KR102059777B1 - Conductive filaments for 3D printer and manufacturing method thereof - Google Patents

Conductive filaments for 3D printer and manufacturing method thereof Download PDF

Info

Publication number
KR102059777B1
KR102059777B1 KR1020190096582A KR20190096582A KR102059777B1 KR 102059777 B1 KR102059777 B1 KR 102059777B1 KR 1020190096582 A KR1020190096582 A KR 1020190096582A KR 20190096582 A KR20190096582 A KR 20190096582A KR 102059777 B1 KR102059777 B1 KR 102059777B1
Authority
KR
South Korea
Prior art keywords
weight
parts
tert
butyl
chloride
Prior art date
Application number
KR1020190096582A
Other languages
Korean (ko)
Inventor
전정옥
Original Assignee
전정옥
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전정옥 filed Critical 전정옥
Priority to KR1020190096582A priority Critical patent/KR102059777B1/en
Application granted granted Critical
Publication of KR102059777B1 publication Critical patent/KR102059777B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/12Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention relates to a conductive filament for a 3D printer and a manufacturing method thereof in which a filament is manufactured by adding iron-copper alloys to a carbon nanotube composite material so that the filament can replaces a heavy wire due to including a metal wire and can be used as a highly conductive and light wire, a polymer elastomer is added to enhance flexibility to improve extrusion efficiency, and a functional coolant is used to remove an odor peculiar to the filament. The present invention comprises carbon nanotubes, which have been surface-activated by using a surface active agent containing a metal salt reducing agent, iron-copper alloys, and polymer elastomers.

Description

3D 프린터용 전도성 필라멘트 및 그의 제조방법{Conductive filaments for 3D printer and manufacturing method thereof}Conductive filaments for 3D printer and manufacturing method thereof

이 발명은 카본나노튜브 복합소재에 철-구리 합금을 첨가하여 필라멘트를 제조함으로써 금속선이 포함되어 무거운 전선을 대체하여 전도성이 높고 가벼운 전선으로 이용할 수 있으며, 고분자 탄성체를 첨가하여 유연성을 강화하여 압출효율을 개선할 수 있으며, 기능성 냉각수로 필라멘트 특유의 냄새를 제거할 수 있는, 3D 프린터용 전도성 필라멘트 및 그의 제조방법에 관한 것이다.The present invention is to produce a filament by adding the iron-copper alloy to the carbon nanotube composite material to replace the heavy wire, including the metal wire can be used as a high conductivity and light wire, and the addition of a polymer elastomer to increase the flexibility to increase the extrusion efficiency The present invention relates to a conductive filament for a 3D printer and a method for manufacturing the same, which can improve the odor and remove the odor peculiar to the filament with functional cooling water.

최근 3차원 물체를 성형 가능한 3D 프린터가 다양한 산업분야에 활용되면서 그 기술 수용성이 높아지고 있다.Recently, as the 3D printer capable of forming 3D objects is utilized in various industrial fields, the acceptance of the technology is increasing.

특히 필라멘트를 용융하여 적층하는 방식(FDM방식)의 3D 프린터가 대형화에 유리하고 다양한 산업분야에 적용이 가능하여 가정용, 공업용으로 점차 대중화 되고 있는 추세이다. 필라멘트 소재로는ABS(Acrylonitrile Butadiene Styrene)와 PLA(Poly Lactic Acid)등의 플라스틱 소재가 많이 사용되고 있으며, 특히 PLA 수지는 출력이 쉽고 친환경적인 특성을 가지고 있어 ABS보다 선호되고 있으나, 강도와 내구성이 약하고 전도성이 낮아 전기/전자 부품, 바이오 등과 같은 다양한 분야에 적용하기 어려운 문제점이 있다.In particular, 3D printers of filament melting and laminating (FDM method) are advantageous for large-sized, and can be applied to various industrial fields, and are becoming increasingly popular for home and industrial use. Plastic materials such as ABS (Acrylonitrile Butadiene Styrene) and PLA (Poly Lactic Acid) are widely used as filament materials. Especially, PLA resin is preferred to ABS because of its easy output and eco-friendly properties, but its strength and durability are weak. Low conductivity is difficult to apply to various fields such as electrical / electronic components, bio.

대한민국 등록특허 제10-1712506호Republic of Korea Patent No. 10-1712506

상기 문제점을 해결하기 위하여, 카본나노튜브 복합소재에 철-구리 합금을 첨가하여 필라멘트를 제조함으로써 금속선이 포함되어 무거운 전선을 대체하여 전도성이 높고 가벼운 전선으로 이용할 수 있는, 3D 프린터용 전도성 필라멘트 및 그의 제조방법을 제공하는 데 목적이 있다.In order to solve the above problems, by adding an iron-copper alloy to the carbon nanotube composite material to produce a filament conductive filament for 3D printer and its use can be used as a high conductivity and light wire by replacing a heavy wire containing metal wire It is an object to provide a manufacturing method.

이 발명의 다른 목적은, 고분자 탄성체를 첨가하여 유연성을 강화하여 압출효율을 개선할 수 있는, 3D 프린터용 전도성 필라멘트 및 그의 제조방법을 제공하는 데 있다.Another object of the present invention is to provide a conductive filament for a 3D printer and a method for manufacturing the same, which can improve extrusion efficiency by adding a polymer elastomer to enhance flexibility.

이 발명의 또다른 목적은, 기능성 냉각수로 필라멘트 특유의 냄새를 제거할 수 있는, 3D 프린터용 전도성 필라멘트 및 그의 제조방법을 제공하는 데 있다.Another object of the present invention is to provide a conductive filament for a 3D printer and a method of manufacturing the same, which can remove the odor peculiar to filaments with functional cooling water.

상기 목적을 달성하기 위한 수단으로서, 이 발명의 제조방법의 구성은, 혼합믹서에 증류수 1,000 중량부, 활성화제 0.1~10 중량부, 금속염 환원제 5~20 중량부, 산 50~200 중량부를 순차적으로 첨가하여 30~50 분간 50~1,000 RPM의 속도로 교반하여 표면활성화제를 제조하는 단계; 상기 제조된 표면활성제에 카본나노튜브를 1:1 중량비로 투입하고 60 분간 동안 교반하여 카본나노튜브를 표면활성처리하는 단계; 상기 표면이 활성화된 카본나노튜브 1,000 중량부 기준으로, 철-구리 합금 950 중량부, 고분자 탄성체 45~49 중량부, 산화방지제(antioxidant) 1.0~5.0 중량부를 순차적으로 투입하여 160~300℃의 온도에서 10~60분 동안 1차 용융혼합하는 단계; 상기 1차 용융혼합단계가 끝난 후에 가공조제 (processing agent) 0.1~5.0 중량부, 난연제(flame retardant) 1~30 중량부를 순차적으로 투입하여 160~300℃의 온도에서 60분 동안 2차 용융혼합하는 단계; 단축 또는 이축 압출기를 이용하여 20~50 mm 지름의 필라멘트로 압출성형하는 단계; 상기 압출성형된 필라멘트를 대나무 숯분말을 포함하는 냉각수가 담긴 냉각기로 이송하여 0.1~100 m/분의 속도로 통과시키면서 냉각하는 단계; 상기 냉각된 필라멘트를 건조하는 단계; 및 상기 건조된 필라멘트를 포장하는 제품화단계;를 포함하여 이루어지면 바람직하다.As a means for achieving the above object, the configuration of the production method of the present invention, 1,000 parts by weight of distilled water, 0.1 to 10 parts by weight of activator, 5 to 20 parts by weight of metal salt reducing agent, 50 to 200 parts by weight of acid in order Preparing a surface activator by adding agitated at a rate of 50 to 1,000 RPM for 30 to 50 minutes; Injecting the carbon nanotubes in a weight ratio of 1: 1 to the prepared surface active agent and stirred for 60 minutes to surface-activate the carbon nanotubes; Based on 1,000 parts by weight of the activated carbon nanotubes, 950 parts by weight of the iron-copper alloy, 45 to 49 parts by weight of the polymer elastomer, 1.0 to 5.0 parts by weight of an antioxidant (in an order) to 160 ~ 300 ℃ temperature Primary melt mixing for 10 to 60 minutes at; After completion of the first melt mixing step, the second step is melt mixing for 60 minutes at a temperature of 160 ~ 300 ℃ by sequentially adding 0.1 ~ 5.0 parts by weight of the processing agent, 1 ~ 30 parts by weight of flame retardant (flame retardant) step; Extruding the filament with a diameter of 20-50 mm using a single screw or twin screw extruder; Transferring the extruded filaments to a cooler containing a cooling water containing bamboo charcoal powder and cooling the same at a speed of 0.1 to 100 m / min; Drying the cooled filaments; And a productive step of packaging the dried filaments.

이 발명의 구성은, 상기 표면활성화제를 제조하는 단계는, 표면활성화제로서 로디움 트리클로라이드(rhodium trichloride), 디아민 팔라듐 히드록사이드(diamine palladium hydroxide), 플레티늄 클로라이드(platinum chloride), 팔라듐 클로라이드(palladium chloride) 중 적어도 한가지 이상을 사용하고, 금속염 환원제로서 징크 클로라이드(zinc chloride)나 카드뮴 클로라이드(cadmium chloride), 틴 클로라이드(tin chloride) 중 적어도 한가지 이상을 사용하면 바람직하다.The composition of the present invention, the step of preparing the surface activator, as a surface activator rhodium trichloride (rhodium trichloride), diamine palladium hydroxide (diamine palladium hydroxide), platinum chloride (platinum chloride), palladium chloride ( It is preferable to use at least one of palladium chloride and at least one of zinc chloride, cadmium chloride, and tin chloride as the metal salt reducing agent.

이 발명의 구성은, 상기 1차 용융혼합하는 단계는, 고분자 탄성체로서 천연고무 (natural rubber), 에틸렌프로필렌 고무 (ethylene propylene rubber, EPDM), 실리콘 고무 (silicone rubber), 니드릴부타디엔 고무 (nitrile butadiene rubber, NBR), 클로로프렌 고무 (chloroprene rubber) 중 적어도 한가지 이상을 사용하고, 산화방지제는 고분자 복합체의 가공 시 산화방지 역할을 하며, 2,6-디-터트-부틸-4-메틸페놀(2,6-di-tert-butyl-4-methyl phenol), 폴리(1,2-디히드로-2,2,4-트리메틸퀴놀린)[poly(1,2-dihydro-2,2,4-trimethylquinoline)], 테트라키스[메틸렌(3,5-디-터트-부틸-4-히드로옥시-히드로시나메이트)메탄 [tetrakis[methylene(3,5-di-tert-butyl-4-hydroxy-hydrocinnamate)]methane]이나 트리스(2,4-디-터트-부틸-페닐)포스파이트[tris(2,4-di-tert-butyl -phenyl) phosphite] 중 적어도 한가지 이상을 사용하면 바람직하다.The composition of the present invention, the primary melt-mixing step, as a polymer elastomer, natural rubber, ethylene propylene rubber (ethylene propylene rubber, EPDM), silicone rubber (silicone rubber), nitrile butadiene rubber, NBR), or at least one of chloroprene rubber.Antioxidants play an antioxidant role in the processing of polymer composites, and 2,6-di-tert-butyl-4-methylphenol (2, 6-di-tert-butyl-4-methyl phenol), poly (1,2-dihydro-2,2,4-trimethylquinoline) [poly (1,2-dihydro-2,2,4-trimethylquinoline)] , Tetrakis [methylene (3,5-di-tert-butyl-4-hydrooxy-hydrocinnamate) methane] tetrakis [methylene (3,5-di-tert-butyl-4-hydroxy-hydrocinnamate)] methane] It is preferable to use at least one or more of tris (2,4-di-tert-butyl-phenyl) phosphite.

상기 목적을 달성하기 위한 수단으로서, 이 발명의 구성은, 금속염 환원제이 포함된 표면활성제를 이용하여 표면활성처리한 카본나노튜브, 합금(철 90 중량%, 구리 10 중량%), 고분자 탄성체를 포함하고, 항균소취 처리되면 바람직하다.As a means for achieving the above object, the constitution of the present invention comprises a carbon nanotube, an alloy (90% by weight of iron, 10% by weight of copper), a polymer elastic body surface-treated with a surface active agent containing a metal salt reducing agent If antibacterial deodorization treatment is preferable.

이 발명의 구성은, 상기 고분자 탄성체는, 천연고무 (natural rubber), 에틸렌프로필렌 고무 (ethylene propylene rubber, EPDM), 실리콘 고무 (silicone rubber), 니드릴부타디엔 고무 (nitrile butadiene rubber, NBR), 클로로프렌 고무 (chloroprene rubber) 중 적어도 한가지 이상을 사용하면 바람직하다.The composition of the present invention, the polymer elastomer, natural rubber, ethylene propylene rubber (ethylene propylene rubber, EPDM), silicone rubber (silicone rubber), nitrile butadiene rubber (NBR), chloroprene rubber It is preferable to use at least one of (chloroprene rubber).

이 발명은 카본나노튜브 복합소재에 철-구리 합금을 첨가하여 필라멘트를 제조함으로써 금속선이 포함되어 무거운 전선을 대체하여 전도성이 높고 가벼운 전선으로 이용할 수 있으며, 고분자 탄성체를 첨가하여 유연성을 강화하여 압출효율을 개선할 수 있다.The present invention is to produce a filament by adding the iron-copper alloy to the carbon nanotube composite material to replace the heavy wire, including the metal wire can be used as a high conductivity and light wire, and the addition of a polymer elastomer to increase the flexibility to increase the extrusion efficiency Can be improved.

도 1은 이 발명에 따른 3D 프린터용 전도성 필라멘트의 제조방법의 흐름도이다.1 is a flowchart of a method of manufacturing a conductive filament for a 3D printer according to the present invention.

이하, 이 발명에 속하는 기술 분야에서 통상의 지식을 가진 자가 이 발명을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 이 발명의 바람직한 실시예를 첨부된 도면을 참조로 하여 상세히 설명하기로 한다. 이 발명의 목적, 작용, 효과에 대한 이점이 바람직한 실시예의 설명에 의해 보다 명확해질 것이다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. Advantages, objects, and advantages of this invention will become more apparent from the description of the preferred embodiments.

참고로, 여기에서 개시되는 실시예는 실시 가능한 예 중에서 당업자의 이해를 돕기 위하여 가장 바람직한 실시예를 선정하여 제시한 것일 뿐, 이 발명의 기술적 사상이 반드시 제시된 실시예에 의해서 한정되거나 제한되는 것이 아니고, 이 발명의 기술적 사상을 벗어나지 않는 범위 내에서 균등물 내지 대체물들을 포함하는 다양한 변화, 부가 및 변경이 가능하다.For reference, the embodiments disclosed herein are only presented by selecting the most preferred embodiment in order to help those skilled in the art from understanding the possible examples, the technical spirit of the present invention is not necessarily limited or limited by the presented embodiments. However, various changes, additions, and changes, including equivalents or substitutes, may be made without departing from the spirit of the present invention.

또한, 본원의 명세서 및 청구범위에 사용된 용어나 단어의 표현은, 발명자가 그 자신의 발명을 가장 최선의 방법으로 설명하기 위하여 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 정의된 것으로서, 통상적이거나 사전적인 의미로만 한정해서 해석되어서는 아니되며, 이 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.In addition, the terms or words used in the specification and claims herein are defined on the basis of the principle that the inventor can appropriately define the concept of terms in order to best describe his or her invention in the best way. It should not be construed as limited to ordinary or dictionary meanings, but rather as meanings and concepts consistent with the technical spirit of this invention.

도 1은 이 발명에 따른 3D 프린터용 전도성 필라멘트의 제조방법의 흐름도이다.1 is a flowchart of a method of manufacturing a conductive filament for a 3D printer according to the present invention.

도 1에 도시된 것과 같이, 이 발명에 따른 3D 프린터용 전도성 필라멘트의 제조방법의 구성은, 혼합믹서에 증류수 1,000 중량부, 활성화제 0.1~10 중량부, 금속염 환원제 5~20 중량부, 산 50~200 중량부를 순차적으로 첨가하여 30~50 분간 50~1,000 RPM의 속도로 교반하여 표면활성화제를 제조하는 단계(S10); 상기 제조된 표면활성제에 카본나노튜브를 1:1 중량비로 투입하고 60 분간 동안 교반하여 카본나노튜브를 표면활성처리하는 단계(S20); 상기 표면이 활성화된 카본나노튜브 1,000 중량부 기준으로, 철-구리 합금 950 중량부, 고분자 탄성체 45~49 중량부, 산화방지제(antioxidant) 1.0~5.0 중량부를 순차적으로 투입하여 160~300℃의 온도에서 10~60분 동안 1차 용융혼합하는 단계(S30); 상기 1차 용융혼합단계가 끝난 후에 가공조제 (processing agent) 0.1~5.0 중량부, 난연제(flame retardant) 1~30 중량부를 순차적으로 투입하여 160~300℃의 온도에서 60분 동안 2차 용융혼합하는 단계(S40); 단축 또는 이축 압출기를 이용하여 20~50 mm 지름의 필라멘트로 압출성형하는 단계(S50); 상기 압출성형된 필라멘트를 대나무 숯분말을 포함하는 냉각수가 담긴 냉각기로 이송하여 0.1~100 m/분의 속도로 통과시키면서 냉각하는 단계(S60); 상기 냉각된 필라멘트를 건조하는 단계(S70); 및 상기 건조된 필라멘트를 포장하는 제품화단계(S80);를 포함하여 이루어진다.As shown in Figure 1, the configuration of the method for producing a conductive filament for 3D printer according to the present invention, 1,000 parts by weight of distilled water, 0.1 to 10 parts by weight of activator, 5 to 20 parts by weight of metal salt reducing agent, acid 50 Adding 200 parts by weight in sequence to stir at a rate of 50 to 1,000 RPM for 30 to 50 minutes to prepare a surface activator (S10); Injecting the carbon nanotubes in a weight ratio of 1: 1 to the prepared surface active agent and stirred for 60 minutes to surface-activate the carbon nanotubes (S20); Based on 1,000 parts by weight of the activated carbon nanotubes, 950 parts by weight of the iron-copper alloy, 45 to 49 parts by weight of the polymer elastomer, 1.0 to 5.0 parts by weight of an antioxidant (in an order) to 160 ~ 300 ℃ temperature Primary melt mixing for 10 to 60 minutes at step S30; After completion of the first melt mixing step, the second step is melt mixing for 60 minutes at a temperature of 160 ~ 300 ℃ by sequentially adding 0.1 ~ 5.0 parts by weight of the processing agent, 1 ~ 30 parts by weight of flame retardant (flame retardant) Step S40; Extruding into a filament having a diameter of 20 to 50 mm using a single screw or twin screw extruder (S50); Transferring the extruded filaments to a cooler containing a cooling water containing bamboo charcoal powder and cooling the same at a speed of 0.1 to 100 m / min (S60); Drying the cooled filaments (S70); And a commercialization step (S80) of packaging the dried filaments.

상기 표면활성화제를 제조하는 단계(S10)는, 활성화제로서 로디움 트리클로라이드(rhodium trichloride), 디아민 팔라듐 히드록사이드(diamine palladium hydroxide), 플레티늄 클로라이드(platinum chloride), 팔라듐 클로라이드(palladium chloride) 중 적어도 한가지 이상을 사용하고, 금속염 환원제로서 징크 클로라이드(zinc chloride)나 카드뮴 클로라이드(cadmium chloride), 틴 클로라이드(tin chloride) 중 적어도 한가지 이상을 사용한다.The step of preparing the surface activator (S10), rhodium trichloride (didium pchloride), diamine palladium hydroxide (diamine palladium hydroxide), platinum chloride (platinum chloride), palladium chloride (palladium chloride) as an activator Use at least one, and use at least one of zinc chloride, cadmium chloride, and tin chloride as the metal salt reducing agent.

상기 활성화제는 철-구리 합금이 쉽게 부착되도록 카본나노튜브의 표면을 활성화하는 역할을 하며, 첨가량이 0.1 중량부 미만일 경우 집합된 카본나노튜브와 금속과의 표면 접착력이 저하되고, 10 중량부 이상을 첨가할 경우 비용이 상승하는 문제점이 있다.The activator serves to activate the surface of the carbon nanotubes so that the iron-copper alloy is easily attached, when the addition amount is less than 0.1 parts by weight, the surface adhesion of the aggregated carbon nanotubes and the metal is lowered, more than 10 parts by weight There is a problem in that the cost increases if you add.

상기 금속염 환원제는 금속이온을 환원시키는 역할을 하며, 첨가량이 5 중량부 미만일 경우 집합된 카본나노튜브와 금속과의 표면 접착력이 저하되고, 20 중량부 이상을 첨가할 경우 비용이 상승하는 문제점이 있다.The metal salt reducing agent serves to reduce metal ions, and when the added amount is less than 5 parts by weight, the surface adhesion between the collected carbon nanotubes and the metal is lowered, and when 20 parts by weight or more are added, the cost increases. .

상기 카본나노튜브를 표면활성처리하는 단계(S20)는, 표면활성제와 카본나노튜브의 중량비를 1:1로 혼합했을때 혼련성이 가장 우수하다. 표면활성제의 중량비가 증가하게 되면 점도가 묽어져 하기 압출성형하는 단계(S40)에서 가공성이 저하되고, 표면활성제의 중량비가 감소하게 되면 혼련성이 저하된다.Surface active treatment of the carbon nanotubes (S20), the kneading property is most excellent when the weight ratio of the surface active agent and carbon nanotubes in a 1: 1 ratio. When the weight ratio of the surface active agent is increased, the viscosity decreases, and the workability is decreased in the following extrusion molding step (S40), and when the weight ratio of the surface active agent is decreased, the kneading property is lowered.

상기 1차 용융혼합하는 단계(S30)에서 철-구리 합금은, 구리 10 중량%, 철 90 중량%로 이루어진 것을 사용하고, 이 중량비에서 가장 우수한 전도성을 나타낸다.In the primary melt-mixing step (S30), the iron-copper alloy is made of 10 wt% copper and 90 wt% iron, and exhibits the best conductivity at this weight ratio.

열전도율이 76 W/m·K, 선열팽창율이 14.75E-6/K인 것을 사용한다.A thermal conductivity of 76 W / m · K and a linear thermal expansion coefficient of 14.75E-6 / K are used.

상기 1차 용융혼합하는 단계(S30)는, 고분자 탄성체로서 천연고무 (natural rubber), 에틸렌프로필렌 고무 (ethylene propylene rubber, EPDM), 실리콘 고무 (silicone rubber), 니드릴부타디엔 고무 (nitrile butadiene rubber, NBR), 클로로프렌 고무 (chloroprene rubber) 중 적어도 한가지 이상을 사용하고, 산화방지제는 고분자 탄성체의 가공 시 산화방지 역할을 하며, 2,6-디-터트-부틸-4-메틸페놀(2,6-di-tert-butyl-4-methyl phenol), 폴리(1,2-디히드로-2,2,4-트리메틸퀴놀린)[poly(1,2-dihydro-2,2,4-trimethylquinoline)], 테트라키스[메틸렌(3,5-디-터트-부틸-4-히드로옥시-히드로시나메이트)메탄 [tetrakis[methylene(3,5-di-tert-butyl-4-hydroxy-hydrocinnamate)]methane]이나 트리스(2,4-디-터트-부틸-페닐)포스파이트[tris(2,4-di-tert-butyl -phenyl) phosphite] 중 적어도 한가지 이상을 사용한다.The primary melt-mixing step (S30) is a natural polymer, natural rubber, ethylene propylene rubber (ethylene propylene rubber, EPDM), silicone rubber (silicone rubber), nitrile butadiene rubber (Ntrile butadiene rubber, NBR) ), At least one or more of chloroprene rubber, and antioxidants act as an antioxidant in the processing of polymeric elastomers, and 2,6-di-tert-butyl-4-methylphenol (2,6-di -tert-butyl-4-methyl phenol), poly (1,2-dihydro-2,2,4-trimethylquinoline) [poly (1,2-dihydro-2,2,4-trimethylquinoline)], tetrakis [Methylene (3,5-di-tert-butyl-4-hydrooxy-hydrocinnamate) methane [tetrakis [methylene (3,5-di-tert-butyl-4-hydroxy-hydrocinnamate)] methane] or tris ( Use at least one of 2,4-di-tert-butyl-phenyl) phosphite [tris (2,4-di-tert-butyl-phenyl) phosphite].

상기 고분자 탄성체를 첨가함으로써, 하기 필라멘트로 압출성형하는 단계(S50)에서 유연성이 개선되어 압출효율을 증대할 수 있다. 고분자 탄성체의 첨가량이 49 중량부를 초과하는 경우 필라멘트의 전도성이 저하되고, 고분자 탄성체의 첨가량이 45 중량부 미만인 경우 압출과정에서 필라멘트 갈라짐 현상이 발생한다.By adding the polymer elastomer, the flexibility in the step (S50) of the extrusion molding to the filament can be improved to increase the extrusion efficiency. If the amount of the polymer elastomer is greater than 49 parts by weight, the conductivity of the filament is lowered. If the amount of the polymer elastomer is less than 45 parts by weight, the filament cracking phenomenon occurs during the extrusion process.

상기 산화방지제 첨가량이 1.0 중량부 미만일 경우 혼련단계시 고분자가 산화되며 5 중량부 이상을 첨가할 경우 비용이 증가한다.When the amount of antioxidant added is less than 1.0 part by weight, the polymer is oxidized during the kneading step, and the cost increases when 5 parts by weight or more is added.

상기 2차 용융혼합하는 단계(S40)는, 가공조제로서 아연 스테아레이트 (zinc stearate), 마그네슘 스테아레이트 (magnesium stearate), 칼슘 스테아레이트 (calcium stearate) 중 적어도 한가지 이상을 사용한다.In the secondary melt-mixing step (S40), at least one of zinc stearate, magnesium stearate, and calcium stearate is used as a processing aid.

상기 가공조제 첨가량이 0.1 중량부 미만일 경우 2차 용융혼합물의 분산성이 저하되고 5 중량부 이상을 첨가할 경우 비용이 상승한다. When the amount of the processing aid added is less than 0.1 part by weight, the dispersibility of the secondary melt mixture is lowered and the cost increases when 5 parts by weight or more is added.

상기 2차 용융혼합하는 단계(S40)에서 난연제는 2차 용융혼합물에 난연성을 부여하며, 상기 난연제 첨가량이 1 중량부 미만일 경우 2차 용융혼합물의 난연성이 저하되고 100 중량부 이상을 첨가할 경우 혼련성이 떨어진다. In the second melt-mixing step (S40), the flame retardant imparts flame retardancy to the secondary melt mixture, when the amount of the flame retardant is less than 1 part by weight, the flame retardancy of the secondary melt mixture is lowered and kneading when 100 parts by weight or more is added The castle falls.

상기 1차 용융혼합단계(S30) 및 2차 용융혼합단계(S40)에서 혼합믹서는 니더(kneader)나 밴버리(banbury), 밀(mill) 등을 사용한다.In the first melt mixing step (S30) and the second melt mixing step (S40), the mixing mixer uses a kneader, a banbury, a mill, or the like.

상기 냉각하는 단계(S60)는, 대나무 숯분말은 대나무를 탄화시킨 숯을 분쇄하여 제조할 수 있는데, 우수한 항균 및 탈취효과를 나타내는 것으로 알려져 있으며, 냉각수에 첨가함으로써 필라멘트 특유의 냄새를 제거할 수 있다.The cooling step (S60), the bamboo charcoal powder can be prepared by grinding the charcoal carbonized bamboo, is known to exhibit excellent antibacterial and deodorizing effect, by adding to the cooling water can remove the peculiar smell of filament .

(실험예 1)Experimental Example 1

상기 철-구리 합금의 열전도성을 확인하기 위하여 철과 구리의 중량비를 달리하여 합금(실시예 1, 비교예 1, 비교예 2)을 준비하고, 열전도율을 측정하였다. 그 결과를 하기 표 1에 나타내었다.In order to confirm the thermal conductivity of the iron-copper alloy, an alloy (Example 1, Comparative Example 1, and Comparative Example 2) was prepared by varying the weight ratio of iron and copper, and thermal conductivity was measured. The results are shown in Table 1 below.

실시예1Example 1 비교예1Comparative Example 1 비교예2Comparative Example 2 철 중량%Iron weight% 9090 8585 9595 구리 중량%Copper weight% 1010 1515 55 열전도율(W/mK)Thermal Conductivity (W / mK) 7676 3636 4040

상기 결과와 같이, 이 발명에 따른 실시예 1의 중량비를 가지는 철-구리 합금의 열전도율이 가장 우수하였다. 따라서 이 발명의 철-구리 합금을 이용하여 전도성을 증대한 필라멘트를 제조할 수 있다.As described above, the thermal conductivity of the iron-copper alloy having the weight ratio of Example 1 according to the present invention was the best. Therefore, using the iron-copper alloy of the present invention can be produced a filament with increased conductivity.

(실험예 2)Experimental Example 2

상기 대나무 숯분말의 소취력을 확인하기 위하여 ASTM D1988-06을 응용한 가스검지관법을 통해 소취율을 측정하였다. In order to confirm the deodorizing power of the bamboo charcoal powder, the deodorization rate was measured through a gas detection tube method applying ASTM D1988-06.

먼저 500mL 삼각플라스크에 밀폐가 가능하도록 고무마개를 끼운 후 검지관의 출입이 가능하도록 구멍을 뚫어 준비하였으며 암모니아 수용액 1㎕를 플라스크 안으로 주입하여 악취를 유발시켰다. 악취 발생 30분 후 대나무 탄화 숯분말 1㎎을 주입하고 30분, 60분, 90분 단위로 가스검지기를 이용해 잔류가스를 비교 및 분석하였다. 실험은 23℃ 흄후드안에서 진행되었고, 공시험은 물을 주입하여 측정하였다. 그 결과를 하기 표 2에 나타내었다.First, a rubber stopper was inserted to seal the 500mL Erlenmeyer flask, and a hole was prepared to allow entrance and exit of the detection tube, and 1 μl of ammonia solution was injected into the flask to cause odor. After 30 minutes of odor generation, 1 mg of bamboo charcoal powder was injected, and the residual gas was compared and analyzed by using a gas detector in units of 30 minutes, 60 minutes, and 90 minutes. The experiment was carried out in a fume hood at 23 ° C., and the blank test was measured by injecting water. The results are shown in Table 2 below.


소취율(%)Deodorization rate (%)
BlankBlank 숯분말Charcoal powder 30분30 minutes 1212 5050 60분60 minutes 1515 5353 90분90 minutes 1919 5757

상기 결과와 같이, 대나무 탄화 숯분말이 우수한 소취력을 나타내는 것을 확인할 수가 있으며, 대나무 탄화 숯분말을 냉각수 첨가제로 활용함으로써 압출되는 필라멘트 특유의 냄새를 제거할 수 있다.As described above, it can be confirmed that the bamboo charcoal powder exhibits excellent deodorizing power, and by using the bamboo charcoal powder as a coolant additive, the odor peculiar to the extruded filaments can be removed.

Claims (5)

혼합믹서에 증류수 1,000 중량부, 활성화제 0.1~10 중량부, 금속염 환원제 5~20 중량부, 산 50~200 중량부를 순차적으로 첨가하여 30~50 분간 50~1,000 RPM의 속도로 교반하여 표면활성화제를 제조하는 단계;
상기 제조된 표면활성제에 카본나노튜브를 1:1 중량비로 투입하고 60 분간 동안 교반하여 카본나노튜브를 표면활성처리하는 단계;
상기 표면이 활성화된 카본나노튜브 1,000 중량부 기준으로, 철-구리 합금 950 중량부, 고분자 탄성체 45~49 중량부, 산화방지제(antioxidant) 1.0~5.0 중량부를 순차적으로 투입하여 160~300℃의 온도에서 10~60분 동안 1차 용융혼합하는 단계;
상기 1차 용융혼합단계가 끝난 후에 가공조제 (processing agent) 0.1~5.0 중량부, 난연제(flame retardant) 1~30 중량부를 순차적으로 투입하여 160~300℃의 온도에서 60분 동안 2차 용융혼합하는 단계;
단축 또는 이축 압출기를 이용하여 20~50 mm 지름의 필라멘트로 압출성형하는 단계;
상기 압출성형된 필라멘트를 대나무 숯분말을 포함하는 냉각수가 담긴 냉각기로 이송하여 0.1~100 m/분의 속도로 통과시키면서 냉각하는 단계;
상기 냉각된 필라멘트를 건조하는 단계;
상기 건조된 필라멘트를 포장하는 제품화단계;를 포함하는 것을 특징으로 하는 3D 프린터용 전도성 필라멘트의 제조방법.
1,000 parts by weight of distilled water, 0.1 to 10 parts by weight of activator, 5 to 20 parts by weight of metal salt reducing agent, and 50 to 200 parts by weight of acid were added sequentially, followed by stirring at a speed of 50 to 1,000 RPM for 30 to 50 minutes. Preparing a;
Injecting the carbon nanotubes in a weight ratio of 1: 1 to the prepared surface active agent and stirred for 60 minutes to surface-activate the carbon nanotubes;
Based on 1,000 parts by weight of the activated carbon nanotubes, 950 parts by weight of the iron-copper alloy, 45 to 49 parts by weight of the polymer elastomer, 1.0 to 5.0 parts by weight of an antioxidant (in an order) to 160 ~ 300 ℃ temperature Primary melt mixing for 10 to 60 minutes at;
After completion of the first melt mixing step, the second step is melt mixing for 60 minutes at a temperature of 160 ~ 300 ℃ by sequentially adding 0.1 ~ 5.0 parts by weight of the processing agent, 1 ~ 30 parts by weight of flame retardant (flame retardant) step;
Extruding the filament with a diameter of 20-50 mm using a single screw or twin screw extruder;
Transferring the extruded filaments to a cooler containing a cooling water containing bamboo charcoal powder and cooling the same at a speed of 0.1 to 100 m / min;
Drying the cooled filaments;
A method of manufacturing a conductive filament for a 3D printer comprising a; commercialization step of packaging the dried filament.
제 1항에 있어서,
상기 표면활성화제를 제조하는 단계는,
활성화제로서 로디움 트리클로라이드(rhodium trichloride), 디아민 팔라듐 히드록사이드(diamine palladium hydroxide), 플레티늄 클로라이드(platinum chloride), 팔라듐 클로라이드(palladium chloride) 중 적어도 한가지 이상을 사용하고, 금속염 환원제로서 징크 클로라이드(zinc chloride)나 카드뮴 클로라이드(cadmium chloride), 틴 클로라이드(tin chloride) 중 적어도 한가지 이상을 사용하는 것을 특징으로 하는 3D 프린터용 전도성 필라멘트의 제조방법.
The method of claim 1,
Preparing the surface activator,
As an activator, at least one of rhodium trichloride, diamine palladium hydroxide, platinum chloride, and palladium chloride is used. Method for producing a conductive filament for 3D printer, characterized in that at least one of zinc chloride), cadmium chloride, tin chloride (tin chloride) is used.
제 1항에 있어서,
상기 1차 용융혼합하는 단계는,
고분자 탄성체로서 천연고무 (natural rubber), 에틸렌프로필렌 고무 (ethylene propylene rubber, EPDM), 실리콘 고무 (silicone rubber), 니드릴부타디엔 고무 (nitrile butadiene rubber, NBR), 클로로프렌 고무 (chloroprene rubber) 중 적어도 한가지 이상을 사용하고, 산화방지제는 고분자 복합체의 가공 시 산화방지 역할을 하며, 2,6-디-터트-부틸-4-메틸페놀(2,6-di-tert-butyl-4-methyl phenol), 폴리(1,2-디히드로-2,2,4-트리메틸퀴놀린)[poly(1,2-dihydro-2,2,4-trimethylquinoline)], 테트라키스[메틸렌(3,5-디-터트-부틸-4-히드로옥시-히드로시나메이트)메탄 [tetrakis[methylene(3,5-di-tert-butyl-4-hydroxy-hydrocinnamate)]methane]이나 트리스(2,4-디-터트-부틸-페닐)포스파이트[tris(2,4-di-tert-butyl -phenyl) phosphite] 중 적어도 한가지 이상을 사용하는 것을 특징으로 하는 3D 프린터용 전도성 필라멘트의 제조방법.
The method of claim 1,
The first melt mixing step,
Polymer elastomer, at least one of natural rubber, ethylene propylene rubber (EPDM), silicone rubber, nitrile butadiene rubber (NBR), and chloroprene rubber Antioxidants play an antioxidant role in the processing of polymer composites, 2,6-di-tert-butyl-4-methylphenol, poly (1,2-dihydro-2,2,4-trimethylquinoline) [poly (1,2-dihydro-2,2,4-trimethylquinoline)], tetrakis [methylene (3,5-di-tert-butyl 4-hydrooxy-hydrocinnamate) methane [tetrakis [methylene (3,5-di-tert-butyl-4-hydroxy-hydrocinnamate)] methane] or tris (2,4-di-tert-butyl-phenyl) A method for producing a conductive filament for a 3D printer, characterized by using at least one of phosphite [tris (2,4-di-tert-butyl-phenyl) phosphite].
활성화제와 금속염 환원제를 포함하며 철-구리 합금이 쉽게 부착되도록 카본나노튜브의 표면을 활성화하는 표면활성제를 이용하여 표면활성처리한 카본나노튜브 1,000 중량부 기준으로, 합금(철 90 중량%, 구리 10 중량%) 950 중량부, 고분자 탄성체 45~49 중량부, 산화방지제(antioxidant) 1.0~5.0 중량부, 가공조제 (processing agent) 0.1~5.0 중량부, 난연제(flame retardant) 1~30 중량부를 포함하고, 항균소취 처리되며,.
상기 활성제로서, 로디움 트리클로라이드(rhodium trichloride), 디아민 팔라듐 히드록사이드(diamine palladium hydroxide), 플레티늄 클로라이드(platinum chloride), 팔라듐 클로라이드(palladium chloride) 중 적어도 한가지 이상을 사용하고,
상기 금속염 환원제로서, 징크 클로라이드(zinc chloride), 카드뮴 클로라이드(cadmium chloride), 틴 클로라이드(tin chloride) 중 적어도 한가지 이상을 사용하고,
상기 산화방지제로서, 2,6-디-터트-부틸-4-메틸페놀(2,6-di-tert-butyl-4-methyl phenol), 폴리(1,2-디히드로-2,2,4-트리메틸퀴놀린)[poly(1,2-dihydro-2,2,4-trimethylquinoline)], 테트라키스[메틸렌(3,5-디-터트-부틸-4-히드로옥시-히드로시나메이트)메탄 [tetrakis[methylene(3,5-di-tert-butyl-4-hydroxy-hydrocinnamate)]methane]이나 트리스(2,4-디-터트-부틸-페닐)포스파이트[tris(2,4-di-tert-butyl-phenyl) phosphite] 중 적어도 한가지 이상을 사용하고,
상기 고분자 탄성체는, 천연고무 (natural rubber), 에틸렌프로필렌 고무 (ethylene propylene rubber, EPDM), 실리콘 고무 (silicone rubber), 니드릴부타디엔 고무 (nitrile butadiene rubber, NBR), 클로로프렌 고무 (chloroprene rubber) 중 적어도 한가지 이상을 사용하고,
상기 합금은 열전도율이 76 W/m·K, 선열팽창율이 14.75E-6/K인 것을 사용하는 것을 특징으로 하는 3D 프린터용 전도성 필라멘트.
Alloy (iron 90% by weight, copper) 10% by weight) 950 parts by weight, 45-49 parts by weight of the polymer elastomer, 1.0-5.0 parts by weight of antioxidant, 0.1-5.0 parts by weight of processing agent, 1-30 parts by weight of flame retardant And antibacterial deodorant treatment.
As the active agent, at least one of rhodium trichloride, diamine palladium hydroxide, platinum chloride, palladium chloride is used,
As the metal salt reducing agent, at least one of zinc chloride, cadmium chloride, and tin chloride is used,
As the antioxidant, 2,6-di-tert-butyl-4-methylphenol, poly (1,2-dihydro-2,2,4 -Trimethylquinoline) [poly (1,2-dihydro-2,2,4-trimethylquinoline)], tetrakis [methylene (3,5-di-tert-butyl-4-hydrooxy-hydrocinnamate) methane [tetrakis [methylene (3,5-di-tert-butyl-4-hydroxy-hydrocinnamate)] methane] or tris (2,4-di-tert-butyl-phenyl) phosphite [tris (2,4-di-tert- butyl-phenyl) phosphite] at least
The polymer elastomer may include at least one of natural rubber, ethylene propylene rubber (EPDM), silicone rubber, nitrile butadiene rubber (NBR), and chloroprene rubber. Use more than one,
The alloy is a conductive filament for 3D printer, characterized in that the thermal conductivity is 76 W / m · K, the thermal expansion coefficient is 14.75E-6 / K.
삭제delete
KR1020190096582A 2019-08-08 2019-08-08 Conductive filaments for 3D printer and manufacturing method thereof KR102059777B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190096582A KR102059777B1 (en) 2019-08-08 2019-08-08 Conductive filaments for 3D printer and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190096582A KR102059777B1 (en) 2019-08-08 2019-08-08 Conductive filaments for 3D printer and manufacturing method thereof

Publications (1)

Publication Number Publication Date
KR102059777B1 true KR102059777B1 (en) 2019-12-26

Family

ID=69103665

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190096582A KR102059777B1 (en) 2019-08-08 2019-08-08 Conductive filaments for 3D printer and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR102059777B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102362937B1 (en) * 2020-11-19 2022-02-15 김진형 Method for fabricating 3 dimensional filament for 3d printer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017145403A (en) * 2016-02-16 2017-08-24 ゼロックス コーポレイションXerox Corporation Conductive polymer composite
JP2017149038A (en) 2016-02-25 2017-08-31 マーベリックパートナーズ株式会社 Resin filament for producing three-dimensional shaped body by extrusion layering, and shaped article thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017145403A (en) * 2016-02-16 2017-08-24 ゼロックス コーポレイションXerox Corporation Conductive polymer composite
JP2017149038A (en) 2016-02-25 2017-08-31 マーベリックパートナーズ株式会社 Resin filament for producing three-dimensional shaped body by extrusion layering, and shaped article thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102362937B1 (en) * 2020-11-19 2022-02-15 김진형 Method for fabricating 3 dimensional filament for 3d printer

Similar Documents

Publication Publication Date Title
CN105778435B (en) PET compounds of heat-proof aging dielectric film and preparation method thereof
CN102051000B (en) TPV (Thermoplastic Vulcanizate) elastomeric material with improved electrical property
CN109957240B (en) Thermoplastic halogen-free low-phosphorus flame-retardant reinforced bio-based PA56 and PA66 composite material and preparation method thereof
CN102585446B (en) Heat conduction inflaming retarding thermoplastic polyeher ester elastomer composite and preparation method thereof
CN102816383B (en) A kind of filter press filter board of high-temperature-resistant high-pressure-resistant
KR102414274B1 (en) Thermoplastic fluorine resin composition and method for producing cross-linked body
CN103044847A (en) ABS (Acrylonitrile Butadiene Styrene) composite material and preparation method thereof
CN104277455A (en) Preparation method of thermally conductive and insulating material
CN103524942A (en) Flexible polyvinyl chloride (PVC) soft cable material
CN103497441A (en) Polyphenyl ether resin alloy material, and preparation method and application thereof
KR102059777B1 (en) Conductive filaments for 3D printer and manufacturing method thereof
CN102604222A (en) Polypropylene material for automobile interior trimming parts and preparation method thereof
KR20200046235A (en) A composite material composition having electromagnetic wave shielding function and a shaped product comprising the same
KR101621595B1 (en) Thermal electromagnetic shield composition, method for preparing carbon material reinforced complex, and plastic injection molded products
CN110564147A (en) High-oxygen-index red phosphorus flame-retardant reinforced nylon 66 compound and preparation method thereof
CN109354868B (en) Graphene-modified flame-retardant heat-conducting nylon plastic and preparation method thereof
CN107163489A (en) A kind of high intensity high heat conduction PC/ABS plastics and preparation method thereof
CN114316531A (en) PBT composite material and preparation method and application thereof
KR20230035574A (en) Burr suppression method of polyarylene sulfide resin composition
CN102504409A (en) Method for enhancing polypropylene using calcium sulfate whisker
CN106589866A (en) PCL conductive shapable material and preparation method thereof
CN110746669A (en) Novel high-temperature-resistant flame-retardant rubber material and production process thereof
JP2003292799A (en) Filler master batch and thermoplastic elastomer composition
JP2002220507A (en) Phenol resin molding material
JP5123521B2 (en) Heat-resistant resin composite composition and method for producing the same

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant