools the high-pressure refrigerant gas to generate a low-temperature, high-pressure refrigerant gas, an expansion turbine that generates low-temperature and low-pressure refrigerant gas by adiabatic expansion of the low-temperature, high-pressure refrigerant gas, and the low-temperature and low-pressure refrigerant gas. And a second heat exchanger that generates low-temperature LNG by cooling the LNG stored in the tank. At this time, the first heat exchanger and the second heat exchanger also generate the low pressure refrigerant gas by heating the low temperature low pressure refrigerant gas.

이와 같은 냉동기는, LNG의 냉각에 이용된 후의 저온 저압 냉매가스를 이용하여 단열 팽창하기 직전의 고압 냉매가스를 예랭함으로써, 저온 저압 냉매가스를 이용하지 않고 냉각하는 다른 냉동기와 비교하여, 냉열원을 유효하게 이용할 수 있으므로, 저온 저압 냉매가스를 보다 적절히 생성할 수 있으며, LNG를 보다 고효율로 냉각하여, 보일오프가스의 발생을 억제할 수 있다.Such a refrigerator uses a low temperature low pressure refrigerant gas after being used for cooling LNG to precool the high pressure refrigerant gas immediately before thermal insulation expansion, thereby comparing the cold heat source with other refrigerators that do not use the low temperature low pressure refrigerant gas. Since it can utilize effectively, low-temperature, low-pressure refrigerant gas can be produced more appropriately, LNG can be cooled more efficiently, and generation | occurrence | production of a boyoff gas can be suppressed.

상기 냉동기는, 보일오프가스를 액화함으로써 액화 보일오프가스를 생성하는 콘덴서를 더 구비하고 있어도 된다. 이 때, 제2 열교환기는, 또한, 이 액화 보일오프가스를 냉각함으로써 생성된 저온 액화 보일오프가스를 상기 탱크에 공급한다. 상기 콘덴서는, 또한, 상기 저온 저압 냉매가스를 가열한다.The refrigerator may further include a condenser that generates liquefied boil-off gas by liquefying the boil-off gas. At this time, the second heat exchanger also supplies a low temperature liquefied boil-off gas generated by cooling the liquefied boil-off gas to the tank. The capacitor further heats the low temperature low pressure refrigerant gas.

이와 같은 탱크내압 억제장치는, 냉동기가 보일오프가스를 액화함으로써, 보일오프가스의 발생을 억제하여, 탱크의 내압을 적절히 감압시킬 수 있다.Such a tank internal pressure suppression apparatus can suppress the generation of the boil-off gas by liquefying the boil-off gas in the refrigerator, and can appropriately reduce the internal pressure of the tank.

본 발명에 의한 탱크내압 억제장치는, 축냉열시스템을 더 구비하고 있어도 된다. 이 때, 상기 제2 열교환기는, 또한, 저온 냉매가스를 냉각함으로써 생성된 액화 냉매가스를 이 축냉열시스템에 저장하며, 이 액화 냉매가스를 더 이용하여 상기 LNG를 냉각한다.The tank internal pressure suppression apparatus according to the present invention may further include a heat storage cooling system. At this time, the second heat exchanger further stores the liquefied refrigerant gas generated by cooling the low temperature refrigerant gas in the storage cooling system, and further uses the liquefied refrigerant gas to cool the LNG.

이와 같은 탱크내압 억제장치는, 냉동기가 액화 냉매가스를 생성하거나, 냉동기가 그 액화 냉매가스를 이용하여 LNG를 냉각하거나 함으로써, 냉동기의 부하가 변동할 때에도, LNG를 적절히 냉각할 수 있다.Such a tank internal pressure suppression apparatus can appropriately cool LNG even when the load of the refrigerator fluctuates because the refrigerator generates liquefied refrigerant gas or the refrigerator cools LNG using the liquefied refrigerant gas.

본 발명에 의한 탱크내압 억제장치는, 고온 냉매가스를 이용하여, 상기 LNG를 가열함으로써 고온 LNG를 생성하는 LNG 가열장치를 더 구비하고 있어도 된다. 이 때, 상기 냉동기는, 또한, 상기 저온 냉매가스를 가열함으로써 상기 고온 냉매가스를 생성한다. 이 LNG 가열장치는, 또한, 상기 고온 냉매가스를 냉각함으로써 상기 저온 냉매가스를 생성한다.The tank internal pressure suppression apparatus according to the present invention may further include an LNG heater for generating high temperature LNG by heating the LNG using a high temperature refrigerant gas. At this time, the refrigerator further generates the high temperature refrigerant gas by heating the low temperature refrigerant gas. The LNG heater further generates the low temperature refrigerant gas by cooling the high temperature refrigerant gas.

이와 같은 탱크내압 억제장치는, LNG 가열장치에 의하여 생성된 저온 냉매가스의 냉열을 이용하여 LNG를 냉각함으로써, 냉동기의 부하를 저감할 수 있다.Such a tank internal pressure suppressor can reduce the load of a refrigerator by cooling LNG using the cold heat of the low temperature refrigerant gas produced by the LNG heater.

본 발명에 의한 선박은, 청구항 7에 기재되는 탱크내압 억제장치와, 상기 고온 LNG를 이용하여 추진용 동력을 생성하는 엔진과, 이 추진용 동력을 이용하여 선박 본체를 추진시키는 추진장치를 구비하고 있다.The ship according to the present invention includes a tank internal pressure suppression apparatus according to claim 7, an engine for generating propulsion power using the high temperature LNG, and a propulsion device for propelling the ship body using the propulsion power. have.

이와 같은 선박은, 그 탱크내압 억제장치가 보일오프가스에 의하여 냉동기를 구동시키므로, 보다 단순한 구성으로, 보다 선내 동력을 절약할 수 있다.In such a vessel, since the tank internal pressure suppression apparatus drives the refrigerator by the boil-off gas, the inboard power can be further saved with a simpler configuration.

본 발명에 의한 탱크내압 억제방법은, 압축공기를 이용하여 보일오프가스를 연소시킴으로써 가압 배기가스를 생성하는 단계, 복수의 가스터빈 중 공기압축용 가스터빈에 의하여 이 가압 배기가스를 이용하여 생성되는 동력을 이용하여 공기를 압축함으로써 상기 압축공기를 생성하는 단계, 상기 복수의 가스터빈 중 상기 공기압축용 가스터빈과 상이한 동력회수 가스터빈에 의하여 상기 가압 배기가스를 이용하여 생성되는 회수동력을 이용하여 부하를 동작시키는 단계를 포함하고 있다.In the method of suppressing the internal pressure of the tank according to the present invention, the pressurized exhaust gas is generated by burning the boil-off gas using compressed air, and the pressurized exhaust gas is generated by the gas compression gas turbine among the plurality of gas turbines. Generating the compressed air by compressing air by using power, and using recovery power generated by using the pressurized exhaust gas by a power recovery gas turbine different from the air compression gas turbine among the plurality of gas turbines. Operating the load.

이와 같은 탱크내압 억제방법을 실행하는 탱크내압 억제장치는, 공기압축용 가스터빈과 별체의 동력회수 가스터빈이 가압 배기가스를 이용함으로써, 공기압축용 가스터빈에 의하여 생성되는 동력을 공기의 압축 이외에 이용하는 다른 탱크내압 억제장치와 비교하여, 발생하는 보일오프가스를 보다 유효하게 이용할 수 있어, 보다 단순한 구성으로 할 수 있다.The tank internal pressure suppression apparatus which implements such a method for suppressing the internal pressure of the tank uses a pressurized exhaust gas between the air compression gas turbine and the separate power recovery gas turbine, so that the power generated by the air compression gas turbine is used in addition to the compression of the air. Compared with the other tank internal pressure suppressing apparatus to be used, the generated boil-off gas can be used more effectively, and a simpler structure can be obtained.

본 발명에 의한 별도의 탱크내압 억제장치는, LNG를 저장하는 탱크의 내부에서 발생한 보일오프가스를 냉각함으로써 보일오프가스를 액화하고, 이 액화 보일오프가스를 상기 탱크에 공급하는 냉동기와, 고온 냉매가스를 이용하여, 상기 LNG를 가열함으로써 고온 LNG를 생성하는 LNG 가열장치를 구비하고 있다. 이 때, 상기 냉동기는, 또한, 저온 냉매가스가 가열되어 고온 냉매가스가 된다. 이 LNG 가열장치는, 다시, 고온 냉매가스를 냉각함으로써 저온 냉매가스로 한다.Another tank pressure suppression apparatus according to the present invention is a refrigerator for liquefying a boil-off gas generated by cooling a boil-off gas generated inside a tank storing LNG, and supplying the liquefied boil-off gas to the tank, and a high temperature refrigerant. The LNG heating apparatus which produces | generates high temperature LNG by heating the said LNG using gas is provided. At this time, the cryocooler is further heated with a low temperature refrigerant gas to become a high temperature refrigerant gas. The LNG heater is further cooled to low temperature refrigerant gas by cooling the high temperature refrigerant gas.

이와 같은 탱크내압 억제장치는, LNG 가열장치에 의하여 냉각된 저온 냉매가스의 냉열을 이용하여 LNG를 냉각함으로써, 냉동기의 부하를 저감할 수 있다.Such a tank internal pressure suppression apparatus can reduce the load of a refrigerator by cooling LNG using the cold heat of the low temperature refrigerant gas cooled by the LNG heater.

본 발명에 의한 탱크내압 억제장치는, 탱크에서 발생하는 보일오프가스를 유효하게 이용할 수 있어, 보다 용이하게 구성될 수 있다.The tank internal pressure suppression apparatus according to the present invention can effectively use the boil-off gas generated in the tank, and can be configured more easily.

도 1은 탱크내압 억제장치를 구비하는 선박을 나타내는 블록도이다.
도 2는 다른 가스 연소시스템을 나타내는 블록도이다.
1 is a block diagram showing a vessel provided with a tank internal pressure suppression apparatus.
2 is a block diagram showing another gas combustion system.

도면을 참조하여, 탱크내압 억제장치의 실시형태가 이하에 기재된다. 그 탱크내압 억제장치(10)는, 도 1에 나타나 있으며, 선박에 이용되고 있다. 선박은, 탱크내압 억제장치(10) 외에, LNG 탱크(1)와 엔진(2)과 추진장치(3)를 구비하고, 도시하지 않은 선박 본체를 구비하고 있다. 선박 본체에는, 탱크내압 억제장치(10)와 LNG 탱크(1)와 엔진(2)과 추진장치(3)가 설치되어 있다.EMBODIMENT OF THE INVENTION With reference to drawings, embodiment of a tank internal pressure suppression apparatus is described below. The tank internal pressure suppression apparatus 10 is shown in FIG. 1 and is used for a ship. In addition to the tank internal pressure suppression apparatus 10, the ship is equipped with the LNG tank 1, the engine 2, and the propulsion apparatus 3, and is equipped with the ship main body which is not shown in figure. The tank body pressure suppression apparatus 10, the LNG tank 1, the engine 2, and the propulsion apparatus 3 are provided in the ship main body.

LNG 탱크(1)는, LNG를 저장하고 있다. LNG 탱크(1)는, 내압이 소정의 허용 내압보다 높아지지 않도록, 내압을 감압시켜, LNG 탱크의 건전성을 유지하도록 할 필요가 있다. LNG 탱크(1)는, LNG를 탱크내압 억제장치(10)에 소정량을 보유하며, LNG는 비점이 약 -160?로 낮기 때문에 LNG 탱크 내에서 증발한다. 이로써 생성되는 보일오프가스를 탱크내압 억제장치(10)로, 소정 유량으로 공급한다. 보일오프가스는 후술하는 각 열교환기로 열교환된 후에, 후술하는 연소시스템(8)의 가스연소기(31)로 공급된다.The LNG tank 1 stores LNG. It is necessary for the LNG tank 1 to reduce the internal pressure so that internal pressure may not become higher than predetermined permissible internal pressure, and to maintain the integrity of an LNG tank. The LNG tank 1 holds a predetermined amount of LNG in the tank internal pressure suppression apparatus 10, and since LNG has a boiling point as low as about -160 占?, The LNG tank 1 evaporates in the LNG tank. The boil-off gas thus produced is supplied to the tank internal pressure suppressor 10 at a predetermined flow rate. The boil-off gas is heat-exchanged with each heat exchanger mentioned later, and is then supplied to the gas combustor 31 of the combustion system 8 mentioned later.

한편, LNG는 후술하는 승압펌프(11)로 고압으로 하고, 액체 상태인 채 후술하는 열교환기(16)에 의하여 승온하여, 고온 LNG가 된다. 엔진(2)은, 탱크내압 억제장치(10)로부터 공급된 고온 LNG를 연소함으로써 동력을 생성한다. 추진장치(3)는, 엔진(2)에 의하여 생성된 동력을 이용하여, 선박 본체를 추진시키는 추진력을 생성한다.On the other hand, LNG is made into high pressure by the boosting pump 11 mentioned later, and it heats up by the heat exchanger 16 mentioned later in a liquid state, and becomes high temperature LNG. The engine 2 generates power by burning high temperature LNG supplied from the tank internal pressure suppression apparatus 10. The propulsion device 3 generates a propulsion force for propelling the ship body using the power generated by the engine 2.

탱크내압 억제장치(10)는, LNG 가열장치(5)와 축냉열시스템(6)과 냉동기(7)와 연소시스템(8)을 구비하고, 도시하지 않은 제어장치를 구비하고 있다. LNG 가열장치(5)는, 승압펌프(11)와 가열장치(12)와 냉매가스 공급장치(14)와 서큘레이터(15)와 열교환기(16)를 구비하고 있다. 승압펌프(11)는, LNG 탱크(1)로부터 탱크내압 억제장치(10)에 공급되는 LNG를 승압함으로써, LNG를 열교환기(16)에 공급한다. 냉동기(7)는 질소 냉매를 이용한 냉동사이클로 구성되며, LNG 가열장치(5)와 냉동기(7)에서 질소를 순환시키는 계통인 제1 질소가스와, 냉동기(7)와 연소시스템(8)에서 질소를 순환시키는 계통인 제2 질소가스가 있다. 제1 질소가스와 제2 질소가스는, 축냉열시스템(6)을 통하여 결합되어 있다. 가열장치(12)는, 해수 등을 이용하여, 냉동기(7)로부터 공급되는 고온 제1 질소가스를 가열한다. 냉매가스 공급장치(14)는, 냉동기(7)로부터 공급되는 고온 제1 질소가스의 양이 소정의 양보다 부족할 때, 가열장치(12)에 의하여 가열된 고온 제1 질소가스에 질소가스를 혼합한다. 서큘레이터(15)는, 가열장치(12)에 의하여 가열된 고온 제1 질소가스를 승압함으로써, 고온 제1 질소가스를 열교환기(16)에 공급한다.The tank internal pressure suppression apparatus 10 includes an LNG heater 5, a heat storage cooling system 6, a refrigerator 7, and a combustion system 8, and includes a control device (not shown). The LNG heating device 5 includes a boosting pump 11, a heating device 12, a refrigerant gas supply device 14, a circulator 15, and a heat exchanger 16. The boosting pump 11 boosts LNG supplied from the LNG tank 1 to the tank internal pressure suppression apparatus 10, and supplies LNG to the heat exchanger 16. The refrigerator 7 comprises a refrigeration cycle using a nitrogen refrigerant, the first nitrogen gas which is a system for circulating nitrogen in the LNG heater 5 and the refrigerator 7, and the nitrogen in the refrigerator 7 and the combustion system 8. There is a second nitrogen gas which is a system that circulates. The first nitrogen gas and the second nitrogen gas are combined via the heat storage cooling system 6. The heating device 12 heats the high temperature first nitrogen gas supplied from the refrigerator 7 by using sea water or the like. The refrigerant gas supply device 14 mixes nitrogen gas with the high temperature first nitrogen gas heated by the heating device 12 when the amount of the high temperature first nitrogen gas supplied from the refrigerator 7 is less than a predetermined amount. do. The circulator 15 boosts the high temperature first nitrogen gas heated by the heating device 12 to supply the high temperature first nitrogen gas to the heat exchanger 16.

열교환기(16)는, 서큘레이터(15)로부터 공급된 고온 제1 질소가스의 열을 승압펌프(11)로부터 공급된 LNG에 전열시킨다. 즉, 열교환기(16)는, 서큘레이터(15)로부터 공급된 고온 제1 질소가스를 LNG에 의하여 냉각함으로써 저온 제1 질소가스를 생성하고, 승압펌프(11)로부터 공급된 LNG를 가열함으로써 고온 LNG를 생성한다. LNG 가열장치(5)는, 열교환기(16)에 의하여 생성된 저온 제1 질소가스를 냉동기(7)에 공급한다. 탱크내압 억제장치(10)는, 열교환기(16)에 의하여 생성된 고온 LNG를 엔진(2)에 공급한다.The heat exchanger 16 transfers heat of the high temperature 1st nitrogen gas supplied from the circulator 15 to LNG supplied from the boosting pump 11. That is, the heat exchanger 16 generates the low temperature first nitrogen gas by cooling the high temperature first nitrogen gas supplied from the circulator 15 by LNG, and heats the LNG supplied from the boost pump 11 to heat the high temperature. Generate LNG. The LNG heater 5 supplies the low temperature first nitrogen gas generated by the heat exchanger 16 to the refrigerator 7. The tank internal pressure suppressor 10 supplies the high temperature LNG generated by the heat exchanger 16 to the engine 2.

축냉열시스템(6)은, 밸브(17)와 액체 질소탱크(18)와 밸브(19)를 구비하고 있다. 밸브(17)는, 냉동기(7)에 의하여 생성된 액체 질소를 액체 질소탱크(18)에 공급하고, 제어장치로 제어됨으로써, 액체 질소가 액체 질소탱크(18)에 공급되는 유량을 변동시킨다. 액체 질소탱크(18)는, 밸브(17)로부터 공급된 액체 질소를 저장한다. 밸브(19)는, 액체 질소탱크(18)에 저장된 액체 질소를 냉동기(7)에 공급하고, 제어장치로 제어됨으로써, 액체 질소가 냉동기(7)에 공급되는 유량을 변동시킨다.The heat storage cooling system 6 includes a valve 17, a liquid nitrogen tank 18, and a valve 19. The valve 17 supplies the liquid nitrogen produced by the refrigerator 7 to the liquid nitrogen tank 18 and is controlled by a controller, thereby varying the flow rate of the liquid nitrogen supplied to the liquid nitrogen tank 18. The liquid nitrogen tank 18 stores liquid nitrogen supplied from the valve 17. The valve 19 supplies the liquid nitrogen stored in the liquid nitrogen tank 18 to the refrigerator 7 and is controlled by a controller so as to vary the flow rate at which the liquid nitrogen is supplied to the refrigerator 7.

냉동기(7)는, 냉각장치(21)와 제1 예랭장치(22)와 제2 예랭장치(23)와 팽창터빈(24)과 열교환기(25)와 콘덴서(26)와 블로어(27)와 기액분리장치(28)를 구비하고 있다.The refrigerator 7 includes a cooling device 21, a first precooling device 22, a second precooling device 23, an expansion turbine 24, a heat exchanger 25, a condenser 26, a blower 27, A gas-liquid separator 28 is provided.

냉각장치(21)는, 해수 등을 이용하여, 연소시스템(8)으로부터 냉동기(7)에 공급되는 고압 제2 질소가스를 냉각한다. 제1 예랭장치(22)는, 냉각장치(21)에 의하여 냉각된 고압 제2 질소가스의 열을, 제2 예랭장치(23)에 의하여 가열된 저온 저압 제2 질소가스와 저온 보일오프가스에 전열한다. 즉, 제1 예랭장치(22)는, 냉각장치(21)에 의하여 냉각된 고압 제2 질소가스를 더 냉각하고, 제2 예랭장치(23)에 의하여 가열된 저온 저압 제2 질소가스와 보일오프가스를 가열한다. 제2 예랭장치(23)는, 제1 예랭장치(22)에 의하여 냉각된 고압 제2 질소가스의 열을, 콘덴서(26)에 의하여 가열된 저온 제2 질소가스와 저온 저압 제2 질소가스와 기액분리장치(28)에 의하여 생성된 저온 보일오프가스에 전열한다. 즉, 제2 예랭장치(23)는, 제1 예랭장치(22)에 의하여 냉각된 고압 제2 질소가스를 냉각하고, 콘덴서(26)에 의하여 가열된 저온 제2 질소가스와 저온 저압 제2 질소가스를 가열하며, 기액분리장치(28)에 의하여 생성된 저온 보일오프가스를 가열한다. 이 때, 냉동기(7)는, 기액분리장치(28)에 의하여 생성되는 저온 보일오프가스가 제1 예랭장치(22)와 제2 예랭장치(23)에 의하여 가열됨으로써 생성된 연소용 보일오프가스를 연소시스템(8)에 공급한다.The cooling device 21 cools the high-pressure second nitrogen gas supplied from the combustion system 8 to the refrigerator 7 using sea water or the like. The first precooling device 22 transfers the heat of the high pressure second nitrogen gas cooled by the cooling device 21 to the low temperature low pressure second nitrogen gas and the low temperature boiloff gas heated by the second precooling device 23. Heat it up. That is, the 1st precooling apparatus 22 further cools the high pressure 2nd nitrogen gas cooled by the cooling apparatus 21, and the low temperature low pressure 2nd nitrogen gas heated by the 2nd preliminary cooling apparatus 23 and a boy-off Heat the gas. The second preliminary preliminary cooling apparatus 23 uses the low temperature second nitrogen gas and the low temperature low pressure second nitrogen gas heated by the condenser 26 to heat heat of the high pressure second nitrogen gas cooled by the first preliminary cooling apparatus 22. Heat is transmitted to the low temperature boil-off gas produced by the gas-liquid separator 28. That is, the second precooling device 23 cools the high pressure second nitrogen gas cooled by the first precooling device 22, and the low temperature second nitrogen gas and the low temperature low pressure second nitrogen heated by the condenser 26. The gas is heated, and the low temperature boil-off gas generated by the gas-liquid separator 28 is heated. At this time, the refrigeration unit 7 is a combustion boil-off gas generated by the low temperature boil-off gas generated by the gas-liquid separator 28 is heated by the first preliminary device 22 and the second preliminary device 23. Is fed to the combustion system (8).

팽창터빈(24)은, 연소시스템(8)으로부터 공급되는 고압 제2 질소가스가 냉각장치(21)와 제1 예랭장치(22)와 제2 예랭장치(23)에 의하여 냉각된 저온 고압 제2 질소가스를 단열 팽창시킴으로써, 저온 저압 제2 질소가스를 생성하고, 회전동력을 생성한다.The expansion turbine 24 is a low-temperature, high-pressure second gas in which the high-pressure second nitrogen gas supplied from the combustion system 8 is cooled by the cooling device 21, the first preliminary cooling device 22, and the second preliminary cooling device 23. By adiabatic expansion of nitrogen gas, a low temperature low pressure 2nd nitrogen gas is produced and rotational power is produced | generated.

열교환기(25)는, 기액분리장치(28)에 의하여 생성되는 액화 보일오프가스의 열과 LNG 탱크(1)로부터 공급되는 LNG의 열과 LNG 가열장치(5)로부터 공급되는 저온 제1 질소가스의 응축열을, 팽창터빈(24)에 의하여 생성되는 저온 저압 제2 질소가스와 축냉열시스템(6)에 의하여 저장되는 액체 질소에 전열한다. 즉, 열교환기(25)는, LNG 탱크(1)로부터 공급되는 LNG를 냉각함으로써 저온 LNG를 생성하고, 기액분리장치(28)에 의하여 생성되는 액화 보일오프가스를 냉각함으로써 저온 액화 보일오프가스를 생성한다. 열교환기(25)는, 또한, LNG 가열장치(5)로부터 공급되는 저온 제1 질소가스를 냉각함으로써 액체 질소를 생성한다. 열교환기(25)는, 또한, 팽창터빈(24)에 의하여 생성되는 저온 저압 제2 질소가스에 축냉열시스템(6)으로부터 공급되는 액체 질소를 혼합하여, 저온 저압 제2 질소가스를 가열한다. 이 때, 냉동기(7)는, 저온 LNG와 저온 액화 보일오프가스를 LNG 탱크(1)에 공급하고, 액체 질소를 축냉열시스템(6)에 공급한다.The heat exchanger 25 includes heat of liquefied boil-off gas generated by the gas-liquid separator 28, heat of LNG supplied from the LNG tank 1, and heat of condensation of low-temperature first nitrogen gas supplied from the LNG heater 5. Is transferred to the low temperature low pressure second nitrogen gas produced by the expansion turbine 24 and the liquid nitrogen stored by the heat storage cooling system 6. That is, the heat exchanger 25 generates low-temperature LNG by cooling the LNG supplied from the LNG tank 1, and cools the liquefied boil-off gas generated by the gas-liquid separator 28 to cool the low-temperature liquefied boil-off gas. Create The heat exchanger 25 also generates liquid nitrogen by cooling the low temperature first nitrogen gas supplied from the LNG heater 5. The heat exchanger 25 further mixes the liquid nitrogen supplied from the heat storage cooling system 6 with the low temperature low pressure second nitrogen gas generated by the expansion turbine 24 to heat the low temperature low pressure second nitrogen gas. At this time, the refrigerator 7 supplies the low temperature LNG and the low temperature liquefied boil-off gas to the LNG tank 1, and supplies the liquid nitrogen to the heat storage cooling system 6.

콘덴서(26)는, LNG 탱크(1)로부터 냉동기(7)에 공급되는 보일오프가스의 응축열을, LNG 가열장치(5)로부터 공급되는 저온 제1 질소가스와 열교환기(25)로부터 공급되는 제2 질소가스에 전열시킨다. 즉, 콘덴서(26)는, LNG 탱크(1)로부터 냉동기(7)에 공급되는 보일오프가스가 액화되도록 보일오프가스를 냉각한다. 콘덴서(26)는, 또한, LNG 가열장치(5)로부터 공급되는 저온 제1 질소가스를 가열하고, 열교환기(25)에 의하여 가열된 저온 저압 질소가스를 더 가열한다. 이 때, 냉동기(7)는, LNG 가열장치(5)로부터 공급되는 저온 제1 질소가스가 제2 예랭장치(23)와 콘덴서(26)에 의하여 가열됨으로써 생성된 고온 제1 질소가스를 LNG 가열장치(5)에 공급한다.The condenser 26 supplies the low-temperature first nitrogen gas supplied from the LNG heater 5 and the heat exchanger 25 with the condensation heat of the boil-off gas supplied from the LNG tank 1 to the refrigerator 7. 2 Heat to nitrogen gas. That is, the condenser 26 cools the boyoff gas so that the boyoff gas supplied from the LNG tank 1 to the refrigerator 7 is liquefied. The condenser 26 further heats the low temperature first nitrogen gas supplied from the LNG heater 5 and further heats the low temperature low pressure nitrogen gas heated by the heat exchanger 25. At this time, the refrigerator 7 LNG-heats the high temperature 1st nitrogen gas produced | generated by the low temperature 1st nitrogen gas supplied from the LNG heating apparatus 5 by the 2nd precooling apparatus 23 and the condenser 26. Supply to the device (5).

즉, 제1 예랭장치(22)와 제2 예랭장치(23)는, 열교환기(25)와 콘덴서(26)에 의하여 이용된 저온 저압 제2 질소가스를 가열함으로써 저압 제1 질소가스를 생성한다. 블로어(27)는, 팽창터빈(24)에 의하여 생성되는 회전동력을 이용하여, 저압 제2 질소가스를 승압한다. 이 때, 냉동기(7)는, 승압된 저압 제2 질소가스를 연소시스템(8)에 공급한다.That is, the first precooling device 22 and the second precooling device 23 generate the low pressure first nitrogen gas by heating the low temperature low pressure second nitrogen gas used by the heat exchanger 25 and the condenser 26. . The blower 27 boosts the low pressure second nitrogen gas by using the rotational power generated by the expansion turbine 24. At this time, the refrigerator 7 supplies the boosted low-pressure second nitrogen gas to the combustion system 8.

기액분리장치(28)는, 콘덴서(26)에 의하여 냉각된 보일오프가스를 기액분리함으로써, 액체인 액화 보일오프가스와 기체인 저온 보일오프가스를 생성한다.The gas-liquid separator 28 generates a liquid liquefied boil-off gas that is a liquid and a low temperature boil-off gas that is a gas by gas-liquid separation of the boil-off gas cooled by the condenser 26.

연소시스템(8)은, 가스연소기(31)와 제1 유량조정밸브(32)와 제2 유량조정밸브(33)와 공기압축용 가스터빈(34)과 냉매가스 압축용 가스터빈(35)과 공기압축기(36)와 냉매가스 압축기(37)를 구비하고 있다. 가스연소기(31)는, 공기압축기(36)에 의하여 생성된 압축공기를 이용하여, 냉동기(7)로부터 공급되는 연소용 보일오프가스를 연소시켜, 고온 고압의 가압 배기가스를 생성한다.The combustion system 8 includes a gas burner 31, a first flow control valve 32, a second flow control valve 33, an air compression gas turbine 34, a refrigerant gas compression gas turbine 35, An air compressor 36 and a refrigerant gas compressor 37 are provided. The gas combustor 31 burns the combustion boil-off gas supplied from the refrigerator 7 using the compressed air generated by the air compressor 36 to generate a pressurized exhaust gas of high temperature and high pressure.

제1 유량조정밸브(32)는, 가스연소기(31)에 의하여 생성된 가압 배기가스를 공기압축용 가스터빈(34)에 공급하고, 제어장치로 제어됨으로써, 가압 배기가스가 공기압축용 가스터빈(34)에 공급되는 유량을 변동시킨다. 제2 유량조정밸브(33)는, 가스연소기(31)에 의하여 생성된 가압 배기가스를 냉매가스 압축용 가스터빈(35)에 공급하고, 제어장치로 제어됨으로써, 가압 배기가스가 냉매가스 압축용 가스터빈(35)에 공급되는 유량을 변동시킨다.The first flow regulating valve 32 supplies the pressurized exhaust gas generated by the gas burner 31 to the air compression gas turbine 34 and is controlled by a control device, whereby the pressurized exhaust gas is supplied to the air compression gas turbine. The flow rate supplied to 34 is varied. The second flow regulating valve 33 supplies the pressurized exhaust gas generated by the gas burner 31 to the refrigerant gas compression gas turbine 35, and is controlled by a controller so that the pressurized exhaust gas is used for the refrigerant gas compression. The flow rate supplied to the gas turbine 35 is varied.

공기압축용 가스터빈(34)은, 제1 유량조정밸브(32)로부터 공급되는 가압 배기가스의 운동에너지를 이용하여 회전동력을 생성한다. 냉매가스 압축용 가스터빈(35)은, 제2 유량조정밸브(33)로부터 공급되는 가압 배기가스의 운동에너지를 이용하여 회전동력을 생성한다.The air compression gas turbine 34 generates rotational power by using the kinetic energy of the pressurized exhaust gas supplied from the first flow regulating valve 32. The gas turbine 35 for compressing the refrigerant gas generates rotational power by using the kinetic energy of the pressurized exhaust gas supplied from the second flow regulating valve 33.

공기압축기(36)는, 공기압축용 가스터빈(34)에 의하여 생성된 회전동력을 이용하여 공기를 압축함으로써, 압축공기를 생성한다. 냉매가스 압축기(37)는, 냉매가스 압축용 가스터빈(35)에 의하여 생성된 회전동력을 이용하여, 냉동기(7)에 의하여 생성된 저압 제2 질소가스를 압축함으로써, 고압 제2 질소가스를 생성한다.The air compressor 36 generates compressed air by compressing air by using the rotational power generated by the gas compressor 34 for air compression. The refrigerant gas compressor 37 compresses the low-pressure second nitrogen gas generated by the refrigerator 7 by using the rotational power generated by the gas turbine 35 for compressing the refrigerant gas, thereby compressing the high-pressure second nitrogen gas. Create

냉매가스 압축기(37)의 회전동력을 작동시키는 것으로서, 냉매가스 압축기(37)는, 공기압축용 가스터빈(34)에 의하여 생성된 회전동력을 이용할 때, 공기압축용 가스터빈(34)과 공기압축기(36)와 냉매가스 압축기(37)가 직선 상에 일렬로 배치될 필요가 있으며, 또는, 회전동력의 회전축의 방향을 변경하는 장치를 구비할 필요가 있다.By operating the rotational power of the refrigerant gas compressor 37, the refrigerant gas compressor 37, when using the rotational power generated by the air compression gas turbine 34, the air compression gas turbine 34 and air The compressor 36 and the refrigerant gas compressor 37 need to be arranged in a line in a straight line, or need to be provided with a device for changing the direction of the rotation axis of the rotating power.

한편, 탱크내압 억제장치(10)는, 공기압축용 가스터빈(34)과 별체의 냉매가스 압축용 가스터빈(35)에 의하여 생성되는 회전동력을 냉매가스 압축기(37)가 이용한다. 즉, 가스연소기(31)에 의하여 생성된 가압 배기가스를 공기압축용 가스터빈(34)과 별체의 냉매가스 압축용 가스터빈(35)으로 나누어 공급함으로써, 공기압축용 가스터빈(34)과 공기압축기(36)와 냉매가스 압축기(37)가 직선 상에 일렬로 배치될 필요가 없으며, 또는, 회전동력의 회전축의 방향을 변경하는 장치를 구비할 필요가 없어, 보다 용이하게 제작될 수 있다. 이로 인하여, 탱크내압 억제장치(10)는, 보다 용이하게 선박 본체에 설치될 수 있다.On the other hand, in the tank internal pressure suppressor 10, the refrigerant gas compressor 37 uses rotational power generated by the gas compressor 34 for air compression and the gas turbine 35 for compressing the refrigerant gas. That is, by supplying the pressurized exhaust gas generated by the gas burner 31 into the air compression gas turbine 34 and the separate refrigerant gas compression gas turbine 35, the air compression gas turbine 34 and the air are supplied. The compressor 36 and the refrigerant gas compressor 37 do not need to be arranged in a line in a straight line, or need not be provided with a device for changing the direction of the rotation axis of the rotational power, it can be manufactured more easily. For this reason, the tank internal pressure suppression apparatus 10 can be installed in a ship main body more easily.

제어장치는, 컴퓨터이며, 밸브(17)와 밸브(19)와 제1 유량조정밸브(32)와 제2 유량조정밸브(33)에 정보 전달 가능하게 전기적으로 접속되어 있다.The control device is a computer and is electrically connected to the valve 17, the valve 19, the first flow regulating valve 32, and the second flow regulating valve 33 so as to transmit information.

제어장치는, 냉동기(7)의 부하가 소정의 부하보다 작을 때에, 냉동기(7)에 의하여 생성된 액체 질소가 액체 질소탱크(18)에 공급되도록, 밸브(17)를 제어하고, 액체 질소탱크(18)에 저장되어 있는 액체 질소가 냉동기(7)에 공급되지 않도록, 밸브(19)를 제어한다. 제어장치는, 또한, 냉동기(7)의 부하가 그 소정의 부하보다 클 때에, 냉동기(7)에 의하여 생성된 액체 질소가 액체 질소탱크(18)에 공급되지 않도록, 밸브(17)를 제어하고, 액체 질소탱크(18)에 저장되어 있는 액체 질소가 냉동기(7)에 공급되도록, 밸브(19)를 제어한다.The controller controls the valve 17 so that the liquid nitrogen produced by the refrigerator 7 is supplied to the liquid nitrogen tank 18 when the load of the refrigerator 7 is smaller than the predetermined load, and the liquid nitrogen tank The valve 19 is controlled so that the liquid nitrogen stored in the 18 is not supplied to the refrigerator 7. The control device also controls the valve 17 so that the liquid nitrogen produced by the refrigerator 7 is not supplied to the liquid nitrogen tank 18 when the load of the refrigerator 7 is greater than the predetermined load. The valve 19 is controlled so that the liquid nitrogen stored in the liquid nitrogen tank 18 is supplied to the refrigerator 7.

제어장치는, 또한, 가스연소기(31)에 공급하는 공기량을 소정 유량 유지하기 위해서는, 공기압축용 가스터빈(34)에 의하여 생성되는 회전동력이 변동하지 않도록, 즉, 회전동력이 소정의 동력과 동일해지도록, 제1 유량조정밸브(32)를 제어한다. 제어장치는, 또한, 냉매가스 압축용 가스터빈(35)에 의하여 생성되는 회전동력이 변동하지 않도록, 즉, 회전동력이 소정의 동력과 동일해지도록, 제2 유량조정밸브(33)를 제어한다.In order to maintain the amount of air supplied to the gas combustor 31 at a predetermined flow rate, the control device is configured such that the rotational power generated by the air compression gas turbine 34 does not fluctuate, that is, the rotational power is equal to the predetermined power. The first flow rate control valve 32 is controlled to be the same. The control device also controls the second flow control valve 33 so that the rotational power generated by the gas turbine 35 for refrigerant gas compression does not vary, that is, the rotational power is equal to a predetermined power. .

탱크내압 억제방법의 실시형태는, 탱크내압 억제장치(10)에 의하여 실행되며, 냉동루프의 동작과 축냉열루프의 동작과 보일오프가스 계통의 동작을 구비하고 있다.Embodiment of the tank internal pressure suppression method is performed by the tank internal pressure suppression apparatus 10, and is provided with the operation | movement of a refrigeration loop, the operation | movement of a cold storage heat loop, and the operation | movement of a boyoff gas system.

그 냉동루프는, 냉매가스 압축기(37)와 냉각장치(21)와 제1 예랭장치(22)와 제2 예랭장치(23)와 팽창터빈(24)과 열교환기(25)와 콘덴서(26)와 블로어(27)로 형성되는 냉매회로에 제2 질소가스를 순환시킨다. 즉, 냉매가스 압축기(37)는, 냉동기(7)에 의하여 생성되는 저압 제2 질소가스를 압축함으로써 고압 제2 질소가스를 생성한다. 냉각장치(21)와 제1 예랭장치(22)와 제2 예랭장치(23)는, 고압 제2 질소가스를 예랭함으로써 저온 고압 제2 질소가스를 생성한다. 팽창터빈(24)은, 저온 고압 제2 질소가스를 단열 팽창시킴으로써 저온 저압 제2 질소가스를 생성한다.The refrigeration loop includes a refrigerant gas compressor 37, a cooling device 21, a first precooling device 22, a second precooling device 23, an expansion turbine 24, a heat exchanger 25, and a condenser 26. The second nitrogen gas is circulated in the refrigerant circuit formed by the blower 27. That is, the refrigerant gas compressor 37 generates the high pressure second nitrogen gas by compressing the low pressure second nitrogen gas generated by the refrigerator 7. The cooling device 21, the first preliminary cooling device 22, and the second preliminary cooling device 23 generate the low temperature and high pressure second nitrogen gas by preheating the high pressure second nitrogen gas. The expansion turbine 24 generates low temperature low pressure second nitrogen gas by adiabatic expansion of the low temperature high pressure second nitrogen gas.

열교환기(25)는, 기액분리장치(28)에 의하여 생성되는 액화 보일오프가스와 LNG 탱크(1)로부터 공급되는 LNG에 저온 고압 제2 질소가스의 냉열을 전열함으로써, 액화 보일오프가스와 LNG를 냉각한다. 이 때, 탱크내압 억제장치(10)는, 액화 보일오프가스가 냉각됨으로써 생성된 저온 액화 보일오프가스와 LNG가 냉각됨으로써 생성된 저온 LNG를 LNG 탱크(1)에 공급한다.The heat exchanger 25 transfers the cold heat of the low temperature, high pressure 2nd nitrogen gas to the liquefied boil-off gas produced by the gas-liquid separator 28, and LNG supplied from the LNG tank 1, and liquefied boil-off gas and LNG To cool. At this time, the tank internal pressure suppression apparatus 10 supplies the LNG tank 1 with the low temperature liquefied boyoff gas generated by cooling the liquefied boiloff gas and the low temperature LNG generated by cooling the LNG.

콘덴서(26)는, 열교환기(25)로부터 공급되는 저온 저압 제2 질소가스의 냉열을 LNG 탱크(1)로부터 냉동기(7)에 공급되는 보일오프가스에 전열함으로써, 보일오프가스를 냉각한다. 제1 예랭장치(22)와 제2 예랭장치(23)는, 열교환기(25)와 콘덴서(26)에 의하여 이용된 저온 저압 제2 질소가스를 가열함으로써 저압 질소가스를 생성한다. 냉동기(7)는, 저압 제2 질소가스를 냉매가스 압축기(37)에 공급한다.The condenser 26 cools the boyoff gas by transferring the cold heat of the low temperature low pressure 2nd nitrogen gas supplied from the heat exchanger 25 to the boyoff gas supplied from the LNG tank 1 to the refrigerator 7. The first precooling device 22 and the second precooling device 23 generate low pressure nitrogen gas by heating the low temperature low pressure second nitrogen gas used by the heat exchanger 25 and the condenser 26. The refrigerator 7 supplies the low pressure second nitrogen gas to the refrigerant gas compressor 37.

이와 같은 냉동루프에 의하면, 냉동기(7)는, 고압 제2 질소가스가 예랭된 저온 고압 제2 질소가스를 단열 팽창시킴으로써, 저온 저압 제2 질소가스를 보다 적절히 생성할 수 있어, LNG와 액화 보일오프가스를 보다 적절히 냉각할 수 있다. 냉동기(7)는, 또한, 고압 제2 질소가스를 예랭하는 것에 저온 저압 제2 질소가스의 냉열을 이용함으로써, 소비에너지를 보다 저감할 수 있다.According to such a refrigeration loop, the refrigerator 7 is capable of generating a low temperature low pressure second nitrogen gas more appropriately by adiabatic expansion of the low temperature high pressure second nitrogen gas in which the high pressure second nitrogen gas is agitated, and thus the LNG and the liquefied boiler. The offgas can be cooled more appropriately. The refrigerator 7 can further reduce energy consumption by using cold heat of the low temperature low pressure second nitrogen gas for preheating the high pressure second nitrogen gas.

이와 같은 냉동루프에 의하면, 또한, 탱크내압 억제장치(10)는, 저온 LNG와 저온 액화 보일오프가스를 LNG 탱크(1)에 공급함으로써, LNG 탱크(1)에 저장되어 있는 LNG를 보다 적절히 냉각할 수 있어, LNG 탱크(1)의 내압의 상승을 보다 적절히 억제할 수 있다.According to such a refrigeration loop, the tank internal pressure suppression apparatus 10 further cools LNG stored in the LNG tank 1 more appropriately by supplying the low temperature LNG and the low temperature liquefied boil-off gas to the LNG tank 1. It is possible to suppress the increase in the internal pressure of the LNG tank 1 more appropriately.

그 축냉열루프는, 냉동기(7)와 가열장치(12)와 서큘레이터(15)와 열교환기(16)로 형성되는 냉매회로에 질소가스를 순환시킨다. 즉, 이 때, 냉동기(7)의 콘덴서(26)는, 가열장치(12)로부터 공급되는 저온 제1 질소가스의 냉열을, LNG 탱크(1)로부터 냉동기(7)에 공급되는 보일오프가스에 전열함으로써, 보일오프가스를 냉각한다. 냉동기(7)의 제2 예랭장치(23)는, 제1 예랭장치(22)에 의하여 냉각된 고압 제2 질소가스에 저온 질소가스의 냉열을 전열함으로써, 고압 제2 질소가스를 더 냉각한다. 냉동기(7)는, 저온 제2 질소가스가 콘덴서(26)와 제1 예랭장치(22)에 의하여 가열됨으로써 생성된 고온 제1 질소가스를 가열장치(12)에 공급한다.The heat storage cooling loop circulates nitrogen gas through a refrigerant circuit formed of the refrigerator 7, the heater 12, the circulator 15, and the heat exchanger 16. That is, at this time, the condenser 26 of the refrigerator 7 transfers the cold heat of the low temperature 1st nitrogen gas supplied from the heating apparatus 12 to the boil-off gas supplied from the LNG tank 1 to the refrigerator 7. By heat transfer, the boil-off gas is cooled. The second precooling device 23 of the refrigerator 7 further cools the high pressure second nitrogen gas by heat-transferring cold heat of the low temperature nitrogen gas to the high pressure second nitrogen gas cooled by the first precooling device 22. The refrigerator 7 supplies the high temperature 1st nitrogen gas produced | generated by the low temperature 2nd nitrogen gas heated by the condenser 26 and the 1st precooling apparatus 22 to the heating apparatus 12. As shown in FIG.

가열장치(12)는, 고온 제1 질소가스를 가열한다. 서큘레이터(15)는, 고온 제1 질소가스를 열교환기(16)에 공급한다. 열교환기(16)는, LNG 탱크(1)로부터 공급되는 LNG에 고온 제1 질소가스의 열을 전열함으로써, 고온 제1 질소가스를 냉각하고, LNG를 가열한다. LNG 가열장치(5)는, LNG가 가열됨으로써 생성된 고온 LNG를 엔진(2)에 공급하고, 고온 제1 질소가스가 냉각됨으로써 생성된 저온 제1 질소가스를 냉동기(7)에 공급한다.The heating device 12 heats the high temperature first nitrogen gas. The circulator 15 supplies the high temperature first nitrogen gas to the heat exchanger 16. The heat exchanger 16 cools the high temperature first nitrogen gas by heating the heat of the high temperature first nitrogen gas to the LNG supplied from the LNG tank 1 to heat the LNG. The LNG heater 5 supplies the high temperature LNG generated by heating the LNG to the engine 2, and supplies the low temperature first nitrogen gas generated by cooling the high temperature first nitrogen gas to the refrigerator 7.

이 때, 엔진(2)은, 가열된 고온 LNG를 연소함으로써 동력을 생성한다. 추진장치(3)는, 그 동력을 이용하여, 선박 본체를 추진시키는 추진력을 생성한다. 선박 본체는, 그 추진력에 의하여 추진한다.At this time, the engine 2 generates power by burning the heated high temperature LNG. The propulsion apparatus 3 generates the propulsion force which propels the ship main body using the power. The ship body propels with its propulsion force.

또한, 냉동기(7)의 열교환기(25)는, LNG 가열장치(5)로부터 공급된 저온 제1 질소가스를 냉각함으로써 액체 질소를 생성한다. 제어장치는, 냉동기(7)의 부하가 소정의 부하보다 작을 때에, 밸브(17)를 제어함으로써, 냉동기(7)에 의하여 생성된 액체 질소를 액체 질소탱크(18)에 공급하고, 밸브(19)를 제어함으로써, 액체 질소탱크(18)에 저장되어 있는 액체 질소를 냉동기(7)에 공급하는 것을 정지한다. 제어장치는, 또한, 냉동기(7)의 부하가 그 소정의 부하보다 클 때에, 밸브(17)를 제어함으로써, 냉동기(7)에 의하여 생성된 액체 질소를 액체 질소탱크(18)에 공급하는 것을 정지하고, 밸브(19)를 제어함으로써, 액체 질소탱크(18)에 저장되어 있는 액체 질소를 냉동기(7)에 공급한다.Moreover, the heat exchanger 25 of the refrigerator 7 produces | generates liquid nitrogen by cooling the low temperature 1st nitrogen gas supplied from the LNG heater 5. The control device controls the valve 17 when the load of the refrigerator 7 is smaller than the predetermined load, thereby supplying the liquid nitrogen generated by the refrigerator 7 to the liquid nitrogen tank 18, thereby providing a valve 19. ), The supply of the liquid nitrogen stored in the liquid nitrogen tank 18 to the refrigerator 7 is stopped. The controller further controls supplying the liquid nitrogen produced by the refrigerator 7 to the liquid nitrogen tank 18 by controlling the valve 17 when the load of the refrigerator 7 is greater than the predetermined load. By stopping and controlling the valve 19, the liquid nitrogen stored in the liquid nitrogen tank 18 is supplied to the refrigerator 7.

냉동기(7)의 열교환기(25)는, 축냉열시스템(8)으로부터 액체 질소가 냉동기(7)에 공급되고 있을 때, 기액분리장치(28)에 의하여 생성되는 액화 보일오프가스와 LNG 탱크(1)로부터 공급되는 LNG에 액체 질소의 냉열을 더 전열함으로써, LNG와 액화 보일오프가스를 냉각한다. 냉동기(7)는, LNG가 냉각됨으로써 생성되는 저온 LNG와 액화 보일오프가스가 냉각됨으로써 생성되는 저온 액화 보일오프가스를 LNG 탱크(1)에 공급한다.The heat exchanger 25 of the refrigerator 7 includes a liquefied boil-off gas and an LNG tank generated by the gas-liquid separator 28 when liquid nitrogen is supplied from the heat storage cooling system 8 to the refrigerator 7. The LNG and liquefied boil-off gas are cooled by further heat-transferring cooling heat of liquid nitrogen to LNG supplied from 1). The refrigerator 7 supplies the LNG tank 1 with low temperature LNG produced | generated by cooling, and low temperature liquefied boil-off gas produced by cooling.

이와 같은 축냉열루프에 의하면, 냉동기(7)는, LNG 가열장치(5)로부터 공급된 저온 제1 질소가스의 냉열을 이용함으로써, 냉각의 부하를 저감할 수 있어, LNG와 액화 보일오프가스를 보다 적절히 냉각할 수 있다. 냉동기(7)는, LNG 가열장치(5)로부터 공급된 저온 제1 질소가스의 냉열을 이용함으로써, 외부로부터 공급되는 에너지를 소비하는 소비량을 더 저감할 수 있다. 탱크내압 억제장치(10)는, 냉동기(7)가 소비하는 에너지의 소비량을 저감함으로써, 외부로부터 공급되는 에너지를 소비하는 소비량을 저감할 수 있다.According to such a storage cooling loop, the refrigerator 7 can reduce the load of cooling by using the cold heat of the low temperature 1st nitrogen gas supplied from the LNG heating apparatus 5, and can provide LNG and liquefied boil-off gas. It can cool more appropriately. The refrigerator 7 can further reduce the consumption amount which consumes energy supplied from the outside by using the cold heat of the low temperature 1st nitrogen gas supplied from the LNG heater 5. The tank internal pressure suppressor 10 can reduce the consumption amount of energy supplied from the outside by reducing the consumption amount of energy consumed by the refrigerator 7.

또한, 냉동기(7)는, 축냉열시스템(6)에 의하여 저장되는 액체 질소를 이용함으로써, 냉동기(7)의 부하가 변동하는 경우에도, LNG를 안정적으로 냉각할 수 있으며, 보일오프가스를 안정적으로 액화하여 냉각할 수 있다. 탱크내압 억제장치(10)는, 냉동기(7)가 LNG와 보일오프가스를 안정적으로 냉각함으로써, LNG 탱크(1)의 내압의 상승을 보다 안정적으로 억제할 수 있다.In addition, the refrigerator 7 can reliably cool LNG even when the load of the refrigerator 7 fluctuates by using liquid nitrogen stored by the heat storage cooling system 6, and stabilizes the boil-off gas. It can be liquefied and cooled. The tank internal pressure suppressor 10 can more stably suppress the increase in the internal pressure of the LNG tank 1 by the refrigerator 7 stably cooling the LNG and the boil-off gas.

그 보일오프가스 계통은, 콘덴서(26)와 기액분리장치(28)와 제2 예랭장치(23)와 제1 예랭장치(22)로 형성되어 있다. 콘덴서(26)는, LNG 탱크(1)로부터 공급되는 보일오프가스를 냉각함으로써 저온 보일오프가스를 생성한다. 기액분리장치(28)는, 저온 보일오프가스를 기액분리함으로써, 액체인 액화 보일오프가스와 기체인 저온 보일오프가스를 생성한다. 제2 예랭장치(23)와 제1 예랭장치(22)는, 저온 보일오프가스를 가열함으로써 연소용 보일오프가스를 생성한다. 냉동기(7)는, 연소용 보일오프가스를 연소시스템(8)에 공급한다.The boil-off gas system is formed of a condenser 26, a gas-liquid separator 28, a second preliminary cooling apparatus 23, and a first preliminary cooling apparatus 22. The condenser 26 generates the low temperature boil-off gas by cooling the boil-off gas supplied from the LNG tank 1. The gas-liquid separator 28 generates a liquid liquefied boil-off gas as a liquid and a low-temperature boil-off gas as a gas by gas-liquid separating the low-temperature boil-off gas. The second preliminary cooling apparatus 23 and the first preliminary cooling apparatus 22 generate the combustion boil off gas by heating the low temperature boil off gas. The refrigerator 7 supplies the combustion boil-off gas to the combustion system 8.

연소시스템(8)의 가스연소기(31)는, 공기압축기(36)에 의하여 생성된 압축공기를 이용하여, 냉동기(7)로부터 공급되는 연소용 보일오프가스를 연소시켜, 고온 고압의 가압 배기가스를 생성한다.The gas combustor 31 of the combustion system 8 burns the combustion boil-off gas supplied from the refrigerator 7 using the compressed air generated by the air compressor 36, and pressurized exhaust gas of high temperature and high pressure. Create

제어장치는, 제1 유량조정밸브(32)를 제어함으로써, 공기압축용 가스터빈(34)에 의하여 생성되는 회전동력이 일정해지도록, 가압 배기가스를 소정의 유량으로 공기압축용 가스터빈(34)에 공급한다. 제어장치는, 또한, 제2 유량조정밸브(33)를 제어함으로써, 냉매가스 압축용 가스터빈(35)에 의하여 생성되는 회전동력이 일정해지도록, 가압 배기가스를 소정의 유량으로 냉매가스 압축용 가스터빈(35)에 공급한다.The control device controls the first flow regulating valve 32 so that the pressurized exhaust gas is supplied at a predetermined flow rate so that the rotational power generated by the air compression gas turbine 34 is constant. Supplies). The control device further controls the second flow regulating valve 33 to compress the pressurized exhaust gas at a predetermined flow rate so that the rotational power generated by the refrigerant gas compression gas turbine 35 is constant. The gas turbine 35 is supplied.

공기압축용 가스터빈(34)은, 제1 유량조정밸브(32)로부터 공급되는 가압 배기가스의 운동에너지를 이용하여 회전동력을 생성한다. 공기압축기(36)는, 공기압축용 가스터빈(34)에 의하여 생성된 회전동력을 이용하여 공기를 압축함으로써, 압축공기를 생성한다.The air compression gas turbine 34 generates rotational power by using the kinetic energy of the pressurized exhaust gas supplied from the first flow regulating valve 32. The air compressor 36 generates compressed air by compressing air by using the rotational power generated by the gas compressor 34 for air compression.

냉매가스 압축용 가스터빈(35)은, 제2 유량조정밸브(33)로부터 공급되는 가압 배기가스의 운동에너지를 이용하여 회전동력을 생성한다. 냉매가스 압축기(37)는, 냉매가스 압축용 가스터빈(35)에 의하여 생성된 회전동력을 이용하여, 냉동기(7)에 의하여 생성된 저압 제2 질소가스를 압축함으로써, 고압 제2 질소가스를 생성한다.The gas turbine 35 for compressing the refrigerant gas generates rotational power by using the kinetic energy of the pressurized exhaust gas supplied from the second flow regulating valve 33. The refrigerant gas compressor 37 compresses the low-pressure second nitrogen gas generated by the refrigerator 7 by using the rotational power generated by the gas turbine 35 for compressing the refrigerant gas, thereby compressing the high-pressure second nitrogen gas. Create

이와 같은 보일오프가스 계통에 의하면, 탱크내압 억제장치(10)는, LNG 탱크(1)에서 발생하는 보일오프가스를 LNG 탱크(1)로부터 빼냄으로써, LNG 탱크(1)의 내압의 상승을 적절히 억제할 수 있다.According to such a boil-off gas system, the tank internal pressure suppression apparatus 10 extracts the boil-off gas which generate | occur | produces in the LNG tank 1 from the LNG tank 1, and raises the internal pressure of the LNG tank 1 suitably. It can be suppressed.

또, 보일오프가스를 가스연소기(31)로 연소시킨 가압 배기가스를 이용하여 동력회수함으로써, 냉동기(7)를 가동시켜, LNG와 보일오프가스를 안정적으로 냉각함으로써, LNG 탱크(1)의 내압의 상승을 보다 안정적으로 억제할 수 있다.The internal pressure of the LNG tank 1 is also recovered by power recovery using the pressurized exhaust gas combusted by the gas burner 31 to operate the refrigerator 7 to stably cool the LNG and the boyoff gas. The rise of can be suppressed more stably.

다만, 탱크내압 억제장치(10)는, 선박과 상이한 다른 용도로 이용될 수도 있다. 예를 들어, 탱크내압 억제장치(10)는, 그 용도로서는, 단체의 LNG 탱크(1), 해양상에서 저장된 액화 천연가스를 탱커에 실어내는 유체식 액화 천연가스 생산저장 하역설비가 예시된다. 이와 같은 용도로 이용되는 탱크내압 억제장치도, 상기 서술한 실시형태에 있어서의 탱크내압 억제장치(10)와 동일하게 하여, LNG 탱크(1)의 내압의 상승을 보다 적절히 억제할 수 있다.However, the tank internal pressure suppression apparatus 10 may be used for other purposes different from ships. For example, the tank internal pressure suppression apparatus 10 is exemplified by a liquid LNG natural gas production storage and unloading facility which carries a tanker with liquefied natural gas stored in a single LNG tank 1 and the ocean as its use. The tank internal pressure suppression apparatus used for such a use can also suppress the increase of the internal pressure of the LNG tank 1 more appropriately similarly to the tank internal pressure suppression apparatus 10 in the above-mentioned embodiment.

냉동기(7)는, LNG 가열장치(5)에 의하여 냉각된 저온 제1 질소가스를 이용하지 않고, LNG와 보일오프가스를 냉각할 수 있다. 이로 인하여, LNG 가열장치(5)는, LNG를 가열할 필요가 없을 때에, 예를 들어, 탱크내압 억제장치(10)가 선박에 이용되지 않을 때에, LNG를 가열하지 않고 질소가스를 냉동기(7)에 공급하는 질소가스 공급장치로 치환될 수 있다. 이 때, 냉동기(7)의 열교환기(25)는, 그 질소가스 공급장치로부터 공급되는 질소가스를 액화함으로써 액체 질소를 생성한다. 이와 같은 탱크내압 억제장치도, 상기 서술한 실시형태에 있어서의 탱크내압 억제장치(10)와 동일하게 하여, LNG 탱크(1)의 내압의 상승을 보다 안정적으로 억제할 수 있다. 그러나, 상기 서술한 실시형태에 있어서의 탱크내압 억제장치(10)는, LNG 가열장치(5)에 의하여 냉각된 저온 질소가스를 이용하여 LNG와 보일오프가스를 냉각함으로써, 그 탱크내압 억제장치와 비교하여, 냉동기(7)의 부하를 저감할 수 있다.The refrigerator 7 can cool LNG and a boy-off gas, without using the low temperature 1st nitrogen gas cooled by the LNG heater 5. For this reason, when the LNG heating apparatus 5 does not need to heat LNG, for example, when the tank internal pressure suppression apparatus 10 is not used for a ship, the LNG heater 5 does not heat LNG, but it does not cool the nitrogen gas 7. It can be replaced with a nitrogen gas supply device to supply. At this time, the heat exchanger 25 of the refrigerator 7 produces | generates liquid nitrogen by liquefying the nitrogen gas supplied from the nitrogen gas supply apparatus. Such a tank internal pressure suppression apparatus can also suppress the increase in the internal pressure of the LNG tank 1 more stably in the same manner as the tank internal pressure suppression apparatus 10 in the above-described embodiment. However, the tank internal pressure suppression apparatus 10 in the above-described embodiment uses the low temperature nitrogen gas cooled by the LNG heating apparatus 5 to cool the LNG and the boil-off gas, so that the tank internal pressure suppression apparatus and In comparison, the load on the refrigerator 7 can be reduced.

또한, 탱크내압 억제장치(10)는, LNG와 보일오프가스를 충분히 냉각할 수 있을 때, 축냉열시스템(6)을 생략할 수 있다. 축냉열시스템(6)이 생략된 탱크내압 억제장치도, 상기 서술한 실시형태에 있어서의 탱크내압 억제장치(10)와 동일하게 하여, LNG 탱크(1)의 내압의 상승을 보다 적절히 억제할 수 있다.In addition, the tank internal pressure suppression apparatus 10 can omit the heat storage cooling system 6 when the LNG and the boil-off gas can be sufficiently cooled. The tank internal pressure suppression apparatus, in which the heat storage cooling system 6 is omitted, is also the same as the tank internal pressure suppression apparatus 10 in the above-described embodiment, so that the increase in the internal pressure of the LNG tank 1 can be suppressed more appropriately. have.

냉동기(7)는, 저온 저압 냉매가스를 이용하지 않고, 단열 팽창하기 직전의 고압 질소가스를 예랭하는 다른 냉동기로 치환될 수도 있다. 그 냉동기는, 예를 들어, 대기의 냉열을 이용하여 고압 질소가스를 예랭한다. 이와 같은 냉동기를 구비한 탱크내압 억제장치도, 상기 서술한 실시형태에 있어서의 탱크내압 억제장치(10)와 동일하게 하여, LNG 탱크(1)의 내압의 상승을 적절히 억제할 수 있다. 냉동기(7)는, 또한, 콘덴서(26)를 생략할 수도 있다. 콘덴서(26)가 생략된 냉동기는, 냉동기(7)와 동일하게 하여 LNG를 냉각할 수 있으며, LNG 탱크(1)의 내압의 상승을 적절히 억제할 수 있다.The refrigerator 7 may be replaced with another refrigerator which preheats the high pressure nitrogen gas just before adiabatic expansion without using the low temperature low pressure refrigerant gas. The refrigerator cools the high pressure nitrogen gas, for example, by using the cold heat of the atmosphere. The tank internal pressure suppression apparatus provided with such a refrigerator can also appropriately suppress an increase in the internal pressure of the LNG tank 1 in the same manner as the tank internal pressure suppression apparatus 10 in the above-described embodiment. The refrigerator 7 can also omit the condenser 26 further. The refrigerator in which the condenser 26 is omitted can cool LNG in the same manner as the refrigerator 7, and can appropriately suppress an increase in the internal pressure of the LNG tank 1.

탱크내압 억제장치의 다른 실시형태는, 상기 서술한 실시형태에 있어서의 연소시스템(8)이 다른 연소시스템으로 치환되어 있다. 그 연소시스템(50)은, 도 2에 나타나는 바와 같이, 복수의 유량조정밸브(51-1~51-n(n=2, 3, 4, …)와 복수의 가스연소기(52-1~52-n)와 복수의 가스터빈(53-1~53-n)과 공기압축기(54)와 냉매가스 압축기(55)를 구비하고 있다.In another embodiment of the tank internal pressure suppression apparatus, the combustion system 8 in the above-described embodiment is replaced with another combustion system. As shown in Fig. 2, the combustion system 50 includes a plurality of flow regulating valves 51-1 to 51-n (n = 2, 3, 4, ...) and a plurality of gas burners 52-1 to 52. -n), a plurality of gas turbines 53-1 to 53-n, an air compressor 54, and a refrigerant gas compressor 55.

복수의 유량조정밸브(51-1~51-n)는, 복수의 가스연소기(52-1~52-n)에 대응하고 있다. 복수의 유량조정밸브(51-1~51-n) 중 임의의 유량조정밸브(51-i(i=1, 2, 3, … n))는, 냉동기(7)에 의하여 생성된 연소용 보일오프가스를 복수의 가스연소기(52-1~52-n) 중 유량조정밸브(51-i)에 대응하는 가스연소기(52-i)에 공급한다. 유량조정밸브(51-i)는, 또한, 제어장치로 제어됨으로써, 연소용 보일오프가스가 가스연소기(52-i)에 공급되는 유량을 변동시킨다.The plurality of flow rate regulating valves 51-1 to 51-n correspond to the plurality of gas burners 52-1 to 52-n. Any of the flow regulating valves 51-i (i = 1, 2, 3,... N) among the plurality of flow regulating valves 51-1 to 51-n is a combustion boiler produced by the refrigerator 7. Off-gas is supplied to the gas burner 52-i corresponding to the flow regulating valve 51-i among the gas burners 52-1 to 52-n. The flow rate regulating valve 51-i is also controlled by the control device, thereby varying the flow rate at which the combustion boil-off gas is supplied to the gas burner 52-i.

복수의 가스연소기(52-1~52-n) 중 임의의 가스연소기(52-i)는, 공기압축기(54)로부터 공급되는 압축공기를 이용하여, 유량조정밸브(51-i)로부터 공급되는 연소용 보일오프가스를 연소시킴으로써, 고온 고압의 가압 배기가스를 생성한다.Any of the gas burners 52-i of the plurality of gas burners 52-1 to 52-n is supplied from the flow regulating valve 51-i by using the compressed air supplied from the air compressor 54. Combustion of the boil-off gas for combustion produces | generates the pressurized exhaust gas of high temperature, high pressure.

복수의 가스터빈(53-1~53-n)은, 복수의 가스연소기(52-1~52-n)에 대응하고 있다. 복수의 가스터빈(53-1~53-n) 중 임의의 가스터빈(53-i)은, 복수의 가스연소기(52-1~52-n) 중 가스터빈(53-i)에 대응하는 가스연소기(52-i)에 의하여 생성된 가압 배기가스의 운동에너지를 이용하여 회전동력을 생성한다.The plurality of gas turbines 53-1 to 53-n corresponds to the plurality of gas burners 52-1 to 52-n. Among the plurality of gas turbines 53-1 to 53-n, any of the gas turbines 53-i corresponds to the gas turbine 53-i of the plurality of gas burners 52-1 to 52-n. The rotary power is generated using the kinetic energy of the pressurized exhaust gas generated by the combustor 52-i.

공기압축기(54)는, 복수의 가스터빈(53-1~53-n) 중 공기압축용 가스터빈(53-1)에 의하여 생성된 회전동력을 이용하여 공기를 압축함으로써 압축공기를 생성한다. 공기압축기(54)는, 생성된 압축공기를 복수의 가스연소기(52-1~52-n)에 공급한다.The air compressor 54 generates compressed air by compressing air using the rotational power generated by the gas compressor 53-1 for air compression among the plurality of gas turbines 53-1 to 53-n. The air compressor 54 supplies the generated compressed air to the plurality of gas burners 52-1 to 52-n.

냉매가스 압축기(55)는, 복수의 가스터빈(53-1~53-n) 중 냉매가스 압축용 가스터빈(53-2)에 의하여 생성된 회전동력을 이용하여, 냉동기(7)에 의하여 생성된 저압 질소가스를 압축함으로써 고압 질소가스를 생성한다. 냉매가스 압축기(55)는, 생성된 고압 질소가스를 냉동기(7)에 공급한다.The refrigerant gas compressor 55 is generated by the refrigerator 7 by using the rotational power generated by the gas turbine 53-2 for compressing the refrigerant gas among the plurality of gas turbines 53-1 to 53-n. The high pressure nitrogen gas is produced by compressing the low pressure nitrogen gas. The refrigerant gas compressor 55 supplies the generated high pressure nitrogen gas to the refrigerator 7.

이 때, 제어장치는, 공기압축용 가스터빈(53-i)에 의하여 생성되는 회전동력이 변동하지 않도록, 즉, 회전동력이 소정의 동력과 동일해지도록, 유량조정밸브(51-i)를 제어한다.At this time, the controller sets the flow rate control valve 51-i so that the rotational power generated by the air compression gas turbine 53-i does not vary, that is, the rotational power is equal to a predetermined power. To control.

연소시스템(50)을 구비한 탱크내압 억제장치는, 상기 서술한 실시형태에 있어서의 탱크내압 억제장치(10)와 동일하게 하여, 냉동기(7)에 의하여 생성된 연소용 보일오프가스로부터 생성되는 잉여 에너지를 유효하게 이용할 수 있으며, 용이하게 제작될 수 있다. 이와 같은 탱크내압 억제장치는, 또한, 냉동기(7)에 의하여 생성된 연소용 보일오프가스가 복수의 가스연소기(52-1~52-n)에 각각 공급되는 유량을 변동시킴으로써, 상기 서술한 실시형태에 있어서의 탱크내압 억제장치(10)와 비교하여, 복수의 가스터빈(53-1~53-n)에 의하여 각각 생성되는 복수의 회전동력을 보다 용이하게 변동시킬 수 있다. 따라서, 복수의 회전동력을, 다른 기기를 구동하는 다른 부하에 유효하게 활용할 수 있다.The tank internal pressure suppression apparatus provided with the combustion system 50 is produced from the combustion boil-off gas produced by the refrigerator 7 in the same manner as the tank internal pressure suppression apparatus 10 in the above-described embodiment. The surplus energy can be effectively used and can be easily manufactured. Such a tank internal pressure suppression apparatus further implements the above-described method by varying the flow rate at which the combustion boil-off gas generated by the refrigerator 7 is supplied to the plurality of gas burners 52-1 to 52-n, respectively. Compared with the tank internal pressure suppression apparatus 10 in a form, the some rotational power each produced by several gas turbines 53-1 to 53-n can be changed more easily. Therefore, the plurality of rotational powers can be effectively utilized for other loads for driving other devices.

다만, 냉동기(7)는, LNG와 보일오프가스를 냉각하지 않고, LNG 탱크(1)에서 발생하는 보일오프가스를 연소시스템(8) 또는 연소시스템(50)에 적절히 공급하는 다른 장치로 치환될 수 있다. 냉동기(7)가 생략된 탱크내압 억제장치는, 상기 서술한 실시형태에 있어서의 탱크내압 억제장치(10)와 동일하게 하여, 보일오프가스를 LNG 탱크(1)로부터 빼냄으로써, LNG 탱크(1)의 내압의 상승을 적절히 억제할 수 있다. 그 탱크내압 억제장치는, 또한, 공기압축기(54(37))와 상이한 다른 부하가, 공기압축용 가스터빈(53-1(34))과 별체의 가스터빈에 의하여 생성된 회전동력을 이용함으로써, 상기 서술한 실시형태에 있어서의 탱크내압 억제장치(10)와 동일하게 하여, 보다 용이하게 제작될 수 있다.However, the refrigerator 7 may be replaced with another apparatus that properly supplies the boiloff gas generated in the LNG tank 1 to the combustion system 8 or the combustion system 50 without cooling the LNG and the boiloff gas. Can be. The tank internal pressure suppression apparatus in which the refrigerator 7 is omitted is similar to the tank internal pressure suppression apparatus 10 in the above-described embodiment, and the LNG tank 1 is removed by removing the boil-off gas from the LNG tank 1. The increase in the internal pressure of the can be properly suppressed. The tank internal pressure suppression apparatus is further configured by utilizing a rotational power generated by another load different from the air compressor 54 (37) by the air compression gas turbine 53-1 (34) and a separate gas turbine. In the same manner as in the tank internal pressure suppression apparatus 10 in the above-described embodiment, it can be produced more easily.

다만, 냉매가스 압축기(55(37))는, 냉매가스 압축용 가스터빈(53-2(35))과 상이한 다른 동력원에 의하여 생성되는 동력을 이용할 수도 있다. 그 동력원으로서는, 전력을 이용하여 회전동력을 생성하는 모터가 예시된다. 이와 같은 동력원이 이용된 탱크내압 억제장치도, 상기 서술한 실시형태에 있어서의 탱크내압 억제장치(10)와 동일하게 하여, LNG 탱크(1)의 내압의 상승을 보다 적절히 억제할 수 있다. 상기 서술한 실시형태에 있어서의 탱크내압 억제장치(10)는, 이와 같은 탱크내압 억제장치와 비교하여, 보일오프가스에 의하여 생성되는 잉여의 동력을 보다 유효하게 이용할 수 있어, 에너지의 소비량을 보다 저감할 수 있다.However, the refrigerant gas compressor 55 (37) may use power generated by another power source different from the refrigerant gas compression gas turbine 53-2 (35). As the power source, a motor that generates rotational power using electric power is exemplified. The tank internal pressure suppression apparatus using such a power source can also suppress the increase of the internal pressure of the LNG tank 1 more appropriately in the same manner as the tank internal pressure suppression apparatus 10 in the above-described embodiment. Compared with the tank internal pressure suppression apparatus, the tank internal pressure suppression apparatus 10 according to the above-described embodiment can more effectively utilize the surplus power generated by the boil-off gas, and thus more energy consumption. Can be reduced.

1 LNG 탱크
2 엔진
3 추진장치
5 LNG 가열장치
6 축냉열시스템
7 냉동기
8 연소시스템
10 탱크내압 억제장치
11 승압펌프
12 가열장치
14 냉매가스 공급장치
15 서큘레이터
16 열교환기
22 제1 예랭장치
23 제2 예랭장치
24 팽창터빈
25 열교환기
26 콘덴서
32 제1 유량조정밸브
33 제2 유량조정밸브
34 공기압축용 가스터빈
35 냉매가스 압축용 가스터빈
36 공기압축기
37 냉매가스 압축기
50 연소시스템
51-1~51-n 복수의 유량조정밸브
53-1~53-n 복수의 가스터빈
54 공기압축기
55 냉매가스 압축기
1 LNG Tank
2 engine
3 propulsion system
5 LNG heater
6-axis cooling system
7 freezer
8 Combustion System
10 Tank internal pressure suppression device
11 boost pump
12 burner
14 Refrigerant Gas Supply Device
15 Circulators
16 heat exchanger
22 1st precooling device
23 2nd precooling device
24 expansion turbine
25 heat exchanger
26 condenser
32 1st flow control valve
33 2nd Flow Control Valve
34 Air Compression Gas Turbines
35 Gas turbine for refrigerant gas compression
36 air compressor
37 Refrigerant Gas Compressor
50 combustion system
51-1 ~ 51-n Multiple Flow Control Valve
53-1 ~ 53-n Multiple gas turbine
54 Air Compressor
55 Refrigerant Gas Compressor

Claims (8)

압축공기를 이용하여, 탱크의 내부에서 발생한 보일오프가스를 연소시킴으로써 가압 배기가스를 생성하는 가스연소기와,
상기 가압 배기가스를 이용하여 복수의 동력을 각각 생성하는 복수의 가스터빈과,
상기 복수의 가스터빈 중 공기압축용 가스터빈에 의하여 생성되는 동력에 의하여 공기를 압축하여 상기 압축공기를 생성하는 압축기와,
상기 복수의 가스터빈 중 상기 공기압축용 가스터빈과 상이한 동력회수 가스터빈에 의하여 생성되는 회수동력을 이용하여 압축된 고압 냉매가스를 생성하는 냉매가스 압축기와,
저온 저압 냉매가스를 생성하기 위한 팽창 터빈으로 상기 고압 냉매가스를 팽창한 후에, 이것을 이용하여 상기 탱크로부터 공급되는 LNG를 냉각하고, 냉각되어 생성된 저온 LNG를 상기 탱크에 공급하는 냉동기를 구비하는 탱크내압 억제장치.
A gas combustor for generating pressurized exhaust gas by combusting the boil-off gas generated inside the tank by using compressed air;
A plurality of gas turbines each generating a plurality of powers using the pressurized exhaust gas;
A compressor for compressing air by power generated by an air compression gas turbine among the plurality of gas turbines to generate the compressed air;
A refrigerant gas compressor for generating compressed high-pressure refrigerant gas by using recovery power generated by a power recovery gas turbine different from the air compression gas turbine among the plurality of gas turbines;
After expanding the high-pressure refrigerant gas with an expansion turbine for generating a low-temperature low-pressure refrigerant gas, using this to cool the LNG supplied from the tank, the tank having a refrigerator for supplying the cooled low-temperature LNG to the tank Pressure suppressor.
제 1 항에 있어서,
상기 가스연소기는, 상기 복수의 가스터빈에 대응하는 복수의 가스연소기 요소를 구비하고,
상기 복수의 가스터빈 중 임의의 가스터빈은, 상기 복수의 가스연소기 요소 중 상기 임의의 가스터빈에 대응하는 대응 가스연소기 요소에 의하여 생성되는 가압 배기가스를 이용하여 동력을 생성하는 탱크내압 억제장치.
The method of claim 1,
The gas burner includes a plurality of gas burner elements corresponding to the plurality of gas turbines,
And any of the plurality of gas turbines generates power using pressurized exhaust gas generated by a corresponding gas burner element corresponding to the arbitrary gas turbine of the plurality of gas burner elements.
제 1 항에 있어서,
상기 냉동기는,
상기 고압 냉매가스를 냉각함으로써 저온 고압 냉매가스를 생성하는 제1 열교환기와,
상기 저온 고압 냉매가스를 단열 팽창시킴으로써 저온 저압 냉매가스를 생성하는 팽창터빈과,
상기 저온 저압 냉매가스를 이용하여, 상기 LNG를 냉각함으로써 저온 LNG를 생성하는 제2 열교환기를 구비하고,
상기 제1 열교환기와 제2 열교환기는, 또한, 상기 저온 저압 냉매가스를 가열함으로써 저압 냉매가스를 생성하며,
상기 냉매가스 압축기는, 상기 저압 냉매가스를 압축함으로써 상기 고압 냉매가스를 생성하는 탱크내압 억제장치.
The method of claim 1,
The freezer,
A first heat exchanger for cooling the high pressure refrigerant gas to generate a low temperature high pressure refrigerant gas;
An expansion turbine for generating low temperature low pressure refrigerant gas by adiabatic expansion of the low temperature high pressure refrigerant gas;
A second heat exchanger configured to generate low temperature LNG by cooling the LNG by using the low temperature low pressure refrigerant gas;
The first heat exchanger and the second heat exchanger further generate a low pressure refrigerant gas by heating the low temperature low pressure refrigerant gas,
And the refrigerant gas compressor is configured to generate the high pressure refrigerant gas by compressing the low pressure refrigerant gas.
제 3 항에 있어서,
상기 냉동기는, 상기 보일오프가스를 액화함으로써 액화 보일오프가스를 생성하는 콘덴서를 더 구비하고,
상기 제2 열교환기는, 또한, 상기 액화 보일오프가스를 냉각하고, 냉각되어 생성된 저온 액화 보일오프가스를 상기 탱크에 공급하며,
상기 콘덴서는, 또한, 상기 저온 저압 냉매가스를 가열하는 탱크내압 억제장치.
The method of claim 3, wherein
The refrigerator further includes a condenser that generates liquefied boil-off gas by liquefying the boil-off gas.
The second heat exchanger is further configured to cool the liquefied boil-off gas and supply the cooled low temperature liquefied boil-off gas to the tank,
The condenser further includes a tank internal pressure suppressor for heating the low temperature low pressure refrigerant gas.
제 3 항 또는 제 4 항에 있어서,
축냉열시스템을 더 구비하고,
상기 제2 열교환기는, 또한, 저온 냉매가스를 냉각하고, 냉각되어 생성된 액화 냉매가스를 상기 축냉열시스템에 저장하여, 상기 액화 냉매가스를 더 이용하여 상기 LNG를 냉각하는 탱크내압 억제장치.
The method according to claim 3 or 4,
Further equipped with a heat storage cooling system,
And the second heat exchanger further cools the low temperature refrigerant gas, stores the cooled liquefied refrigerant gas in the heat storage cooling system, and further uses the liquefied refrigerant gas to cool the LNG.
제 5 항에 있어서,
고온 냉매가스를 이용하여, 상기 LNG를 가열함으로써 고온 LNG를 생성하는 LNG 가열장치를 더 구비하고,
상기 냉동기는, 또한, 상기 저온 냉매가스를 가열함으로써 상기 고온 냉매가스를 생성하며,
상기 LNG 가열장치는, 또한, 상기 고온 냉매가스를 냉각함으로써 상기 저온 냉매가스를 생성하는 탱크내압 억제장치.
The method of claim 5,
Further comprising a LNG heater for generating high temperature LNG by heating the LNG using a high temperature refrigerant gas,
The refrigerator further generates the high temperature refrigerant gas by heating the low temperature refrigerant gas,
The LNG heater is a tank internal pressure suppressing device further generates the low temperature refrigerant gas by cooling the high temperature refrigerant gas.
제 6 항에 따른 탱크내압 억제장치와,
상기 고온 LNG를 이용하여 추진용 동력을 생성하는 엔진과,
상기 추진용 동력을 이용하여 선박 본체를 추진시키는 추진장치를 구비하는 선박.
Tank internal pressure suppression apparatus according to claim 6,
An engine generating power for propulsion using the high temperature LNG;
A ship having a propulsion device for propelling the ship body using the propulsion power.
압축공기를 이용하여, 탱크의 내부에서 발생한 보일오프가스를 연소시킴으로써 가압 배기가스를 생성하는 단계와,
복수의 가스터빈 중 공기압축용 가스터빈에 의하여 상기 가압 배기가스를 이용하여 생성되는 동력을 이용하여 공기를 압축함으로써 상기 압축공기를 생성하는 단계와,
상기 복수의 가스터빈 중 상기 공기압축용 가스터빈과 상이한 동력회수 가스터빈에 의하여 상기 가압 배기가스를 이용하여 생성되는 회수동력을 이용하여 압축된 고압 냉매가스를 생성하는 단계와,
저온 저압 냉매가스를 생성하기 위한 팽창 터빈으로 상기 고압 냉매가스를 팽창한 후에, 이것을 이용하여 상기 탱크로부터 저장되는 LNG를 냉각하고, 냉각되어 생성된 저온 LNG를 상기 탱크에 공급하는 단계를 포함하는 탱크내압 억제방법.
Generating pressurized exhaust gas by combusting the boil-off gas generated inside the tank using compressed air;
Generating the compressed air by compressing air by using a power generated using the pressurized exhaust gas by an air compression gas turbine among a plurality of gas turbines;
Generating a compressed high-pressure refrigerant gas by using a recovery power generated by using the pressurized exhaust gas by a power recovery gas turbine different from the air compression gas turbine among the plurality of gas turbines;
After expanding the high pressure refrigerant gas with an expansion turbine for generating low temperature low pressure refrigerant gas, using the same to cool the LNG stored from the tank, and supplying the cooled and generated low temperature LNG to the tank. How to suppress internal pressure.
KR1020177014419A 2013-02-21 2014-02-20 Tank internal pressure suppression device KR102062439B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013032184A JP6029485B2 (en) 2013-02-21 2013-02-21 Tank internal pressure suppression device
JPJP-P-2013-032184 2013-02-21
PCT/JP2014/054087 WO2014129562A1 (en) 2013-02-21 2014-02-20 Tank internal pressure suppression device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020157015982A Division KR20150086503A (en) 2013-02-21 2014-02-20 Tank internal pressure suppression device

Publications (2)

Publication Number Publication Date
KR20170063974A KR20170063974A (en) 2017-06-08
KR102062439B1 true KR102062439B1 (en) 2020-01-03

Family

ID=51391343

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020157015982A KR20150086503A (en) 2013-02-21 2014-02-20 Tank internal pressure suppression device
KR1020177014419A KR102062439B1 (en) 2013-02-21 2014-02-20 Tank internal pressure suppression device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020157015982A KR20150086503A (en) 2013-02-21 2014-02-20 Tank internal pressure suppression device

Country Status (5)

Country Link
EP (1) EP2921761B1 (en)
JP (1) JP6029485B2 (en)
KR (2) KR20150086503A (en)
CN (1) CN104870885B (en)
WO (1) WO2014129562A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102296310B1 (en) * 2016-10-17 2021-08-30 한국조선해양 주식회사 Treatment system of gas and ship having the same
CN106678538A (en) * 2016-12-31 2017-05-17 中船重工(上海)新能源有限公司 Multi-energy complementary liquefied natural gas BOG recycling method and implementation device thereof
CN107314234B (en) * 2017-06-30 2019-04-23 中海石油气电集团有限责任公司 A kind of processing system and method solving LNG loss with LNG hydraulic turbine
KR102387172B1 (en) * 2017-12-29 2022-04-15 대우조선해양 주식회사 Boil-Off Gas Treating Apparatus and Method of Liquefied Gas Regasification System
KR102132083B1 (en) * 2018-07-27 2020-07-09 한국조선해양 주식회사 Boil-off gas cooling system and ship having the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100139317A1 (en) * 2008-12-05 2010-06-10 Francois Chantant Method of cooling a hydrocarbon stream and an apparatus therefor

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2928254A (en) * 1954-09-20 1960-03-15 Garrett Corp Storage tank for low temperature liquids
JPS5345752B2 (en) 1971-12-02 1978-12-08
JPS5940532U (en) * 1982-09-02 1984-03-15 大阪瓦斯株式会社 Fuel supply system for high pressure hot air generator
GB0001801D0 (en) * 2000-01-26 2000-03-22 Cryostar France Sa Apparatus for reliquiefying compressed vapour
JP4859980B2 (en) 2007-04-26 2012-01-25 株式会社日立製作所 LNG cold gas turbine and method of operating LNG cold gas turbine
KR100885796B1 (en) * 2007-07-19 2009-02-26 대우조선해양 주식회사 Boil-off gas reliquefaction apparatus
JP5046998B2 (en) * 2008-02-26 2012-10-10 三菱重工業株式会社 Liquefied gas storage facility and ship or marine structure using the same
WO2010092945A1 (en) * 2009-02-10 2010-08-19 川崎重工業株式会社 Gas engine system and method for controlling same
DE102009022711A1 (en) * 2009-05-26 2011-02-03 Man Diesel & Turbo Se Ship propulsion system and ship equipped therewith
KR20120052500A (en) * 2010-11-16 2012-05-24 대우조선해양 주식회사 Apparatus for disposing boil off gas of lngc or lpgc
KR20120107832A (en) * 2011-03-22 2012-10-04 대우조선해양 주식회사 System and method for supplying fuel for high pressure natural gas injection engine
KR101281639B1 (en) * 2011-03-31 2013-07-03 삼성중공업 주식회사 Vessel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100139317A1 (en) * 2008-12-05 2010-06-10 Francois Chantant Method of cooling a hydrocarbon stream and an apparatus therefor

Also Published As

Publication number Publication date
JP2014163400A (en) 2014-09-08
KR20150086503A (en) 2015-07-28
CN104870885A (en) 2015-08-26
KR20170063974A (en) 2017-06-08
JP6029485B2 (en) 2016-11-24
WO2014129562A1 (en) 2014-08-28
EP2921761B1 (en) 2019-01-02
EP2921761A4 (en) 2015-12-16
EP2921761A1 (en) 2015-09-23
CN104870885B (en) 2017-06-20

Similar Documents

Publication Publication Date Title
JP6018103B2 (en) Liquefied gas treatment system
RU2602714C2 (en) Hybrid fuel supply system and method for engine of vessel
KR102062439B1 (en) Tank internal pressure suppression device
JP2014104847A (en) Cold use device for low-temperature liquefied fuel
KR20140054258A (en) Direct fuel injection diesel engine apparatus
KR20120048598A (en) Gas-fired superconductive electrically propelled ship
KR20150121321A (en) A Treatment System of Liquefied Gas
KR20200120940A (en) LNG regasification
KR20190057919A (en) Apparatus for cooling working fluid and Power generation plant using the same
JP6152155B2 (en) LNG satellite equipment
KR102415547B1 (en) Fuel supply system and power generation system for ship
KR101623092B1 (en) Method and apparatus for reliquefying boil-off gas using cold-heat power generation
JP2001159318A (en) Cryogenic power generating device
KR101563856B1 (en) System for supplying fuel gas in ships
KR20150068569A (en) Fuel Supply System Using Waste Heat Of Scavenge Air For Ship
CN110925595A (en) Ship liquefied natural gas supply system with cold energy utilization function
KR20150115127A (en) A Treatment System of Liquefied Gas
KR101371253B1 (en) A combined system of lng regasification and power generation
KR101922273B1 (en) A Treatment System of Liquefied Gas
KR102415551B1 (en) Fuel supply system and propulsion system for ship
KR20150115101A (en) A Treatment System of Liquefied Gas
KR101938075B1 (en) Power generation system
KR102452417B1 (en) Complex power generating system and ship having the same
KR20150115102A (en) A Treatment System of Liquefied Gas
KR20150017152A (en) Compressed air producing system and method of LNG carrier equipped with air lubrication apparatus

Legal Events

Date Code Title Description
A107 Divisional application of patent
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right