KR102044763B1 - Dry clean method for removing silicon oxide with high selectivity - Google Patents

Dry clean method for removing silicon oxide with high selectivity Download PDF

Info

Publication number
KR102044763B1
KR102044763B1 KR1020180098002A KR20180098002A KR102044763B1 KR 102044763 B1 KR102044763 B1 KR 102044763B1 KR 1020180098002 A KR1020180098002 A KR 1020180098002A KR 20180098002 A KR20180098002 A KR 20180098002A KR 102044763 B1 KR102044763 B1 KR 102044763B1
Authority
KR
South Korea
Prior art keywords
silicon oxide
silicon nitride
reaction
reaction layer
containing gas
Prior art date
Application number
KR1020180098002A
Other languages
Korean (ko)
Inventor
이길광
임두호
박재양
오상룡
Original Assignee
무진전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 무진전자 주식회사 filed Critical 무진전자 주식회사
Priority to KR1020180098002A priority Critical patent/KR102044763B1/en
Priority to PCT/KR2019/010143 priority patent/WO2020040463A1/en
Priority to CN201980055227.7A priority patent/CN112655072A/en
Application granted granted Critical
Publication of KR102044763B1 publication Critical patent/KR102044763B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02046Dry cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

The present invention relates to a dry cleaning method for high selective silicon oxide removal. According to the present invention, the method comprises: a reaction step of supplying a fluorine-containing gas and a hydrogen-containing gas reacting with silicon oxide and silicon nitride to a substrate, which is disposed in a chamber and in which the silicon oxide and the silicon nitride are formed, to change at least a portion of the silicon oxide and the silicon nitride into a reaction layer comprising ammonium hexafluorosilicate ((NH_4)_2SiF_6); and a heat treatment step of removing the reaction layer formed on the silicon oxide through heat treatment, and leaving the reaction layer formed on the silicon nitride. The reaction step and the heat treatment step are repeatedly performed until the silicon oxide is completely removed. According to the present invention, only the silicon oxide can be selectively etched while suppressing unnecessary etching of the silicon nitride in the process of cleaning the substrate on which the silicon oxide and the silicon nitride are formed.

Description

고 선택적 실리콘 산화물 제거를 위한 건식 세정 방법{DRY CLEAN METHOD FOR REMOVING SILICON OXIDE WITH HIGH SELECTIVITY}DRY CLEAN METHOD FOR REMOVING SILICON OXIDE WITH HIGH SELECTIVITY

본 발명은 고 선택적 실리콘 산화물 제거를 위한 건식 세정 방법에 관한 것이다. 보다 구체적으로, 본 발명은 실리콘 질화물의 식각을 억제하면서 실리콘 산화물만 고 선택적으로 식각할 수 있는 건식 세정 방법에 관한 것이다.The present invention relates to a dry cleaning method for high selective silicon oxide removal. More specifically, the present invention relates to a dry cleaning method capable of highly selectively etching silicon oxide while suppressing etching of silicon nitride.

반도체 디바이스 회로가 점차 고 집적화 및 고 미세화됨에 따라, 폴리 실리콘, 실리콘 산화물, 실리콘 질화물 등과 같은 이종 패턴 간의 높은 선택비 특성을 보이는 식각 및 세정 기술이 요구되고 있다.As semiconductor device circuits are increasingly integrated and miniaturized, there is a need for etching and cleaning techniques that exhibit high selectivity between heterogeneous patterns such as polysilicon, silicon oxide, silicon nitride, and the like.

습식 식각 기술은 파티클(Particle) 제거 능력은 우수하나, 고 종횡비 패턴에서의 표면 장력에 의한 세정 능력 저하 및 원자 레벨(Atomic level)의 미세 식각을 위한 선택비 제어가 어렵다는 문제점을 가지고 있다. 또한, 건식 식각 기술은 웨이퍼에 입사되는 이온 충격(Ion Bombardment)으로 인하여, 식각 후에 손상층(Damage layer)이 생성되는데, 이를 제거하기 위한 후속 공정들이 추가적으로 필요한 문제점이 있다.The wet etching technique has excellent particle removal ability, but has a problem in that it is difficult to control the selectivity for deterioration of cleaning ability due to surface tension in a high aspect ratio pattern and fine etching of atomic levels. In addition, in the dry etching technique, a damage layer is formed after etching due to ion bombardment incident on the wafer, and there is a problem in that subsequent processes for removing the etching layer are additionally required.

최근 들어, 이러한 문제점을 해결하는 대체 기술로서, 가스 반응 또는 라디칼(Radical) 반응에 의해 헥사플루오로규산암모늄((NH4)2SiF6) 고체층을 생성시키고, 이렇게 생성된 고체층을 가열하여 제거하는 건식 세정(Dry Clean) 기술이 확산되고 있는데, 이 기술은 반응 조건에 따라 이종 패턴을 기판 손상 없이 선택적으로 제거할 수 있는 장점을 가지고 있다.Recently, as an alternative technique to solve this problem, an ammonium hexafluorosilicate ((NH 4 ) 2 SiF 6 ) solid layer is produced by a gas reaction or a radical reaction, and the solid layer thus produced is heated to Dry clean technology is being proliferated, which has the advantage of selectively removing heterogeneous patterns without damaging the substrate depending on reaction conditions.

그러나 실리콘 산화물(SiO2)은 불소와 수소의 가스 또는 라디칼 반응으로 (NH4)2SiF6를 생성하여 이를 가열하여 제거하는데, 이러한 반응은 실리콘 질화물(SiN)에서도 유사하게 발생하기 때문에 실리콘 산화물과 실리콘 질화물 사이의 선택비를 높이는데 한계를 보일 수 있다는 문제점이 있다.However, silicon oxide (SiO 2 ) produces (NH 4 ) 2 SiF 6 by the gas or radical reaction of fluorine and hydrogen and heats it off, which is similar to silicon nitride (SiN). There is a problem that it may show a limit in increasing the selectivity between silicon nitride.

도 1은 일반적인 건식 세정 공정의 RF 전원 및 가스의 공급 타이밍을 나타낸 도면이고, 도 2는 일반적인 건식 세정의 반응 메카니즘을 나타낸 도면이다.FIG. 1 is a diagram illustrating a supply timing of RF power and gas in a general dry cleaning process, and FIG. 2 is a diagram illustrating a reaction mechanism of a general dry cleaning process.

도 1에 개시된 바와 같이, 특정 두께의 실리콘 산화물을 제거하기 위해서는 반응(Reaction)과 열처리(Annealing)를 반복적으로 수행하는데, 일반적으로 반응(Reaction)을 위한 공정은 도 2에 개시된 바와 같이 (NH4)2SiF6 고체층이 불소와 수소 라디칼의 반응에 의해 최대 두께로 생성되는 시간(Saturation Time) 동안 수행된다. 하지만, 반응(Reaction)이 일정 시간 이상으로 길어지게 되면 불소와 수소 라디칼이 실리콘 질화물(SiN)과도 반응하여 (NH4)2SiF6 고체층이 생성되고 이로 인해 실리콘 산화물과 실리콘 질화물의 선택비가 감소할 수 있다는 문제점이 있다.As shown in FIG. 1, in order to remove a silicon oxide having a specific thickness, reaction and annealing are repeatedly performed. Generally, the process for reaction is performed as illustrated in FIG. 2 (NH 4). ) 2 SiF 6 solid layer is carried out during the saturation time (maximum thickness) produced by the reaction of fluorine and hydrogen radicals. However, when the reaction becomes longer than a certain time, fluorine and hydrogen radicals also react with silicon nitride (SiN) to form a (NH 4 ) 2 SiF 6 solid layer, which reduces the selectivity of silicon oxide and silicon nitride. The problem is that it can be done.

대한민국 공개특허공보 제10-2012-0120400호(공개일자: 2012년 11월 01일, 명칭: 플라즈마 에칭 방법, 반도체 디바이스의 제조 방법 및 플라즈마 에칭 장치)Republic of Korea Patent Publication No. 10-2012-0120400 (published date: November 01, 2012, name: plasma etching method, semiconductor device manufacturing method and plasma etching apparatus)

본 발명은 실리콘 산화물과 실리콘 질화물이 형성되어 있는 기판을 세정하는 과정에서 실리콘 질화물의 불필요한 식각을 억제하면서 실리콘 산화물만 고 선택적으로 식각할 수 있도록 하는 고 선택적 실리콘 산화물 제거를 위한 건식 세정 방법을 제공하는 것을 기술적 과제로 한다.The present invention provides a dry cleaning method for removing a highly selective silicon oxide that can selectively etch only silicon oxide while suppressing unnecessary etching of silicon nitride in the process of cleaning a substrate on which silicon oxide and silicon nitride are formed. Let it be technical problem.

이러한 기술적 과제를 해결하기 위한 본 발명에 따른 고 선택적 실리콘 산화물 제거를 위한 건식 세정 방법은 챔버 내부에 배치되어 있으며 실리콘 산화물과 실리콘 질화물이 형성되어 있는 기판에 상기 실리콘 산화물과 상기 실리콘 질화물에 반응하는 불소함유가스와 수소함유가스를 공급하여 상기 실리콘 산화물과 상기 실리콘 질화물의 적어도 일부를 헥사플루오로규산암모늄((NH4)2SiF6)을 포함하는 반응층으로 변화시키는 반응 단계 및 열처리를 통해 상기 실리콘 산화물에 형성된 반응층을 제거하고, 상기 실리콘 질화물에 형성된 반응층을 잔류시키는 열처리 단계를 포함하고, 상기 반응 단계와 상기 열처리 단계는 상기 실리콘 산화물이 완전히 제거될 때까지 반복적으로 수행된다.Dry cleaning method for high selective silicon oxide removal according to the present invention for solving this technical problem is disposed in the chamber and fluorine reacting with the silicon oxide and the silicon nitride on a substrate on which silicon oxide and silicon nitride are formed Supplying a gas containing gas and a hydrogen containing gas to convert at least a part of the silicon oxide and the silicon nitride into a reaction layer containing hexafluoroammonium silicate ((NH 4 ) 2 SiF 6 ); And removing the reaction layer formed on the oxide and leaving the reaction layer formed on the silicon nitride, wherein the reaction step and the heat treatment step are repeatedly performed until the silicon oxide is completely removed.

본 발명에 따른 고 선택적 실리콘 산화물 제거를 위한 건식 세정 방법에 있어서, 최초 반응 단계에서 생성되고 최초 열처리 단계를 통해 상기 실리콘 질화물에 잔류하게 되는 반응층은 상기 최초 열처리 단계에 이어지는 반응 단계에서 상기 실리콘 질화물이 상기 불소함유가스와 상기 수소함유가스에 노출되지 않도록 하는 차단막의 기능을 수행하는 것을 특징으로 한다.In the dry cleaning method for high selective silicon oxide removal according to the present invention, the reaction layer generated in the first reaction step and remaining in the silicon nitride through the first heat treatment step is the silicon nitride in the reaction step subsequent to the first heat treatment step. And a barrier film to prevent exposure to the fluorine-containing gas and the hydrogen-containing gas.

본 발명에 따른 고 선택적 실리콘 산화물 제거를 위한 건식 세정 방법에 있어서, 상기 반응 단계에서는, 상기 실리콘 산화물과 상기 실리콘 질화물의 표면의 화학적 조성 차이에 따라 상기 실리콘 산화물에 형성되는 반응층과 상기 실리콘 질화물에 형성되는 반응층의 두께 및 특성에 차이가 생기는 것을 특징으로 한다.In the dry cleaning method for removing the highly selective silicon oxide according to the present invention, in the reaction step, the reaction layer and the silicon nitride formed on the silicon oxide in accordance with the difference in the chemical composition of the surface of the silicon oxide and the silicon nitride. It is characterized by the difference in the thickness and characteristics of the reaction layer to be formed.

본 발명에 따른 고 선택적 실리콘 산화물 제거를 위한 건식 세정 방법에 있어서, 상기 반응 단계에서는, 상기 불소함유가스 및 상기 수소함유가스와 상기 실리콘 산화물 및 상기 실리콘 질화물의 직접적인 가스 반응을 통해 상기 반응층이 생성되는 것을 특징으로 한다.In the dry cleaning method for removing the highly selective silicon oxide according to the present invention, in the reaction step, the reaction layer is generated through a direct gas reaction of the fluorine-containing gas and the hydrogen-containing gas with the silicon oxide and the silicon nitride. It is characterized by.

본 발명에 따른 고 선택적 실리콘 산화물 제거를 위한 건식 세정 방법에 있어서, 상기 반응 단계에서는, 상기 불소함유가스 및 상기 수소함유가스를 플라즈마화하여 생성된 라디칼과 상기 실리콘 산화물 및 상기 실리콘 질화물의 반응을 통해 상기 반응층이 생성되는 것을 특징으로 한다.In the dry cleaning method for removing the highly selective silicon oxide according to the present invention, in the reaction step, the radicals generated by plasmalizing the fluorine-containing gas and the hydrogen-containing gas through reaction of the silicon oxide and the silicon nitride Characterized in that the reaction layer is produced.

본 발명에 따른 고 선택적 실리콘 산화물 제거를 위한 건식 세정 방법에 있어서, 최종 열처리 단계를 제외한 열처리 단계에서는, 상기 실리콘 산화물에 형성된 반응층과 상기 실리콘 질화물에 형성된 반응층의 두께 및 특성 차이를 이용하여 상기 실리콘 산화물에 형성된 반응층을 완전히 제거하고, 상기 실리콘 질화물에 형성된 반응층을 잔류시키는 것을 특징으로 한다.In the dry cleaning method for removing the high selective silicon oxide according to the present invention, in the heat treatment step except for the final heat treatment step, the difference between the thickness of the reaction layer formed on the silicon oxide and the reaction layer formed on the silicon nitride is different. The reaction layer formed on the silicon oxide is completely removed, and the reaction layer formed on the silicon nitride is left.

본 발명에 따른 고 선택적 실리콘 산화물 제거를 위한 건식 세정 방법에 있어서, 상기 최종 열처리 단계에서, 상기 실리콘 질화물에 잔류하는 반응층이 제거되는 것을 특징으로 한다.In the dry cleaning method for removing the highly selective silicon oxide according to the present invention, in the final heat treatment step, the reaction layer remaining in the silicon nitride is removed.

본 발명에 따른 고 선택적 실리콘 산화물 제거를 위한 건식 세정 방법에 있어서, 상기 수소함유가스는 H2 또는 NH3 또는 H2O를 포함하는 것을 특징으로 한다.In the dry cleaning method for high selective silicon oxide removal according to the present invention, the hydrogen-containing gas is characterized in that it comprises H 2 or NH 3 or H 2 O.

본 발명에 따른 고 선택적 실리콘 산화물 제거를 위한 건식 세정 방법에 있어서, 상기 불소함유가스는 NF3를 포함하는 것을 특징으로 한다.In the dry cleaning method for high selective silicon oxide removal according to the present invention, the fluorine-containing gas is characterized in that it comprises NF 3 .

본 발명에 따르면, 실리콘 산화물과 실리콘 질화물이 형성되어 있는 기판을 세정하는 과정에서 실리콘 질화물의 불필요한 식각을 억제하면서 실리콘 산화물만 고 선택적으로 식각할 수 있도록 하는 고 선택적 실리콘 산화물 제거를 위한 건식 세정 방법이 제공되는 효과가 있다.According to the present invention, there is provided a dry cleaning method for removing a highly selective silicon oxide which enables the selective etching of only silicon oxide while suppressing unnecessary etching of silicon nitride in the process of cleaning a substrate on which silicon oxide and silicon nitride are formed. There is an effect provided.

도 1은 종래의 건식 세정 사이클을 나타낸 도면이고,
도 2는 종래의 건식 세정 메카니즘을 나타낸 도면이고,
도 3은 본 발명의 일 실시 예에 따른 고 선택적 실리콘 산화물 제거를 위한 건식 세정 방법의 공정 순서도이고,
도 4는 본 발명의 일 실시 예에 따른 고 선택적 실리콘 산화물 제거를 위한 건식 세정 방법의 공정 단면도이다.
1 is a view showing a conventional dry cleaning cycle,
2 is a view showing a conventional dry cleaning mechanism,
3 is a process flow diagram of a dry cleaning method for high selective silicon oxide removal in accordance with one embodiment of the present invention,
4 is a process cross-sectional view of a dry cleaning method for high selective silicon oxide removal according to an embodiment of the present invention.

본 명세서에 개시되어 있는 본 발명의 개념에 따른 실시 예들에 대해서 특정한 구조적 또는 기능적 설명은 단지 본 발명의 개념에 따른 실시 예들을 설명하기 위한 목적으로 예시된 것으로서, 본 발명의 개념에 따른 실시 예들은 다양한 형태들로 실시될 수 있으며 본 명세서에 설명된 실시 예들에 한정되지 않는다.Specific structural or functional descriptions of the embodiments according to the inventive concept disclosed herein are provided only for the purpose of describing the embodiments according to the inventive concept. It may be embodied in various forms and is not limited to the embodiments described herein.

본 발명의 개념에 따른 실시 예들은 다양한 변경들을 가할 수 있고 여러 가지 형태들을 가질 수 있으므로 실시 예들을 도면에 예시하고 본 명세서에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명의 개념에 따른 실시 예들을 특정한 개시 형태들에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물, 또는 대체물을 포함한다.Embodiments according to the inventive concept may be variously modified and have various forms, so embodiments are illustrated in the drawings and described in detail herein. However, this is not intended to limit the embodiments in accordance with the concept of the invention to the specific forms disclosed, it includes all changes, equivalents, or substitutes included in the spirit and scope of the present invention.

제1 또는 제2 등의 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만, 예컨대 본 발명의 개념에 따른 권리 범위로부터 벗어나지 않은 채, 제1 구성 요소는 제2 구성 요소로 명명될 수 있고 유사하게 제2구성 요소는 제1 구성 요소로도 명명될 수 있다.Terms such as first or second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another, for example without departing from the scope of the rights according to the inventive concept, and the first component may be called a second component and similarly the second component. The component may also be referred to as a first component.

어떤 구성 요소가 다른 구성 요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성 요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성 요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성 요소가 다른 구성 요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는 중간에 다른 구성 요소가 존재하지 않는 것으로 이해되어야 할 것이다. 구성 요소들 간의 관계를 설명하는 다른 표현들, 즉 "~사이에"와 "바로 ~사이에" 또는 "~에 이웃하는"과 "~에 직접 이웃하는" 등도 마찬가지로 해석되어야 한다.When a component is said to be "connected" or "connected" to another component, it may be directly connected to or connected to that other component, but it may be understood that another component may exist in between. Should be. On the other hand, when a component is said to be "directly connected" or "directly connected" to another component, it should be understood that there is no other component in between. Other expressions describing the relationship between components, such as "between" and "immediately between," or "neighboring to," and "directly neighboring to" should be interpreted as well.

본 명세서에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로서, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 본 명세서에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this specification, terms such as "comprise" or "have" are intended to indicate that there is a feature, number, step, action, component, part, or combination thereof described herein, but one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, parts, or combinations thereof.

다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 나타낸다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 갖는 것으로 해석되어야 하며, 본 명세서에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art. Terms such as those defined in the commonly used dictionaries should be construed as having meanings consistent with the meanings in the context of the related art, and are not construed in ideal or excessively formal meanings unless expressly defined herein. Do not.

이하에서는, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment of the present invention.

도 3은 본 발명의 일 실시 예에 따른 고 선택적 실리콘 산화물 제거를 위한 건식 세정 방법의 공정 순서도이다.3 is a process flow diagram of a dry cleaning method for high selective silicon oxide removal in accordance with one embodiment of the present invention.

도 1을 참조하면, 본 발명의 일 실시 예에 따른 고 선택적 실리콘 산화물 제거를 위한 건식 세정 방법은 반응 단계(S20) 및 열처리 단계(S30)를 포함하고, 반응 단계(S20)와 열처리 단계(S30)는 실리콘 산화물이 완전히 제거될 때까지 반복적으로 수행된다.Referring to FIG. 1, a dry cleaning method for removing a highly selective silicon oxide according to an embodiment of the present invention includes a reaction step S20 and a heat treatment step S30, and a reaction step S20 and a heat treatment step S30. ) Is performed repeatedly until the silicon oxide is completely removed.

먼저, 단계 S10에서는, 실리콘 산화물과 실리콘 질화물이 패턴화되어 형성되어 있는 기판을 건식 세정이 수행되는 공간을 제공하는 챔버로 이동시켜 배치하는 과정이 수행된다.First, in step S10, a process of moving and placing a substrate, on which silicon oxide and silicon nitride are patterned, into a chamber providing a space in which dry cleaning is performed is performed.

반응 단계(S20)에서는, 챔버 내부에 배치되어 있으며 실리콘 산화물과 실리콘 질화물이 형성되어 있는 기판에 상기 실리콘 산화물과 상기 실리콘 질화물에 반응하는 불소함유가스와 수소함유가스를 공급하여, 상기 실리콘 산화물과 상기 실리콘 질화물의 적어도 일부를 헥사플루오로규산암모늄((NH4)2SiF6)을 포함하는 반응층으로 변화시키는 과정이 수행된다.In the reaction step (S20), a fluorine-containing gas and a hydrogen-containing gas which react with the silicon oxide and the silicon nitride are supplied to a substrate disposed inside the chamber and on which the silicon oxide and the silicon nitride are formed. The process of converting at least a portion of the silicon nitride into a reaction layer comprising hexafluoroammonium silicate ((NH 4 ) 2 SiF 6 ) is performed.

열처리 단계(S30)에서는, 열처리를 통해 상기 실리콘 산화물에 형성된 반응층을 제거하고, 상기 실리콘 질화물에 형성된 반응층을 잔류시키는 과정이 수행되며, 이러한 반응 단계(S20)와 열처리 단계(S30)는 실리콘 산화물이 완전히 제거될 때까지 반복적으로 수행된다.In the heat treatment step (S30), the process of removing the reaction layer formed on the silicon oxide through the heat treatment, and remaining the reaction layer formed on the silicon nitride is performed, the reaction step (S20) and the heat treatment step (S30) It is performed repeatedly until the oxide is completely removed.

예를 들어, 최초 반응 단계(S20)에서 생성되고 최초 열처리 단계(S30)를 통해 상기 실리콘 질화물에 잔류하게 되는 반응층은 최초 열처리 단계(S30)에 이어지는 반응 단계(S20)에서 상기 실리콘 질화물이 상기 불소함유가스와 상기 수소함유가스에 노출되지 않도록 하는 차단막의 기능을 수행하도록 구성될 수 있다For example, the reaction layer generated in the first reaction step (S20) and remaining in the silicon nitride through the first heat treatment step (S30) is the silicon nitride in the reaction step (S20) subsequent to the first heat treatment step (S30) It can be configured to perform the function of the barrier film to prevent exposure to the fluorine-containing gas and the hydrogen-containing gas.

예를 들어, 반응 단계(S20)에서는, 상기 실리콘 산화물과 상기 실리콘 질화물의 표면의 화학적 조성 차이에 따라 상기 실리콘 산화물에 형성되는 반응층과 상기 실리콘 질화물에 형성되는 반응층의 두께 및 특성에 차이가 생기도록 구성함으로써, 열처리 단계(S30)에서는 이와 같은 반응층의 두께 및 특성의 차이를 이용하여 실리콘 산화물에 형성된 반응층은 제거하는 반면, 실리콘 질화물에 형성된 반응층은 잔류시켜, 열처리 단계(S30)에 이어지는 반응 단계(S20)에서 실리콘 질화물의 표면이 불소함유가스와 수소함유가스에 노출되지 않도록 할 수 있다.For example, in the reaction step (S20), the difference in the thickness and characteristics of the reaction layer formed on the silicon oxide and the reaction layer formed on the silicon nitride in accordance with the difference in the chemical composition of the surface of the silicon oxide and the silicon nitride. By configuring to generate, in the heat treatment step (S30) to remove the reaction layer formed on the silicon oxide by using the difference in the thickness and characteristics of the reaction layer, while leaving the reaction layer formed on the silicon nitride, the heat treatment step (S30) In the subsequent reaction step (S20), the surface of the silicon nitride may be prevented from being exposed to the fluorine-containing gas and the hydrogen-containing gas.

예를 들어, 최종 열처리 단계(S50)를 제외한 열처리 단계(S30)에서는, 실리콘 산화물에 형성된 반응층과 실리콘 질화물에 형성된 반응층의 두께 및 특성 차이를 이용하여 실리콘 산화물에 형성된 반응층을 완전히 제거하는 반면, 실리콘 질화물에 형성된 반응층은 잔류시켜 차단막의 기능을 수행하도록 구성될 수 있다.For example, in the heat treatment step S30 except for the final heat treatment step S50, the reaction layer formed on the silicon oxide is completely removed by using the difference in thickness and characteristics of the reaction layer formed on the silicon oxide and the reaction layer formed on the silicon nitride. On the other hand, the reaction layer formed on the silicon nitride may be configured to remain to perform the function of the barrier film.

하나의 예로, 반응 단계(S20)에서는, 고온의 불소함유가스 및 수소함유가스와 기판에 형성되어 있는 실리콘 산화물 및 실리콘 질화물의 직접적인 가스 반응을 통해 상기 반응층이 생성되도록 구성될 수 있다.As one example, in the reaction step (S20), the reaction layer may be generated through a direct gas reaction of the high temperature fluorine-containing gas and hydrogen-containing gas and the silicon oxide and silicon nitride formed on the substrate.

다른 예로, 반응 단계(S20)에서는, 불소함유가스 및 수소함유가스를 플라즈마화하여 생성된 라디칼과 기판에 형성되어 있는 실리콘 산화물 및 실리콘 질화물의 반응을 통해 상기 반응층이 생성되도록 구성될 수도 있다.As another example, in the reaction step (S20), the reaction layer may be generated through the reaction of the radicals generated by plasma-forming the fluorine-containing gas and the hydrogen-containing gas with silicon oxide and silicon nitride formed on the substrate.

단계 S40에서는, 기판에 형성되어 있던 실리콘 산화물이 완전히 제거되었는지를 판단하는 과정이 수행된다. 단계 S40에서의 판단 결과, 기판에 형성되어 있던 실리콘 산화물이 완전히 제거된 경우 단계 S50으로 전환되고, 기판에 형성되어 있던 실리콘 산화물이 완전히 제거되지 않은 경우에는 단계 S20으로 전환되어 반응 단계(S20)와 열처리 단계(S30)가 반복적으로 수행된다.In step S40, a process of determining whether the silicon oxide formed on the substrate has been completely removed. As a result of the determination in step S40, when the silicon oxide formed on the substrate is completely removed, the process is switched to step S50. When the silicon oxide formed on the substrate is not completely removed, the process is switched to step S20, and the reaction step (S20) and The heat treatment step S30 is repeatedly performed.

단계 S50은 기판에 형성되어 있던 실리콘 산화물이 완전히 제거된 이후에 수행되는 최종 열처리 단계로서, 최종적인 열처리를 통해 실리콘 질화물에 잔류하는 반응층을 제거하는 과정이 수행된다.Step S50 is a final heat treatment step performed after the silicon oxide formed on the substrate is completely removed, and a process of removing the reaction layer remaining in the silicon nitride is performed through the final heat treatment.

예를 들어, 수소함유가스는 H2 또는 NH3 또는 H2O를 포함할 수 있고, 불소함유가스는 NF3를 포함할 수 있으나, 이에 한정되지는 않는다.For example, the hydrogen-containing gas may include H 2 or NH 3 or H 2 O, and the fluorine-containing gas may include NF 3 , but is not limited thereto.

도 4는 본 발명의 일 실시 예에 따른 고 선택적 실리콘 산화물 제거를 위한 건식 세정 방법의 공정 단면도이다4 is a process cross-sectional view of a dry cleaning method for high selective silicon oxide removal according to an embodiment of the present invention.

도 4를 추가로 참조하면, (a)에서는, 실리콘 산화물과 실리콘 질화물이 패턴화되어 형성되어 있는 실리콘 웨이퍼, 즉, 기판을 건식 세정이 수행되는 공간을 제공하는 챔버로 이동시켜 배치하는 과정이 수행된다.Referring to FIG. 4, in (a), a process of disposing a silicon wafer, ie, a substrate, on which silicon oxide and silicon nitride are patterned and moved to a chamber providing a space for dry cleaning is performed. do.

(b)에서는, 챔버 내부에 배치되어 있으며 실리콘 산화물과 실리콘 질화물이 형성되어 있는 기판에 실리콘 산화물과 실리콘 질화물에 반응하는 불소함유가스와 수소함유가스를 공급함으로써, 실리콘 산화물과 실리콘 질화물의 적어도 일부를 헥사플루오로규산암모늄((NH4)2SiF6)을 포함하는 반응층으로 변화시키는 과정이 수행된다. 도면에 표시된 반응물 A는 실리콘 산화물에 형성되는 반응층이고, 반응물 B는 실리콘 질화물에 형성되는 반응층이다. 예를 들어, 반응층은, 1) 고온의 불소함유가스 및 수소함유가스와 기판에 형성되어 있는 실리콘 산화물 및 실리콘 질화물의 직접적인 가스 반응, 또는 2) 불소함유가스 및 수소함유가스를 플라즈마화하여 생성된 라디칼과 기판에 형성되어 있는 실리콘 산화물 및 실리콘 질화물의 반응을 통해 형성될 수 있다.In (b), at least a portion of the silicon oxide and the silicon nitride are supplied by supplying a fluorine-containing gas and a hydrogen-containing gas that react with the silicon oxide and the silicon nitride to a substrate disposed inside the chamber and on which the silicon oxide and the silicon nitride are formed. The process of changing to a reaction layer comprising hexafluoroammonium silicate ((NH 4 ) 2 SiF 6 ) is carried out. Reactant A shown in the figure is a reaction layer formed on silicon oxide, and reactant B is a reaction layer formed on silicon nitride. For example, the reaction layer is produced by 1) direct gas reaction of high temperature fluorine-containing gas and hydrogen-containing gas with silicon oxide and silicon nitride formed on the substrate, or 2) plasma-forming of fluorine-containing gas and hydrogen-containing gas. Formed through the reaction of the radicals and silicon oxide and silicon nitride formed on the substrate.

(c)에서는, 열처리 시간 조절을 통해, 실리콘 산화물에 형성된 반응층(반응물 A)을 완전히 제거하고, 실리콘 질화물에 형성된 반응층(반응물 B)을 잔류시키는 과정이 수행된다.In (c), through the heat treatment time control, a process of completely removing the reaction layer (reactant A) formed on the silicon oxide and leaving the reaction layer (reactant B) formed on the silicon nitride is performed.

예를 들어, 반응층이 생성되는 (b)에서는, 실리콘 산화물과 실리콘 질화물의 표면의 화학적 조성 차이에 따라 실리콘 산화물에 형성되는 반응층(반응물 A)과 실리콘 질화물에 형성되는 반응층(반응물 B)의 두께 및 특성에 차이가 생기며, 열처리가 수행되는 (c)에서는, 반응층의 두께 및 특성의 차이를 이용하여 실리콘 산화물에 형성된 반응층(반응물 A)은 완전히 제거하고, 실리콘 질화물에 형성된 반응층(반응물 B)은 잔류시켜, 이어지는 (d)에서 실리콘 질화물의 표면이 불소함유가스와 수소함유가스에 노출되지 않도록 할 수 있다.For example, in (b) in which a reaction layer is produced, the reaction layer (reactant A) formed on silicon oxide and the reaction layer (reactant B) formed on silicon nitride according to the chemical composition difference between the surfaces of silicon oxide and silicon nitride (C) in which the thickness and properties of the film are different and the heat treatment is performed, the reaction layer (reactant A) formed on the silicon oxide is completely removed by using the difference in the thickness and properties of the reaction layer, and the reaction layer formed on the silicon nitride. (Reactant B) can be left to prevent the surface of silicon nitride from being exposed to fluorine-containing gas and hydrogen-containing gas in (d).

(d)에서는, (b)에서와 같이 불소함유가스와 수소함유가스를 공급하여 반응층 생성을 유도하는 과정이 수행된다. 이때, 실리콘 산화물의 표면은 반응 가스에 노출되어 있기 때문에 (b)에서와 같이 실리콘 산화물의 표면 일부가 헥사플루오로규산암모늄((NH4)2SiF6)을 포함하는 반응층으로 변화한다. 반면, 실리콘 질화물의 표면에는 반응물 B가 잔류하여 일종의 차단막의 기능을 수행하기 때문에, 실리콘 질화물의 표면에는 더이상 반응층이 생성되지 않고 잔류하는 반응물 B가 반응 가스와 반응하여 반응물 B'가 생성된다.In (d), as in (b), a process of inducing reaction layer generation by supplying fluorine-containing gas and hydrogen-containing gas is performed. At this time, since the surface of the silicon oxide is exposed to the reaction gas, a portion of the surface of the silicon oxide is changed into a reaction layer containing hexafluoroammonium silicate ((NH 4 ) 2 SiF 6 ) as in (b). On the other hand, since the reactant B remains on the surface of the silicon nitride to perform a function of a kind of a barrier layer, the reaction layer is no longer formed on the surface of the silicon nitride, and the remaining reactant B reacts with the reactant gas to generate the reactant B '.

(e)에서는, (b)와 유사하게, 열처리 시간 조절을 통해, 실리콘 산화물에 형성된 반응층(반응물 A)을 완전히 제거하고, 실리콘 질화물에 형성된 반응층(반을물 B)을 잔류시키는 과정이 수행된다.In (e), similarly to (b), by controlling the heat treatment time, the process of completely removing the reaction layer (reactant A) formed on the silicon oxide and leaving the reaction layer (half water B) formed on the silicon nitride is performed. Is performed.

예를 들어, (c)와 유사하게 열처리가 수행되는 (e)에서는, 반응층의 두께 및 특성의 차이를 이용하여 실리콘 산화물에 형성된 반응층(반응물 A)은 완전히 제거하고, 실리콘 질화물에 형성된 반응층(반응물 B)은 잔류시켜, 이어지는 반응층 생성 과정인 (f)에서 실리콘 질화물의 표면이 불소함유가스와 수소함유가스에 노출되지 않도록 할 수 있다.For example, in (e) in which heat treatment is performed similarly to (c), the reaction layer (reactant A) formed on the silicon oxide is completely removed and the reaction formed on the silicon nitride using the difference in thickness and properties of the reaction layer. The layer (reactant B) may be left to prevent the surface of the silicon nitride from being exposed to the fluorine-containing gas and the hydrogen-containing gas in the subsequent reaction layer formation process (f).

이와 같은 일련의 처리 과정은 실리콘 산화물에 형성된 반응층(반을물 A)가 완전히 제거될 때 까지 반복적인 사이클로 수행된다.This series of treatments is performed in an iterative cycle until the reaction layer (half water A) formed on the silicon oxide is completely removed.

마지막으로, (g)에서는, 최종적인 열처리를 통해 실리콘 질화물에 잔류하는 반응층(반응물 B)을 완전히 제거하는 과정이 수행된다.Finally, in (g), a process of completely removing the reaction layer (reactant B) remaining in the silicon nitride is performed through the final heat treatment.

이상에서 상세히 설명한 바와 같이 본 발명에 따르면, 실리콘 산화물과 실리콘 질화물이 형성되어 있는 기판을 세정하는 과정에서 실리콘 질화물의 불필요한 식각을 억제하면서 실리콘 산화물만 고 선택적으로 식각할 수 있도록 하는 고 선택적 실리콘 산화물 제거를 위한 건식 세정 방법이 제공되는 효과가 있다.As described in detail above, according to the present invention, a highly selective silicon oxide removal is performed so that only silicon oxide can be selectively etched while suppressing unnecessary etching of silicon nitride in the process of cleaning a substrate on which silicon oxide and silicon nitride are formed. There is an effect that a dry cleaning method is provided for.

S10: 반응 단계
S20: 열처리 단계
S10: reaction step
S20: heat treatment step

Claims (9)

챔버 내부에 배치되어 있으며 실리콘 산화물과 실리콘 질화물이 형성되어 있는 기판에 상기 실리콘 산화물과 상기 실리콘 질화물에 반응하는 불소함유가스와 수소함유가스를 공급하여 상기 실리콘 산화물과 상기 실리콘 질화물의 적어도 일부를 헥사플루오로규산암모늄((NH4)2SiF6)을 포함하는 반응층으로 변화시키는 반응 단계; 및
열처리를 통해 상기 실리콘 산화물에 형성된 반응층을 제거하고, 상기 실리콘 질화물에 형성된 반응층을 잔류시키는 열처리 단계를 포함하고,
상기 반응 단계와 상기 열처리 단계는 상기 실리콘 산화물이 완전히 제거될 때까지 반복적으로 수행되고,
최초 반응 단계에서 생성되고 최초 열처리 단계를 통해 상기 실리콘 질화물에 잔류하게 되는 반응층은 상기 최초 열처리 단계에 이어지는 반응 단계에서 상기 실리콘 질화물이 상기 불소함유가스와 상기 수소함유가스에 노출되지 않도록 하는 차단막의 기능을 수행하고,
상기 반응 단계에서는, 상기 실리콘 산화물과 상기 실리콘 질화물의 표면의 화학적 조성 차이에 따라 상기 실리콘 산화물에 형성되는 반응층과 상기 실리콘 질화물에 형성되는 반응층의 두께 및 특성에 차이가 생기고,
최종 열처리 단계를 제외한 열처리 단계에서는, 상기 실리콘 산화물에 형성된 반응층과 상기 실리콘 질화물에 형성된 반응층의 두께 및 특성 차이를 이용하여 상기 실리콘 산화물에 형성된 반응층을 완전히 제거하고, 상기 실리콘 질화물에 형성된 반응층을 잔류시키는, 고 선택적 실리콘 산화물 제거를 위한 건식 세정 방법.
A fluorine-containing gas and a hydrogen-containing gas reacting with the silicon oxide and the silicon nitride are supplied to a substrate disposed inside the chamber and in which silicon oxide and silicon nitride are formed, thereby disposing at least a portion of the silicon oxide and the silicon nitride. Changing to a reaction layer comprising ammonium rosilicate ((NH 4 ) 2 SiF 6 ); And
A heat treatment step of removing the reaction layer formed on the silicon oxide through heat treatment and leaving the reaction layer formed on the silicon nitride;
The reaction step and the heat treatment step are repeatedly performed until the silicon oxide is completely removed,
The reaction layer generated in the first reaction step and remaining in the silicon nitride through the first heat treatment step is used to prevent the silicon nitride from being exposed to the fluorine-containing gas and the hydrogen-containing gas in the reaction step subsequent to the first heat treatment step. Function,
In the reaction step, there is a difference in the thickness and characteristics of the reaction layer formed on the silicon oxide and the reaction layer formed on the silicon nitride according to the difference in the chemical composition of the surface of the silicon oxide and the silicon nitride,
In the heat treatment step except the final heat treatment step, the reaction layer formed on the silicon oxide is completely removed by using the thickness and the characteristic difference between the reaction layer formed on the silicon oxide and the reaction layer formed on the silicon nitride, and the reaction formed on the silicon nitride. Dry cleaning method for high selective silicon oxide removal, leaving the layer.
삭제delete 삭제delete 제1항에 있어서,
상기 반응 단계에서는,
상기 불소함유가스 및 상기 수소함유가스와 상기 실리콘 산화물 및 상기 실리콘 질화물의 직접적인 가스 반응을 통해 상기 반응층이 생성되는 것을 특징으로 하는, 고 선택적 실리콘 산화물 제거를 위한 건식 세정 방법.
The method of claim 1,
In the reaction step,
And the reaction layer is produced through a direct gas reaction of the fluorine-containing gas and the hydrogen-containing gas with the silicon oxide and the silicon nitride.
제1항에 있어서,
상기 반응 단계에서는,
상기 불소함유가스 및 상기 수소함유가스를 플라즈마화하여 생성된 라디칼과 상기 실리콘 산화물 및 상기 실리콘 질화물의 반응을 통해 상기 반응층이 생성되는 것을 특징으로 하는, 고 선택적 실리콘 산화물 제거를 위한 건식 세정 방법.
The method of claim 1,
In the reaction step,
And the reaction layer is formed through the reaction of the radicals generated by plasma-forming the fluorine-containing gas and the hydrogen-containing gas with the silicon oxide and the silicon nitride.
삭제delete 제1항에 있어서,
상기 최종 열처리 단계에서, 상기 실리콘 질화물에 잔류하는 반응층이 제거되는 것을 특징으로 하는, 고 선택적 실리콘 산화물 제거를 위한 건식 세정 방법.
The method of claim 1,
In the final heat treatment step, the reaction layer remaining in the silicon nitride is removed.
제1항에 있어서,
상기 수소함유가스는 H2 또는 NH3 또는 H2O를 포함하는 것을 특징으로 하는, 고 선택적 실리콘 산화물 제거를 위한 건식 세정 방법.
The method of claim 1,
The hydrogen-containing gas is H 2 or NH 3 or H 2 O, characterized in that the dry cleaning method for high selective silicon oxide removal.
제1항에 있어서,
상기 불소함유가스는 NF3를 포함하는 것을 특징으로 하는, 고 선택적 실리콘 산화물 제거를 위한 건식 세정 방법.
The method of claim 1,
The fluorine-containing gas is NF 3 , characterized in that the dry cleaning method for high selective silicon oxide removal.
KR1020180098002A 2018-08-22 2018-08-22 Dry clean method for removing silicon oxide with high selectivity KR102044763B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020180098002A KR102044763B1 (en) 2018-08-22 2018-08-22 Dry clean method for removing silicon oxide with high selectivity
PCT/KR2019/010143 WO2020040463A1 (en) 2018-08-22 2019-08-12 Dry cleaning method for high-selective removal of silicon oxide
CN201980055227.7A CN112655072A (en) 2018-08-22 2019-08-12 Dry cleaning process for high selectivity removal of silicon oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180098002A KR102044763B1 (en) 2018-08-22 2018-08-22 Dry clean method for removing silicon oxide with high selectivity

Publications (1)

Publication Number Publication Date
KR102044763B1 true KR102044763B1 (en) 2019-11-15

Family

ID=68578613

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180098002A KR102044763B1 (en) 2018-08-22 2018-08-22 Dry clean method for removing silicon oxide with high selectivity

Country Status (3)

Country Link
KR (1) KR102044763B1 (en)
CN (1) CN112655072A (en)
WO (1) WO2020040463A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11214864B2 (en) * 2017-03-29 2022-01-04 Tokyo Electron Limited Method for reducing metal contamination and film deposition apparatus
US11990348B2 (en) 2020-08-28 2024-05-21 Samsung Electronics Co., Ltd. Wafer processing apparatus and wafer processing method using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113808939B (en) * 2020-06-15 2023-09-22 长鑫存储技术有限公司 Method for forming silicon dioxide film and method for forming metal gate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120120400A (en) 2010-03-04 2012-11-01 도쿄엘렉트론가부시키가이샤 Plasma etching method, method for producing semiconductor device, and plasma etching device
KR20150109288A (en) * 2014-03-19 2015-10-01 에이에스엠 아이피 홀딩 비.브이. Plasma pre-clean module and process
KR20160004206A (en) * 2014-07-01 2016-01-12 도쿄엘렉트론가부시키가이샤 Etching method, etching apparatus and storage medium
KR20170092504A (en) * 2013-12-26 2017-08-11 도쿄엘렉트론가부시키가이샤 Etching method, storage medium, and etching apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5490071B2 (en) * 2011-09-12 2014-05-14 株式会社東芝 Etching method
US20170345673A1 (en) * 2016-05-29 2017-11-30 Tokyo Electron Limited Method of selective silicon oxide etching

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120120400A (en) 2010-03-04 2012-11-01 도쿄엘렉트론가부시키가이샤 Plasma etching method, method for producing semiconductor device, and plasma etching device
KR20170092504A (en) * 2013-12-26 2017-08-11 도쿄엘렉트론가부시키가이샤 Etching method, storage medium, and etching apparatus
KR20150109288A (en) * 2014-03-19 2015-10-01 에이에스엠 아이피 홀딩 비.브이. Plasma pre-clean module and process
KR20160004206A (en) * 2014-07-01 2016-01-12 도쿄엘렉트론가부시키가이샤 Etching method, etching apparatus and storage medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11214864B2 (en) * 2017-03-29 2022-01-04 Tokyo Electron Limited Method for reducing metal contamination and film deposition apparatus
US11990348B2 (en) 2020-08-28 2024-05-21 Samsung Electronics Co., Ltd. Wafer processing apparatus and wafer processing method using the same

Also Published As

Publication number Publication date
WO2020040463A1 (en) 2020-02-27
CN112655072A (en) 2021-04-13

Similar Documents

Publication Publication Date Title
JP7343543B2 (en) Removal methods for high aspect ratio structures
JP4968861B2 (en) Substrate etching method and system
TWI514462B (en) Method of etching features in silicon nitride films
KR102044763B1 (en) Dry clean method for removing silicon oxide with high selectivity
JP2016139792A (en) Method and apparatus for anisotropic tungsten etching
JP2008527711A (en) Method for removing low pressure of photoresist and etching residue
KR20140016920A (en) Method of etching silicon nitride films
KR20100039886A (en) Methods of smoothing oxide spacer
CN102473635A (en) Method for manufacturing a semiconductor device
JP2007053344A (en) Method of manufacturing electron device
KR102003361B1 (en) Method and apparatus for in-situ dry clean processing
JP2020534707A (en) Substrate processing method and equipment
KR102018075B1 (en) Dry clean apparatus and method for removing polysilicon seletively
KR101226274B1 (en) Mehtod of fabricating Carbon hard mask and method of fabricating patterns in semiconductor device
KR100595090B1 (en) Improved techniques for etching with a photoresist mask
TW202420375A (en) Post-processing of indium-containing compound semiconductors
TWI388027B (en) Method to pre-heat and stabilize etching chamber condition and improve mean time between clean
CN111433901B (en) Dry cleaning apparatus and method for removing silicon dioxide with high selectivity
US6921493B2 (en) Method of processing substrates
KR101132568B1 (en) Method for forming patterns without fume
KR20200022177A (en) Dry clean apparatus and method using atmospheric plasma and steam
KR102599015B1 (en) Substrate processing method
US11205575B2 (en) Method for stripping one or more layers from a semiconductor wafer
JP2000012521A (en) Plasma ashing method
KR20080079494A (en) Methode of forming amorphous carbon layer and methode of forming pattern of semiconductor device using amorphous carbon layer

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant