KR102049573B1 - Method for preparing fructooligosaccharides - Google Patents

Method for preparing fructooligosaccharides Download PDF

Info

Publication number
KR102049573B1
KR102049573B1 KR1020180136909A KR20180136909A KR102049573B1 KR 102049573 B1 KR102049573 B1 KR 102049573B1 KR 1020180136909 A KR1020180136909 A KR 1020180136909A KR 20180136909 A KR20180136909 A KR 20180136909A KR 102049573 B1 KR102049573 B1 KR 102049573B1
Authority
KR
South Korea
Prior art keywords
fructooligosaccharide
enzyme
activity
strain
weight
Prior art date
Application number
KR1020180136909A
Other languages
Korean (ko)
Other versions
KR20180122999A (en
Inventor
이상희
박부수
박종진
안신혜
최은수
Original Assignee
주식회사 삼양사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 삼양사 filed Critical 주식회사 삼양사
Priority to KR1020180136909A priority Critical patent/KR102049573B1/en
Publication of KR20180122999A publication Critical patent/KR20180122999A/en
Application granted granted Critical
Publication of KR102049573B1 publication Critical patent/KR102049573B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0051Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Fructofuranans, e.g. beta-2,6-D-fructofuranan, i.e. levan; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • C12N15/815Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • C12N9/2431Beta-fructofuranosidase (3.2.1.26), i.e. invertase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01026Beta-fructofuranosidase (3.2.1.26), i.e. invertase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2511/00Cells for large scale production

Abstract

본 발명은 반응 기질에 활성이 높은 효소를 처리하여 고수율로 프락토올리고당을 생산하는 방법 및 이의 방법에 의해 생산된 프락토올리고당에 관한 것이다.The present invention relates to a method for producing fructooligosaccharide in high yield by treating an enzyme having high activity on a reaction substrate, and a fructooligosaccharide produced by the method.

Description

프락토올리고당 생산 방법 {Method for preparing fructooligosaccharides}Method for producing fructooligosaccharides {Method for preparing fructooligosaccharides}

본 발명은 높은 활성을 갖는 효소를 처리하여 높은 수율로 프락토올리고당을 생산하는 방법 및 이에 의해 생산된 프락토올리고당에 관한 것이다.The present invention relates to a method for producing fructooligosaccharide in high yield by treating an enzyme having high activity, and to a fructooligosaccharide produced thereby.

프락토올리고당은 3당류 이상의 천연 올리고당으로 설탕의 과당 잔기에 1 ~ 3개의 과당이 결합된 당류의 혼합물로서 그 구성성분은 1-케스토스 (1-Kestose, GF2), 니스토스 (Nystose, GF3), 1-F 프락토퓨라노실니스토스(1-F Fructofuranosyl nystose)이다. 프락토올리고당은 바나나, 양파, 아스파라거스, 우엉, 마늘, 벌꿀, 치커리 뿌리 등과 같은 채소나 버섯, 과일류 등에 포함되어 있으며, Agave vera curz (용설란 속 식물), 돼지 감자 등에서 발견된다. 프락토올리고당은 설탕의 60%의 감미도를 나타내며, 물에 잘 녹아 설탕과 비슷한 상쾌한 감미질을 보이며, 우리 몸에서 소화 및 흡수가 어려워 오래 전부터 저칼로리 식품으로 사용해 왔다. 또한 식이섬유가 33% 이상 함유되어 있어 우리 몸에서 섭취 시, 소장하부에서 장내세균인 비피터스균의 증식 및 장내 유해균 성장 억제에 도움이 되며 배변 활동을 원활히 하는 데 도움이 된다. 그 외에 프락토올리고당은 섭취만으로 대장에서의 칼슘 용해도를 높이고, 흡수를 촉진하는 기능을 가지고 있다. Fructoligosaccharide is a natural oligosaccharide of 3 or more saccharides, and is a mixture of saccharides in which 1 to 3 fructose are bonded to the fructose residues of sugar, and its constituents are 1-Kestose (GF2), Nystose (GF3). , 1-F Fructofuranosyl nystose. Fructoligosaccharide is contained in vegetables, mushrooms, fruits such as bananas, onions, asparagus, burdock, garlic, honey and chicory root, and is found in Agave vera curz (agave genus) and pork potatoes. Fructooligosaccharide has a sweetness of 60% of sugar, and it dissolves well in water, showing a refreshing sweetness similar to sugar, and has been used as a low-calorie food for a long time because it is difficult to digest and absorb in our body. In addition, since it contains more than 33% dietary fiber, when consumed by our body, it helps to inhibit the growth of intestinal bacteria, bifitus, and the growth of harmful bacteria in the intestine in the lower intestine, and helps to facilitate bowel movements. In addition, fructooligosaccharide has the function of increasing the solubility of calcium in the large intestine and promoting absorption by ingestion.

프락토올리고당은 1980년대부터 미생물에서 얻은 효소를 이용하여 생산하기 시작하였다. 설탕으로부터 프락토올리고당을 생산하는 효소인 β-프락토푸라노시다제는 미생물이 생산하는 프락토올리고당 생산 효소로서 설탕으로부터 프락토올리고당을 반비례적으로 생산하며 1-케스토스를 초기에 생산하다가 니스토스를 그리고 마지막에 1-F 프락토퓨라노실 니스토스를 생산한다. 본 효소는 세균 또는 곰팡이에서 분리할 수 있다. 보고된 미생물로는 Aspergillus niger, Aureobasidium pullulans, Athrobacter sp. Penicillium frequentens 등이 있다. From the 1980s, fructooligosaccharides began to be produced using enzymes obtained from microorganisms. Β-Fructofuranosidase, an enzyme that produces fructo-oligosaccharide from sugar, is an enzyme that produces fructooligosaccharides produced by microorganisms. Toss is drawn and finally 1-F fructofuranosyl nystus is produced. This enzyme can be isolated from bacteria or fungi. Reported microorganisms include Aspergillus niger, Aureobasidium pullulans, Athrobacter sp. Penicillium frequentens and others.

본 발명은 반응 기질에 높은 활성을 갖는 효소를 처리하여 높은 수율로 프락토올리고당을 생산하는 방법을 제공하는 것을 목적으로 한다. An object of the present invention is to provide a method for producing fructooligosaccharide in high yield by treating an enzyme having high activity on a reaction substrate.

본 발명의 또 다른 목적은 반응 기질에 높은 활성을 갖는 효소를 처리하여 생산된 프락토올리고당을 제공한다.Another object of the present invention is to provide a fructooligosaccharide produced by treating an enzyme having a high activity on a reaction substrate.

본 발명의 또 다른 목적은 야생형에서 유도된, 상기 균주로부터 생성되는 효소의 단위 단백질 당 활성이 높은 아스페르길루스 나이거 균주를 제공한다.Another object of the present invention is to provide an Aspergillus Niger strain having high activity per unit protein of an enzyme derived from the strain derived from the wild type.

설탕을 프락토올리고당으로 전환하는 활성이 우수한 프락토올리고당 전환효소를 우수한 수율로 생산할 수 있는 야생형으로부터 유도된 신규 아스페르길루스 나이거 변이주(non-GMO)를 분리 및 동정하였으며, 이들의 활성을 최적화 하기 위한 배지 조성을 확인하였다. 또한, 상기 균체를 사용하여 설탕에서 프락토올리고당으로의 전환능이 우수한 균체 반응의 최적 pH 조건 또는 반응 시간 등을 확인하여 프락토올리고당을 효율적으로 대량 생산하기 위한 조건을 확립하여 본 발명을 완성하였다.A novel Aspergillus Niger mutant (non-GMO) derived from the wild type capable of producing a fructo-oligosaccharide converting enzyme having an excellent ability to convert sugar into fructooligosaccharide in excellent yield was isolated and identified, and their activity was investigated. The composition of the medium for optimization was confirmed. In addition, the present invention was completed by confirming the optimum pH condition or reaction time of the cell reaction having excellent conversion ability from sugar to fructooligosaccharide using the cells, and establishing conditions for efficiently mass-producing fructooligosaccharide.

이하, 본 발명을 더욱 자세히 설명하고자 한다. Hereinafter, the present invention will be described in more detail.

본 발명의 일 예는 활성이 높은 효소, 상기 효소를 생산하는 균주의 균체, 배양물, 파쇄물 및 파쇄물의 상등액으로 이루어진 군에서 선택된 1 이상을 반응 기질에 처리하여 고수율로 프락토올리고당을 생산하는 방법 및 이의 방법에 의해 생산된 프락토올리고당을 제공한다.An example of the present invention is to produce fructooligosaccharide in a high yield by treating at least one selected from the group consisting of an enzyme with high activity, a bacterial cell of a strain producing the enzyme, a culture, a lysate, and a supernatant of a lysate. A method and a fructooligosaccharide produced by the method are provided.

본 발명의 생산발명에 따르면 높은 수율로 프락토올리고당을 제조할 수 있으며, 상기 프락토올리고당은 1-케스토스(1-kesotse, GF2), 니스토스(Nystose, GF3) 및 1-F-프락토퓨라노실 니스토스(1-F-Fructofuranosyl nystose, GF4)로 이루어진 군에서 선택된 1 이상을 포함할 수 있다. According to the production invention of the present invention, fructooligosaccharides can be prepared in high yield, and the fructooligosaccharides are 1-kesotse (GF2), nystose (GF3), and 1-F-fructose. It may contain at least one selected from the group consisting of furanosyl nystose (1-F-Fructofuranosyl nystose, GF4).

바람직한 일 실시예에서 본 발명의 프락토올리고당은 프락토올리고당 전환 효소를 60℃의 온도에서 30시간 동안 반응시킨 경우, 프락토올리고당 총고형분 100중량%를 기준으로 1-케스토스를 10 내지 60중량%, 바람직하게는 15 내지 45중량%, 더욱 바람직하게는 28 내지 35중량%로 포함할 수 있다. In a preferred embodiment, when the fructooligosaccharide of the present invention is reacted with a fructooligosaccharide converting enzyme at a temperature of 60°C for 30 hours, 1-kestose is 10 to 60% by weight based on 100% by weight of the total solid content of fructooligosaccharide. %, preferably 15 to 45% by weight, more preferably 28 to 35% by weight.

바람직한 일 실시예에서 본 발명의 프락토올리고당은 프락토올리고당 전환 효소를 60℃의 온도에서 30시간 동안 반응시킨 경우, 프락토올리고당 총고형분 100중량%를 기준으로 니스토스를 0 내지 50중량% 또는 0.01 내지 50중량%, 바람직하게는 0 내지 35중량% 또는 0.01 내지 35중량%로 포함할 수 있다. In a preferred embodiment, when the fructooligosaccharide of the present invention is reacted with a fructooligosaccharide converting enzyme for 30 hours at a temperature of 60°C, 0 to 50% by weight or nytose based on 100% by weight of the total solid content of fructooligosaccharide It may include 0.01 to 50% by weight, preferably 0 to 35% by weight or 0.01 to 35% by weight.

바람직한 일 실시예에서 본 발명의 프락토올리고당은 프락토올리고당 전환 효소를 60℃의 온도에서 30시간 동안 반응시킨 경우, 프락토올리고당 총고형분 100중량%를 기준으로 1-F-프락토퓨라노실 니스토스를 0 내지 15중량% 또는 0.01 내지 15중량%, 바람직하게는 0 내지 10중량% 또는 0.01 내지 10중량%, 더욱 바람직하게는 0 내지 5중량% 또는 0.01 내지 5중량%로 포함할 수 있다. In a preferred embodiment, when the fructooligosaccharide of the present invention is reacted with a fructooligosaccharide converting enzyme at a temperature of 60° C. for 30 hours, 1-F-fructofuranosyl based on 100% by weight of the total solid content of fructooligosaccharide Nistose may be included in an amount of 0 to 15% by weight or 0.01 to 15% by weight, preferably 0 to 10% by weight or 0.01 to 10% by weight, more preferably 0 to 5% by weight or 0.01 to 5% by weight. .

본 발명의 프락토올리고당 전환 효소에 의해 전환되는 프락토올리고당은 60℃의 온도에서 30시간 동안 설탕과 반응하여 제조되는 경우, HPLC로 측정하여 Area%로 측정된 값이 1-케스토스와 니스토스 및 1-F-프락토퓨라노실 니스토스 (1-케스토스: 니스토스 및 1-F-프락토퓨라노실 니스토스의 합계 중량)의 함량비가 0.5 내지 2.0, 바람직하게는 0.8 내지 1.5 중량%가 되도록 생산하는 것을 특징으로 할 수 있다. When the fructooligosaccharide converted by the fructooligosaccharide converting enzyme of the present invention is prepared by reacting with sugar for 30 hours at a temperature of 60°C, the values measured in Area% as measured by HPLC are 1-Kestose and Nistose And 1-F-fructofuranosyl nystos (1-kestose: the total weight of nystos and 1-F-fructofuranosyl nystos) in a content ratio of 0.5 to 2.0, preferably 0.8 to 1.5 weight. It may be characterized in that it is produced to be %.

본 발명의 생산방법에 있어서 반응 기질은 설탕을 사용할 수 있으며, 설탕을 반응 기질로 사용하여 과당 및 포도당으로 이루어진 군에서 선택된 1 이상이 추가적으로 생성되어, 반응 생성물이 프락토올리고당, 과당, 포도당 및 설탕으로 이루어진 군에서 선택된 1 이상이 될 수 있다. In the production method of the present invention, sugar may be used as the reaction substrate, and at least one selected from the group consisting of fructose and glucose is additionally generated by using sugar as the reaction substrate, and the reaction product is fructooligosaccharide, fructose, glucose and sugar. It may be one or more selected from the group consisting of.

바람직한 일 실시예에서 본 발명의 프락토올리고당은 반응 기질로서 설탕을 사용하여 프락토올리고당 전환 효소를 60℃의 온도에서 30시간 동안 반응시킨 경우, 반응 기질 총고형분 100중량%를 기준으로 프락토올리고당을 50 내지 70중량%, 바람직하게는 55 내지 65중량%, 더욱 바람직하게는 60 내지 63중량%로 생산할 수 있다. In a preferred embodiment, when the fructooligosaccharide converting enzyme of the present invention is reacted for 30 hours at a temperature of 60° C. using sugar as a reaction substrate, the fructooligosaccharide is based on 100% by weight of the total solid content of the reaction substrate. 50 to 70% by weight, preferably 55 to 65% by weight, more preferably 60 to 63% by weight can be produced.

일 구체예에서, 상기 균주를 기질과 반응 또는 처리하는 단계는 상기 균주의 파쇄물, 상기 파쇄물의 상등액 또는 상기 균체로부터 유래된 효소를 설탕이 포함된 배양 배지에서 배양하는 단계에 의하여 수행될 수 있다. 다른 구체예에서, 상기 기질과 반응시키는 단계는 상기 균주(균체, 균주의 배양물, 균주의 파쇄물 및/또는 상기 파쇄물의 상등액)를 기질과 접촉시키는 단계, 예컨대, 상기 균주를 기질과 혼합하는 단계 또는 상기 균주가 고정화된 담체에 기질을 접촉시키는 단계에 의하여 수행될 수 있다. 이와 같이 균주를 기질과 반응시킴으로써 기질, 예를 들어 설탕을 프락토올리고당으로 전환하여 프락토올리고당을 생산할 수 있다.In one embodiment, the step of reacting or treating the strain with a substrate may be performed by culturing the lysate of the strain, the supernatant of the lysate, or an enzyme derived from the cell in a culture medium containing sugar. In another embodiment, the step of reacting with the substrate is a step of contacting the strain (cell, a culture of the strain, a lysate of the strain and/or a supernatant of the lysate) with a substrate, e.g., mixing the strain with a substrate. Alternatively, it may be carried out by contacting the substrate with the carrier on which the strain is immobilized. By reacting the strain with the substrate as described above, a substrate, for example, sugar can be converted into fructooligosaccharide to produce fructooligosaccharide.

상기 프락토올리고당 생산 방법에 있어서, 효율적인 프락토올리고당 생산을 위하여, 기질로서 사용되는 설탕의 농도는 전체 반응물 기준으로 30 내지 90, 바람직하게는 40 내지 80%(w/v)일 수 있다. 상기 설탕은 완충용액 또는 물(예컨대 증류수)에 용해된 용액 상태로 사용될 수 있다.In the fructooligosaccharide production method, for efficient fructooligosaccharide production, the concentration of sugar used as a substrate may be 30 to 90, preferably 40 to 80% (w/v) based on the total reactant. The sugar may be used in the form of a buffer solution or a solution dissolved in water (eg, distilled water).

본 발명의 생산방법에 사용되는 효소는 프락토올리고당 생성 효소로서, 예를 들어 베타-프락토푸라노시다제일 수 있으며, 아스페르길루스 나이거 균주로부터 생성된 것일 수 있다. The enzyme used in the production method of the present invention may be a fructooligosaccharide producing enzyme, for example, beta-fructofuranosidase, and may be produced from Aspergillus Niger strain.

상기 아스페르길루스 속 균주는 바람직하게는 아스페르길루스 나이거(Aspergillus niger) 균주로서, 전분 당화력이 강하고, 당으로부터 구연산, 글루콘산 등을 다량 생산하는 능력이 있어, 유기산 발효 공업에 이용되는 것으로 종래에 알려져 있다, 본 발명의 균주는 발효식품으로부터 분리한 야생형(wild type) 아스페르길루스 나이거를 무작위 돌연변이, 예를 들어 NTG (N-methyl-N-nitroso-guanidin) 또는 UV 조사에 의한 돌연변이를 1 차 이상 수행한 변이주(non-GMO)일 수 있다. The Aspergillus strain is preferably Aspergillus niger (Aspergillus niger) strain, has a strong starch saccharification power, and has the ability to produce a large amount of citric acid, gluconic acid, etc. from sugar, which is used in the organic acid fermentation industry. It is known in the art that the strain of the present invention is a random mutation, for example, NTG (N-methyl-N-nitroso-guanidin) or UV irradiation with wild type Aspergillus Niger isolated from fermented food. It may be a mutant strain (non-GMO) that has undergone a first or more mutation.

바람직하게는 본 발명의 균주는 바람직하게는 2016.10.28자로 KCTC에 기탁된 기탁번호 KCTC13140BP(Aspergillus niger SYG-Neo1)의 균주일 수 있다. Preferably, the strain of the present invention may be a strain of accession number KCTC13140BP ( Aspergillus niger SYG-Neo1) deposited with KCTC as of 2016.10.28.

본 발명의 명세서에서 사용되는 용어, 균주 활성은 아래 수학식 1로 계산된 균주 활성으로, 균주 배양물의 상등액 및 기질을 포함하는 반응액의 단위 부피 당 1분 동안 생성되는 1-케스토스 양(mM)을 생산할 수 있는 효소의 양으로 측정된 균주 활성을 의미한다. The term used in the specification of the present invention, strain activity is the strain activity calculated by the following equation (1), the amount of 1-kestose produced for 1 minute per unit volume of the reaction solution including the supernatant and the substrate of the strain culture (mM ) Means the activity of the strain measured by the amount of enzyme capable of producing.

[수학식 1][Equation 1]

Figure 112018111134183-pat00001
Figure 112018111134183-pat00001

예를 들어 본 발명의 생산 방법에 사용되는 아스페르길루스 나이거 변이주는 야생형 아스페르길루스 나이거 균주에 무작위 돌연변이를 2차 이상 실시한 것으로서, 상기 수학식 1에 의해 산출된 균주 활성이 150 내지 600 U/ml, 바람직하게는 200 내지 400 U/ml일 수 있다. 상기 균주 활성은 야생형 아스페르길루스 나이거 균주 활성 100%를 기준으로 상대적인 균주 활성이 150 내지 800%, 바람직하게는 300 내지 650% 인 것을 특징으로 한다.For example, the Aspergillus Niger mutant strain used in the production method of the present invention is a wild-type Aspergillus Niger strain subjected to random mutations at least two times, and the strain activity calculated by Equation 1 above is 150 to It may be 600 U/ml, preferably 200 to 400 U/ml. The strain activity is characterized in that the relative strain activity is 150 to 800%, preferably 300 to 650%, based on 100% of the wild-type Aspergillus Niger strain activity.

유전자 재조합 균주 즉, GMO의 경우 식품에서 사용시에 소비자들이 구매를 매우 꺼려하며, 유전자 조작으로 인해 환경 생태학적인 측면에서도 해로울 수 있는 단점이 있다. 또한 유전자 재조합 미생물(GMO)의 효소를 이용하는 경우, 고효율의 프락토올리고당 생산이 가능하다는 장점이 있으나 이를 사람이 섭취하기 위해 안전성 입증에 많은 비용과 시간이 소모되는 단점이 있다. 반면 안전성이 입증된 자연계 균주(식용 경험이 있는 Non-GMO 균주)를 이용하는 경우, 상기와 같은 수고를 덜기 위해서 자연계 균주(식용 경험이 있는 Non-GMO 균주)를 개량하여 고생산 프락토올리고당 전환 능력을 갖는 돌연변이를 제작하는 것이 중요하다.In the case of genetically modified strains, that is, GMOs, consumers are very reluctant to purchase when used in food, and there is a disadvantage that may be harmful in terms of environmental ecology due to genetic manipulation. In addition, in the case of using an enzyme of a genetically modified microorganism (GMO), there is an advantage in that it is possible to produce fructooligosaccharide with high efficiency, but there is a disadvantage that a lot of cost and time are consumed in verifying safety for human consumption. On the other hand, in the case of using a safety-proven natural strain (Non-GMO strain with edible experience), the ability to convert high-produced fructooligosaccharides by improving the natural strain (Non-GMO strain with edible experience) in order to save the above troubles. It is important to construct a mutation with

상기 발효 식품은 예를 들어 된장, 청국장, 누룩, 고추장, 낫또 및 메주로 이루어진 군에서 선택된 1 이상일 수 있으나 이에 한정되지 않는다.The fermented food may be, for example, one or more selected from the group consisting of miso, cheonggukjang, nuruk, red pepper paste, natto, and meju, but is not limited thereto.

본 발명의 아스페르길루스 속 균주는 특히 높은 역가로 설탕을 프락토올리고당으로 전환할 수 있는 프락토올리고당 전환 효소를 고수율로 생산할 수 있는 것을 특징으로 한다. 상기 균주는 프락토푸라노시다제 효소를 암호화하는 핵산 서열 및/또는 그 상류(upstream)에 작동 가능하도록 연결되어 균주 내에서 프락토푸라노시다제 효소의 발현을 조절하는 조절서열을 포함할 수 있다. 바람직하게는 본원발명의 균주는 서열번호 5의 18S rRNA 서열을 가질 수 있다.The strain of the genus Aspergillus of the present invention is characterized in that it can produce a fructooligosaccharide converting enzyme capable of converting sugar to fructooligosaccharide at a particularly high titer in high yield. The strain may include a nucleic acid sequence encoding a fructofuranosidase enzyme and/or a regulatory sequence that is operably linked to an upstream thereof to regulate the expression of the fructofuranosidase enzyme in the strain. have. Preferably, the strain of the present invention may have the 18S rRNA sequence of SEQ ID NO: 5.

본 발명의 높은 프락토올리고당 전환능을 갖는 상기 효소는 상기 균주의 균체, 상기 균주의 배양물, 상기 균주의 파쇄물 및 상기 파쇄물의 상등액으로 이루어진 군에서 선택된 1 이상일 수 있다. 바람직하게는 상기 효소는 상기 균주의 파쇄물의 상등액 내 포함된 프락토푸라노시다제 효소, 바람직하게는 베타-프락토푸라노시다제 효소일 수 있다. 예를 들어 본 발명의 베타-프락토푸라시노다제 효소는 서열번호 7의 유전자 서열을 갖는 것일 수 있다.The enzyme having a high fructooligosaccharide conversion ability of the present invention may be at least one selected from the group consisting of the bacterial body of the strain, the culture of the strain, the lysate of the strain, and the supernatant of the lysate. Preferably, the enzyme may be a fructofuranosidase enzyme, preferably a beta-fructofuranosidase enzyme, contained in the supernatant of the lysate of the strain. For example, the beta-fructofuracinodase enzyme of the present invention may have the gene sequence of SEQ ID NO: 7.

이러한 본 발명의 균주로 제조되는 효소의 우수한 전환능은 종래 가장 널리 사용되는 Meiji사 균주 대비 우수한 전환능으로 프락토올리고당을 생산할 수 있을 뿐 아니라 프락토올리고당 동량 생산을 위해 소요되는 시간이 더 짧다. 이에 본 발명의 아스페르길루스 나이거 균주 또는 이에 의해 생산되는 효소는 프락토올리고당, 특히 이의 대량 생산에 유용하게 적용될 수 있는 종래 균주의 유용한 대체제일 뿐 아니라, 프락토올리고당 생산 수율을 보다 증진시킬 수 있다.The excellent conversion ability of the enzyme prepared by the strain of the present invention allows the production of fructooligosaccharides with excellent conversion ability compared to the conventionally most widely used Meiji strains, as well as a shorter time required for the production of the same amount of fructooligosaccharides. Accordingly, the Aspergillus Niger strain of the present invention or the enzyme produced therefrom is not only a useful substitute for fructooligosaccharide, particularly a conventional strain that can be usefully applied to mass production thereof, but also improves the yield of fructooligosaccharide production. I can.

본 발명의 명세서에서 사용되는 효소 활성은 프락토올리고당 전환 활성으로서, 아래 수학식 2의 식으로 계산된 균주 활성을 균주 배양물의 상등액 및 기질을 포함하는 반응액 내 단백질 고형분 중량으로 나누어 계산된 단위 단백질 당 활성이다. The enzyme activity used in the specification of the present invention is the fructooligosaccharide conversion activity, and the unit protein calculated by dividing the strain activity calculated by the formula of Equation 2 below by the weight of the protein solid in the reaction solution including the supernatant and the substrate of the strain culture. Sugar is active.

[수학식 2][Equation 2]

Figure 112018111134183-pat00002
Figure 112018111134183-pat00002

예를 들어 본 발명의 생산 방법에서 사용되는 효소는 단위 단백질 당 효소 활성이 300 내지 1500 U/mg, 바람직하게는 300 내지 1400 U/mg, 더욱 바람직하게는 300 내지 500 U/mg 또는 1200 내지 1400 U/mg 일 수 있다. 상기 균주 활성은 야생형 아스페르길루스 나이거 균주로부터 생성된 효소 활성 100%를 기준으로 상대적인 효소 활성이 150 내지 1000%, 바람직하게는 600 내지 1000% 또는 250 내지 400% 높은 것을 특징으로 한다.For example, the enzyme used in the production method of the present invention has an enzyme activity per unit protein of 300 to 1500 U/mg, preferably 300 to 1400 U/mg, more preferably 300 to 500 U/mg or 1200 to 1400. It can be U/mg. The strain activity is characterized in that the relative enzyme activity is 150 to 1000%, preferably 600 to 1000% or 250 to 400% high, based on 100% of the enzyme activity generated from the wild-type Aspergillus Niger strain.

본 발명의 균주로 프락토올리고당을 제조하는 경우 반응 기질인 설탕 1kg 이 60(w/v)%의 농도로 30시간 동안 반응하는 경우 0.005 내지 0.050g, 바람직하게는 0.007 내지 0.03g, 더욱 바람직하게는 0.009 내지 0.02g의 효소가 반응하는 것을 특징으로 할 수 있다.When preparing fructooligosaccharide with the strain of the present invention, when 1 kg of sugar as a reaction substrate reacts for 30 hours at a concentration of 60 (w/v)%, 0.005 to 0.050 g, preferably 0.007 to 0.03 g, more preferably It may be characterized in that 0.009 to 0.02g of the enzyme reacts.

본 발명의 효소는 보관 안정성이 우수하며, 최초 보관 시 상기 수학식 2로 측정된 효소 활성을 100%로 하는 경우 4, 25 또는 37℃의 온도에서 7개월 보관 시, 60 내지 100%, 바람직하게는 70 내지 100%, 더욱 바람직하게는 75 내지 95% 범위로 활성이 유지되어 장기 보관성이 매우 우수함을 확인하였다. 예를 들어 4℃의 온도에서 7개월 보관 시, 90 내지 100%,바람직하게는 90 내지 95%로 유지될 수 있다.The enzyme of the present invention has excellent storage stability, and when the enzyme activity measured by Equation 2 is 100% at the time of initial storage, when stored for 7 months at a temperature of 4, 25 or 37°C, 60 to 100%, preferably It was confirmed that the activity was maintained in the range of 70 to 100%, more preferably 75 to 95%, so that long-term storage is very excellent. For example, when stored for 7 months at a temperature of 4° C., it may be maintained at 90 to 100%, preferably 90 to 95%.

공시된 일본 수출 규격은 프락토올리고당의 당조성 규격은 단당류 (과당 + 포도당) 33% 이하, 설탕 10% ± 1.5, 1-Kestose(GF2) 26% ± 3, Nystose(GF3) 26% ± 3, 1-F-Fructofuranosyl nystose(GF4) 5% ± 3으로 총 프락토올리고당 함량이 57%이상이 되어야 하지만, 내수 규격은 당 조성과 상관없이 프락토올리고당이 55% 이상이면 제품으로 합격한다. 본 발명의 균주로부터 생산되는 프락토올리고당은 상기 규격을 모두 만족할 수 있다.The published standards for export to Japan are for the composition of fructooligosaccharides: monosaccharides (fructose + glucose) 33% or less, sugar 10% ± 1.5, 1-Kestose (GF2) 26% ± 3, Nystose (GF3) 26% ± 3, 1-F-Fructofuranosyl nystose (GF4) 5% ± 3, the total fructooligosaccharide content must be 57% or more, but the domestic standard is a product if the fructooligosaccharide is 55% or more regardless of the sugar composition. The fructooligosaccharide produced from the strain of the present invention may satisfy all of the above specifications.

본 발명의 프락토올리고당 전환 효소를 기질과 반응시키는 온도는, 40 내지 80℃, 바람직하게는 50 내지 70℃, 더욱 바람직하게는 55 내지 65℃의 반응 온도에서 효소 활성이 우수하다. 또한 상기 효소는 60℃의 온도에서 pH 4 내지 8, 바람직하게는 pH 5 내지 7, 더욱 바람직하게는 pH 5.5 내지 6.5의 범위로 반응하는 경우 우수한 효소 활성을 나타낸다. The temperature at which the fructooligosaccharide converting enzyme of the present invention is reacted with the substrate is 40 to 80°C, preferably 50 to 70°C, and more preferably 55 to 65°C, and the enzyme activity is excellent. In addition, the enzyme exhibits excellent enzyme activity when reacted at a temperature of 60° C. in the range of pH 4 to 8, preferably pH 5 to 7, more preferably pH 5.5 to 6.5.

본 발명의 프락토올리고당 생산방법은 전환 효소 생산을 위한 배양 시, 에어레이션하는 단계를 추가로 포함할 수 있으며, 0.1 내지 5vvm, 바람직하게는 0.5 내지 3vvm에서 수행할 수 있다. 상기 에어레이션으로 인하여 균주의 프락토올리고당 전환 효율을 더욱 높일 수 있다.The method for producing fructooligosaccharide of the present invention may further include a step of aeration during culturing for production of a converting enzyme, and may be performed at 0.1 to 5 vvm, preferably 0.5 to 3 vvm. Due to the aeration, the conversion efficiency of the strain to fructooligosaccharide can be further increased.

본 발명의 프락토올리고당 전환 효소는 3 내지 60 시간, 바람직하게는 12 내지 48시간 조건으로 기질과 반응되는 것을 특징으로 할 수 있다.The fructooligosaccharide converting enzyme of the present invention may be characterized in that it is reacted with the substrate under conditions of 3 to 60 hours, preferably 12 to 48 hours.

본 발명의 또 다른 일 예는 반응 기질을 프락토올리고당으로 전환하는 특성을 갖는 아스페르길루스 속 균주 배양용 배지 조성물 또는 상기 균주를 포함하는 프락토올리고당 생산용 조성물을 제공한다.Another example of the present invention provides a medium composition for culturing a strain of the genus Aspergillus having a property of converting a reaction substrate into fructooligosaccharide or a composition for producing fructooligosaccharide comprising the strain.

상기 아스페르길루스 속 균주 또는 상기 프락토올리고당 전환 효소에 관한 사항은 아스페르길루스 속 균주 배양용 배지 조성물 또는 프락토올리고당 생산용 조성물에 동일하게 적용될 수 있다.The matters related to the Aspergillus genus strain or the fructooligosaccharide converting enzyme may be equally applied to the Aspergillus genus strain culture medium composition or the composition for producing fructooligosaccharide.

본 발명의 배지 조성물 또는 생산용 조성물에 적용되는 상기 균주는 우수한 프락토올리고당 전환능을 가지며, 상기 프락토올리고당 전환능은 상기 아스페르길루스 나이거 균주가 설탕을 프락토올리고당으로 전환시키는 효소, 바람직하게는 베타-프락토푸라노시다제 효소를 생산함으로써 얻어지는 것으로, 상기 조성물은 프락토올리고당 전환 효소 활성이 최적화되는 배지 조성을 포함할 수 있다.The strain applied to the medium composition or production composition of the present invention has excellent fructooligosaccharide conversion ability, and the fructooligosaccharide conversion ability is an enzyme that the Aspergillus Niger strain converts sugar into fructooligosaccharide, It is preferably obtained by producing a beta-fructofuranosidase enzyme, and the composition may include a medium composition in which fructo-oligosaccharide converting enzyme activity is optimized.

이에 따라 본 발명의 배지 조성물은 C/N 비(ratio)가 1:3 내지 1:10, 바람직하게는 1:3 내지 1:7의 중량비 범위일 수 있다.Accordingly, the medium composition of the present invention may have a C/N ratio of 1:3 to 1:10, preferably in a weight ratio of 1:3 to 1:7.

본 발명의 또 다른 일 예로서, 야생형에서 유도된 아스페르길루스 나이거 균주로서, 상기 균주로부터 생성되는 효소의 단위 단백질 당 활성이 높은 균주 또는 상기 균주에 의해 생성된 프락토올리고당 전환 효소를 제공한다.As another example of the present invention, as a wild type-derived Aspergillus Niger strain, a strain having high activity per unit protein of an enzyme produced from the strain or a fructooligosaccharide converting enzyme produced by the strain is provided. do.

상기 프락토올리고당 생산 방법에 관한 사항은 상기 균주 및 효소에 동일하게 적용될 수 있다.The matters regarding the method for producing fructooligosaccharide may be equally applied to the strain and enzyme.

본 발명의 일 예로서, 반응 기질에 활성이 높은 효소를 처리하여 생산된 프락토올리고당 함유 기능성 식품을 제공한다.As an example of the present invention, there is provided a functional food containing fructooligosaccharide produced by treating an enzyme having a high activity on a reaction substrate.

상기 프락토올리고당 생산 방법에 관한 사항은 상기 기능성 식품에 동일하게 적용될 수 있다.The matters regarding the method for producing fructooligosaccharide may be equally applied to the functional food.

본 발명의 아스페르길루스 나이거 균주는 대규모에서도 높은 수율로 설탕으로부터 프락토올리고당을 전환하는 활성을 갖는 프락토올리고당을 높은 수율로 생산할 수 있고, 종래 널리 사용되는 균주 대비 빠른 시간 내에 프락토올리고당을 제조할 수 있을 뿐 아니라 보관 안정성이 높은 효소를 생산할 수 있어, 기능성 당 관련 건강식품 및 의약 산업에서 폭넓게 사용될 것으로 기대된다.The Aspergillus Niger strain of the present invention can produce fructooligosaccharides having an activity of converting fructooligosaccharides from sugar in a high yield even on a large scale, and can produce fructooligosaccharides in a high yield compared to strains that are widely used in the past. It is expected to be widely used in the health food and pharmaceutical industries related to functional sugars, as it can not only manufacture, but also produce enzymes with high storage stability.

도 1은 본 발명의 아스페르길루스 나이거 균주의 등고선도 분석 결과이다.
도 2는 본 발명의 아스페르길루스 나이거 균주의 반응 최적화 도구로 분석한 결과이다.
도 3은 모균주 아스페르길루스 나이거와 본 발명의 균주 1 및 2를 5L 발효소에서 배양한 결과 활성 변화를 비교한 결과이다.
도 4는 정제 단계 별 효소 단백질의 SDS-PAGE 결과를 나타낸 것이다.
1 is a contour diagram analysis result of Aspergillus Niger strain of the present invention.
2 is a result of analysis by the reaction optimization tool of Aspergillus Niger strain of the present invention.
3 is a result of comparing the activity change as a result of culturing the parent strain Aspergillus Niger and strains 1 and 2 of the present invention in a 5L fermentation plant.
4 shows the results of SDS-PAGE of the enzyme protein for each purification step.

하기 예시적인 실시예를 들어 본 발명을 더욱 자세히 설명할 것이나, 본 발명의 보호범위가 하기 실시예로 한정되는 의도는 아니다. The present invention will be described in more detail with reference to the following exemplary examples, but the scope of protection of the present invention is not intended to be limited to the following examples.

실시예 1:Example 1: 식품 유래 미생물 분리Isolation of food-derived microorganisms

1.1 시료 내 균주 배양 및 분리1.1 Culture and isolation of strains in the sample

프락토올리고당 전환효소를 생산하는 미생물을 탐색하기 위해 국내의 된장, 청국장, 누룩, 고추장, 낫또 및 메주(백화점, 마트 및 재래시장에서 구입 : 대구 롯데백화점, 대구 칠성시장, 대전 둔산동 이마트, 대전 대덕 롯데마트)와 같은 대표적인 발효 식품으로부터 시료를 채취하였다. 채취한 식품시료 1g을 0.85% NaCl 10mL에 현탁하고, 현탁액 100ul를 Wallerstein Laboratory Nutrient Agar(WLNA), Potato Dextrose Agar(PDA), Inulin Agar(IA) 배지에 도말한 후 28℃에서 3일간 배양하였다. 고체배지에서 자란 콜로니 중에서 모양과 크기가 다른 것을 선별하여 분리한 후 생산배지에 30℃의 온도에서 5일간 진탕 배양 하였다. 상기 각 배지의 조성은 아래 표 1에 나타내었다.To search for microorganisms that produce fructo-oligosaccharide converting enzymes, domestic doenjang, cheonggukjang, yeast, red pepper paste, natto and meju (purchased at department stores, marts and traditional markets: Lotte Department Store in Daegu, Chilseong Market in Daegu, E-mart in Dunsan-dong, Daejeon, Daedeok, Daejeon) Lotte Mart) samples were collected from representative fermented foods. 1 g of the collected food sample was suspended in 10 mL of 0.85% NaCl, and 100 ul of the suspension was spread on Wallerstein Laboratory Nutrient Agar (WLNA), Potato Dextrose Agar (PDA), Inulin Agar (IA) medium, and cultured at 28° C. for 3 days. Among the colonies grown in solid medium, those of different shapes and sizes were sorted, separated, and cultured with shaking at a temperature of 30°C for 5 days in the production medium. The composition of each medium is shown in Table 1 below.

배지성분Medium ingredient WLNA(g/L)WLNA(g/L) PDA(g/L)PDA(g/L) IA(g/L)IA(g/L) 생산배지Production medium Yeast extractYeast extract 44 -- 1One 3535 Potato starchPotato starch -- 44 -- -- InulinInulin -- -- 2020 -- BactocasitoneBactocasitone 55 -- -- -- SucroseSucrose -- -- -- 150150 DextroseDextrose 5050 2020 -- -- K2HPO4 K 2 HPO 4 1One -- 1One -- KClKCl 0.1250.125 -- -- -- MgSO4-7H2OMgSO 4 -7H 2 O 0.250.25 -- 0.50.5 -- FeCl3 FeCl 3 0.00250.0025 -- -- -- MnSO4-4H2OMnSO 4 -4H 2 O 0.00250.0025 -- -- -- NaNO3 NaNO 3  -- -- 33 -- Bromocresol greenBromocresol green 0.0220.022 -- -- -- AgarAgar 2020 2020 2020 -- CMC*CMC* -- -- -- 55 pHpH pH6pH6 -- pH5pH5 pH6.5pH6.5

* CMC : carboxymethylcellulose sodium salt* CMC: carboxymethylcellulose sodium salt

배양한 균체는 원심분리하여 상등액을 취하여 상등액을 crude enzyme으로 사용하였다. Crude enzyme은 100g/L 설탕을 기질로 사용해 40℃에서 24시간 동안 반응하였으며, 반응물은 TLC(thin layer chromatography)로 분석하였다. TLC 플레이트는 TLC silica gel 60 F254, 전기 용매로는 85%의 아세토니트릴을 사용하여 3차례 전개를 진행하여 Methanol : 황산 : N-(1-Naphthyl_ethylene diamine dihydrochloride = 95 : 4.7 : 0.3 혼합된 용액에 침지한 후 열처리하여 발색을 관찰하였다. TLC 결과를 통해 상기 467종의 균주 중 설탕을 프락토올리고당으로 전환한 균주 10종을 스크리닝 하였다. The cultured cells were centrifuged to take the supernatant, and the supernatant was used as a crude enzyme. Crude enzyme was reacted for 24 hours at 40°C using 100g/L sugar as a substrate, and the reaction was analyzed by TLC (thin layer chromatography). TLC plate was developed three times using TLC silica gel 60 F254 and 85% acetonitrile as an electric solvent, and immersed in a mixed solution of methanol: sulfuric acid: N-(1-Naphthyl_ethylene diamine dihydrochloride = 95: 4.7: 0.3 After performing heat treatment, color development was observed, 10 strains in which sugar was converted to fructooligosaccharide among the 467 strains were screened through TLC results.

상기 고체배지에서 스크리닝한 467종의 균주는 누룩 시료에서 48개, 청국장 시료에서 68개, 고추장 시료에서 13개, 된장 시료에서 138개, 메주가루 시료에서 19개, 메주 시료에서 46개, 낫또 시료에서 4개, 막걸리 시료에서 8개, 기타 123개의 분포인 것으로 나타났다.The 467 strains screened in the solid medium were 48 from yeast sample, 68 from Cheonggukjang sample, 13 from red pepper paste sample, 138 from soybean paste sample, 19 from Meju powder sample, 46 from Meju sample, and natto sample. The distribution was found to be 4 in the sample, 8 in the makgeolli sample, and 123 in the other.

1.2 모균주 선정1.2 Selection of parent strain

실시예 1.1에서 선별된 균주 10종은 15% 설탕(sucrose), 3.5% 효모추출물(yeast extract)와 0.5% 카르복시메틸셀룰로스-CMC (pH6.5) 함유한 액체배지에 접종하여 30℃의 온도에서 5일간 진탕배양 하였다. 배양액은 원심분리하여 상등액과 균체를 분리한 뒤, 상등액만 취하여 Crude enzyme으로 사용하였다. Crude enzyme은 100g/L 설탕을 기질로 사용하여 40℃의 온도에서 30분 동안 반응하였으며 HPLC RI 분석을 통해 프락토올리고당 생성 효소의 활성을 비교하였다. Agilent HPLC를 사용하였으며 구체적 분석 조건은 아래와 같다.The 10 strains selected in Example 1.1 were inoculated in a liquid medium containing 15% sugar, 3.5% yeast extract and 0.5% carboxymethylcellulose-CMC (pH6.5) at a temperature of 30°C. It was cultured with shaking for 5 days. The culture medium was centrifuged to separate the supernatant from the cells, and then only the supernatant was taken and used as a Crude enzyme. Crude enzyme was reacted for 30 minutes at a temperature of 40° C. using 100 g/L sugar as a substrate, and the activity of the fructooligosaccharide-generating enzyme was compared through HPLC RI analysis. Agilent HPLC was used, and specific analysis conditions are as follows.

[HPLC R1 분석 조건][HPLC R1 analysis conditions]

컬럼: NH2-P 50 4E(shodex) 컬럼Column: NH2-P 50 4E (shodex) column

이동상 용매: 70% 아세토니트릴Mobile phase solvent: 70% acetonitrile

분석 온도: 30℃Analysis temperature: 30℃

유속: 1ml/minFlow rate: 1ml/min

Injection volume: 10lInjection volume: 10l

검출기: RI detectorDetector: RI detector

활성을 비교한 10개의 분리 균주에 대해 동정도 진행하였다. 균주 동정을 위해 PCR을 진행하였으며 universal primer NL1, NL4를 사용하여 PCR 진행 후, 염기 서열 분석을 진행하였다. 염기 서열 분석 후, NCBI의 database를 참고하여 확인하여 균주를 동정하였다. Identification was also carried out for 10 isolated strains for which the activity was compared. PCR was performed to identify the strain, and after PCR was performed using universal primers NL1 and NL4, nucleotide sequence analysis was performed. After nucleotide sequence analysis, the strain was identified by referring to the NCBI database.

상기 균주를 분석하여 동정한 결과를 표 2에 나타내었다. 동정된 균주는 Pichia farinose, Yarrowia lipolytica, Millerozyma farinose, Aspergillus oryzae, 아스페르길루스 나이거이었으며, 이들의 18S 리보좀 RNA의 염기서열은 차례대로 서열번호 1 내지 5의 서열이다. 이 중 활성이 가장 우수한 아스페르길루스 나이거를 최종 우수 분리 균주로 선정하였으며, 이를 대상으로 추후 실험을 진행하였다.Table 2 shows the results identified by analyzing the strain. The identified strains were Pichia farinose, Yarrowia lipolytica, Millerozyma farinose, Aspergillus oryzae, and Aspergillus Niger, and the nucleotide sequences of their 18S ribosomal RNA are sequences of SEQ ID NOs: 1 to 5. Among them, Aspergillus Niger, which has the best activity, was selected as the final excellent isolated strain, and a later experiment was conducted on this.

동정된 균주명Identified strain name 18S rRNA서열번호18S rRNA sequence number 식품종류Type of food 개수Count 균주 활성(U/mL)Strain activity (U/mL) pichia farinosepichia farinose 서열번호 1SEQ ID NO: 1 된장Miso 1One 3.33.3 Yarrowia liplyticaYarrowia liplytica 서열번호 2SEQ ID NO: 2 청국장Cheonggukjang 1One 1.711.71 Milerozyma farinoseMilerozyma farinose 서열번호 3SEQ ID NO: 3 청국장Cheonggukjang 1One 2.472.47 Aspergillus oryzaeAspergillus oryzae 서열번호 4SEQ ID NO: 4 메주Meju 66 20~2520-25 Aspergillus nigerAspergillus niger 서열번호 5SEQ ID NO: 5 메주Meju 1One 3030 총계sum 1010  

실시예 2. 프락토올리고당 고생산 1차 변이주 선별Example 2. Selection of high-producing primary mutant strains of fructooligosaccharide

2.1 1차 변이주 선별2.1 Selection of primary mutant strains

실시예 1에서 분리한 모균주를 Potato dextrose Agar(PDA) 고체 재지에 도말한 후, 28℃의 온도에서 3일간 배양하였다. 고체 배지에 생성된 포자만 모아서 glycerol stock을 제조하여 보관하였다. 제조한 Glycerol stock을 돌연변이에 사용하기 위해 glycerol을 제거하고 3차례 세척을 진행하였다. 세척된 포자를 이용하여 돌연변이를 진행하며 돌연변이원은 NTG(N-methyl-N-nitroso-guanidin)와 UV 254nm를 함께 사용하였다. 세척된 포자에 2 mg/ml로 녹인 NTG 용액 1 ml을 혼합하여 10분간 실온에서 방치하였다. 원심분리 과정을 통해 NTG 용액을 제거한 후, 3차례 세척 과정을 진행하였다. 세척 완료된 포자에 멸균수 1 ml을 첨가하여 현탁 시킨 후 적당히 희석하여 고체 배지에 도말하였다. 고체 배지 조성은 아래 표 3에 나타내었다.The parent strain isolated in Example 1 was plated on Potato dextrose Agar (PDA) solid material, and then incubated for 3 days at a temperature of 28°C. Only the spores generated in the solid medium were collected to prepare and store glycerol stock. To use the prepared Glycerol stock for mutation, glycerol was removed and washed three times. Mutation was performed using the washed spores, and the mutant was used with NTG (N-methyl-N-nitroso-guanidin) and UV 254nm. 1 ml of an NTG solution dissolved in 2 mg/ml was mixed with the washed spores and left at room temperature for 10 minutes. After removing the NTG solution through the centrifugation process, the washing process was performed three times. After adding 1 ml of sterilized water to the washed spores, they were suspended, diluted appropriately, and spread on a solid medium. The solid medium composition is shown in Table 3 below.

배지 성분Medium ingredients g/Lg/L GlycerolGlycerol 3030 2-Deoxyglucose2-Deoxyglucose 1, 51, 5 MgSO4·7H2OMgSO 4 7H 2 O 1One Sodium glutamateSodium glutamate 22 KClKCl 0.50.5 K2HPO4 K 2 HPO 4 1One FeSO4·7H2OFeSO 4 7H 2 O 0.010.01 AgarAgar 2020 pHpH pH 6pH 6

Maker로 2-deoxyglucose를 사용하여 2-deoxyglucose가 포함된 고체배지에 도말하여 UV 254nm에서 1분간 조사하였다. 돌연변이를 통해 선별된 콜로니는 액체 배양(표 1의 생산 배지)하여 활성 측정을 진행하였다. 설탕 100g/L를 pH(40 mM McIlvain buffer, pH5)에서 30분 동안 40℃의 반응 온도에서 반응한 후 끓는 물에 10분간 처리하여 효소 실활하여 반응 정지시킨 후 HPLC 분석을 통해 환산된 값으로 활성을 측정하였다. 이때 전환 활성이 우수한 1차 변이주를 선별하였다.Using 2-deoxyglucose as a maker, it was spread on a solid medium containing 2-deoxyglucose and irradiated at UV 254 nm for 1 minute. Colonies selected through mutation were cultured in liquid (production medium in Table 1) to measure activity. 100g/L of sugar was reacted at a reaction temperature of 40℃ for 30 minutes at pH (40 mM McIlvain buffer, pH5), then treated with boiling water for 10 minutes to inactivate the enzyme to stop the reaction, and then activate the converted value through HPLC analysis. Was measured. At this time, the primary mutant strain having excellent conversion activity was selected.

2.2 최적 C/N비 설정2.2 Optimal C/N ratio setting

실시예 2.1에서 선별된 1차 변이주를 이용하여 최적 C/N비를 설정하는 실험을 진행하였다. 실험 계획법을 이용하여 설탕은 150 ~ 350 g/L, 효모 추출물은 30 ~ 60 g/L 범위 내에서 5일간 배양 후 활성 결과값을 Minitab의 반응 최적화 도구를 사용하여 분석하였다. 배지 조성은 기존 생산배지에서 CMC를 제거하고 MES 100 mM을 첨가하여 사용하였다.An experiment was conducted to set the optimal C/N ratio using the first mutant strain selected in Example 2.1. Using the experimental design method, after incubation for 5 days in the range of 150 to 350 g/L for sugar and 30 to 60 g/L for yeast extract, the activity results were analyzed using Minitab's response optimization tool. The medium composition was used by removing CMC from the existing production medium and adding 100 mM MES.

등고선도 분석 결과를 도 1에 나타내었으며, 등고선도를 확인하였을 때 대체적으로 설탕의 농도가 높을수록, 효모 추출물의 농도가 높을수록 활성이 높아지는 경향이 있는 것을 확인하였다. 또한, 배지 조건별 활성을 비교한 결과를 표 4에 나타내었고, 반응 최적화 도구를 분석한 결과를 도 2에 나타내었다. 설탕은 250 g/L, 효모 추출물은 53 g/L(CMC 100 mM) 일 때 최대 활성을 나타내었다. 따라서 프락토올리고당 균주 활성을 높일 수 있는 배지 C/N비는 4.7로 확인되었다. 상기 균주 활성은 아래의 식으로 계산하였다.The results of the contour diagram analysis are shown in FIG. 1, and when the contour diagram is confirmed, it was confirmed that the activity tends to increase as the concentration of sugar and yeast extract increases. In addition, the results of comparing the activity of each medium condition are shown in Table 4, and the results of analyzing the reaction optimization tool are shown in FIG. 2. Sugar was 250 g/L and yeast extract showed maximum activity when it was 53 g/L (CMC 100 mM). Therefore, the medium C/N ratio capable of increasing the activity of the fructooligosaccharide strain was confirmed to be 4.7. The strain activity was calculated by the following equation.

[수학식 1][Equation 1]

Figure 112018111134183-pat00003
Figure 112018111134183-pat00003

균주 (실험구)Strain (test area) 설탕 (g/L)Sugar (g/L) 효모 추출물 (g/L)Yeast extract (g/L) C/N 비C/N ratio 균주 활성 (U/ml)Strain activity (U/ml) 1차 변이주(대조구)Primary mutant stock (Daejo-gu) 150150 3535 4.34.3 8181 1차 변이주(최적조건)Primary variant stock (optimal condition) 250250 5353 4.74.7 140140

실시예Example 3. 3. 프락토올리고당Fructooligosaccharide 고생산 2차 변이주 선별 Selection of high-producing secondary mutant strains

실시예 2.1의 상기 1차 변이주를 모균주로 사용한 것 이외에 실시예 2.1과 동일한 방법으로 배양한 후 NTG(N-methyl-N-nitroso-guanidin)와 UV 254nm를 돌연변이원으로 하는 돌연변이를 통해 총 1522개의 변이주의 프락토올리고당 전환 활성 테스트 하였으며, 가장 활성이 우수한 2차 변이주를 선별하였다.In addition to using the first mutant strain of Example 2.1 as a parent strain, after culturing in the same manner as in Example 2.1, a total of 1522 through mutations using NTG (N-methyl-N-nitroso-guanidin) and UV 254 nm as mutants. The fructooligosaccharide conversion activity of the mutant strains of dogs was tested, and the secondary mutant strain having the most activity was selected.

상기 균주는 2016년 10월 28자로 KCTC에 기탁하여 수탁번호 KCTC13140BP 를 부여 받았다.The strain was deposited with KCTC on October 28, 2016 and was given the accession number KCTC13140BP.

실시예 4. 프락토올리고당 고생산 균주의 활성 평가Example 4. Evaluation of activity of strains producing high fructooligosaccharides

실시예 2 및 3에서 돌연변이를 통해 선별된 콜로니는 액체 배양(표 1의 생산 배지) 활성을 측정하였다. 활성 측정 시에는 GF3 이상 생성되면 GF2 정량이 어렵기 때문에, GF2까지만 생성되도록 효소를 희석하여 사용해야 한다. 설탕 100 g/L를 pH 5(40 mM McIlvain buffer)에서 30분 동안 40℃의 반응 온도에서 반응한 후 끓는 물에 10분간 처리하여 효소 실활하여 반응 정지시킨다. 효소가 실활된 반응액을 2배 희석하여 HPLC 분석을 진행하며, 분석하여 환산된 값으로 활성을 측정하였다. . Colonies selected through mutations in Examples 2 and 3 were measured for activity in liquid culture (production medium in Table 1). When measuring activity, if more than GF3 is produced, it is difficult to quantify GF2, so the enzyme must be diluted and used so that only GF2 is produced. 100 g/L of sugar was reacted at a reaction temperature of 40°C for 30 minutes in pH 5 (40 mM McIlvain buffer), and then treated with boiling water for 10 minutes to inactivate the enzyme to stop the reaction. The reaction solution in which the enzyme was deactivated was diluted twice to perform HPLC analysis, and the activity was measured using the converted value. .

균주 활성은 아래 수학식 1으로, 효소 활성은 아래 수학식 2로 도출된 단위 단백질 당 균주 활성으로 나타내었다.The strain activity was expressed by Equation 1 below, and the enzyme activity was expressed by the strain activity per unit protein derived by Equation 2 below.

[수학식 1][Equation 1]

Figure 112018111134183-pat00004
Figure 112018111134183-pat00004

[수학식 2][Equation 2]

Figure 112018111134183-pat00005
Figure 112018111134183-pat00005

상기 균주 활성 측정 결과 및 단위 단백질당 균주 활성으로 나타낸 효소 활성 측정 결과를 아래 표 5에 나타내었다.The strain activity measurement results and the enzyme activity measurement results expressed as strain activity per unit protein are shown in Table 5 below.

균주Strain 균주 활성 (U/ml)Strain activity (U/ml) 단백질(mg/ml)Protein (mg/ml) 효소 활성(U/mg)Enzyme activity (U/mg) 모균주Parent strain 3535 1515 4747 1차 변이주1st variant 8181 2525 6565 2차 변이주2nd variant 221221 4343 409409

실시예Example 5. 발효조에 의한 균주의 배양 5. Cultivation of strains by fermentation tank

실시예 3의 2차 변이주를 4.7의 C/N 비를 갖는 배지 조성으로 5L 발효조 배양을 진행하였다. 배양 조건은 암모니아 수를 이용하여 배양 중 pH를 5.5~ 6.5로 유지하였으며, 1 vvm으로 에어레이션을 하고, 온도 30℃, rpm 300 ~ 650으로 144시간 배양하였다. 종배양액은 발효조 배양액의 3 ~ 5% 되도록 접종하였다. 배양 중 샘플링하여 활성과 단백질 패턴을 분석하였다. The second mutant strain of Example 3 was cultured in a 5L fermenter with a medium composition having a C/N ratio of 4.7. The culture conditions were maintained at a pH of 5.5 to 6.5 during cultivation using ammonia water, aerated at 1 vvm, and incubated for 144 hours at a temperature of 30° C. and rpm 300 to 650. The seed culture was inoculated to be 3 to 5% of the fermentation tank culture. Sampling during culture was performed to analyze the activity and protein pattern.

상기 2차 변이주를 5L 발효조에서 배양한 후 상등액을 수득하여 시간에 따른 프락토올리고당 전환 활성, 균주 활성을 상기 실시예 4와 동일하게 계산하산 도 3에 나타내었고, 변이주 별 프락토올리고당 전환 활성 및 배양 상등액 내 단백질 농도를 아래 표 6에 나타내었다. 표 6에서 볼 수 있듯, 2차 변이주에서 프락토올리고당 전환 효소의 생산 활성이 높고 단백질 함량이 높은 것을 확인하여 가장 높은 수율로 프락토올리고당 생산 효소가 생성되었음을 확인할 수 있었다. 비교예로 Meiji 사의 프락토실푸라노시다제(Meiji)를 사용하여 상기와 같은 방법으로 기질과 혼합하여 반응을 진행하여 비교하였다.After culturing the secondary mutant strain in a 5L fermenter, a supernatant was obtained, and the fructooligosaccharide conversion activity and strain activity over time were calculated in the same manner as in Example 4 and shown in Fig. 3, and the fructooligosaccharide conversion activity and The protein concentration in the culture supernatant is shown in Table 6 below. As can be seen in Table 6, it was confirmed that the fructooligosaccharide-producing enzyme was produced in the highest yield by confirming that the production activity of the fructooligosaccharide converting enzyme was high and the protein content was high in the secondary mutant strain. As a comparative example, fructosylfuranosidase (Meiji) from Meiji was used, and the mixture was mixed with the substrate in the same manner as described above, and the reaction was carried out for comparison.

균주Strain 균주 활성 (U/ml)Strain activity (U/ml) 단백질 (mg/ml)Protein (mg/ml) 단위 단백질 당 활성(U/mg)Activity per unit protein (U/mg) 모균주Parent strain 150150 3030 400400 1차 변이주1st variant 315315 5050 504504 2차 변이주2nd variant 455455 7070 13001300 비교예Comparative example -- 740740

상기 결과로부터 프락토올리고당 생산 반응 시 반응기질인 설탕이 1kg의 60(w/v)% 농도로 30 시간 동안 반응하는 경우 상기 2차 변이주는 0.012g의 효소가, 비교예 균주는 0.008g의 효소가 첨가되어야 하는 것으로 확인되었다. From the above results, when the reactant sugar is reacted for 30 hours at a concentration of 1 kg of 60 (w/v)% during the production reaction of fructooligosaccharide, the secondary mutant is 0.012 g of enzyme, and the comparative strain is 0.008 g of enzyme. Was found to be added.

실시예 6. 프락토올리고당 생산 효소 분리 및 정제Example 6. Isolation and purification of fructooligosaccharide-producing enzyme

실시예 5에서 5L 발효조에서 배양한 변이주 2의 배양액으로부터 효소 얻기 위해 먼저 MF(Micro filteration, 정밀여과)와 UF(Ultra filteration, 한외여과) 과정을 진행하였다. 먼저 균체 제거를 위해 원심분리를 진행하였으며 상기 원심분리 후 얻은 상등액을 10 ㎛ 필터 페이퍼를 이용해 감압 여과를 한 후, 필터를 통과한 여액을 회수하였다. 균체가 제거된 여액을 이용하여 30 KDa 사이즈의 반투막을 통과시켜 프락토올리고당 생산 효소 포함 반투막 사이즈보다 큰 물질을 회수하였으며, 20 mM sodium phosphate buffer (pH 7.2) 용액으로 투석을 실시하여 용액의 pH가 6.8 ~ 7.2가 될 때가지 buffer 교환을 실시하였다. UF 처리 용액은 원심분리하여 상등액을 회수하였으며, FPLC 정제를 진행하였다. Resin은 Q Sepharose FF를 사용하였으며, 버퍼 A는 20 mM Sodium phosphate (pH7.2)를 사용하였고 버퍼 B는 버퍼 A와 1 M NaCl (pH7.2) 혼합액을 사용하였다. Resin 충진 후 유속 10 ml/min으로 Resin 부피의 약 2 ~ 3배의 버퍼 A를 흘려 충분히 안정화 시켜주었다. Resin이 충분히 안정화 되면 UF 처리 후 불순물을 처리한 상등액을 유속 10 ml/min으로 로딩하였으며, UV 260 nm로 용출액을 검출하며 용출되는 분획을 회수하여 효소 활성을 측정하였다. 배양 상등액으로부터 프락토올리고당 생산 효소 정제 시, 단계별로 목적 단백질을 제외한 저분자량이 제거 되고 현재 상업적으로 이용되고 있는 Meiji사의 효소 밴드와 거의 유사한 패턴을 보이고 있는 것을 확인하였다.In Example 5, in order to obtain enzymes from the culture broth of mutant strain 2 cultured in a 5L fermenter, micro filteration (MF) and ultra filteration (UF) were first performed. First, centrifugation was performed to remove the cells, and the supernatant obtained after the centrifugation was filtered under reduced pressure using 10 μm filter paper, and the filtrate passed through the filter was recovered. The filtrate from which the cells were removed was passed through a 30 KDa semipermeable membrane to recover a material larger than the semipermeable membrane size including the fructooligosaccharide producing enzyme, and dialysis was performed with a 20 mM sodium phosphate buffer (pH 7.2) solution to adjust the pH of the solution. The buffer was exchanged until it reached 6.8 ~ 7.2. The UF treatment solution was centrifuged to recover the supernatant, and FPLC purification was performed. Q Sepharose FF was used as the resin, 20 mM Sodium phosphate (pH7.2) was used as buffer A, and a mixture of buffer A and 1 M NaCl (pH7.2) was used as buffer B. After filling the resin, buffer A of about 2 to 3 times the volume of the resin was flowed at a flow rate of 10 ml/min to sufficiently stabilize. When the resin was sufficiently stabilized, the supernatant treated with impurities after UF treatment was loaded at a flow rate of 10 ml/min, the eluate was detected with UV 260 nm, and the eluted fraction was recovered and the enzyme activity was measured. When purifying the fructooligosaccharide-producing enzyme from the culture supernatant, it was confirmed that the low molecular weight except for the target protein was removed step by step and showed a pattern almost similar to the enzyme band of Meiji Co., which is currently used commercially.

또한 상기 프락토올리고당 생산 효소의 프락토올리고당을 생산하는 효소인 베타-프락토푸라노시다제 의 전체 서열(complete cds)을 분석하여 서열번호 7(2차 변이주)의 서열로 나타내었으며, 모균주(wild type)의 서열(서열번호 6)과 상기 2차 변이주 서열을 비교한 결과모균주의 유전자 서열에서 1376bp가 G에서 C로 변경되었음을 확인하였다.In addition, the entire sequence (complete cds) of beta-fructofuranosidase, an enzyme that produces fructooligosaccharides of the fructo-oligosaccharide-producing enzyme, was analyzed to show the sequence of SEQ ID NO: 7 (second variant), and the parent strain As a result of comparing the sequence of (wild type) (SEQ ID NO: 6) with the sequence of the secondary mutant, it was confirmed that 1376 bp in the gene sequence of the parent strain was changed from G to C.

실시예 7. 효소 장기 보관 안정성 평가Example 7. Enzyme long-term storage stability evaluation

실시예 6에서 분리된 프락토올리고당 생산 효소의 장기 보관 안정성을 평가하기 위하여, 4, 25, 및 37℃의 온도에서 7개월 차에 효소 활성을 측정하였다. 효소 활성은 상기 실시예 4와 동일한 방법으로 계산하였다.In order to evaluate the long-term storage stability of the fructooligosaccharide-producing enzyme isolated in Example 6, the enzyme activity was measured at 7 months at temperatures of 4, 25, and 37°C. Enzyme activity was calculated in the same manner as in Example 4.

그 결과, 4℃의 온도에서 활성이 92%으로 유지하여 장기 보관 안정성이 매우 우수함을 확인하였고, 실온 25℃ 또는 37℃의 온도에서도 각각 80% 및 79%로 활성을 유지하여 보관 안정성이 매우 우수함을 확인하였다. As a result, it was confirmed that the activity was maintained at 92% at a temperature of 4°C, so that long-term storage stability was very excellent, and the storage stability was very excellent by maintaining the activity at 80% and 79%, respectively, even at a temperature of 25°C or 37°C. Was confirmed.

실시예 8. 프락토올리고당 생산 효소를 이용한 프락토올리고당 생산Example 8. Production of fructooligosaccharide using fructooligosaccharide production enzyme

실시예 6에서 분리된 프락토올리고당 생산 효소를 이용하여 프락토올리고당 생산이 규격에 맞게 되는지 확인하기 위해 설탕과 반응을 진행하였다. 공시된 일본 수출 규격은 프락토올리고당의 당조성 규격은 단당류 (과당 + 포도당) 33% 이하, 설탕 10% ± 1.5, 1-Kestose(GF2) 26% ± 3, Nystose(GF3) 26% ± 3, 1-F-Fructofuranosyl nystose(GF4) 5% ± 3으로 총 프락토올리고당 함량이 57%이상이 되어야 하지만, 내수 규격은 당 조성과 상관없이 프락토올리고당이 55% 이상이면 제품으로 합격한다. 이와 같은 규격에 맞는 당조성으로 생성이 되는지 확인하기 위해 설탕 1.5 Kg과 증류수 1 Kg을 혼합하여 최종 농도가 60% 가 되는 기질을 제조하였다. Using the fructooligosaccharide producing enzyme isolated in Example 6, a reaction with sugar was carried out to confirm whether the production of fructooligosaccharide was in accordance with the standard. The published standards for export to Japan are for the composition of fructooligosaccharides: monosaccharides (fructose + glucose) 33% or less, sugar 10% ± 1.5, 1-Kestose (GF2) 26% ± 3, Nystose (GF3) 26% ± 3, 1-F-Fructofuranosyl nystose (GF4) 5% ± 3, the total fructooligosaccharide content must be 57% or more, but the domestic standard is a product if the fructooligosaccharide is 55% or more regardless of the sugar composition. In order to check whether the sugar composition meets the standards, 1.5 Kg of sugar and 1 Kg of distilled water were mixed to prepare a substrate having a final concentration of 60%.

기질의 pH는 약 6.2 ~ 6.5 정도가 되도록 필요 시에는 HCl 또는 NaOH를 첨가하여 조정하였다. 단 반응 중에는 pH 조절은 없다. 제조된 기질에 정제 효소를 첨가하여 반응 온도 60℃에서 진행하였다. 초기 반응 1시간 동안은 200 rpm으로 교반하여 효소와 기질이 혼합되도록 하였으며, 이후에는 정치하여 반응을 진행하였다. 반응물을 HPLC RI로 분석하고 Area%값으로 각 당 조성의 생산율을 평가하였다. 비교예로 Meiji 사의 프락토실푸라노시다제(Meiji)를 사용하여 상기와 같은 방법으로 기질과 혼합하여 반응을 진행하여 비교하였다.When necessary, the pH of the substrate was adjusted by adding HCl or NaOH so that the pH was about 6.2 to 6.5. However, there is no pH adjustment during the reaction. Purified enzyme was added to the prepared substrate, and the reaction was carried out at a temperature of 60°C. The initial reaction was stirred at 200 rpm for 1 hour to mix the enzyme and the substrate, after which the reaction was allowed to stand still. The reaction product was analyzed by HPLC RI, and the production rate of each sugar composition was evaluated using the Area% value. As a comparative example, fructosylfuranosidase (Meiji) from Meiji was used, and the mixture was mixed with the substrate in the same manner as described above, and the reaction was carried out for comparison.

상기 실시예 6에서 분리된 프락토올리고당 생산 효소를 이용한 경우, 15시간 내지 30시간으로 반응하는 경우 프락토올리고당이 55% 이상이 되었으며, 특히 22시간 반응 시, 프락토올리고당 함량이 61.39%로 가장 높은 것을 확인하였다. 30시간 반응 시 생성되는 당 조성을 비교예 결과와 함께 아래 표 7에 나타내었다.In the case of using the fructooligosaccharide-producing enzyme isolated in Example 6, when the reaction was performed for 15 to 30 hours, the fructooligosaccharide was 55% or more. In particular, when the reaction was performed for 22 hours, the fructooligosaccharide content was 61.39%. It was confirmed that it was high. The sugar composition generated during the reaction for 30 hours is shown in Table 7 below together with the comparative example results.

종류Kinds FruFru GluGlu SucSuc GF2GF2 GF3GF3 GF4GF4 FOSFOS GF2/(GF3+GF4)GF2/(GF3+GF4) 실시예 7Example 7 1.28%1.28% 26.88%26.88% 10.83%10.83% 31.66%31.66% 26.04%26.04% 3.31%3.31% 61.01%61.01% 1.1 1.1 비교예Comparative example 2.35%2.35% 27.80%27.80% 10.74%10.74% 25.86%25.86% 26.72
%
26.72
%
6.53%6.53% 59.11%59.11% 0.780.78

상기 표 7에서 확인할 수 있듯 현재 상업적으로 가장 활발하게 사용되는 비교예 균주보다 높은 수준으로 프락토올리고당을 생산할 수 있으며, 특이적으로 프락토올리고당 중, GF2, 즉 1-케스토스 생산 비율이 더욱 높을 뿐 아니라 일본 수출 규격에 적합함을 확인하였다.As can be seen in Table 7 above, fructooligosaccharides can be produced at a higher level than the comparative example strains that are currently most actively used commercially, and specifically, among fructooligosaccharides, the production rate of GF2, that is, 1-kestose, is higher. In addition, it was confirmed that it conforms to Japanese export standards.

실시예 9. 반응 조건에 따른 프락토올리고당 생산Example 9. Production of fructooligosaccharide according to reaction conditions

9.1 pH 조건에 따른 활성 평가9.1 Evaluation of activity according to pH conditions

실시예 6에서 분리된 프락토올리고당 생산 효소를 이용하여 설탕을 프락토올리고당으로 전환하는 경우, 60℃의 반응 온도에서, pH를 pH 6, pH 7, pH 8 및 pH 8.5로 변경함에 따른 효소 활성을 0, 1, 2, 3, 및 4시간 후에 측정하여 검토하였다. 상기 실시예 4와 동일한 방법으로 효소 활성을 계산하고 이를 반응시 값을 100%으로 하여 상대 활성값으로 전환한 값을 아래 표 8에 나타내었다.When converting sugar to fructooligosaccharide using the fructooligosaccharide-producing enzyme isolated in Example 6, enzyme activity according to changing the pH to pH 6, pH 7, pH 8 and pH 8.5 at a reaction temperature of 60°C Was measured and examined after 0, 1, 2, 3, and 4 hours. The enzyme activity was calculated in the same manner as in Example 4, and the value converted to a relative activity value by setting the value at the time of reaction to 100% is shown in Table 8 below.

pHpH 반응전Before reaction 1시간1 hours 2시간2 hours 3시간3 hours 4시간4 hours 66 100%100% 37.76%37.76% 22.28%22.28% 4.18%4.18% 3.62%3.62% 77 100%100% 18.54%18.54% 3.87%3.87% 0.64%0.64% 0.49%0.49% 88 100%100% 5.35%5.35% 0.61%0.61% 0.37%0.37% 0.27%0.27% 8.58.5 100%100% 1.34%1.34% 0.36%0.36% 0.15%0.15% 0.12%0.12%

상기와 같이, pH 6의 조건에서 효소 활성이 가장 우수하며, 오랫동안 활성이 유지될 수 있음을 확인하였다.As described above, it was confirmed that the enzyme activity is the best in the condition of pH 6 and that the activity can be maintained for a long time.

9.2 온도 조건에 따른 활성 평가9.2 Activity evaluation according to temperature conditions

실시예 6에서 분리된 프락토올리고당 생산 효소를 이용하여 설탕을 프락토올리고당으로 전환하는 경우, 상기 효소 활성이 가장 우수한 것으로 나타난 pH 6의 조건에서, 60, 70, 80 및 90℃의 반응 온도에 따른 효소 활성을 0, 1, 2, 3, 및 4시간 후에 측정하여 검토하였다. 상기 실시예 4와 동일한 방법으로 효소 활성을 계산하고 이를 반응시 값을 100%으로 하여 상대 활성값으로 전환한 값을 아래 표 9에 나타내었다.In the case of converting sugar to fructooligosaccharide using the fructooligosaccharide producing enzyme isolated in Example 6, the enzyme activity was shown to be the most excellent at a reaction temperature of 60, 70, 80 and 90°C under the condition of pH 6 The resulting enzyme activity was measured and examined after 0, 1, 2, 3, and 4 hours. The enzyme activity was calculated in the same manner as in Example 4, and the value converted to a relative activity value by setting the value at the time of reaction to 100% is shown in Table 9 below.

온도Temperature 반응전Before reaction 1시간1 hours 2시간2 hours 3시간3 hours 4시간4 hours 60℃60℃ 100100 37.7637.76 22.2822.28 4.184.18 3.623.62 70℃70℃ 100100 0.260.26 0.040.04 0.010.01 0.000.00 80℃80℃ 100100 0.010.01 0.000.00 0.000.00 0.000.00 90℃90℃ 100100 0.000.00 0.000.00 0.000.00 0.000.00

상기와 같이 70℃ 이상이 되는 경우 반응 시작과 동시에 대부분이 효소가 실활되었으며, 특히 60℃의 반응 온도에서 우수한 효소 활성을 오랫동안 유지할 수 있음을 확인하였다.As described above, when the temperature was higher than 70°C, most of the enzymes were deactivated at the same time as the reaction started, and it was confirmed that excellent enzyme activity could be maintained for a long time, particularly at a reaction temperature of 60°C.

기탁기관명 : 한국생명공학연구원Name of donated institution: Korea Research Institute of Bioscience and Biotechnology

수탁번호 : KCTC13140BPAccession number: KCTC13140BP

수탁일자 : 20161028Consignment Date: 20161028

<110> SAMYANG CORPORATION <120> Method for preparing fructooligosaccharides <130> DPP20184552KR <160> 7 <170> KopatentIn 1.71 <210> 1 <211> 646 <212> DNA <213> 18s rRNA of pichia farinose <400> 1 gaagattggn gtattcttct aggtatcttg ccagcgctta attgcgcggc tggtgctatt 60 agaagtccat aagttcttac acacaggtgt tttttttgtt tgtgaaaaaa atttactttg 120 gtctggaact agaaatagtt ttgggccaga gggcaactta acttcaattt atattgaatt 180 gtttttaaat ttatttgtca aattattgat attaatcaaa aatcttcaaa actttcaaca 240 acggatctct tggttctcgc atcgatgaag aacgcagcga aatgcgataa gtaatatgaa 300 ttgcagattt tcgtgaatca tcgaatcttt gaacgcacat tgcgcccttt ggtattccaa 360 agggcatgcc tgtttgagcg tcatttctct ctcaaaccgc aaggtttggt gttgagcaat 420 atagatattt cggtatctat ttgcttgaaa tggattggca tgagtattta cagtagataa 480 atgccgtttg actcttcaat gtattaggtc taaccaactc gttgaaacag ttagcggtag 540 tatctgtgta aaagaggctc ggccttacaa caatctacaa agtttgacct caaatcaggt 600 aggaataccc gctgaactta agcatatcaa aagcccggag gaaang 646 <210> 2 <211> 354 <212> DNA <213> 18s rRNA of Yarrowia liplytica <400> 2 ggtttccgta ggtgaacctg cggaaggatc attattgatt ttatctattt ctgtggattt 60 ctggtwtatt acagcgtcat tttatctcaa ttataactat caacaacgga tctcttggct 120 ctcacatcga tgaagaacgc agcgaaccgc gatatttatt gtgacttgca gatgtgaatc 180 atcaatcttt gaacgcacat tgcgcggtat ggcattccgt accgcacgga tggaggagcg 240 tgttcgctct gggatcgcat tgctttcttg aaatggattt tttaaactct caattattac 300 gtcatttcac ctccttcatc cgagattacc cgctgaactt aagcatatca ataa 354 <210> 3 <211> 813 <212> DNA <213> 18s rRNA of Milerozyma farinose <400> 3 atgggaggga aaagaagcca aaactctgat aaagacggca gaaggaaacg acataaggtt 60 tcggggttca tagatcctaa tacaagcgga atatacgcta catgtaatag agggaaagaa 120 aaccaatgcc gcaatgaatt gataaatttc ttcagtgaaa aagcagaaga gtattatggt 180 gatcttgatc tagaaagcga caaggaagat aaacaggaat tgactataga agagcagatt 240 gctgcagagg taggtaacct caaggacaag ggaaagaata aaaaagaaac tttcaagcct 300 attgacctag gatgtgaatg cttgattttc ttcaagactc gaaaacccgt tcagcctgcc 360 gaatttgtgc aaaggatatg ccaggagtgc catgacagca aaagaaagac aactaggtac 420 acgcagaagt tgacgccgat ctccttttcg gtctctccgt ccatcgagga gttgaaaaaa 480 ttggccaaga tagtgcttgg gccccatttt cataaggaag aaggacaaga gccacataaa 540 tttgcgatca atgttaccag acgtaacttt aacaccttgc caaagagcga cattataaaa 600 acggtagctg aatgcgtggg cagggagcac ggccattcag ttgacttaaa ggcattcgat 660 aaattaatac tagttgagtg ctataaaagc aatataggca tgagtgtagt tgaaaattat 720 aaccaactag aacggttcaa cttgcagcaa atctttgaca agaaccaaga gggagccgaa 780 gtcgaagcca agtccgattc taacgtagct tag 813 <210> 4 <211> 544 <212> DNA <213> 18s rRNA of Aspergillus oryzae <400> 4 ggggacctgc ggaaggatca ttaccgagtg tagggttcct agcgagccca acctcccacc 60 cgtgtttact gtaccttagt tgcttcggcg ggcccgccat tcatggccgc cgggggctct 120 cagccccggg cccgcgcccg ccggagacac cacgaactct gtctgatcta gtgaagtctg 180 agttgattgt atcgcaatca gttaaaactt tcaacaatgg atctcttggt tccggcatcg 240 atgaagaacg cagcgaaatg cgataactag tgtgaattgc agaattccgt gaatcatcga 300 gtctttgaac gcacattgcg ccccctggta ttccgggggg catgcctgtc cgagcgtcat 360 tgctgcccat caagcacggc ttgtgtgttg ggtcgtcgtc ccctctccgg gggggacggg 420 ccccaaaggc agcggcggca ccgcgtccga tcctcgagcg tatggggctt tgtcacccgc 480 tctgtaggcc cggccggcgc ttgccgaacg caaatcaatc tttccaggtg acctcgatca 540 gaga 544 <210> 5 <211> 571 <212> DNA <213> 18s rRNA of Aspergillus niger <400> 5 ggtttccgta ggtgaacctg cggaaggatc attaccgagt gctgggtcct tcggggccca 60 acctcccacc cgtgcttacc gtaccctgtt gcttcggcgg gcccgccttc gggcggcctg 120 gggcctgccc ccgggaccgc gcccgccgga gaccccaatg gaacactgtc tgaaagcgtg 180 cagtctgagt cgattgatac caatcagtca aaactttcaa caatggatct cttggttccg 240 gcatcgatga agaacgcagc gaaatgcgat aactaatgtg aattgcagaa ttcagtgaat 300 catcgagtct ttgaacgcac attgcgcccc ctggtattcc ggggggcatg cctgtccgag 360 cgtcatttct cccctccagc cccgctggtt gttgggccgc gcccccccgg gggcgggcct 420 cgagagaaac ggcggcaccg tccggtcctc gagcgtatgg ggctctgtca cccgctctat 480 gggcccggcc ggggcttgcc tcgaccccca atcttctcag attgacctcg gatcaggtag 540 ggatacccgc tgaacttaag catatcaata a 571 <210> 6 <211> 1965 <212> DNA <213> beta-fructofuranosidase from Aspergillus niger wild type <400> 6 atgaagctca ccactaccac cctggcgctc gccaccggcg cagcagcagc agaagcctca 60 taccacctgg acaccacggc cccgccgccg accaacctca gcaccctccc caacaacacc 120 ctcttccacg tgtggcggcc gcgcgcgcac atcctgcccg ccgagggcca gatcggcgac 180 ccctgcgcgc actacaccga cccatccacc ggcctcttcc acgtggggtt cctgcacgac 240 ggggacggca tcgcgggcgc caccacggcc aacctggcca cctacaccga tacctccgat 300 aacgggagct tcctgatcca gccgggcggg aagaacgacc ccgtcgccgt gttcgacggc 360 gccgtcatcc ccgtcggcgt caacaacacc cccaccttac tctacacctc cgtctccttc 420 ctgcccatcc actggtccat cccctacacc cgcggcagcg agacgcagtc gttggccgtc 480 gcgcgcgacg gcggccgccg cttcgacaag ctcgaccagg gccccgtcat cgccgaccac 540 cccttcgccg tcgacgtcac cgccttccgc gatccgtttg tcttccgcag tgccaagttg 600 gatgtgctgc tgtcgttgga tgaggaggtg gcgcggaatg agacggccgt gcagcaggcc 660 gtcgatggct ggaccgagaa gaacgccccc tggtatgtcg cggtctctgg cggggtgcac 720 ggcgtcgggc ccgcgcagtt cctctaccgc cagaacggcg ggaacgcttc cgagttccag 780 tactgggagt acctcgggga gtggtggcag gaggcgacca actccagctg gggcgacgag 840 ggcacctggg ccgggcgctg ggggttcaac ttcgagacgg ggaatgtgct cttcctcacc 900 gaggagggcc atgaccccca gacgggcgag gtgttcgtca ccctcggcac ggaggggtct 960 ggcctgccaa tcgtgccgca ggtctccagt atccacgata tgctgtgggc ggcgggtgag 1020 gtcggggtgg gcagtgagca ggagggtgcc aaggtcgagt tctccccctc catggccggg 1080 tttctggact gggggttcag cgcctacgct gcggcgggca aggtgctgcc ggccagctcg 1140 gcggtgtcga agaccagcgg cgtggaggtg gatcggtatg tctcgttcgt ctggttgacg 1200 ggcgaccagt acgagcaggc ggacgggttc cccacggccc agcaggggtg gacggggtcg 1260 ctgctgctgc cgcgcgagct gaaggtgcag acggtggaga acgtcgtcga caacgagctg 1320 gtgcgcgagg agggcgtgtc gtgggtggtg ggggagtcgg acaaccagac ggccaggctg 1380 cgcacgctgg ggatcacgat cgcccgggag accaaggcgg ccctgctggc caacggctcg 1440 gtgaccgcgg aggaggaccg cacgctgcag acggcggccg tcgtgccgtt cgcgcaatcg 1500 ccgagctcca agttcttcgt gctgacggcc cagctggagt tccccgcgag cgcgcgctcg 1560 tccccgctcc agtccgggtt cgaaatcctg gcgtcggagc tggagcgcac ggccatctac 1620 taccagttca gcaacgagtc gctggtcgtc gaccgcagcc agactagtgc ggcggcgccc 1680 acgaaccccg ggctggatag ctttactgag tccggcaagt tgcggttgtt cgacgtgatc 1740 gagaacggcc aggagcaggt cgagacgttg gatctcactg tcgtcgtgga taacgcggtt 1800 gtcgaggtgt atgccaacgg gcgctttgcg ttgagcacct gggcgagatc gtggtacgac 1860 aactccaccc agatccgctt cttccacaac ggcgagggcg aggtgcagtt caggaatgtc 1920 tccgtgtcgg aggggctcta taacgcctgg ccggagagaa attga 1965 <210> 7 <211> 1965 <212> DNA <213> beta-fructofuranosidase from Aspergillus niger 2nd mutant strain <400> 7 atgaagctca ccactaccac cctggcgctc gccaccggcg cagcagcagc agaagcctca 60 taccacctgg acaccacggc cccgccgccg accaacctca gcaccctccc caacaacacc 120 ctcttccacg tgtggcggcc gcgcgcgcac atcctgcccg ccgagggcca gatcggcgac 180 ccctgcgcgc actacaccga cccatccacc ggcctcttcc acgtggggtt cctgcacgac 240 ggggacggca tcgcgggcgc caccacggcc aacctggcca cctacaccga tacctccgat 300 aacgggagct tcctgatcca gccgggcggg aagaacgacc ccgtcgccgt gttcgacggc 360 gccgtcatcc ccgtcggcgt caacaacacc cccaccttac tctacacctc cgtctccttc 420 ctgcccatcc actggtccat cccctacacc cgcggcagcg agacgcagtc gttggccgtc 480 gcgcgcgacg gcggccgccg cttcgacaag ctcgaccagg gccccgtcat cgccgaccac 540 cccttcgccg tcgacgtcac cgccttccgc gatccgtttg tcttccgcag tgccaagttg 600 gatgtgctgc tgtcgttgga tgaggaggtg gcgcggaatg agacggccgt gcagcaggcc 660 gtcgatggct ggaccgagaa gaacgccccc tggtatgtcg cggtctctgg cggggtgcac 720 ggcgtcgggc ccgcgcagtt cctctaccgc cagaacggcg ggaacgcttc cgagttccag 780 tactgggagt acctcgggga gtggtggcag gaggcgacca actccagctg gggcgacgag 840 ggcacctggg ccgggcgctg ggggttcaac ttcgagacgg ggaatgtgct cttcctcacc 900 gaggagggcc atgaccccca gacgggcgag gtgttcgtca ccctcggcac ggaggggtct 960 ggcctgccaa tcgtgccgca ggtctccagt atccacgata tgctgtgggc ggcgggtgag 1020 gtcggggtgg gcagtgagca ggagggtgcc aaggtcgagt tctccccctc catggccggg 1080 tttctggact gggggttcag cgcctacgct gcggcgggca aggtgctgcc ggccagctcg 1140 gcggtgtcga agaccagcgg cgtggaggtg gatcggtatg tctcgttcgt ctggttgacg 1200 ggcgaccagt acgagcaggc ggacgggttc cccacggccc agcaggggtg gacggggtcg 1260 ctgctgctgc cgcgcgagct gaaggtgcag acggtggaga acgtcgtcga caacgagctg 1320 gtgcgcgagg agggcgtgtc gtgggtggtg ggggagtcgg acaaccagac ggccacgctg 1380 cgcacgctgg ggatcacgat cgcccgggag accaaggcgg ccctgctggc caacggctcg 1440 gtgaccgcgg aggaggaccg cacgctgcag acggcggccg tcgtgccgtt cgcgcaatcg 1500 ccgagctcca agttcttcgt gctgacggcc cagctggagt tccccgcgag cgcgcgctcg 1560 tccccgctcc agtccgggtt cgaaatcctg gcgtcggagc tggagcgcac ggccatctac 1620 taccagttca gcaacgagtc gctggtcgtc gaccgcagcc agactagtgc ggcggcgccc 1680 acgaaccccg ggctggatag ctttactgag tccggcaagt tgcggttgtt cgacgtgatc 1740 gagaacggcc aggagcaggt cgagacgttg gatctcactg tcgtcgtgga taacgcggtt 1800 gtcgaggtgt atgccaacgg gcgctttgcg ttgagcacct gggcgagatc gtggtacgac 1860 aactccaccc agatccgctt cttccacaac ggcgagggcg aggtgcagtt caggaatgtc 1920 tccgtgtcgg aggggctcta taacgcctgg ccggagagaa attga 1965 <110> SAMYANG CORPORATION <120> Method for preparing fructooligosaccharides <130> DPP20184552KR <160> 7 <170> KopatentIn 1.71 <210> 1 <211> 646 <212> DNA <213> 18s rRNA of pichia farinose <400> 1 gaagattggn gtattcttct aggtatcttg ccagcgctta attgcgcggc tggtgctatt 60 agaagtccat aagttcttac acacaggtgt tttttttgtt tgtgaaaaaa atttactttg 120 gtctggaact agaaatagtt ttgggccaga gggcaactta acttcaattt atattgaatt 180 gtttttaaat ttatttgtca aattattgat attaatcaaa aatcttcaaa actttcaaca 240 acggatctct tggttctcgc atcgatgaag aacgcagcga aatgcgataa gtaatatgaa 300 ttgcagattt tcgtgaatca tcgaatcttt gaacgcacat tgcgcccttt ggtattccaa 360 agggcatgcc tgtttgagcg tcatttctct ctcaaaccgc aaggtttggt gttgagcaat 420 atagatattt cggtatctat ttgcttgaaa tggattggca tgagtattta cagtagataa 480 atgccgtttg actcttcaat gtattaggtc taaccaactc gttgaaacag ttagcggtag 540 tatctgtgta aaagaggctc ggccttacaa caatctacaa agtttgacct caaatcaggt 600 aggaataccc gctgaactta agcatatcaa aagcccggag gaaang 646 <210> 2 <211> 354 <212> DNA <213> 18s rRNA of Yarrowia liplytica <400> 2 ggtttccgta ggtgaacctg cggaaggatc attattgatt ttatctattt ctgtggattt 60 ctggtwtatt acagcgtcat tttatctcaa ttataactat caacaacgga tctcttggct 120 ctcacatcga tgaagaacgc agcgaaccgc gatatttatt gtgacttgca gatgtgaatc 180 atcaatcttt gaacgcacat tgcgcggtat ggcattccgt accgcacgga tggaggagcg 240 tgttcgctct gggatcgcat tgctttcttg aaatggattt tttaaactct caattattac 300 gtcatttcac ctccttcatc cgagattacc cgctgaactt aagcatatca ataa 354 <210> 3 <211> 813 <212> DNA <213> 18s rRNA of Milerozyma farinose <400> 3 atgggaggga aaagaagcca aaactctgat aaagacggca gaaggaaacg acataaggtt 60 tcggggttca tagatcctaa tacaagcgga atatacgcta catgtaatag agggaaagaa 120 aaccaatgcc gcaatgaatt gataaatttc ttcagtgaaa aagcagaaga gtattatggt 180 gatcttgatc tagaaagcga caaggaagat aaacaggaat tgactataga agagcagatt 240 gctgcagagg taggtaacct caaggacaag ggaaagaata aaaaagaaac tttcaagcct 300 attgacctag gatgtgaatg cttgattttc ttcaagactc gaaaacccgt tcagcctgcc 360 gaatttgtgc aaaggatatg ccaggagtgc catgacagca aaagaaagac aactaggtac 420 acgcagaagt tgacgccgat ctccttttcg gtctctccgt ccatcgagga gttgaaaaaa 480 ttggccaaga tagtgcttgg gccccatttt cataaggaag aaggacaaga gccacataaa 540 tttgcgatca atgttaccag acgtaacttt aacaccttgc caaagagcga cattataaaa 600 acggtagctg aatgcgtggg cagggagcac ggccattcag ttgacttaaa ggcattcgat 660 aaattaatac tagttgagtg ctataaaagc aatataggca tgagtgtagt tgaaaattat 720 aaccaactag aacggttcaa cttgcagcaa atctttgaca agaaccaaga gggagccgaa 780 gtcgaagcca agtccgattc taacgtagct tag 813 <210> 4 <211> 544 <212> DNA <213> 18s rRNA of Aspergillus oryzae <400> 4 ggggacctgc ggaaggatca ttaccgagtg tagggttcct agcgagccca acctcccacc 60 cgtgtttact gtaccttagt tgcttcggcg ggcccgccat tcatggccgc cgggggctct 120 cagccccggg cccgcgcccg ccggagacac cacgaactct gtctgatcta gtgaagtctg 180 agttgattgt atcgcaatca gttaaaactt tcaacaatgg atctcttggt tccggcatcg 240 atgaagaacg cagcgaaatg cgataactag tgtgaattgc agaattccgt gaatcatcga 300 gtctttgaac gcacattgcg ccccctggta ttccgggggg catgcctgtc cgagcgtcat 360 tgctgcccat caagcacggc ttgtgtgttg ggtcgtcgtc ccctctccgg gggggacggg 420 ccccaaaggc agcggcggca ccgcgtccga tcctcgagcg tatggggctt tgtcacccgc 480 tctgtaggcc cggccggcgc ttgccgaacg caaatcaatc tttccaggtg acctcgatca 540 gaga 544 <210> 5 <211> 571 <212> DNA <213> 18s rRNA of Aspergillus niger <400> 5 ggtttccgta ggtgaacctg cggaaggatc attaccgagt gctgggtcct tcggggccca 60 acctcccacc cgtgcttacc gtaccctgtt gcttcggcgg gcccgccttc gggcggcctg 120 gggcctgccc ccgggaccgc gcccgccgga gaccccaatg gaacactgtc tgaaagcgtg 180 cagtctgagt cgattgatac caatcagtca aaactttcaa caatggatct cttggttccg 240 gcatcgatga agaacgcagc gaaatgcgat aactaatgtg aattgcagaa ttcagtgaat 300 catcgagtct ttgaacgcac attgcgcccc ctggtattcc ggggggcatg cctgtccgag 360 cgtcatttct cccctccagc cccgctggtt gttgggccgc gcccccccgg gggcgggcct 420 cgagagaaac ggcggcaccg tccggtcctc gagcgtatgg ggctctgtca cccgctctat 480 gggcccggcc ggggcttgcc tcgaccccca atcttctcag attgacctcg gatcaggtag 540 ggatacccgc tgaacttaag catatcaata a 571 <210> 6 <211> 1965 <212> DNA <213> beta-fructofuranosidase from Aspergillus niger wild type <400> 6 atgaagctca ccactaccac cctggcgctc gccaccggcg cagcagcagc agaagcctca 60 taccacctgg acaccacggc cccgccgccg accaacctca gcaccctccc caacaacacc 120 ctcttccacg tgtggcggcc gcgcgcgcac atcctgcccg ccgagggcca gatcggcgac 180 ccctgcgcgc actacaccga cccatccacc ggcctcttcc acgtggggtt cctgcacgac 240 ggggacggca tcgcgggcgc caccacggcc aacctggcca cctacaccga tacctccgat 300 aacgggagct tcctgatcca gccgggcggg aagaacgacc ccgtcgccgt gttcgacggc 360 gccgtcatcc ccgtcggcgt caacaacacc cccaccttac tctacacctc cgtctccttc 420 ctgcccatcc actggtccat cccctacacc cgcggcagcg agacgcagtc gttggccgtc 480 gcgcgcgacg gcggccgccg cttcgacaag ctcgaccagg gccccgtcat cgccgaccac 540 cccttcgccg tcgacgtcac cgccttccgc gatccgtttg tcttccgcag tgccaagttg 600 gatgtgctgc tgtcgttgga tgaggaggtg gcgcggaatg agacggccgt gcagcaggcc 660 gtcgatggct ggaccgagaa gaacgccccc tggtatgtcg cggtctctgg cggggtgcac 720 ggcgtcgggc ccgcgcagtt cctctaccgc cagaacggcg ggaacgcttc cgagttccag 780 tactgggagt acctcgggga gtggtggcag gaggcgacca actccagctg gggcgacgag 840 ggcacctggg ccgggcgctg ggggttcaac ttcgagacgg ggaatgtgct cttcctcacc 900 gaggagggcc atgaccccca gacgggcgag gtgttcgtca ccctcggcac ggaggggtct 960 ggcctgccaa tcgtgccgca ggtctccagt atccacgata tgctgtgggc ggcgggtgag 1020 gtcggggtgg gcagtgagca ggagggtgcc aaggtcgagt tctccccctc catggccggg 1080 tttctggact gggggttcag cgcctacgct gcggcgggca aggtgctgcc ggccagctcg 1140 gcggtgtcga agaccagcgg cgtggaggtg gatcggtatg tctcgttcgt ctggttgacg 1200 ggcgaccagt acgagcaggc ggacgggttc cccacggccc agcaggggtg gacggggtcg 1260 ctgctgctgc cgcgcgagct gaaggtgcag acggtggaga acgtcgtcga caacgagctg 1320 gtgcgcgagg agggcgtgtc gtgggtggtg ggggagtcgg acaaccagac ggccaggctg 1380 cgcacgctgg ggatcacgat cgcccgggag accaaggcgg ccctgctggc caacggctcg 1440 gtgaccgcgg aggaggaccg cacgctgcag acggcggccg tcgtgccgtt cgcgcaatcg 1500 ccgagctcca agttcttcgt gctgacggcc cagctggagt tccccgcgag cgcgcgctcg 1560 tccccgctcc agtccgggtt cgaaatcctg gcgtcggagc tggagcgcac ggccatctac 1620 taccagttca gcaacgagtc gctggtcgtc gaccgcagcc agactagtgc ggcggcgccc 1680 acgaaccccg ggctggatag ctttactgag tccggcaagt tgcggttgtt cgacgtgatc 1740 gagaacggcc aggagcaggt cgagacgttg gatctcactg tcgtcgtgga taacgcggtt 1800 gtcgaggtgt atgccaacgg gcgctttgcg ttgagcacct gggcgagatc gtggtacgac 1860 aactccaccc agatccgctt cttccacaac ggcgagggcg aggtgcagtt caggaatgtc 1920 tccgtgtcgg aggggctcta taacgcctgg ccggagagaa attga 1965 <210> 7 <211> 1965 <212> DNA <213> beta-fructofuranosidase from Aspergillus niger 2nd mutant strain <400> 7 atgaagctca ccactaccac cctggcgctc gccaccggcg cagcagcagc agaagcctca 60 taccacctgg acaccacggc cccgccgccg accaacctca gcaccctccc caacaacacc 120 ctcttccacg tgtggcggcc gcgcgcgcac atcctgcccg ccgagggcca gatcggcgac 180 ccctgcgcgc actacaccga cccatccacc ggcctcttcc acgtggggtt cctgcacgac 240 ggggacggca tcgcgggcgc caccacggcc aacctggcca cctacaccga tacctccgat 300 aacgggagct tcctgatcca gccgggcggg aagaacgacc ccgtcgccgt gttcgacggc 360 gccgtcatcc ccgtcggcgt caacaacacc cccaccttac tctacacctc cgtctccttc 420 ctgcccatcc actggtccat cccctacacc cgcggcagcg agacgcagtc gttggccgtc 480 gcgcgcgacg gcggccgccg cttcgacaag ctcgaccagg gccccgtcat cgccgaccac 540 cccttcgccg tcgacgtcac cgccttccgc gatccgtttg tcttccgcag tgccaagttg 600 gatgtgctgc tgtcgttgga tgaggaggtg gcgcggaatg agacggccgt gcagcaggcc 660 gtcgatggct ggaccgagaa gaacgccccc tggtatgtcg cggtctctgg cggggtgcac 720 ggcgtcgggc ccgcgcagtt cctctaccgc cagaacggcg ggaacgcttc cgagttccag 780 tactgggagt acctcgggga gtggtggcag gaggcgacca actccagctg gggcgacgag 840 ggcacctggg ccgggcgctg ggggttcaac ttcgagacgg ggaatgtgct cttcctcacc 900 gaggagggcc atgaccccca gacgggcgag gtgttcgtca ccctcggcac ggaggggtct 960 ggcctgccaa tcgtgccgca ggtctccagt atccacgata tgctgtgggc ggcgggtgag 1020 gtcggggtgg gcagtgagca ggagggtgcc aaggtcgagt tctccccctc catggccggg 1080 tttctggact gggggttcag cgcctacgct gcggcgggca aggtgctgcc ggccagctcg 1140 gcggtgtcga agaccagcgg cgtggaggtg gatcggtatg tctcgttcgt ctggttgacg 1200 ggcgaccagt acgagcaggc ggacgggttc cccacggccc agcaggggtg gacggggtcg 1260 ctgctgctgc cgcgcgagct gaaggtgcag acggtggaga acgtcgtcga caacgagctg 1320 gtgcgcgagg agggcgtgtc gtgggtggtg ggggagtcgg acaaccagac ggccacgctg 1380 cgcacgctgg ggatcacgat cgcccgggag accaaggcgg ccctgctggc caacggctcg 1440 gtgaccgcgg aggaggaccg cacgctgcag acggcggccg tcgtgccgtt cgcgcaatcg 1500 ccgagctcca agttcttcgt gctgacggcc cagctggagt tccccgcgag cgcgcgctcg 1560 tccccgctcc agtccgggtt cgaaatcctg gcgtcggagc tggagcgcac ggccatctac 1620 taccagttca gcaacgagtc gctggtcgtc gaccgcagcc agactagtgc ggcggcgccc 1680 acgaaccccg ggctggatag ctttactgag tccggcaagt tgcggttgtt cgacgtgatc 1740 gagaacggcc aggagcaggt cgagacgttg gatctcactg tcgtcgtgga taacgcggtt 1800 gtcgaggtgt atgccaacgg gcgctttgcg ttgagcacct gggcgagatc gtggtacgac 1860 aactccaccc agatccgctt cttccacaac ggcgagggcg aggtgcagtt caggaatgtc 1920 tccgtgtcgg aggggctcta taacgcctgg ccggagagaa attga 1965

Claims (11)

서열번호 7의 염기서열에 의해 암호화된 아미노산 서열로 이루어진 프락토올리고당 전환 효소, 상기 효소를 생산하는 아스페르길루스 나이거 균주의 균체, 배양물, 파쇄물, 및 파쇄물의 상등액으로 이루어진 군에서 선택된 1종 이상에, 반응 기질로서 설탕과 반응시켜 프락토올리고당을 포함하는 반응산물용액을 얻는 단계를 포함하는, 프락토올리고당을 생산하는 방법으로서,
상기 반응 기질로서 설탕과 반응시켜 프락토올리고당을 포함하는 반응산물용액을 얻는 단계는, 5.5 내지 6.5의 pH 범위 및 55 내지 65℃의 온도 범위에서 수행되며,
상기 프락토올리고당 전환 효소는 4℃의 온도에서 7개월간 보관 조건에서 최초 보관시 효소 활성 100%를 기준으로 상대적인 효소 활성이 60 내지 100%의 보관 안정성을 가지며,
상기 프락토올리고당 전환 효소의 활성은 야생형 아스페르길루스 나이거 균주에서 생성된 효소 활성 100%를 기준으로, 상대적인 효소 활성이 150 내지 1000%이며,
상기 반응산물용액은, 당류 고형분 함량 100중량%를 기준으로 28-35중량%의 1-케스토스, 0.01-35 중량%의 니스토스 및 0.01-5 중량%의 1-F-프락토퓨라노실 니스토스를 포함하는 것인,
프락토올리고당을 생산하는 방법.
A fructooligosaccharide converting enzyme consisting of an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 7, 1 selected from the group consisting of cells, cultures, lysates, and supernatants of lysates of Aspergillus niger producing the enzymes A method for producing fructooligosaccharide, which comprises reacting at least species with sugar as a reaction substrate to obtain a reaction product solution containing fructooligosaccharide.
Reacting with sugar as the reaction substrate to obtain a reaction product solution containing fructooligosaccharide, is carried out at a pH range of 5.5 to 6.5 and a temperature range of 55 to 65 ℃,
The fructooligosaccharide converting enzyme has a storage stability of 60 to 100% relative enzyme activity based on 100% enzyme activity at the time of initial storage at storage conditions for 7 months at a temperature of 4 ℃,
The activity of the fructooligosaccharide converting enzyme is relative to the enzyme activity of 150 to 1000% based on 100% of the enzyme activity produced in the wild type Aspergillus Niger strain,
The reaction product solution, based on 100% by weight of the saccharide solids content of 28-35% by weight of 1-Kestose, 0.01-35% by weight of Nittos and 0.01-5% by weight of 1-F-fractopuranosyl It includes a nystos,
How to produce fructooligosaccharides.
제1항에 있어서, 상기 프락토올리고당은 반응기질인 설탕 총고형분 100 중량%를 기준으로 프락토올리고당이 50 내지 70중량% 생산되는 것인, 프락토올리고당을 생산하는 방법.The method of claim 1, wherein the fructooligosaccharide is 50 to 70% by weight of the fructooligosaccharide is produced based on 100% by weight of the total solid sugar of the reactor. 제1항에 있어서, 상기 니스토스 및 1-F-프락토퓨라노실 니스토스의 합계중량에 대한 1-케스토스의 중량비(1-케스토스/니스토스와 1-F-프락토퓨라노실니스토스의 합계 중량)가 0.5 내지 2.0인 것인, 프락토올리고당을 생산하는 방법.The weight ratio of 1-kestos (1-kestos / nistos and 1-F-fractofuranosyl to the total weight of the nystose and 1-F-fructofuranosyl nistos according to claim 1). The total weight of the nistos) is 0.5 to 2.0, the method for producing fructooligosaccharide. 제1항에 있어서, 상기 균주는 야생형 아스페르길루스 나이거 균주를 개량한 변이주인 것인, 프락토올리고당을 생산하는 방법.The method of claim 1, wherein the strain is a mutant strain that improves the wild-type Aspergillus niger strain. 제1항에 있어서, 상기 효소는 4℃의 온도에서 7개월간 보관 조건에서, 최초 보관시 효소 활성 100%를 기준으로 상대적인 효소 활성이 60 내지 100%인 것인, 프락토올리고당을 생산하는 방법.The method of claim 1, wherein the enzyme has a relative enzymatic activity of 60 to 100% based on 100% of the enzyme activity at the time of storage for 7 months at a temperature of 4 ° C., the method for producing fructooligosaccharide. 제1항에 있어서, 상기 효소는 프락토올리고당 전환 활성이 300 내지 1,500 U/mg인 것인, 프락토올리고당을 생산하는 방법.The method of claim 1, wherein the enzyme has a fructooligosaccharide conversion activity of 300 to 1,500 U / mg. 서열번호 7의 염기서열에 의해 암호화된 아미노산 서열로 이루어진, 프락토올리고당 전환 효소로서,
상기 프락토올리고당 전환 효소는 4℃의 온도에서 7개월간 보관 조건에서 최초 보관시 효소 활성 100%를 기준으로 상대적인 효소 활성이 60 내지 100%의 보관 안정성을 가지며, 기질인 설탕과 반응하는 조건은 5.5 내지 6.5의 pH 범위 및 55 내지 65℃의 온도 범위이며,
상기 프락토올리고당 전환 효소의 활성은 야생형 아스페르길루스 나이거 균주에서 생성된 효소 활성 100%를 기준으로, 상대적인 효소 활성이 150 내지 1000%인 프락토올리고당 전환 효소.
A fructooligosaccharide converting enzyme, consisting of an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 7,
The fructooligosaccharide converting enzyme has a storage stability of 60 to 100% relative enzyme activity based on 100% of enzyme activity at the time of storage for 7 months at a temperature of 4 ° C., and reacts with sugar as a substrate at 5.5 PH range of 6.5 to 55 and temperature range of 55 to 65 ℃,
The activity of the fructooligosaccharide converting enzyme is a fructooligosaccharide converting enzyme having a relative enzyme activity of 150 to 1000% based on 100% of the enzyme activity produced in the wild-type Aspergillus niger strain.
제7항에 있어서, 상기 효소는 프락토올리고당 전환 활성이 300 내지 1,500 U/mg인 것인, 프락토올리고당 전환 효소.The fructooligosaccharide converting enzyme of claim 7, wherein the enzyme has a fructooligosaccharide converting activity of 300 to 1,500 U / mg. 제7항에 있어서, 상기 효소는 4℃의 온도에서 7개월간 보관 조건에서, 최초 보관시 효소 활성 100%를 기준으로 상대적인 효소 활성이 75 내지 95% 인 것인, 프락토올리고당 전환 효소.The fructooligosaccharide converting enzyme of claim 7, wherein the enzyme has a relative enzyme activity of 75 to 95% based on 100% of the enzyme activity at the time of storage for 7 months at a temperature of 4 ° C. 제7항에 있어서, 상기 효소는 1-케스토스, 니스토스, 및 1-F-프락토퓨라노실니스토스를 포함하는 프락토올리고당으로서, 니스토스 및 1-F-프락토퓨라노실니스토스의 합계 중량에 대한 1-케스토스의 중량비(1-케스토스/니스토스와 1-F-프락토퓨라노실 니스토스의 합계 중량)가 0.5 내지 2.0인 프락토올리고당을 생산하는 것인, 프락토올리고당 전환 효소.8. The enzyme of claim 7, wherein the enzyme is fructooligosaccharide comprising 1-kestos, nystose, and 1-F-fructofuranosylnisto, and nystose and 1-F-fractofuranosyls To produce fructooligosaccharides having a weight ratio of 1-kestos to the total weight of tosses (total weight of 1-kestos / nistos and 1-F-fructofuranosyl nithose) of 0.5 to 2.0, Fructooligosaccharide Converting Enzyme. 제7항에 있어서, 상기 효소의 활성은 야생형 아스페르길루스 나이거 균주에서 생성된 효소 활성 100%를 기준으로, 상대적인 효소 활성이 600 내지 1000% 또는 250 내지 400%인 것인, 프락토올리고당 전환 효소.The fructooligosaccharide according to claim 7, wherein the activity of the enzyme is 600-1000% or 250-400% relative enzyme activity based on 100% of the enzyme activity produced in the wild-type Aspergillus niger strain. Conversion enzymes.
KR1020180136909A 2018-11-08 2018-11-08 Method for preparing fructooligosaccharides KR102049573B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180136909A KR102049573B1 (en) 2018-11-08 2018-11-08 Method for preparing fructooligosaccharides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180136909A KR102049573B1 (en) 2018-11-08 2018-11-08 Method for preparing fructooligosaccharides

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020160183058A Division KR101919129B1 (en) 2016-12-29 2016-12-29 Method for preparing fructooligosaccharides

Publications (2)

Publication Number Publication Date
KR20180122999A KR20180122999A (en) 2018-11-14
KR102049573B1 true KR102049573B1 (en) 2019-11-27

Family

ID=64328399

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180136909A KR102049573B1 (en) 2018-11-08 2018-11-08 Method for preparing fructooligosaccharides

Country Status (1)

Country Link
KR (1) KR102049573B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023089639A1 (en) * 2021-11-22 2023-05-25 Revelations Biotech Private Limited Mutant ftases having efficient transfructosylation activity

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102224926B1 (en) * 2019-11-26 2021-03-08 전남대학교산학협력단 Lactobacillus sakei NY518 strain, culture thereof and enteric health improving functional food composition comprising the same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Agric. Biol. Chem., Vol. 52, pp. 1181-1187 (1988.)*
Biosci. Biotechnol. Biochem., Vol. 65, pp. 766-773 (2001.)
Journal of Applied Microbiology, Vol. 95, pp. 686-692 (2003.)*
NCBI GenBank Accession No. AB046388.1 (2001.09.15.)*

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023089639A1 (en) * 2021-11-22 2023-05-25 Revelations Biotech Private Limited Mutant ftases having efficient transfructosylation activity

Also Published As

Publication number Publication date
KR20180122999A (en) 2018-11-14

Similar Documents

Publication Publication Date Title
JP6105680B2 (en) Method for producing ultra high purity galactooligosaccharide
Khianngam et al. Screening and identification of cellulase producing bacteria isolated from oil palm meal
KR101918648B1 (en) Method for preparing fructooligosaccharides comprising high content of 1-kestose
Flores-Gallegos et al. Comparative study of fungal strains for thermostable inulinase production
KR102049573B1 (en) Method for preparing fructooligosaccharides
KR100368884B1 (en) Method for preparing Plesiomonas strains and trehalose having the ability to produce maltophosphorylase, trehalophosphorylase and these enzymes
Fialho et al. Production of 6-kestose by the filamentous fungus Gliocladium virens as affected by sucrose concentration
CN102690795B (en) Trehalose synthase of streptomyces griseochromogenes and coding gene and application of trehalose synthase
KR101919129B1 (en) Method for preparing fructooligosaccharides
KR102004944B1 (en) Method for preparing fructooligosaccharides comprising high content of 1-kestose
Jayalakshmi et al. Microbial enzymatic production of fructooligosaccharides from sucrose in agricultural harvest
JP4318179B2 (en) Novel disaccharide compound containing D-psicose and process for producing the same
JP5314955B2 (en) Novel microorganism, inulinase, inulin degrading agent, method for producing inulooligosaccharide, and method for producing inulinase
CN108588058B (en) β -fructofuranosidase mutant and application thereof
Charee et al. Characterization of thermotolerant acetic acid bacteria isolated from various plant beverages in Thailand
KR20040008145A (en) Sulfated fucoglucuronomannan
KR100523528B1 (en) Novel Cellulomonas sp. GM13 strain producing chitinase
JPH08131166A (en) Heat-resistant trehalose phosphorylase, its production, bacterum to be used for its production, and production of trehalose using the enzyme
JP5748661B2 (en) Difructose dianhydride III synthase
Omar et al. Cloning and Expression of a Levansucrase (SacB) Gene from Bacillus licheniformis MJ8 in Escherichia coli and Enzymatic Synthesis of Levan
Al-Rmedh et al. Curdlan Gum, Properties, Benefits and Applications
KR101964115B1 (en) Method for producing oligosaccharide-rich molasses, oligosaccharide-rich molasses produced by the same and use thereof
CN117106831A (en) Preparation method and application of L-fucose prepared by enzymatic method
EP3757209A1 (en) Enzymatic production of levan-based, prebiotic fructooligosaccharides
Farag et al. Purification and Characterization of a Thermostable β-Mannanase from Halophilic Aspergillus terreus strain ARSA Associated to a Mangrove Plant of Red Sea Coast, Egypt, and its Application in Mannooligosaccharides Production and Juice Clarification.

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant