KR102048869B1 - Process for synthesizing ramalin not using Tin as a heavy metal - Google Patents

Process for synthesizing ramalin not using Tin as a heavy metal Download PDF

Info

Publication number
KR102048869B1
KR102048869B1 KR1020170144058A KR20170144058A KR102048869B1 KR 102048869 B1 KR102048869 B1 KR 102048869B1 KR 1020170144058 A KR1020170144058 A KR 1020170144058A KR 20170144058 A KR20170144058 A KR 20170144058A KR 102048869 B1 KR102048869 B1 KR 102048869B1
Authority
KR
South Korea
Prior art keywords
formula
compound
glutamic acid
ramalin
acid derivative
Prior art date
Application number
KR1020170144058A
Other languages
Korean (ko)
Other versions
KR20190049980A (en
Inventor
김근식
권오준
김지언
이혜영
Original Assignee
케이에스랩(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 케이에스랩(주) filed Critical 케이에스랩(주)
Priority to KR1020170144058A priority Critical patent/KR102048869B1/en
Publication of KR20190049980A publication Critical patent/KR20190049980A/en
Application granted granted Critical
Publication of KR102048869B1 publication Critical patent/KR102048869B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C281/00Derivatives of carbonic acid containing functional groups covered by groups C07C269/00 - C07C279/00 in which at least one nitrogen atom of these functional groups is further bound to another nitrogen atom not being part of a nitro or nitroso group
    • C07C281/02Compounds containing any of the groups, e.g. carbazates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 라말린의 합성방법에 관한 것으로, 보다 상세하게는 알킬클로로포르메이트를 이용하여 제조된 글루탐산 유도체와, 하이드록시기가 보호된 하이드록시 아닐린을 이용하여 제조된 하이드라진 염 화합물을 반응시켜 제조하는 것을 특징으로 하는 라말린의 합성방법에 관한 것이다. The present invention relates to a method for synthesizing ramaline, and more particularly, by reacting a glutamic acid derivative prepared using alkylchloroformate with a hydrazine salt compound prepared using a hydroxyl group-protected hydroxy aniline. The present invention relates to a method for synthesizing ramalin.

Description

중금속 주석을 사용하지 않는 라말린의 합성방법{Process for synthesizing ramalin not using Tin as a heavy metal}Process for synthesizing ramalin not using Tin as a heavy metal}

본 출원은 중금속 주석(Sn)을 사용하지 않고 천연물 유래의 라말린과 같은 물성 및 효능을 나타내는 라말린을 합성하는 방법에 관한 것이다.The present application relates to a method for synthesizing a ramalline exhibiting the same physical properties and efficacy as a ramalin derived from a natural product without using heavy metal tin (Sn).

라말린(Ramalin)은 남극대륙 킹조지섬에 군락을 이루어 자생하는 라말리나 테레브라타(Ramalina terebrata)라는 지의류에서 추출한 물질이다. 한국해양과학기술원의 연구에 따르면, 라말리나 테레브레타는 사하라 사막보다 건조하며 시베리아보다 더 거센 강풍이 부는 거친 땅 남극의 해발 2,500m, -100℃에 이르는 불모지에서 100년에 1cm가 겨우 자라나는 지의류로 끈질긴 생명력을 지니고 있다. 라말리나는 해안가 바위에 붙어서 자외선을 직접 받기 때문에 스스로 산화물질을 제거하는 항산화 물질을 만들어 스스로를 보호한다. 이러한 라말리나가 강한 남극의 자외선을 이겨내며 스스로 만들어 낸 성분이 바로 라말린이다.Ramalin is derived from lichens called Ramalina terebrata, which grow inhabiting King George Island in Antarctica. According to a study by the Korea Institute of Maritime Science and Technology, Ramalina Terrebreta is a lichen that grows only 1cm in 100 years in a barren area of 2,500m above sea level and -100 ° C. It has a persistent life force. Ramalina protects itself by making antioxidants that remove oxides by attaching themselves to the rocks on the shore and receiving UV light directly. Ramalin is the ingredient that was created by itself to overcome the strong ultraviolet rays of Antarctica.

이러한 라말린은 우수한 항염 증 활성을 가진 것이 보고되면서, 한국해양과학기술원에서는 라말리나 테레브라타의 건조샘플로부터 라말린을 최초로 추출하여 특허를 받은 바 있다(대한민국 공개 특허공보 제 10-2010-0052130호).Since the ramallin has been reported to have excellent anti-inflammatory activity, the Korea Maritime Institute of Science and Technology has been the first to obtain a patent for the extraction of ramalin from a dry sample of Ramalina Terebrata (Korea Patent Publication No. 10-2010-0052130 ).

지의류는 충분한 양의 천연샘플을 수집하기가 어렵고, 대량재배 기술이 알려져 있지 않기 때문에, 고등식물보다는 연구가 미진하였다. 하지만, 현재는, 지의류의 조직배양법, 대량생산 방법 및 생화학적 분석 방법 등이 개선됨에 따라, 이에 대한 연구가 활발히 진행 되고 있다(Behera, B. C. et al., Lebensm. Wiss. Technol. , 39:805, 2006). 세포독성, 살곰팡이, 항미생물, 항산화 등의 여러 생물학적 활성을 가지는 지방산, 뎁시드(depside) 및 뎁시돈(depsidones), 디벤조푸란(debenzofurans), 디테르펜(diterpenes), 안트라퀴논(anthraquinones), 나프토퀴논(naphtoqui nones), 우스닉산(usninic acid), 풀비닉산(pμlvinic acids), 잔톤(xanthones) 및 에피디티오피퍼라진이온(epidithiopiperazinediones) 을 포함하는 화합물들이 지의류로부터 분리된 바 있다(Muller, K. , Appl. Microbiol. Biotechnol. , 56: 9-16, 2001).Lichens are less well studied than higher plants because it is difficult to collect sufficient natural samples, and mass cultivation techniques are not known. However, as the tissue culture method, mass production method, and biochemical analysis method of lichens have been improved, research on this is being actively conducted (Behera, BC et al., Lebensm. Wiss. Technol., 39: 805). , 2006). Fatty acids, depsides and depsidones, debenzofurans, diterpenes, anthraquinones, anthraquinones, which have a variety of biological activities such as cytotoxicity, mold, antimicrobial, antioxidants, etc. Compounds including naphtoqui nones, usninic acid, pμlvinic acids, xanthones and epidithiopiperazinediones have been isolated from lichens (Muller) , K., Appl.Microbiol.Biotechnol., 56: 9-16, 2001).

라말린은 우수한 항산화 활성 및 항염증 활성이 확인되어 대량생산의 필요성이 있으나, 천연 지의류인 라말리나 테레브라타에서 메탄올을 이용한 분리 방법에 의할 경우, 극지 지의류 특유의 느린 성장속도, 자연에서 대량채취가 어려운 점 및 라말리나 테레브라타에서 추출 되는 양이 매우 소량인 점 때문에, 그 생산에 비용과 시간이 많이 드는 문제가 있어 왔다.Ramalin has excellent anti-oxidant and anti-inflammatory activity and needs to be mass-produced.However, when the separation method using methanol is used in the natural lichen, Ramalina terebrata, the slow growth rate unique to polar lichens and the mass in nature Due to the difficulty in collecting and the very small amount extracted from Ramalina terebrata, there has been a problem of costly and time-consuming production.

이에 따라, 공정이 간단하고 가격면에서 경쟁력이 있는 라말린의 새로운 화학적 합성 방법에 대한 산업계의 요구가 있어왔고, 그 중에서 한 선행기술은 알킬클로로포름에이트를 이용하여 제조된 글루탐산 유도체와, 하이드록시아닐린(hydroxyaniline) 또는 하이드록시기가 보호된 하이드록시아닐린을 이용하여 제조된 하이드라진염 화합물을 반응시키는 합성 방법에 관한 것이다(대한민국 공개 특허공보 제 10-2013-0085306호).Accordingly, there has been an industry demand for a new chemical synthesis method of ramalin which is simple in process and competitive in price, and one of the prior arts is a glutamic acid derivative prepared using alkylchloroformate and hydroxyaniline. The present invention relates to a synthetic method of reacting a hydrazine salt compound prepared using hydroxyaniline or a hydroxyl group protected hydroxyaniline (Korean Patent Publication No. 10-2013-0085306).

그러나 상기 선행기술의 합성 방법에서는 라말린의 제조 시 중금속인 주석을 사용하는 공정이 포함되어 있어, 극소량이지만 최종 생성물에 주석이 그대로 포함된 상태로 라말린의 주용도인 화장품 및 의약품에 그대로 사용하게 되는 문제점이 있다. 특히, 라말린 중 주석의 잔류 문제는 주석이 생체내 잔류 함으로서 생체 내 유기주석 화합물이 생성되고 인체의 신경계통에 문제를 유발한다.However, the synthesis method of the prior art includes a process of using tin, which is a heavy metal, in the production of ramalin, which is used in cosmetics and pharmaceuticals, which is the main use of ramalin, even though a small amount of tin is contained in the final product as it is. There is a problem. In particular, the problem of residual tin in ramalin is due to the residual tin in vivo to generate organotin compounds in vivo and cause problems in the nervous system of the human body.

이에 따라, 본 출원의 목적은 중금속 주석을 사용하지 않고 신규의 공정으로 천연물 유래의 라말린과 같은 효능을 나타내는 라말린을 화학적으로 합성하는 것을 목적으로 한다.Accordingly, it is an object of the present application to chemically synthesize ramalins that exhibit the same efficacy as ramalin derived from natural products in a novel process without using heavy metal tin.

본 발명자들은 기존의 라말린의 합성 과정에서 하기의 화학식3의 하이드록실기가 벤질기로 보호된 하이드라진 합성과정에서 중간체인 디아조화합물을 염화주석 환원제로 환원이 원활히 진행되었다는 것을 확인하였다. 그러나 중금속인 주석을 배제하기 위해서 여러가지 환원제를 검토하였으나, 하이드록실기에 벤질기로 보호된 벤질 그룹이 분해되어서 원하는 목적물을 합성하기가 힘들었다. 따라서 본 발명자들은 예의 검토한 결과 하이드록실기의 보호기를 벤질기를 제외한 여러가지 보호기를 검토하였고, 그 중에서 알릴(allyl) 그룹으로 변경하였다. 알릴기로 보호된 디아조화합물을 다음의 여러가지 환원제를 다양하게 연구검토하여 실시예와 같이 알릴하이드라진 중간체를 고효율로 합성할 수 있었다.The present inventors confirmed that the diazo compound, which is an intermediate, was reduced with a tin chloride reducing agent in the synthesis process of hydrazine in which the hydroxyl group of the following formula (3) was protected by the benzyl group in the synthesis process of ramalin. However, various reducing agents were examined to exclude tin, which is a heavy metal, but it was difficult to synthesize a desired target because the benzyl group protected by the benzyl group in the hydroxyl group was decomposed. Therefore, as a result of earnest examination, the present inventors examined various protecting groups except the benzyl group, and changed into the allyl group among them. The allyl group-protected diazo compound was variously studied by the following various reducing agents, and thus allylhydrazine intermediates could be synthesized with high efficiency as in the examples.

기존의 가장 대표적인 환원방법은 염화주석(SnCl2)을 이용한 환원방법이 가장 대표적이지만, 염화주석을 사용하지 않는 여러 방법을 검토하였다. 당사는 알릴하이드라진 유도체를 합성하기 위해 최근 보고된 방법 중 아스코빅산을 이용한 방법(Tetrahedron, 67, (2011), 10296~10303), 트리페닐포스핀(triphenylphosphine)을 이용한 방법(EP 1981860B1), 벤젠세레놀(benzeneselenol)을 이용한 방법(J. Chem. Soc. Chem. Commun., 1977, 131~132) 등 다양한 방법을 사용하였다. 가장 선택성이 높고, 반응 전환율이 높은 방법은 아황산나트륨(Sodium sulfite)를 이용한 방법이었다. 다양한 실험을 통하여 얻은 결과, 아황산나트륨을 이용한 방법을 적용하기 위해서는 오르쏘(ortho) 위치에 있는 페놀의 보호기가 벤질과 같은 입체 장애성 보호기로 이루어질 경우 반응 전환율이 높지 않은 결과를 얻었다. 그 이유는 디아조늄의 환원과정에서 술폰산 기가 도입되면서 분자내 공간이 협소해 지고, 결국 벤질그룹의 입체장애 효과가 나타나 반응 전환이 원활하게 이루어지지 않기 때문이다.The most typical reduction method is the reduction method using tin chloride (SnCl2), but several methods that do not use tin chloride were examined. We used ascorbic acid (Tetrahedron, 67, (2011), 10296 ~ 10303), triphenylphosphine (EP 1981860B1), Benzenere among the recently reported methods to synthesize allylhydrazine derivatives. Various methods including benzeneselenol (J. Chem. Soc. Chem. Commun., 1977, 131-132) were used. The method with the highest selectivity and high reaction conversion rate was the method using sodium sulfite. As a result of various experiments, in order to apply the method using sodium sulfite, when the protecting group of the phenol in the ortho position is composed of a hindered protecting group such as benzyl, the reaction conversion rate is not high. The reason for this is that the sulfonic acid group is introduced in the diazonium reduction process to narrow the intramolecular space, resulting in the steric hindrance effect of the benzyl group, which does not facilitate the conversion of the reaction.

따라서 이러한 입체장애 효과를 억제하면서, 나중에 쉽게 탈 보호반응을 유도하기 위해 알릴 그룹을 선정하게 되었다. 오르쏘-알릴옥시 그룹으로 보호된 아릴디아조늄염은 쉽게 아황산나트륨으로 환원되어 알릴하이드라진 중간체를 용이하게 확보할 수 있었다. Therefore, while suppressing this steric hindrance effect, an allyl group was selected to easily induce a deprotection reaction later. The aryldiazonium salt protected with the ortho-allyloxy group could be readily reduced to sodium sulfite to easily secure the allylhydrazine intermediate.

본 출원의 목적은 하기 화학식 1의 라말린을 합성하는 방법으로서,An object of the present application is a method for synthesizing Ramalin of Formula 1,

하기 화학식 2의 글루탐산 유도체와 하기 화학식 3의 하이드라진 염 화합물을 커플링 반응시켜 화학식 4의 라말린 전구체를 생성시키는 단계; Coupling a glutamic acid derivative of Formula 2 with a hydrazine salt compound of Formula 3 to produce a ramine precursor of Formula 4;

상기에서 생성된 화학식 4의 화합물에 탈알릴 반응을 수행하여 화학식 5의 글루탐산 유도체를 생성시키는 단계; 및 Generating a glutamic acid derivative of Formula 5 by performing a deallyl reaction on the compound of Formula 4; And

상기에서 생성된 화학식 5의 화합물에 수소화 반응을 수행하여 보호기를 제거하는 단계를 포함하는, 방법에 의하여 달성될 수 있다:It can be achieved by a method comprising the step of removing the protecting group by performing a hydrogenation reaction to the compound of formula 5 produced above:

Figure 112017108082854-pat00001
+
Figure 112017108082854-pat00002
Figure 112017108082854-pat00001
+
Figure 112017108082854-pat00002

Figure 112017108082854-pat00003
Figure 112017108082854-pat00004
Figure 112017108082854-pat00003
Figure 112017108082854-pat00004

Figure 112017108082854-pat00005
Figure 112017108082854-pat00005

상기 화학식에서, In the above formula,

R1은 저급 알킬이고;R 1 is lower alkyl;

R2는 하이드록시 보호기이며;R 2 is a hydroxy protecting group;

X는 산(Acid)이다.X is acid.

상기 화학식에서 '저급 알킬기'인 R 1은 탄소 원자수가 1∼8개, 바람직하게는 1∼6개, 특히 바람직하게는 1∼4개인 직쇄 또는 분지쇄의 알킬기를 나타낸다. 구체예로서, R 1은 메틸, 에틸, n-프로필, n-부틸, n-펜틸, n-헥실, n-헵틸, n-옥틸, 이소프로필, 이소부틸, sec-부틸, tert-부틸, 이소펜틸기 등을 들 수 있고, 바람직하게는 에틸이다.R 1, which is a 'lower alkyl group' in the above formula, represents a straight or branched chain alkyl group having 1 to 8 carbon atoms, preferably 1 to 6 carbon atoms, particularly preferably 1 to 4 carbon atoms. In an embodiment, R 1 is methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, isopropyl, isobutyl, sec-butyl, tert-butyl, iso A pentyl group etc. are mentioned, Preferably it is ethyl.

또한, R2는 알릴이며, X는 염산, 브롬산, 요오드산 또는 p-톨루엔설포닉산(p-Toluenesulfonic Acid) 등이 있으며, 그 중에서도 염산인 것이 바람직하다.R 2 is allyl, and X is hydrochloric acid, bromic acid, iodic acid or p-Toluenesulfonic acid, and among them, hydrochloric acid is preferable.

본 발명의 다른 양태로서, 상기 화학식 3의 하이드라진 염 화합물은 2-니트로페놀에서 하이드록시기를 알릴로 보호하고, 니트로기를 아민으로 환원시킨 후, 하이드록시가 보호된 하이드록시 아닐린의 산염을 아조화 시킨 후 중아황산나트륨(Sodium bisulfite)를 이용하여 환원시켜 제조될 수 있다. In another embodiment of the present invention, the hydrazine salt compound of formula 3 is a 2-nitrophenol in which the hydroxy group is protected with allyl, the nitro group is reduced to amine, and the hydroxy-protected hydroxy aniline salts azo After it can be prepared by reducing using sodium bisulfite.

특히 디아조늄염으로부터 화학식 3의 화합물인 알릴하이드라진을 합성하는 방법에서 중아황산나트륨을 이용한 환원반응은 중아황산나트륨 2당량 내지 10당량 범위, 바람직하게는 2당량 내지 2.5당량 범위로 사용된다. 반응 조건으로 암모니아수를 투입하여 pH 5.5 내지 pH 6.5로, 바람직하게는 pH 6.0에서 반응용액의 pH를 조절하며, 반응온도를 50℃ 내지 70℃, 바람직하게는 60℃로 조절하며, 이때도 pH를 6.0으로 조절하는 것이 중요하다. 이때 디아조늄 염(diazonium salt) 수용액을 40분간 투입하고, 60℃ 내지 90℃에서, 바람직하게는 75℃에서 약 30분~2시간, 바람직하게는 약 1시간 교반한다. In particular, in the method for synthesizing allylhydrazine, a compound of Formula 3, from a diazonium salt, the reduction reaction using sodium bisulfite is used in the range of 2 equivalents to 10 equivalents of sodium bisulfite, preferably in the range of 2 equivalents to 2.5 equivalents. Into the reaction conditions, ammonia water is added to adjust the pH of the reaction solution to pH 5.5 to pH 6.5, preferably pH 6.0, and the reaction temperature is adjusted to 50 ° C to 70 ° C, preferably 60 ° C. It is important to adjust to 6.0. At this time, an aqueous diazonium salt solution is added for 40 minutes and stirred at 60 ° C to 90 ° C, preferably at 75 ° C for about 30 minutes to 2 hours, preferably about 1 hour.

또한, 본 발명의 다른 양태로서, 상기 화학식 2의 글루탐산 유도체는, 하기 화학식 6의 글루탐산 유도체를 하기의 알킬클로로포름에이트(R1-O-CO-Cl)과 반응시켜 제조될 수 있다:In addition, as another embodiment of the present invention, the glutamic acid derivative of Formula 2 may be prepared by reacting a glutamic acid derivative of Formula 6 with alkylchloroformate (R 1 -O-CO-Cl) below:

Figure 112019086269690-pat00006
+
Figure 112019086269690-pat00032
Figure 112019086269690-pat00008
Figure 112019086269690-pat00006
+
Figure 112019086269690-pat00032
Figure 112019086269690-pat00008

또한, 상기 화학식 2의 글루탐산 유도체 합성에 사용된 알킬클로로포름은 반응물로서, 에틸클로로포름에이트(ECF), 메틸클로로포름에이트(MCF)가 사용될 수 있으며 바람직하게는 에틸클로로포름에이트(ECF)가 사용에 적합하다. 구입은 TCI 또는 Aldrich에서 구입하여 사용하였다.In addition, the alkyl chloroform used in the synthesis of glutamic acid derivatives of Chemical Formula 2 may be used as a reactant, ethylchloroformate (ECF), methylchloroformate (MCF), preferably ethylchloroformate (ECF). The purchase was purchased from TCI or Aldrich.

추가로, 본 발명의 다른 양태로서, 탈 알릴반응을 통한 화학식 5의 화합물을 얻기 위하여, 포름산암모늄을 4~8 당량 범위로, 바람직하게는 6당량으로 사용할 수 있다. 더 나아가, Pd/C 촉매는 반응물에 대하여 5~20% 범위로, 바람직하게는 10%으로 사용될 수 있고, 반응용매인 MeOH은 반응물에 비하여 100 배의 부피비로, 바람직하게는 50 배의 부피비로 사용한다. 반응온도는 0~ 50℃ 범위, 바람직하게는 20~30℃ 범위이다.In addition, as another embodiment of the present invention, in order to obtain a compound of the formula (5) through the allyl reaction, ammonium formate may be used in the range of 4 to 8 equivalents, preferably 6 equivalents. Further, the Pd / C catalyst may be used in the range of 5 to 20%, preferably 10% of the reactant, and MeOH, the reaction solvent, may be used at a volume ratio of 100 times that of the reactants, preferably at a volume ratio of 50 times use. The reaction temperature is in the range of 0 to 50 ° C, preferably in the range of 20 to 30 ° C.

또한, 알릴 그룹의 제거를 위한 탈보호 반응은 Pd(PPh3)4, Pd, Pd/C 등과 같은 다양한 환원 촉매를 스크린한 결과 10% Pd/C, 포름산암모늄의 조건이 가장 좋은 결과를 도출 할 수 있었다.In addition, the deprotection reaction for the removal of the allyl group screened various reducing catalysts such as Pd (PPh3) 4, Pd, Pd / C, etc., resulting in the best condition of 10% Pd / C and ammonium formate. there was.

본 출원의 발명을 통하여 중금속 주석을 하용하지 않고 신규한 합성 방법으로 천연물 유래의 라말린과 같은 물성을 갖는 라말린을 화학적으로 합성할 수 있었다. 더 나아가, 본 발명에 따른 라말린의 합성방법은 중금속인 주석을 사용하지 않으면서도, 안정적인 수율로 항산화 및 항염증 효과가 뛰어난 라말린을 합성 할 수 있다. 따라서, 본 발명에 따라 합성된 라말린은 대량생산으로 가격 경쟁력이 있으며 고수율로 라말린을 제공할 수 있어, 화장품과 의약품에 널리 사용할 수 있다. Through the invention of the present application it was possible to chemically synthesize a ramine having the same physical properties as that of a natural product derived from a natural synthesis without using heavy metal tin. Furthermore, the method for synthesizing ramalin according to the present invention can synthesize ramin excellent in antioxidant and anti-inflammatory effects in a stable yield without using tin, which is a heavy metal. Therefore, the RAMALIN synthesized according to the present invention is cost competitive in mass production and can provide RAMALIN in high yield, which can be widely used in cosmetics and pharmaceuticals.

도 1은 본 출원에 의하여 합성한 라말린의 1H-NMR 분석 데이터이고;
도 2는 천연 지의류에서 추출된 라말린의 1H-NMR 분석 데이터이다.
1 is 1 H-NMR analysis data of ramalin synthesized according to the present application;
Figure 2 is 1 H-NMR analysis data of ramallin extracted from natural lichens.

본 출원을 하기 실시예를 들어 상세히 설명하고자 하나, 하기 실시예는 예시적으로 제공되는 것으로서, 본 출원이 이에 한정되는 것이 아님을 당업자는 충분하게 이해할 것이다.The present application will be described in detail with reference to the following examples, but the following examples are provided by way of example, and those skilled in the art will fully understand that the present application is not limited thereto.

실시예 1Example 1

라말린의 합성예Synthesis Example of Ramalin

1-1. 알릴 하이드라진 염의 제조1-1. Preparation of Allyl Hydrazine Salt

[반응식1-1]Scheme 1-1

Figure 112017108082854-pat00009
Figure 112017108082854-pat00009

3-구 둥근바닥 플라스크에 상기 화학식 9의 화합물 72g, 알릴 브로마이드 68.8g, K2CO3 214.6g, 아세톤 720ml를 실온(rt)에서 투입한다. 56~57℃ 온도로 승온 후 환류를 4시간 진행 후 반응을 종결한다. rt로 온도를 냉각하여 셀라이트 여과 후 용액을 농축한다. 메틸렌클로라이드(MC) 용해 후, H2O을 사용하여 세척을 진행한다. Na2SO4로 수분을 제거한 뒤 감압 농축하여 화학식 10의 화합물 92.3g(수율:99.5%)을 얻었다.Into a three -necked round bottom flask, 72 g of the compound of Formula 9, 68.8 g of allyl bromide, 214.6 g of K 2 CO 3, and 720 ml of acetone were added at room temperature (rt). After the temperature was raised to 56-57 ° C., the mixture was refluxed for 4 hours to terminate the reaction. Cool the temperature to rt and concentrate the solution after celite filtration. After dissolving methylene chloride (MC), washing is performed using H 2 O. Water was removed with Na 2 SO 4 and concentrated under reduced pressure to obtain 92.3 g (yield: 99.5%) of the compound of formula 10.

[반응식1-2][Scheme 1-2]

Figure 112017108082854-pat00010
Figure 112017108082854-pat00010

3-구 둥근바닥 플라스크에 화학식 10의 화합물 9 1.02g, EtOH 455ml, Sat. NH4Cl 455ml를 상온에서 순서대로 투입한다. 철 분말(Iron powder) 149.5g 투입 후 교반속도를 빠르게 한다. 35% HCl 2방울 투입한 뒤 환류를 진행한다. 셀라이트 여과 진행 후 EtOH 제거를 위해 감압농축을 한 뒤 에틸아세테이트(EA)를 사용하여 추출한다. 유기층은 H2O을 사용하여 세척을 진행한 후 유기층을 감압 농축하여 화학식 11의 화합물 74.65g(수율:98.5%)을 얻었다.In a three-neck round bottom flask, 1.02 g of compound 9 of formula 10, 455 ml of EtOH, Sat. 455 ml of NH 4 Cl are added sequentially at room temperature. After adding 149.5g of iron powder, increase the stirring speed. Add 2 drops of 35% HCl and proceed to reflux. After filtration of celite, the mixture was concentrated under reduced pressure to remove EtOH, and extracted using ethyl acetate (EA). The organic layer was washed with H 2 O, and the organic layer was concentrated under reduced pressure to obtain 74.65 g of a compound of Formula 11 (yield: 98.5%).

[반응식 1-3]Scheme 1-3

Figure 112017108082854-pat00011
Figure 112017108082854-pat00011

3-구 둥근바닥 플라스크에 화학식 11의 화합물 71.74g, H2O 8 6.54g 투입 후 rt에서 교반한다. 35% HCl 100g과 H2O 76g을 사용하여 희석한 HCl를 상온에서 반응기에 15분간 투입하여준 뒤 0℃로 냉각한다. NaNO2를 H2O 57.53g을 사용하여 녹여준 뒤 5℃ 이하를 유지하면서 1시간 동안 투입하여 화학식 12의 화합물을 얻었다.71.74 g of a compound of Formula 11 and 6.54 g of H 2 O 8 were added to a three-neck round bottom flask, followed by stirring at rt. HCl diluted with 100 g of 35% HCl and 76 g of H 2 O was added to the reactor for 15 minutes at room temperature, and then cooled to 0 ° C. NaNO 2 was dissolved using 57.53 g of H 2 O and then charged for 1 hour while maintaining the temperature below 5 ° C. to obtain a compound of Formula 12.

TLC로 화합물 11이 사라진 것을 확인한 후 화합물 12을 분리하지 않고, 연속적으로, 반응기에 NaHSO3 112.53g, H2O 217g, NaCl 105.4g, H2O 252g를 rt에서 투입하고 용해한다. 암모니아수를 투입하여 pH 6.0을 만들어준 뒤 60℃로 승온 후 다시 pH 6.0으로 맞춰준다. 온도를 60℃ 유지하고, 위에서 만든 디아조늄 염(diazonium salt) 수용액을 40분간 투입한다. 75℃로 승온하여 1시간 교반 후 10℃ 로 냉각, 10℃를 유지한 상태에서 50% NaOH 수용액을 사용하여 pH 10~11 으로 조절하였다. 톨루엔을 사용하여 추출하고, 황산나트륨으로 건조 후, 톨루엔을 감압 농축하여 제거하여 화학식 13의 화합물 67.3g(수율:87.8%), 99.2% 순도로 얻었다.After confirming that Compound 11 disappeared by TLC, Compound 12 was not separated, and continuously, 112.53 g of NaHSO 3, 217 g of H 2 O, 105.4 g of NaCl, and 252 g of H 2 O were dissolved at rt. Aqueous ammonia was added to make pH 6.0, and then the temperature was raised to 60 ° C and adjusted to pH 6.0 again. The temperature is maintained at 60 ° C., and the diazonium salt solution prepared above is added for 40 minutes. The mixture was heated to 75 ° C, stirred for 1 hour, cooled to 10 ° C, and adjusted to pH 10-11 using a 50% aqueous NaOH solution. The mixture was extracted with toluene, dried over sodium sulfate, and then toluene was concentrated under a reduced pressure to obtain 67.3 g of a compound of formula 13 (yield: 87.8%) in 99.2% purity.

1-2. 글루탐산 유도체의 제조 및 라말린의 합성1-2. Preparation of Glutamic Acid Derivatives and Synthesis of Ramalin

[반응식1-4][Scheme 1-4]

Figure 112017108082854-pat00012
Figure 112017108082854-pat00012

Figure 112017108082854-pat00013
Figure 112017108082854-pat00013

3-구 둥근바닥 플라스크에 화학식 6의 화합물 75.39g, MC 754ml를 투입한 뒤 0℃로 냉각 후 트리에틸아민(TEA) 24.65g 30분 동안 투입한다. 반응 용액을 15℃로 냉각하여 에틸클로로포메이트(ECF) 26.44g를 40분간 투입하여 활성화시키고, 0℃ 이하를 유지한 상태에서 1시간 교반하여 TLC를 사용하여 화학식 6의 화합물이 사라진 것을 확인한다. 75.39 g of the compound of Formula 6 and MC 754 ml were added to a three-neck round bottom flask, and the mixture was cooled to 0 ° C., and triethylamine (TEA) 24.65 g was added for 30 minutes. The reaction solution was cooled to 15 ° C. and 26.44 g of ethylchloroformate (ECF) was added for 40 minutes to activate. The mixture was stirred for 1 hour while kept at 0 ° C. or less to confirm that the compound of Formula 6 disappeared using TLC. .

이어서, 상기에서 얻어진 알릴하이드라진 염인 화학식 13의 화합물 40g을 MC 360ml에 용해한 용액을 0℃ 이하를 유지하여 1시간 40분간 투입하고, rt로 승온 후 10시간 교반한다. 반응이 완료되면, H2O 200ml를 투입하고 세척한 뒤 1N HCl 200ml 1회, Sat.NaHCO3 200ml 1회 유기층을 세척한다. 유기층은 Na2SO4 로 건조 후 감압농축을 진행하여 용매를 제거한 뒤 MeOH에 녹여 활성탄 처리를 한다. 셀라이트 여과 후 다시 메탄올 용매를 감압증류로 제거하였고, MC/Hex(메틸렌클로라이드/헥산)을 사용하여 결정화하여 라말린 전구체인 화학식 8의 화합물 93.61g(수율:89.09%)을 얻었다.Subsequently, a solution obtained by dissolving 40 g of the compound of formula 13, which is the allyl hydrazine salt, obtained in the above, in 360 ml of MC was kept at 0 ° C. or lower for 1 hour and 40 minutes, and heated to rt, followed by stirring for 10 hours. After the reaction was completed, 200 ml of H 2 O was added and washed, and then the organic layer was washed once with 200 ml of 1N HCl and once with 200 ml of Sat. NaHCO 3 . The organic layer was dried over Na 2 SO 4 and concentrated under reduced pressure to remove the solvent, dissolved in MeOH, and treated with activated carbon. After filtration of celite, the methanol solvent was again removed by distillation under reduced pressure, and crystallized using MC / Hex (methylene chloride / hexane) to obtain 93.61 g (yield: 89.09%) of the compound of formula 8 as a ramine precursor.

반응기에 화학식 8의 화합물, 포름산암모늄 6eq, Pd/C 10%, MeOH 50v 투입하여 교반하여준다. TLC, HPLC를 사용하여 화학식 8의 화합물이 사라짐을 확인한 뒤 반응을 종결한다. 셀라이트 여과를 이용하여 Pd 촉매를 제거하고, 용매를 감압농축하고, EA를 투입 후 물로 세척하여 잔류 포름산암모늄(ammonium formate)를 제거하였다. 이로써 또 다른 라말린 전구체인 화학식 5의 화합물 8.18g(수율:90.05%)을 얻었다.The compound of formula 8, ammonium formate 6eq, Pd / C 10%, MeOH 50v was added to the reactor and stirred. The reaction is terminated after confirming the disappearance of the compound of formula 8 using TLC, HPLC. The Pd catalyst was removed using Celite filtration, the solvent was concentrated under reduced pressure, and EA was added thereto, followed by washing with water to remove residual ammonium formate. This gave 8.18 g (yield: 90.05%) of the compound of the formula (5) which is another ramine precursor.

그 다음, 화학식 5의 화합물, Pd/C 10%, MeOH 50v을 rt에서 투입 교반한다. H2를 반응기에 주입하여 10시간을 교반한다. 셀라이트 여과를 하여 촉매를 제거한다. 유기층을 농축하고 고체가 생성되면 농축을 멈추고, 미리 교반하여 준비된 EA에 농축된 메탄올 용액을 투입하여 고체를 석출시켜 흰색 고체의 라말린(화학식1)을 얻었다.(수율:92%) Then, the compound of formula 5, Pd / C 10%, MeOH 50v is stirred at rt. H 2 is injected into the reactor and stirred for 10 hours. Celite filtration removes the catalyst. The organic layer was concentrated and the concentration was stopped when the solid was produced, and the concentrated methanol solution was added to EA prepared by stirring beforehand to precipitate a solid to obtain a white solid ramine (Formula 1). (Yield: 92%)

1-3. 라말린의 HPLC, 1-3. HPLC of RAMALIN, 1One H-NMR 비교분석H-NMR Comparative Analysis

상기에서 얻어진 라말린(화학식1)은 HPLC 분석 결과 98 area% 이상의 순도를 보였으며, 1H-NMR 결과는 도 1에 나타냈으며, 비교를 위하여, 천연 지의류에서 추출된 라말린의 1H-NMR 분석 결과를 도 2에 표시하였다. The obtained RAMALIN (Formula 1) showed purity of 98 area% or more as a result of HPLC analysis, and 1 H-NMR results are shown in FIG. 1, and for comparison, 1 H-NMR of RAMALIN extracted from natural lichens for comparison. The analysis results are shown in FIG.

도 1 및 도 2에 나타난 바와 같이, 본 발명의 합성 라말린의 1H-NMR(D2O, 400MHz, δ/ppm)은 6.86-6.92(m, 4H), 3.81(t, 1H), 2.55(m, 2H), 2.21(m, 2H)이고, 천연물 라말린의 1H-NMR(D2O, 400MHz, δ/ppm)은 6.77-6.80(m, 4H), 3.73(t, 1H), 2.45(m, 2H), 2.11(m, 2H)이다. 이들 피크로부터 본 발명의 합성 라말린은 천연물의 라말린과 일치함을 알 수 있었다. 1 and 2, 1 H-NMR (D 2 O, 400 MHz, δ / ppm) of the synthetic ramine of the present invention was 6.86-6.92 (m, 4H), 3.81 (t, 1H), 2.55 (m, 2H), 2.21 (m, 2H), and 1 H-NMR (D 2 O, 400 MHz, δ / ppm) of the natural product ramalin is 6.77-6.80 (m, 4H), 3.73 (t, 1H), 2.45 (m, 2H), 2.11 (m, 2H). From these peaks, it was found that the synthetic RAMALINE of the present invention is consistent with natural RAMALIN.

본 발명은, 당업자에게 명료하게 이해시키기 위하여 설명 및 실시예로써 일부 상세히 기재되었지만, 수많은 그리고 다양한 변형이 본 개시내용의 정신의 이탈 없이 실시될 수 있다는 것이 당해 분야의 숙련가에 의해 이해될 것이다. 따라서, 본 명세서에서 개시된 형태가 단지 설명적이고 본 개시내용의 범위를 제한하도록 의도하지 않으며, 본 발명의 권리범위는 후술하는 청구범위에 의하여 정해져야 하며, 또한 본 발명의 진정한 범위 및 정신과 함께 하는 모든 변형 및 대안을 포함하도록 의도하는 것으로 명확히 이해되어야 한다.While the invention has been described in some detail by way of illustration and example for clarity to those skilled in the art, it will be understood by those skilled in the art that numerous and various modifications may be made without departing from the spirit of the disclosure. Accordingly, the forms disclosed herein are illustrative only and are not intended to limit the scope of the present disclosure, and the scope of the present invention should be defined by the following claims, and together with the true scope and spirit of the present invention. It should be clearly understood that it is intended to include variations and alternatives.

Claims (6)

하기 화학식 1의 라말린을 합성하는 방법으로서,
하기 화학식 2의 글루탐산 유도체와 하기 화학식 3의 하이드라진 염 화합물을 커플링 반응시켜 화학식 4의 라말린 전구체를 생성시키는 단계;
상기에서 생성된 화학식 4의 화합물에 탈알릴 반응을 수행하여 화학식 5의 글루탐산 유도체를 생성시키는 단계; 및
상기에서 생성된 화학식 5의 화합물에 수소화 반응을 수행하여 보호기를 제거하여 단계를 포함하면서,
상기 화학식 3의 하이드라진 염 화합물은 2-니트로페놀에서 하이드록시기를 알릴로 보호하고, 니트로기를 아민으로 환원시킨 후, 하이드록시가 보호된 하이드록시 아닐린의 산염을 아조화시킨 후 중아황산나트륨 (Sodium bisulfite)를 이용하여 환원시켜 제조된 것인, 방법:
Figure 112019033762252-pat00024
+
Figure 112019033762252-pat00025

Figure 112019033762252-pat00026
Figure 112019033762252-pat00027

Figure 112019033762252-pat00028

상기 화학식에서,
R1은 탄소 원자수가 1∼6개인 직쇄 또는 분지쇄의 알킬이고;
R2는 알릴이며;
X는 산(Acid)이다.
As a method of synthesizing ramalin of the formula (1),
Coupling a glutamic acid derivative of Formula 2 with a hydrazine salt compound of Formula 3 to produce a ramine precursor of Formula 4;
Generating a glutamic acid derivative of Formula 5 by performing a deallyl reaction on the compound of Formula 4; And
Performing a hydrogenation reaction on the compound of Chemical Formula 5 produced above to remove the protecting group,
The hydrazine salt compound of Formula 3 protects the hydroxy group with allyl in 2-nitrophenol, reduces the nitro group to amine, and azoizes the salt of hydroxy aniline, which is protected with hydroxy, and then sodium bisulfite. Prepared by reduction using:
Figure 112019033762252-pat00024
+
Figure 112019033762252-pat00025

Figure 112019033762252-pat00026
Figure 112019033762252-pat00027

Figure 112019033762252-pat00028

In the above formula,
R 1 is straight or branched chain alkyl of 1 to 6 carbon atoms;
R 2 is allyl;
X is acid.
삭제delete 제 1항에 있어서, 상기 화학식 2의 글루탐산 유도체는, 하기 화학식 6의 글루탐산 유도체를 하기의 알킬클로로포름에이트(R1-O-CO-Cl)과 반응시켜 제조된 것인, 방법:
Figure 112019086269690-pat00029
+
Figure 112019086269690-pat00033
Figure 112019086269690-pat00031
The method of claim 1, wherein the glutamic acid derivative of Formula 2 is prepared by reacting a glutamic acid derivative of Formula 6 with alkylchloroformate (R 1 -O-CO-Cl) below.
Figure 112019086269690-pat00029
+
Figure 112019086269690-pat00033
Figure 112019086269690-pat00031
제 1항 또는 제3항에 있어서, R1 은 에틸이고, X는 염산인, 방법.The method of claim 1 or 3, wherein R 1 is ethyl and X is hydrochloric acid. 제 1항 또는 제3항에 있어서, 상기 화학식 5의 글루탐산 유도체를 생성시키는 단계 및 상기 보호기를 제거하는 단계에서, 촉매로서, Pd 또는 Pd/C를 사용하는, 방법.The method according to claim 1 or 3, wherein in the step of producing the glutamic acid derivative of Formula 5 and the removing of the protecting group, Pd or Pd / C is used as a catalyst. 제 1항 또는 제3항에 있어서, 상기 화학식 4 화합물의 탈일릴화 반응으로 화학식 5 글루탐산 유도체를 얻는 과정에서 포름산암모늄 4~8당량 범위로 사용하는, 방법.
The method according to claim 1 or 3, wherein ammonium formate is used in the range of 4 to 8 equivalents in the course of obtaining the compound of formula (5) glutamic acid by deyllation of the compound of formula (4).
KR1020170144058A 2017-10-31 2017-10-31 Process for synthesizing ramalin not using Tin as a heavy metal KR102048869B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170144058A KR102048869B1 (en) 2017-10-31 2017-10-31 Process for synthesizing ramalin not using Tin as a heavy metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170144058A KR102048869B1 (en) 2017-10-31 2017-10-31 Process for synthesizing ramalin not using Tin as a heavy metal

Publications (2)

Publication Number Publication Date
KR20190049980A KR20190049980A (en) 2019-05-10
KR102048869B1 true KR102048869B1 (en) 2019-11-27

Family

ID=66580642

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170144058A KR102048869B1 (en) 2017-10-31 2017-10-31 Process for synthesizing ramalin not using Tin as a heavy metal

Country Status (1)

Country Link
KR (1) KR102048869B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111040014A (en) * 2019-12-27 2020-04-21 苏州络森生物科技有限公司 Preparation method of CHAPSO

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101182334B1 (en) * 2010-07-14 2012-09-20 한국해양연구원 Method of Synthesizing Ramalin
KR101371045B1 (en) * 2012-01-19 2014-03-14 한국해양과학기술원 Synthesis Method of Ramalin and Ramalin Analogues Using Glutamic Acid Derivative and Hydroxy Aniline or Hydroxy Aniline with Protected Hydroxy Group

Also Published As

Publication number Publication date
KR20190049980A (en) 2019-05-10

Similar Documents

Publication Publication Date Title
KR101832396B1 (en) Method for the synthesis of ergothioneine and the like
WO2009056791A1 (en) Processes for preparing pharmaceutical compounds
KR101182334B1 (en) Method of Synthesizing Ramalin
EP2816028B1 (en) Method for synthesizing ramalin by using a glutamic acid derivative and hydroxy aniline or hydroxy aniline having protected hydroxy group
EP0909754A1 (en) Process to make chiral compounds
JP5534460B2 (en) Process for producing optically active α-aminoacetals
KR102048869B1 (en) Process for synthesizing ramalin not using Tin as a heavy metal
US9771317B2 (en) Process for preparing lacosamide and related compounds
CN107629001B (en) Synthesis method of anticancer drug lenvatinib
KR102622104B1 (en) Preparation method of benzoic acid amide compounds
CZ290435B6 (en) Process for preparing alpha-amino acids
CA2511992A1 (en) Process for preparing benzhydrylthioacetamide
JP4097291B2 (en) Method for producing substituted valinamide derivative
CN110330422B (en) Preparation method of 2, 6-diethyl-4-methylphenylacetic acid
CN108727261B (en) Preparation method of nitro-substituted quinaldine
US6008412A (en) Process to make chiral compounds
RU2571417C2 (en) Method of producing n-substituted 2-amino-4-(hydroxymethylphosphenyl)-2-butenoic acid
CN108976140B (en) Preparation method and intermediate of 2-amino-6-ethylbenzoic acid
KR101085170B1 (en) Method of Preparing S-Rivastigmine
RU2741389C1 (en) Method for preparing intermediate compound for synthesis of medicinal agent
KR101699990B1 (en) Process for the production of a fatty acid/l-carnitine derivative
CN112679337A (en) Preparation method of (R) - (+) -2- (4-hydroxyphenoxy) propionic acid
JP2011515328A (en) Efficient method for producing atorvastatin
KR100902236B1 (en) Phenethyl benzoate derivatives and process for preparing the same
CN116969916A (en) Method for preparing 5-aminolevulinic acid hydrochloride

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant