KR102046378B1 - Manufacturing method of Pitch-based Activated Carbon / Tube Shaped Polypyrrole Composite Electrode Material for Supercapacitor - Google Patents

Manufacturing method of Pitch-based Activated Carbon / Tube Shaped Polypyrrole Composite Electrode Material for Supercapacitor Download PDF

Info

Publication number
KR102046378B1
KR102046378B1 KR1020170132479A KR20170132479A KR102046378B1 KR 102046378 B1 KR102046378 B1 KR 102046378B1 KR 1020170132479 A KR1020170132479 A KR 1020170132479A KR 20170132479 A KR20170132479 A KR 20170132479A KR 102046378 B1 KR102046378 B1 KR 102046378B1
Authority
KR
South Korea
Prior art keywords
activated carbon
polypyrrole
electrode material
mixture
synthesized
Prior art date
Application number
KR1020170132479A
Other languages
Korean (ko)
Other versions
KR20190041200A (en
Inventor
박수진
이지원
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020170132479A priority Critical patent/KR102046378B1/en
Publication of KR20190041200A publication Critical patent/KR20190041200A/en
Application granted granted Critical
Publication of KR102046378B1 publication Critical patent/KR102046378B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

본 발명은 친환경 저장 에너지에서 사용될 수 있는 전기화학적 성능을 향상시킨 활성탄/폴리필로 하이브리드 슈퍼커패시터용 전극소재 제조방법에 관한 것으로서, 피롤과 Methyl Orange(MO), Iron(Ⅲ) chloride hexahydrate(FeCl3·6H2O) 혼합하여 폴리피롤을 제조하는 단계, 활성탄과 Sodium dodecyl sulfate(SDS)을 혼합하여 혼합물을 제조하는 단계, 상기 폴리피롤과 혼합물을 합성하는 단계, 및 합성된 혼합물을 세척과 건조하는 단계를 포함한다.
상기와 같은 본 발명에 따르면, 고용량 및 우수한 방전 특성을 갖는 슈퍼커패시터 전극 소재를 제공함으로써 상기 전극을 포함하는 슈퍼커패시터 및 리튬 이차 전지는 우수한 정전 용량, 수명 특성 및 안정성을 구현할 수 있는 효과가 있다.
The present invention relates to that of activated carbon / poly Philo hybrid super capacitor electrode material manufacturing method for improving the electrochemical performance that can be used in the environmentally friendly energy saving, pyrrole and Methyl Orange (MO), Iron ( Ⅲ) chloride hexahydrate (FeCl 3 · 6H 2 O) mixing to prepare polypyrrole, mixing activated carbon and sodium dodecyl sulfate (SDS) to prepare a mixture, synthesizing the polypyrrole and the mixture, and washing and drying the synthesized mixture do.
According to the present invention as described above, by providing a supercapacitor electrode material having a high capacity and excellent discharge characteristics, the supercapacitor and the lithium secondary battery including the electrode have the effect of achieving excellent capacitance, lifespan characteristics and stability.

Description

슈퍼커패시터용 피치기반 활성탄/튜브형상 폴리피롤 복합 전극소재 제조방법 {Manufacturing method of Pitch-based Activated Carbon / Tube Shaped Polypyrrole Composite Electrode Material for Supercapacitor}Manufacturing method of pitch-based activated carbon / tube-shaped polypyrrole composite electrode material for supercapacitors {Manufacturing method of Pitch-based Activated Carbon / Tube Shaped Polypyrrole Composite Electrode Material for Supercapacitor}

본 발명은 슈퍼커패시터용 피치기반 활성탄/튜브형상 폴리피롤 복합 전극소재 제조방법에 관한 것으로서, 폴리피롤과 탄소소재 혼합물을 각각 제조 후 상기 두 물질을 합성하여 활성탄/튜브형상 복합 전극소재를 제작하는 방법에 관한 것이다.The present invention relates to a pitch-based activated carbon / tube-shaped polypyrrole composite electrode material manufacturing method for a supercapacitor, and to a method of manufacturing an activated carbon / tube-shaped composite electrode material by synthesizing the two materials after preparing a polypyrrole and carbon material mixture, respectively. will be.

최근 과학과 산업의 급속한 성장으로 연료수요를 충족시키고 온실 가스 배출량을 줄이기 위해 신재생 에너지 자원 개발이 주력하고 있다. 이러한 온실 가스 배출을 줄이기 위해 친환경 에너지, 하이브리드 전기 자동차의 에너지 저장장치 등 연구가 활발히 진행되고 있다. 최근 에너지 저장에 대한 관심이 증가하면서 우수한 친환경 에너지 저장장치인 슈퍼커패시터의 관심이 커지고 있다. The rapid growth of science and industry has led to the development of renewable energy resources to meet fuel demand and reduce greenhouse gas emissions. In order to reduce such greenhouse gas emissions, researches on environment-friendly energy and energy storage devices of hybrid electric vehicles are being actively conducted. Recently, as interest in energy storage has increased, the interest of supercapacitors, which are excellent eco-friendly energy storage devices, has increased.

본질적으로, 커패시터는 유지보수가 필요 없으며, 단순한 충전회로, 높은 전력밀도를 가지며 반영구적 수명, 우수한 충·방전을 지녔다. 또한 전극활물질~ 화학적인 반응이 일어나지 않아 안정성이 높으며 사이클 수명도 길며 이러한 특성을 지닌 친환경 에너지 저장장치이다. 이러한 이유로 슈퍼커패시터는 하이브리드 전지 자동차의 에너지 저장장치와 모바일 전자장치의 단기 공급 장치 이용이 늘고 있는 추세이다. In essence, the capacitor is maintenance-free, has a simple charging circuit, high power density, semi-permanent life and excellent charge and discharge. In addition, it is an eco-friendly energy storage device that has high stability, long cycle life, and has such characteristics as no electrode active material ~ chemical reaction occurs. For this reason, supercapacitors are increasingly using energy storage devices for hybrid battery cars and short-term supply devices for mobile electronic devices.

슈터커패시터는 의사 커패시터(pseudocapacitor)와 전기 이중충 커패시터(electrical doubel-layer capacitance, EDLC)로 구분된다. 의사 커패시터에서는 가역적 산화 환원 반응에 사용되는 전극 물질로 전도성 금속산화물 또는 전도성 고분자 물질 등을 사용하며, EDLC는 전극 물질로서 높은 표면적을 갖는 활성탄 등을 사용한다. 그러나 EDLC는 저비용 전극물질의 장점을 가지고 있으나, 낮은 에너지 밀도를 가지고 있다. 따라서 고효율의 에너지 저장을 위해 두 가지 유형의 전극을 이용한 하이브리드 슈퍼커패시터 연구가 활발히 이루어지고 있다. Shooter capacitors are classified into pseudocapacitors and electrical doubel-layer capacitances (EDLC). In the pseudo capacitor, a conductive metal oxide or a conductive polymer material is used as the electrode material used for the reversible redox reaction, and EDLC uses activated carbon having a high surface area as the electrode material. EDLC, however, has the advantage of low cost electrode material, but low energy density. Therefore, research on hybrid supercapacitors using two types of electrodes has been actively conducted for high efficiency energy storage.

대한민국 등록특허 제10-1447680호, 전극의 제조 방법, 상기 제조 방법에 따라 제조된 전극, 상기전극을 포함하는 슈퍼 커패시터 및 리튬 이차 전지.Republic of Korea Patent No. 10-1447680, a manufacturing method of the electrode, an electrode manufactured according to the manufacturing method, a super capacitor and a lithium secondary battery comprising the electrode.

본 발명의 목적은, 기존 슈퍼커패시터의 전기화학적 효율 향상을 위해, 기존의 폴리피롤 제조방법과는 차이가 있는 방법으로 폴리피롤을 제조하여, 더 높은 비표면적과 우수한 기공구조, 반복적인 충·방전 과정에서 안정적인 효율을 갖게 함으로써, 전기용량이 향상된 슈퍼커패시터용 피치기반 활성탄/튜브형상 폴리피롤 복합 전극소재 제조방법을 제공함에 있다.An object of the present invention, in order to improve the electrochemical efficiency of the existing supercapacitor, by producing a polypyrrole in a method different from the conventional polypyrrole manufacturing method, in the higher specific surface area and excellent pore structure, repeated charge and discharge process By having a stable efficiency, to provide a pitch-based activated carbon / tube-shaped polypyrrole composite electrode material manufacturing method for a supercapacitor with improved capacitance.

상기 목적을 달성하기 위하여, 본 발명의 실시예에서는 피롤과 Methyl Orange(MO), Iron(Ⅲ) chloride hexahydrate(FeCl3·6H2O) 혼합하여 폴리피롤을 제조하는 단계, 활성탄 및 Sodium dodecyl sulfate(SDS)을 포함하는 혼합물을 제조하는 단계, 상기 폴리피롤과 상기 혼합물을 합성하는 단계, 및 합성된 혼합물을 세척과 건조하는 단계를 제공한다. In order to achieve the above object, in the embodiment of the present invention to prepare a polypyrrole by mixing pyrrole and Methyl Orange (MO), Iron (III) chloride hexahydrate (FeCl 3 · 6H 2 O), activated carbon and sodium dodecyl sulfate (SDS Preparing a mixture, synthesizing the polypyrrole and the mixture, and washing and drying the synthesized mixture.

상기 폴리피롤 제조 단계는 피롤과 Methyl Orange(MO), 및 Iron(Ⅲ) chloride hexahydrate (FeCl3·6H2O) 혼합용액에서 수행한다.The polypyrrole production step is carried out in a mixed solution of pyrrole and Methyl Orange (MO), and Iron (III) chloride hexahydrate (FeCl 3 · 6H 2 O).

상기 피롤은 1 ~ 3 몰까지, 상기 Methyl Orange(MO)는 1 ~ 2 몰까지, 및 상기 Iron(Ⅲ) chloride hexahydrate (FeCl3·6H2O)는 1 ~ 3 몰까지의 비율 이다. The pyrrole is up to 1 to 3 moles, the Methyl Orange (MO) is up to 1 to 2 moles, and the iron (III) chloride hexahydrate (FeCl 3 · 6H 2 O) is up to 1 to 3 moles.

상기 활성탄 및 Sodium dodecyl sulfate (SDS)을 포함하는 혼합물은 활성탄은 1 몰 및 Sodium dodecyl sulfate (SDS)이 1 ~ 3 몰까지 비율로 제조한다. The mixture containing the activated carbon and sodium dodecyl sulfate (SDS) is prepared in a ratio of 1 mol of activated carbon and 1 to 3 mol of sodium dodecyl sulfate (SDS).

상기 혼합물과 상기 폴리피롤을 합성하는 단계는 1:0.5 ~ 1:2의 질량비로 합성한다. Synthesizing the mixture and the polypyrrole is synthesized in a mass ratio of 1: 0.5 to 1: 2.

상기 폴리피롤과 혼합물을 혼합하여 합성하는 단계의 합성 온도는 0℃ 에서 상온으로 수행된다. The synthesis temperature of the step of synthesizing the mixture with the polypyrrole is carried out at room temperature at 0 ℃.

상기 폴리피롤과 탄소소재 혼합물을 혼합하여 합성하는 단계의 합성시간은 6 시간 ~ 48 시간 동안 수행된다. The synthesis time of the step of synthesizing the polypyrrole and the carbon material mixture is carried out for 6 hours to 48 hours.

상기 합성된 혼합물을 세척과 건조하는 단계의 세척은 증류수와 에탄올을 번갈아가며 각각 5 ~ 15 회 수행된다. Washing and drying of the synthesized mixture are carried out 5 to 15 times each alternately with distilled water and ethanol.

상기 합성된 혼합물을 세척과 건조하는 단계의 건조는 6시간 ~ 48시간 수행된다.Drying of washing and drying the synthesized mixture is carried out for 6 hours to 48 hours.

상기와 같은 본 발명에 따르면, 고용량 및 우수한 방전 특성을 갖는 슈퍼커패시터 전극 소재를 제공함으로써, 본 발명의 전극 소재를 이용하여 제조된 전극을 포함하는 슈퍼커패시터 및 리튬 이차 전지는 우수한 정전 용량, 수명 특성 및 안정성을 구현할 수 있는 효과가 있다.According to the present invention as described above, by providing a supercapacitor electrode material having a high capacity and excellent discharge characteristics, a supercapacitor and a lithium secondary battery comprising an electrode manufactured using the electrode material of the present invention has excellent capacitance, life characteristics And there is an effect that can implement the stability.

도 1은 본 발명의 구현예에 따라 제조된 새로운 복합 전극소재 합성과정을 도시한 것이다.
도 2은 본 발명의 구현예에 따라 제조된 새로운 복합 전극소재의 SEM (Scanning Electron Microscope) 현미경 사진을 도시한 것이다.
도 3은 본 발명의 구현예에 따라 제조된 새로운 복합 전극소재의 TEM (Transmission Electron Microscope) 현미경 사진을 도시한 것이다.
도 4는 본 발명의 구현예에 따라 제조된 새로운 복합 전극소재의 Cyclic Voltammetry 곡선을 도시한 것이다.
Figure 1 illustrates a new composite electrode material synthesis process prepared in accordance with an embodiment of the present invention.
Figure 2 shows a SEM (Scanning Electron Microscope) micrograph of a new composite electrode material prepared according to an embodiment of the present invention.
Figure 3 shows a Transmission Electron Microscope (TEM) micrograph of a new composite electrode material prepared according to an embodiment of the present invention.
Figure 4 shows the Cyclic Voltammetry curve of the new composite electrode material prepared according to the embodiment of the present invention.

이하, 본 발명을 상세히 설명한다. Hereinafter, the present invention will be described in detail.

본 발명은 슈퍼커패시터 전기화학적 효율 향상을 목적으로 하는 혁신적인 전극소재를 개발하기 위해 우수한 전도성을 가지며 경제적이고 쉬운 합성과 높은 유연성을 지닌 전도성 고분자인 폴리피롤과 전극 물질로서 높은 표면적을 갖는 활성탄을 합성한 활성탄/폴리피롤 복합체 하이브리드 슈퍼커패시터용 복합 전극소재를 제조하여 높은 비표면적과 우수한 기공구조, 반복적인 충·방전 과정에서 안정적인 효율을 갖는 것을 특징으로 하는 전기용량이 향상된 슈퍼커패시터용 피치기반 활성탄/튜브형상 폴리피롤 전극소재 제조방법을 제공한다. The present invention is an activated carbon that synthesizes polypyrrole, which is a conductive polymer with excellent conductivity, and has high surface area as an electrode material. Pitch-based activated carbon / tube-shaped polypyrrole for increased capacitance, characterized in that the composite electrode material for the composite / polypyrrole composite hybrid supercapacitor has high specific surface area, excellent pore structure, and stable efficiency in repeated charging and discharging processes. It provides an electrode material manufacturing method.

본 발명에 슈퍼커패시터용 피치기반 폴리피롤 복합 전극소재를 제조하는 방법의 공정도를 도 1에 정리하였다. 1 is a flowchart illustrating a method of manufacturing a pitch-based polypyrrole composite electrode material for a supercapacitor according to the present invention.

도 1을 참조하여, 본 발명은 전기용량이 향상된 슈퍼커패시터용 피치기반 활성탄/튜브형상 폴리피롤 복합 전극소재를 제조하는 방법으로 1) 피롤과 Methyl Orange (MO), Iron(Ⅲ) chloride hexahydrate (FeCl3·6H2O) 혼합하여 폴리피롤을 합성하는 단계; 2) 활성탄 및 Sodium dodecyl sulfate(SDS)을 포함하는 혼합물을 제조하는 단계; 3)상기 폴리피롤과 상기 혼합물을 합성하는 단계; 및 4) 상기 합성된 혼합물의 세척과 건조하는 단계를 제공한다.Referring to Figure 1, the present invention is a method of manufacturing a pitch-based activated carbon / tube-shaped polypyrrole composite electrode material for a supercapacitor with improved capacitance 1) Pyrrole and Methyl Orange (MO), Iron (III) chloride hexahydrate (FeCl 3 6H 2 O) mixing to synthesize polypyrrole; 2) preparing a mixture comprising activated carbon and sodium dodecyl sulfate (SDS); 3) synthesizing the polypyrrole and the mixture; And 4) washing and drying the synthesized mixture.

본 발명에 있어서, 상기 1)단계에서 폴리피롤 제조는 피롤과 Methyl Orange(MO)와 Iron(Ⅲ) Chloride hexahadrate(FeCl3·6H2O) 혼합용액에서 수행할 수 있다. 피롤은 1 ~ 3몰, Methyl Orange(MO)은 1 ~ 3 몰까지 , Iron(Ⅲ) Chloride hexahadrate (FeCl3·6H2O)은 1 ~ 2 몰까지의 비율로 혼합하며, 보다 바람직하게는 피롤은 1몰, Methyl Orange(MO)은 1 ~ 3 몰까지, Iron(Ⅲ) Chloride hexahadrate (FeCl3·6H2O)은 1 ~ 2 몰까지의 비율이다. In the present invention, polypyrrole production in step 1) can be carried out in a mixed solution of pyrrole, Methyl Orange (MO) and Iron (III) Chloride hexahadrate (FeCl 3 · 6H 2 O). 1 to 3 moles of pyrrole, 1 to 3 moles of Methyl Orange (MO) and 1 to 2 moles of Iron (III) Chloride hexahadrate (FeCl 3 · 6H 2 O), more preferably pyrrole 1 mole of silver, 1 to 3 moles of Methyl Orange (MO) and 1 to 2 moles of Iron (III) Chloride hexahadrate (FeCl 3 · 6H 2 O).

상기 1)단계에서 폴리피롤 제조는 피롤과 Methyl Orange(MO)와 Iron(Ⅲ) Chloride hexahydrate (FeCl3·6H2O)을 넣어 폴리피롤을 제조하는 단계로서, 피롤과 Methyl Orange(MO)와 Iron(Ⅲ) Chloride hexahydrate(FeCl3·6H2O)를 함께 투입하여 증류수와 충분히 혼합하여 폴리피롤을 제조한다. In the step 1), polypyrrole is prepared by adding pyrrole, Methyl Orange (MO) and Iron (III) Chloride hexahydrate (FeCl 3 · 6H 2 O) to prepare polypyrrole, and pyrrole, Methyl Orange (MO) and Iron (III). ) Chloride hexahydrate (FeCl 3 · 6H 2 O) is added together and mixed with distilled water to prepare polypyrrole.

상기 1)단계에서 Methyl Orange(MO)는 광전변환과 전기전도성을 보다 높일 수 있으며, 튜브모양 폴리피롤 표면의 성장과 구조의 조립을 촉진 시켜준다.Methyl Orange (MO) in the step 1) can further increase the photoelectric conversion and electrical conductivity, and promotes the growth of the tube-shaped polypyrrole surface and assembly of the structure.

상기 1)단계에서 폴리피롤 제조는 피롤과 Methyl Orange(MO)와 Iron(Ⅲ) Chloride hexahydrate (FeCl3·6H2O)을 넣어 폴리피롤을 제조하는 단계로서 0℃~ 상온으로 6시간~ 48시간 동안 반응시켜 폴리피롤을 제조할 수 있다. In the step 1), polypyrrole is prepared by adding pyrrole, Methyl Orange (MO), and Iron (III) Chloride hexahydrate (FeCl 3 · 6H 2 O) to produce polypyrrole, and reacting for 6 hours to 48 hours at 0 ° C. to room temperature. Polypyrrole may be prepared.

상기 2)단계는 활성탄 및 Sodium dodecyl sulfate(SDS)를 포함하는 혼합물을 제조하는 단계로서, 상기 단계에서 증류수는 혼합용액으로 수행할 수 있다. 상기 활성탄은 1 ~ 3 몰까지, 상기 Sodium dodecyl sulfate(SDS)는 1 ~ 3몰까지 비율로 혼합될 수 있으며, 보다 바람직하게는 활성탄은 1 ~ 2 몰까지, Sodium dodecyl sulfate(SDS)은 1 ~ 3 몰까지 비율 일 수 있다. Step 2) is a step of preparing a mixture containing activated carbon and sodium dodecyl sulfate (SDS), in which distilled water may be performed as a mixed solution. The activated carbon may be mixed up to 1 to 3 moles, and the sodium dodecyl sulfate (SDS) may be mixed at a ratio of 1 to 3 moles, more preferably, the activated carbon is 1 to 2 moles, and the sodium dodecyl sulfate (SDS) is 1 to 3 moles. It can be up to 3 moles.

상기 2)단계에서 Sodium dodecyl sulfate (SDS)는 상기 혼합물과 상기 폴리피롤을 합성하는 단계에서 보다 더 균일하게 분산 및 혼합되기 위해 사용한다.Sodium dodecyl sulfate (SDS) in step 2) is used to be more uniformly dispersed and mixed than in the step of synthesizing the mixture and the polypyrrole.

상기 3)단계는 상기 혼합물과 상기 폴리피롤을 합성하는 단계로서, 활성탄과 폴리피롤은 1: 1 ~ 4의 질량비로 합성하며, 0 ℃ ~ 상온으로 6 시간~ 48시간까지 수행 할 수 있다. 보다 바람직하게는 0℃ ~ 상온으로 12 시간~ 24시간 동안 수행할 수 있다. Step 3) is a step of synthesizing the mixture and the polypyrrole, activated carbon and polypyrrole are synthesized in a mass ratio of 1: 1 to 4, it can be carried out from 0 ℃ to room temperature for 6 hours to 48 hours. More preferably, it can be carried out for 12 hours to 24 hours at 0 ℃ ~ room temperature.

상기 4)단계는 상기 합성된 혼합물을 세척 및 건조하는 단계로서, 활성탄/폴리피롤 혼합물의 세척은 아스피레이터를 이용하여 증류수와 에탄올 번갈아 가면서 아스피레이터를 통해 수행되며 각각 5 ~ 15회 세척하는 것이 바람직하다.Step 4) is a step of washing and drying the synthesized mixture, washing of the activated carbon / polypyrrole mixture is carried out through an aspirator alternately with distilled water and ethanol using an aspirator, each of which is washed 5 to 15 times. desirable.

상기 4)단계는 상기 합성된 혼합물을 세척 및 건조하는 단계로서, 활성탄/폴리피롤 혼합물의 건조는 세척된 상기 활성탄/폴리피롤 혼합물을 진공오븐에서 80 ℃로 수행한다. Step 4) is a step of washing and drying the synthesized mixture, and drying of the activated carbon / polypyrrole mixture is performed by washing the activated carbon / polypyrrole mixture at 80 ° C. in a vacuum oven.

상기 4)단계는 상기 합성된 혼합물을 세척 및 건조하는 단계로서, 활성탄/폴리피롤 혼합물의 건조는 세척된 상기 활성탄/폴리피롤 혼합물을 6 시간~ 48 시간 동안 진공건조를 수행하여 전기용량이 향상된 슈퍼커패시터용 피치기반 활성탄/튜브형상 폴리피롤 복합 전극소재를 제조할 수 있다.Step 4) is a step of washing and drying the synthesized mixture, drying of the activated carbon / polypyrrole mixture is performed for 6 hours to 48 hours by vacuum drying the activated carbon / polypyrrole mixture for the supercapacitor having improved electric capacity Pitch-based activated carbon / tube-shaped polypyrrole composite electrode material can be prepared.

이하, 측정예와 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to measurement examples and examples. These examples are only for illustrating the present invention, it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as being limited by these examples.

실시예 1. Example 1.

Methyl Orange (MO), Iron(Ⅲ) Chloride hexahydrate (FeCl3·6H2O)와 피롤의 합성 비 1:2:2 몰 비율로 100ml 증류수와 5분 반응 한다. Sodium dodecyl sulfate(SDS)와 활성탄 1:2 몰 비율로 5분 반응시킨다. 상기 각각의 혼합용액을 활성탄과 폴리피롤의 질량비 1:0.5 비율로 혼합하여 얼음 중탕하여 0℃~ 6시간 동안 합성한다. 이후 상기 합성된 용액을 아스피레이터를 이용하여 에탄올과 증류수 번갈아 가면서 세척 후 80 ℃ 진공오븐에서 6시간 건조시켜 전기용량이 향상된 슈퍼커패시터용 피치기반 활성탄/튜브형상 폴리피롤 복합 전극소재를 제조한다. Methyl Orange (MO), Iron (III) Chloride hexahydrate (FeCl 3 · 6H 2 O) and pyrrole are reacted for 5 minutes with 100 ml of distilled water at 1: 2: 2 molar ratio. React with sodium dodecyl sulfate (SDS) for 5 minutes at 1: 2 molar ratio. Each of the mixed solution is mixed in a ratio of 1: 0.5 by weight ratio of activated carbon and polypyrrole, and ice-cold to synthesize for 0 to 6 hours. Then, the synthesized solution was washed alternately with ethanol and distilled water using an aspirator, followed by drying in a vacuum oven at 80 ° C. for 6 hours to prepare a pitch-based activated carbon / tube-shaped polypyrrole composite electrode material for improved electric capacity.

실시예 2.Example 2.

Methyl Orange(MO), Iron(Ⅲ) Chloride hexahydrate (FeCl3·6H2O)과 피롤의 몰 비율을 유지하며 100 ml 증류수에 10 분 합성한다. Sodium dodecyl sulfate(SDS)와 활성탄 1:2 몰 비율로 10 분 합성한다. 상기 각각의 혼합용액을 활성탄과 폴리피롤의 질량비 1:0.5로 하며 합성온도는 얼음 중탕하여 0 ℃~ 9 시간 반응 합성한다. 이후 상기 합성된 용액을 아스피레이터를 이용하여 에탄올과 증류수 번갈아 가면서 세척 후 80 ℃ 진공오븐에서 9 시간 건조하여 전기용량이 향상된 슈퍼커패시터용 피치기반 활성탄/튜브형상 폴리피롤 복합 전극소재를 제조한다. Maintain the molar ratio of Methyl Orange (MO), Iron (III) Chloride hexahydrate (FeCl 3 · 6H 2 O) and pyrrole and synthesize for 10 minutes in 100 ml distilled water. Sodium dodecyl sulfate (SDS) and activated carbon 1: 2 molar ratio is synthesized for 10 minutes. Each of the mixed solution is a mass ratio of activated carbon and polypyrrole 1: 0.5 and the synthesis temperature is 0 ℃ ~ 9 hours by synthesizing ice bath. Then, the synthesized solution was washed with alternating ethanol and distilled water using an aspirator, followed by drying for 9 hours at 80 ° C. in a vacuum oven to prepare a pitch-based activated carbon / tube-shaped polypyrrole composite electrode material for improved electric capacity.

실시예 3. Example 3.

Methyl Orange (MO), Iron(Ⅲ) Chloride hexahydrate (FeCl3·6H2O)과 피롤의 합성비 2:1:2 몰 비율로 100 ml 증류수와 10 분 합성하며, Sodium dodecyl sulfate(SDS)와 활성탄을 2:3 몰 비율로 10 분 합성한다. 상기 각각의 혼합용액을 활성탄과 폴리피롤의 질량비는 1:1로 합성하며 합성온도는 5 ℃, 합성시간은 9 시간 합성한다. 이후 상기 합성된 용액을 아스피레이터를 이용하여 에탄올과 증류수 번갈아 가면서 세척 후 80 ℃ 진공오븐에서 9시간 건조하여 전기 용량이 향상된 슈퍼커패시터용 피치기반 활성탄/튜브형상 폴리피롤 복합 전극소재를 제조한다. Synthesis of Methyl Orange (MO), Iron (III) Chloride hexahydrate (FeCl 3 · 6H 2 O) and pyrrole at a ratio of 2: 1: 2 molar with 100 ml of distilled water for 10 minutes, sodium dodecyl sulfate (SDS) and activated carbon Synthesize 10 minutes in a 2: 3 molar ratio. Each mixed solution is synthesized with a mass ratio of activated carbon and polypyrrole of 1: 1, a synthesis temperature of 5 ° C., and a synthesis time of 9 hours. Thereafter, the synthesized solution was washed with alternating ethanol and distilled water using an aspirator, followed by drying for 9 hours at 80 ° C. in a vacuum oven to prepare a pitch-based activated carbon / tube-shaped polypyrrole composite electrode material for improved electric capacity.

실시예 4. Example 4.

Methyl Orange (MO), Iron(Ⅲ) Chloride hexahydrate (FeCl3·6H2O)과 피롤의 합성비 2:1:2 몰 비율로 100ml 증류수와 20분 합성하며, Sodium dodecyl sulfate(SDS)와 활성탄을 2:3 몰 비율로 20분 합성한다. 상기 각각의 혼합용액을 활성탄과 폴리피롤의 질량비는 1:1로 합성하며 합성온도는 5℃로 하고, 합성시간은 12시간 합성한다. 이후 상기 합성된 용액을 아스피레이터를 이용하여 에탄올과 증류수 번갈아 가면서 세척 후 80 ℃ 진공오븐에서 12시간 건조하여 전기 용량이 향상된 슈퍼커패시터용 피치기반 활성탄/튜브형상 폴리피롤 복합 전극소재를 제조한다. Synthesis of Methyl Orange (MO), Iron (III) Chloride hexahydrate (FeCl 3 · 6H 2 O) and pyrrole at 2: 1: 2 molar ratio with 100 ml of distilled water for 20 minutes. Sodium dodecyl sulfate (SDS) and activated carbon 20 minutes are synthesize | combined in a 2: 3 molar ratio. Each mixed solution is synthesized with a mass ratio of activated carbon and polypyrrole at 1: 1, a synthesis temperature of 5 ° C., and a synthesis time of 12 hours. Thereafter, the synthesized solution was washed alternately with ethanol and distilled water using an aspirator, followed by drying for 12 hours at 80 ° C. in a vacuum oven to prepare a pitch-based activated carbon / tube-shaped polypyrrole composite electrode material for improved electric capacity.

실시예 5. Example 5.

Methyl Orange (MO), Iron(Ⅲ) Chloride hexahydrate (FeCl3·6H2O)과 피롤의 합성비 1:1:1 몰 비율로 100 ml 증류수와 20 분 합성하며, Sodium dodecyl sulfate(SDS)와 활성탄을 1:1 몰 비율로 20 분 합성한다. 상기 각각의 혼합용액을 활성탄과 폴리피롤의 질량비는 1:1로 합성하며 합성온도는 10 ℃로 하고, 합성시간은 12 시간 합성한다. 이후 상기 합성된 용액을 아스피레이터를 이용하여 에탄올과 증류수 번갈아 가면서 세척 후 80 ℃ 진공오븐에서 24 시간 건조하여 전기 용량이 향상된 슈퍼커패시터용 피치기반 활성탄/튜브형상 폴리피롤 복합 전극소재를 제조한다. Synthesis of Methyl Orange (MO), Iron (III) Chloride hexahydrate (FeCl 3 · 6H 2 O) and pyrrole in 100: 1 distilled water for 20 minutes at 1: 1: 1 molar ratio, Sodium dodecyl sulfate (SDS) and activated carbon Is synthesized 20 min in a 1: 1 molar ratio. Each mixed solution is synthesized with a mass ratio of activated carbon and polypyrrole at 1: 1, a synthesis temperature of 10 ° C., and a synthesis time of 12 hours. Thereafter, the synthesized solution was washed alternately with ethanol and distilled water using an aspirator, and then dried at 80 ° C. in a vacuum oven for 24 hours to prepare a pitch-based activated carbon / tube-shaped polypyrrole composite electrode material for improved electric capacity.

실시예 6. Example 6.

Methyl Orange (MO), Iron(Ⅲ) Chloride hexahydrate (FeCl3·6H2O)과 피롤의 합성비 1:1:1 몰 비율로 100 ml 증류수와 30 분 합성하며, Sodium dodecyl sulfate(SDS)와 활성탄을 1:1 몰 비율로 30 분 합성한다. 상기 각각의 혼합용액을 활성탄과 폴리피롤의 질량비는 1:1.5로 합성하며 합성온도는 10 ℃로 하고, 합성시간은 24 시간 합성한다. 이후 상기 합성된 용액을 아스피레이터를 이용하여 에탄올과 증류수 번갈아 가면서 세척 후 80 ℃ 진공오븐에서 24 시간 건조하여 전기 용량이 향상된 슈퍼커패시터용 피치기반 활성탄/튜브형상 폴리피롤 복합 전극소재를 제조한다. Synthesis ratio of Methyl Orange (MO), Iron (III) Chloride hexahydrate (FeCl 3 · 6H 2 O) and pyrrole is synthesized for 30 minutes with 100 ml distilled water at 1: 1: 1 molar ratio, sodium dodecyl sulfate (SDS) and activated carbon Is synthesized for 30 minutes in a 1: 1 molar ratio. Each mixed solution was synthesized with a mass ratio of activated carbon and polypyrrole of 1: 1.5, a synthesis temperature of 10 ° C., and a synthesis time of 24 hours. Thereafter, the synthesized solution was washed alternately with ethanol and distilled water using an aspirator, followed by drying for 24 hours in a vacuum oven at 80 ° C. to prepare a pitch-based activated carbon / tube-shaped polypyrrole composite electrode material for improved electric capacity.

실시예 7. Example 7.

Methyl Orange (MO), Iron(Ⅲ) Chloride hexahydrate (FeCl3·6H2O)과 피롤의 합성비 3:2:1 몰 비율로 100 ml 증류수와 30 분 합성하며, Sodium dodecyl sulfate(SDS)와 활성탄을 2:1 몰 비율로 30 분 합성한다. 상기 각각의 혼합용액을 활성탄과 폴리피롤의 질량비는 1:1.5로 합성하며 합성온도는 10 ℃로 하고, 합성시간은 36 시간 합성한다. 이후 상기 합성된 용액을 아스피레이터를 이용하여 에탄올과 증류수 번갈아 가면서 세척 후 80 ℃ 진공오븐에서 36 시간 건조하여 전기 용량이 향상된 슈퍼커패시터용 피치기반 활성탄/튜브형상 폴리피롤 복합 전극소재를 제조한다. Synthesis of Methyl Orange (MO), Iron (III) Chloride hexahydrate (FeCl 3 · 6H 2 O) and pyrrole at 3: 2: 1 molar ratio with 100 ml distilled water for 30 minutes, sodium dodecyl sulfate (SDS) and activated carbon Synthesize 30 min in a 2: 1 molar ratio. Each mixed solution was synthesized with a mass ratio of activated carbon and polypyrrole of 1: 1.5, a synthesis temperature of 10 ° C., and a synthesis time of 36 hours. Thereafter, the synthesized solution was washed alternately with ethanol and distilled water using an aspirator, followed by drying for 36 hours at 80 ° C. in a vacuum oven to prepare a pitch-based activated carbon / tube-shaped polypyrrole composite electrode material for improved electric capacity.

실시예 8. Example 8.

Methyl Orange (MO), Iron(Ⅲ) Chloride hexahydrate (FeCl3·6H2O)과 피롤의 합성비 3:2:1 몰 비율로 100 ml 증류수와 40 분 합성하며, Sodium dodecyl sulfate(SDS)와 활성탄을 2:1 몰 비율로 60 분 합성한다. 상기 각각의 혼합용액을 활성탄과 폴리피롤의 질량비는 1:2로 합성하며 합성온도는 20 ℃로 하고, 합성시간은 36 시간 합성한다. 이후 상기 합성된 용액을 아스피레이터를 이용하여 에탄올과 증류수 번갈아 가면서 세척 후 80 ℃ 진공오븐에서 36 시간 건조하여 전기 용량이 향상된 슈퍼커패시터용 피치기반 활성탄/튜브형상 폴리피롤 복합 전극소재를 제조한다. Synthesis of Methyl Orange (MO), Iron (III) Chloride hexahydrate (FeCl 3 · 6H 2 O) and pyrrole at 3: 2: 1 molar ratio with 100 ml of distilled water for 40 minutes, sodium dodecyl sulfate (SDS) and activated carbon Synthesize 60 minutes in a 2: 1 molar ratio. Each mixed solution is synthesized with a mass ratio of activated carbon and polypyrrole of 1: 2, a synthesis temperature of 20 ° C., and a synthesis time of 36 hours. Thereafter, the synthesized solution was washed alternately with ethanol and distilled water using an aspirator, and then dried for 36 hours at 80 ° C. in a vacuum oven to prepare a pitch-based activated carbon / tube-shaped polypyrrole composite electrode material for improved electric capacity.

실시예 9. Example 9.

Methyl Orange (MO), Iron(Ⅲ) Chloride hexahydrate (FeCl3·6H2O)과 피롤의 합성비 3:2:3 몰 비율로 100 ml 증류수와 40 분 합성하며, Sodium dodecyl sulfate(SDS)와 활성탄을 3:1 몰 비율로 60 분 합성한다. 상기 각각의 혼합용액을 활성탄과 폴리피롤의 질량비는 1:2로 합성하며 합성온도는 20 ℃로 하고, 합성시간은 48 시간 합성한다. 이후 상기 합성된 용액을 아스피레이터를 이용하여 에탄올과 증류수 번갈아 가면서 세척 후 80 ℃ 진공오븐에서 48 시간 건조하여 전기 용량이 향상된 슈퍼커패시터용 피치기반 활성탄/튜브형상 폴리피롤 복합 전극소재를 제조한다. Synthesis of Methyl Orange (MO), Iron (III) Chloride hexahydrate (FeCl 3 · 6H 2 O) and pyrrole at 3: 2: 3 molar ratio with 100 ml of distilled water for 40 minutes, sodium dodecyl sulfate (SDS) and activated carbon Synthesize 60 minutes at a 3: 1 molar ratio. Each mixed solution was synthesized with a mass ratio of activated carbon and polypyrrole of 1: 2, a synthesis temperature of 20 ° C., and a synthesis time of 48 hours. Thereafter, the synthesized solution was washed alternately with ethanol and distilled water using an aspirator, and then dried at 80 ° C. in a vacuum oven for 48 hours to prepare a pitch-based activated carbon / tube-shaped polypyrrole composite electrode material for improved electric capacity.

비교예 1. Comparative Example 1.

상기 실시예 6과 동일한 과정을 실시하되 Sodium dodecyl sulfate(SDS)와 활성탄을 넣지 않고 합성하여 제조한다. Perform the same process as in Example 6 It is prepared by synthesis without sodium dodecyl sulfate (SDS) and activated carbon.

비교예 2. Comparative Example 2.

상기 실시예 6과 동일한 과정을 실시하되 Methyl Orange (MO), Iron(Ⅲ) Chloride hexahydrate (FeCl3·6H2O)과 피롤을 넣지 않고 합성하여 제조한다.Perform the same process as in Example 6 Methyl Orange (MO), Iron (III) Chloride hexahydrate (FeCl 3 · 6H 2 O) and pyrrole are prepared without synthesis.

실시예 1~ 실시예 9, 비교예 1과 비교예 2 에 따른 슈퍼커패시터용 피치기반 활성탄/튜브형상 폴리피롤 복합 전극소재의 제조조건을 하기 표 1에 정리하였다.Table 1 shows the manufacturing conditions of the pitch-based activated carbon / tube-shaped polypyrrole composite electrode material for the supercapacitors according to Examples 1 to 9 and Comparative Example 1 and Comparative Example 2.

샘플명Sample name MO/

Figure 112017100248399-pat00001
/피롤 비율

(m:m)MO /
Figure 112017100248399-pat00001
/ Pyrrole ratio

(m: m) MO/
Figure 112017100248399-pat00002
/피롤
합성시간
(min)
MO /
Figure 112017100248399-pat00002
/ Pyrrole
Synthesis time
(min)
SDS:활성탄 비율

(m:m)
SDS: Activated Carbon Ratio

(m: m)
SDS:활성탄 합성시간
(min)
SDS: Activated Carbon Synthesis Time
(min)
활성탄/피롤
(weigh : weigh)
Activated carbon / pyrrole
(weigh: weigh)
①+②
혼합용액
합성시간
(h)
① + ②
Mixed solution
Synthesis time
(h)
합성반응
온도
(℃)
Synthetic reaction
Temperature
(℃)
건조시간
(h)
Drying time
(h)
실시예 1Example 1 1:2:21: 2: 2 55 1:21: 2 55 1:0.51: 0.5 66 00 66 실시예 2Example 2 1:2:21: 2: 2 1010 1:21: 2 1010 1:0.51: 0.5 99 00 99 실시예 3Example 3 2:1:22: 1: 2 1010 2:32: 3 1010 1:11: 1 99 55 99 실시예 4Example 4 2:1:22: 1: 2 2020 2:32: 3 2020 1:11: 1 1212 55 1212 실시예 5Example 5 1:1:11: 1: 1 2020 1:11: 1 2020 1:11: 1 1212 1010 2424 실시예 6Example 6 1:1:11: 1: 1 3030 1:11: 1 3030 1:1.51: 1.5 2424 1010 2424 실시예 7Example 7 3:2:13: 2: 1 3030 2:12: 1 3030 1:1.51: 1.5 3636 1010 3636 실시예 8Example 8 3:2:13: 2: 1 4040 2:12: 1 6060 1:21: 2 3636 2020 3636 실시예 9Example 9 3:2:33: 2: 3 4040 3:13: 1 6060 1:21: 2 4848 2020 4848 비교예 1Comparative Example 1 1:1:11: 1: 1 3030 -- -- -- 2424 1010 2424 비교예 2Comparative Example 2 -- -- 1:11: 1 3030 -- 2424 1010 2424

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

측정예 1. 본 발명에서 제조한 하이브리드 슈퍼커패시터용 활성탄/폴리피롤 복합체의 형태 및 표면구조 관찰Measurement Example 1 Observation of Form and Surface Structure of Activated Carbon / Polypyrrole Composite for Hybrid Supercapacitors Prepared in the Present Invention

Scanning Electron Microscopy (SU8010, Hitach Co., LTD)를 통해, 강기 실시예 9에서 제조한 활성탄/폴리피롤 복합체 형태 및 표면구조를 관찰하였으며, 관찰결과를 도 2에 도시하였다.Through Scanning Electron Microscopy (SU8010, Hitach Co., LTD), the shape and surface structure of the activated carbon / polypyrrole composite prepared in Example 9 was observed, and the results are shown in FIG. 2.

도 2을 참조하면, 폴리피롤과 활성탄이 합성된 모습을 확인 할 수 있다. Referring to FIG. 2, it can be seen that polypyrrole and activated carbon are synthesized.

측정예 2. 본 발명에서 제조한 하이브리드 슈퍼커패시터용 활성탄/폴리피롤 복합체의 형태 및 표면구조 관찰 Measurement Example 2 Observation of Form and Surface Structure of Activated Carbon / Polypyrrole Composite for Hybrid Supercapacitors Prepared in the Present Invention

Transmission Electron Microscope (TEM-2100F, JEOL Co., USA)를 통해 실시예 9에서 제조한 활성탄/폴리피롤 복합체 형태 및 표면구조 관찰하였으며, 관찰결과를 도 3에 도시하였다.The activated carbon / polypyrrole complexes prepared in Example 9 were observed through Transmission Electron Microscope (TEM-2100F, JEOL Co., USA), and the observation results are shown in FIG. 3.

도 3을 참조하면, 폴리피롤과 활성탄이 합성된 모습이며, 특히 원안에 있는 폴리피롤의 모양이 튜브 모양임을 확인 할 수 있다. Referring to FIG. 3, polypyrrole and activated carbon may be synthesized, and in particular, the shape of the polypyrrole in a circle may be confirmed as a tube shape.

측정예 3. 본 발명에서 제조한 하이브리드 슈퍼커패시터용 활성탄/폴리피롤 복합체의 전극제조 및 충·방전 실험 Measurement Example 3 Electrode Preparation and Charge / Discharge Experiment of Activated Carbon / Polypyrrole Composite for Hybrid Supercapacitors Prepared in the Present Invention

상기 실시예 9에서 제조한 전기화학적 성능이 향상된 하이브리드 슈퍼커패시터용 활성탄/폴리피롤 복합체를 전극물질로 하여 전극을 제조 및 충·방전 실험을 진행하였다. An electrode was manufactured and charged / discharged experiments were performed using the activated carbon / polypyrrole composite for hybrid supercapacitors prepared in Example 9 as an electrode material.

구체적으로 1㎝ 니켈 폼 규격화 하여, 약 1㎝ 정도의 제조된 활성탄/폴리피롤 복합체를 적셔 제조한 전극을 작업전극으로 사용하며, Ag/AgCl 기준 전극사용하며 상대전극으로는 Pt전극을 사용하였다. 1M Na2SO4 전해질을 제조하여 상온조건에서 충·방전 실험을 측정하였다. 전압구간으로는 -0.2V~ 0.8V에서 측정하였으며, 전류밀도 1A/g 기준화하여 실험을 진행하였다. 실시예 1~ 실시예 9, 비교예 1과 비교예 2 에 따른 슈퍼커패시터용 피치기반 활성탄/튜브형상 폴리피롤 복합 전극소재의 비축전용량 측정결과를 하기 표 2에 정리 하였다. Specifically, a standardized 1 cm nickel foam, wet the activated carbon / polypyrrole composite of about 1 cm prepared using an electrode as a working electrode, Ag / Agg reference electrode was used as a counter electrode Pt electrode was used. 1M Na 2 SO 4 electrolyte was prepared and the charge and discharge experiments were measured at room temperature. The voltage range was measured from -0.2V to 0.8V, and the experiment was conducted with 1A / g current density as standard. Specific capacitance measurements of the pitch-based activated carbon / tube-shaped polypyrrole composite electrode material for supercapacitors according to Examples 1 to 9 and Comparative Example 1 and Comparative Example 2 are summarized in Table 2 below.

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

비축전용량(F/g)Reserve Capacity (F / g) 실시예 1Example 1 3838 실시예 2Example 2 4242 실시예 3Example 3 6767 실시예 4Example 4 7373 실시예 5Example 5 8080 실시예 6Example 6 9898 실시예 7Example 7 7878 실시예 8Example 8 7171 실시예 9Example 9 6060 비교예 1Comparative Example 1 5555 비교예 2Comparative Example 2 4141

삭제delete

이상, 본 발명내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의해 정의된다고 할 것이다.As mentioned above, specific portions of the present disclosure have been described in detail, and it is apparent to those skilled in the art that such specific techniques are merely preferred embodiments, and thus the scope of the present disclosure is not limited thereto. something to do. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (7)

1) 폴리피롤을 제조하는 단계;
2) 활성탄 및 Sodium dodecyl Sulfate (SDS)을 포함하는 혼합물을 제조하는 단계;
3) 상기 혼합물과 상기 폴리피롤을 1:0.5~ 2 질량비로 합성하여 합성물을 제조하는 단계; 및
4) 상기 합성된 합성물을 건조하는 단계를 포함하고,
상기 1)단계의 폴리피롤은 피롤, Methyl Orange(MO), 및 Iron(Ⅲ) chloride hexahydrate (FeCl3·6H2O)를 혼합하여 제조하고,
상기 피롤은 1 ~ 3 몰(mole), 상기 Methyl Orange (MO)은 1 ~ 2몰(mole), 상기 Iron(Ⅲ) chroride hexahydrate (FeCl3·6H2O)는 1 ~ 3 몰(mole)의 비율로 제조하고,
상기 2)단계의 혼합물은 상기 활성탄이 1 ~ 3 몰(mole)이고, 상기 Sodium dodecyl sulfate (SDS)가 1 ~ 3 몰(mole)의 비율로 제조하고,
상기 3)단계는 6 시간 ~ 48 시간 합성하고,
상기 3)단계는 0℃ ~ 20℃에서 합성하고,
상기 3)단계 폴리피롤의 형상은 튜브 형상인 것을 특징으로 하는 슈퍼커패시터용 피치기반 복합 전극소재 제조 방법.
1) preparing a polypyrrole;
2) preparing a mixture comprising activated carbon and Sodium dodecyl Sulfate (SDS);
3) preparing a compound by synthesizing the mixture and the polypyrrole in a ratio of 1: 0.5 to 2 by mass; And
4) drying the synthesized composite,
The polypyrrole of step 1) is prepared by mixing pyrrole, Methyl Orange (MO), and Iron (III) chloride hexahydrate (FeCl 3 · 6H 2 O),
The pyrrole is 1 to 3 mol (mole), the Methyl Orange (MO) is 1 to 2 mol (mole), the Iron (III) chroride hexahydrate (FeCl 3 · 6H 2 O) is 1 to 3 mol (mole) Manufactured in proportions,
In the mixture of step 2), the activated carbon is 1 to 3 mol (mole), the sodium dodecyl sulfate (SDS) is prepared in the ratio of 1 to 3 mol (mole),
Step 3) synthesized from 6 hours to 48 hours,
Step 3) is synthesized at 0 ℃ ~ 20 ℃,
The 3) step polypyrrole is a pitch-based composite electrode material manufacturing method for a supercapacitor, characterized in that the tube shape.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020170132479A 2017-10-12 2017-10-12 Manufacturing method of Pitch-based Activated Carbon / Tube Shaped Polypyrrole Composite Electrode Material for Supercapacitor KR102046378B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170132479A KR102046378B1 (en) 2017-10-12 2017-10-12 Manufacturing method of Pitch-based Activated Carbon / Tube Shaped Polypyrrole Composite Electrode Material for Supercapacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170132479A KR102046378B1 (en) 2017-10-12 2017-10-12 Manufacturing method of Pitch-based Activated Carbon / Tube Shaped Polypyrrole Composite Electrode Material for Supercapacitor

Publications (2)

Publication Number Publication Date
KR20190041200A KR20190041200A (en) 2019-04-22
KR102046378B1 true KR102046378B1 (en) 2019-11-19

Family

ID=66283083

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170132479A KR102046378B1 (en) 2017-10-12 2017-10-12 Manufacturing method of Pitch-based Activated Carbon / Tube Shaped Polypyrrole Composite Electrode Material for Supercapacitor

Country Status (1)

Country Link
KR (1) KR102046378B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111254282B (en) * 2020-02-05 2021-11-09 东华理工大学 Preparation method of polypyrrole/phosphorus-doped graphitized carbon composite conductive membrane electrode
CN112349520A (en) * 2020-11-12 2021-02-09 贵州大学 Preparation and application of polypyrrole and six-membered cucurbituril self-assembled supercapacitor material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100434827B1 (en) * 2001-12-31 2004-06-07 (주)폴리메리츠 Composite Electrode for Supercapacitor with Polypyrrole and Method of Fabrication the Same
KR101447680B1 (en) 2013-03-08 2014-10-08 한국과학기술연구원 Method for manufacturing electrode, electrode manufactured according to the method, supercapacitor including the electrode, and rechargable lithium battery including the electrode

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
S. Khamlich et al., ‘Polypyrrole/graphene nanocomposite: High conductivity and low percolation threshold’, Synthetic Metals, 198(2014) 101-106 (2014.10.14.) 1부.*
S. Shang et al., ‘Easy synthesis of carbon nanotubes with polypyrrole nanotubes as the carbon precursor’, Polymer, 50(2009) 2815-2818 (2009.05.04.) 1부.*

Also Published As

Publication number Publication date
KR20190041200A (en) 2019-04-22

Similar Documents

Publication Publication Date Title
Cheng et al. Ultrathin Ni-MOF nanosheet arrays grown on polyaniline decorated Ni foam as an advanced electrode for asymmetric supercapacitors with high energy density
Sundriyal et al. Metal-organic frameworks and their composites as efficient electrodes for supercapacitor applications
Zhang et al. Constructing ultra-thin Ni-MOF@ NiS2 nanosheets arrays derived from metal organic frameworks for advanced all-solid-state asymmetric supercapacitor
Wu et al. Ultrathin porous NiO nanoflake arrays on nickel foam as an advanced electrode for high performance asymmetric supercapacitors
Zhang et al. Facile synthesis of hierarchical CoMoO 4@ NiMoO 4 core–shell nanosheet arrays on nickel foam as an advanced electrode for asymmetric supercapacitors
Liu et al. Extraordinary rate capability achieved by a 3D “skeleton/skin” carbon aerogel–polyaniline hybrid with vertically aligned pores
Niu et al. Hierarchical core–shell heterostructure of porous carbon nanofiber@ ZnCo 2 O 4 nanoneedle arrays: advanced binder-free electrodes for all-solid-state supercapacitors
Cao et al. Core–shell structural PANI-derived carbon@ Co–Ni LDH electrode for high-performance asymmetric supercapacitors
Hou et al. Nanoporous metal based flexible asymmetric pseudocapacitors
Tarimo et al. High energy and excellent stability asymmetric supercapacitor derived from sulphur-reduced graphene oxide/manganese dioxide composite and activated carbon from peanut shell
Yoon et al. Development of high-performance supercapacitor electrodes using novel ordered mesoporous tungsten oxide materials with high electrical conductivity
JP6312825B2 (en) Flexible supercapacitor and method of manufacturing the same
Wan et al. Core–shell composite of wood-derived biochar supported MnO 2 nanosheets for supercapacitor applications
Wang et al. Unveiling the cooperative roles of pyrrolic-N and carboxyl groups in biomass-derived hierarchical porous carbon nanosheets for high energy-power Zn-ion hybrid supercapacitors
Bi et al. Hierarchical core–shell 2D MOF nanosheet hybrid arrays for high-performance hybrid supercapacitors
Cheng et al. Anodization driven synthesis of nickel oxalate nanostructures with excellent performance for asymmetric supercapacitors
Gong et al. Facile synthesis of Ni 0.85 Se on Ni foam for high-performance asymmetric capacitors
CN108288547B (en) Preparation method of nitrogen-phosphorus-sulfur ternary co-doped ordered mesoporous carbon material
KR102046378B1 (en) Manufacturing method of Pitch-based Activated Carbon / Tube Shaped Polypyrrole Composite Electrode Material for Supercapacitor
Wu et al. Silver particle-loaded nickel oxide nanosheet arrays on nickel foam as advanced binder-free electrodes for aqueous asymmetric supercapacitors
Li et al. Co9S8 quasi-hexagonal nanoparticles coupled with WS2 nanoring anchored on 3D sulfur, nitrogen Co-doped carbon nanotubes@ graphene oxide cross-linking architecture for high performance asymmetric supercapacitor
CN107808778A (en) A kind of design of the electrode composite material of carbosphere/nickel cobalt hydroxide core shell structure
Khan et al. Exploring the progression of energy storage toward flexibility: metal-organic framework and conducting polymer aspects
Liu et al. Long-life sodium/carbon fluoride batteries with flexible, binder-free fluorinated mesocarbon microbead film electrodes
Qian et al. Conversion of low molecular weight hydrogel to nitrogen-doped carbon materials and its application as supercapacitor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant