KR102041235B1 - Photo-curable composition for three dimensional printer - Google Patents

Photo-curable composition for three dimensional printer Download PDF

Info

Publication number
KR102041235B1
KR102041235B1 KR1020170104564A KR20170104564A KR102041235B1 KR 102041235 B1 KR102041235 B1 KR 102041235B1 KR 1020170104564 A KR1020170104564 A KR 1020170104564A KR 20170104564 A KR20170104564 A KR 20170104564A KR 102041235 B1 KR102041235 B1 KR 102041235B1
Authority
KR
South Korea
Prior art keywords
weight
composition
acrylate
carbon nanotubes
meth
Prior art date
Application number
KR1020170104564A
Other languages
Korean (ko)
Other versions
KR20190019507A (en
Inventor
조태웅
Original Assignee
조태웅
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 조태웅 filed Critical 조태웅
Priority to KR1020170104564A priority Critical patent/KR102041235B1/en
Publication of KR20190019507A publication Critical patent/KR20190019507A/en
Application granted granted Critical
Publication of KR102041235B1 publication Critical patent/KR102041235B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/101Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/106Esters of polycondensation macromers
    • C08F222/1065Esters of polycondensation macromers of alcohol terminated (poly)urethanes, e.g. urethane(meth)acrylates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/06Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyurethanes
    • C08F299/065Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyurethanes from polyurethanes with side or terminal unsaturations
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder

Abstract

본 발명은 3차원 프린터용 광경화 조성물에 관한 것으로, 3차원 프린터용 광경화 조성물은 탄소나노튜브 분산액 0.01~20 중량%; 다관능성 지방족 (메타)아크릴레이트 25~50 중량%; 지방족 우레탄 (메타)아크릴레이트 올리고머 25~50 중량%; 광안정제 0.1~0.5 중량%; 및 광개시제 0.1~5 중량%;를 포함할 수 있고, 그로 인해 강도가 향상된 3차원 프린터용 조성물에 관한 기술을 제공한다.
본 발명에 의하면, 광경화 조성물은 탄소나노튜브가 균일하게 분산된 탄소나노튜브 분산액을 포함하므로 조성물의 광경화시 강도가 높고, 수축율이 낮아 치수 안정성이 높은 장점이 있으며, 내구성이 높아 시제품을 위한 목업(mockup)이나 모형뿐만 아니라 실제 사용 용도로도 제조할 수 있다.
The present invention relates to a photocurable composition for a three-dimensional printer, the photocurable composition for a three-dimensional printer is 0.01 to 20% by weight of carbon nanotube dispersion; 25-50% by weight of polyfunctional aliphatic (meth) acrylates; 25-50 wt% aliphatic urethane (meth) acrylate oligomers; 0.1 to 0.5 wt% light stabilizer; And photoinitiator 0.1 to 5% by weight; may include, thereby providing a technique for a composition for a three-dimensional printer with improved strength.
According to the present invention, since the photocurable composition includes a carbon nanotube dispersion in which carbon nanotubes are uniformly dispersed, the composition has high strength, high shrinkage and low dimensional stability when photocuring the composition, and has high durability and high durability for prototypes. It can be manufactured for practical use as well as mockups and models.

Description

3차원 프린터용 광경화 조성물{PHOTO-CURABLE COMPOSITION FOR THREE DIMENSIONAL PRINTER}Photocuring composition for three-dimensional printers {PHOTO-CURABLE COMPOSITION FOR THREE DIMENSIONAL PRINTER}

본 발명은 3차원 프린터용 광경화 조성물에 관한 것이다.The present invention relates to a photocuring composition for a three-dimensional printer.

최근 몇 년 동안 3차원 인쇄 기술은 짧은 기간에 많은 수의 물건을 생산하는데 사용되어 왔으며, 광경화성 재료를 사용하여 3차원 물품을 만드는 방법에는 여러가지가 있다. 3D 인쇄에 있어 가장 효과적인 기술 중의 하나는 디지털 광학 처리(digital light process, DLP) 방법 또는 스테레오리소그래피(stereolithography, SLA)이다. In recent years, three-dimensional printing techniques have been used to produce a large number of objects in a short period of time, and there are many ways to make three-dimensional articles using photocurable materials. One of the most effective techniques in 3D printing is the digital light process (DLP) method or stereolithography (SLA).

DLP 또는 SLA 방법을 이용한 3D 인쇄에서, 액체 형태의 광경화성 재료는 통(vat)에 적층되거나 시트에 발라지고, 광경화성 재료의 소정 부위 또는 표면은 디지털 마이크로-미러 장치 또는 회전 다면경에 의해 제어되는 자외선/가시광선(UV/Vis) 빛에 노출된다. In 3D printing using the DLP or SLA method, the photocurable material in liquid form is laminated or applied to a vat, and a predetermined portion or surface of the photocurable material is controlled by a digital micro-mirror device or a rotating polyhedron. Are exposed to ultraviolet / visible (UV / Vis) light.

DLP 방법에서, 추가적 층들이 반복적으로 또는 지속적으로 적층되고, 각 층은 원하는 3D 물품이 형성될 때까지 경화되나, SLA 방법은 액체 재료가 방사선 빔의 라인에 의해 응고된다는 점에서 DLP 방법과는 차이점이 존재한다. In the DLP method, additional layers are repeatedly or continuously stacked and each layer cures until the desired 3D article is formed, but the SLA method differs from the DLP method in that the liquid material solidifies by a line of radiation beams. This exists.

따라서, 3D 인쇄법을 위한 대부분의 광경화성 레진은 3D 프린터에 적합한 낮은 점도 및 경화 속도를 갖도록 액체 형태로 제조되며, 이러한 SLA 3D 프린트에 적용되는 광중합형 수지 조성물은 투사되는 레이저의 파장에서 경화가 이루어져야 하고, 충분한 성형성과 경도를 갖추며, 낮은 수축율을 통하여 치수 안정성을 가지고 있어야 한다. 이와 관련하여, 대한민국 공개특허공보 제2016-0082280호에는 3차원 인쇄를 위한 잉크 조성물에 대한 기술이 제시된 바 있다.Thus, most photocurable resins for 3D printing are made in liquid form to have a low viscosity and cure rate suitable for 3D printers, and photopolymerizable resin compositions applied to such SLA 3D prints are hard to cure at the wavelength of the laser to be projected. It should be made, have sufficient formability and hardness, and have dimensional stability through low shrinkage. In this regard, Korean Patent Publication No. 2016-0082280 discloses a technique for an ink composition for three-dimensional printing.

그런데, 기존의 조성물들은 SLA 및 DLP 3D 프린터의 광원으로부터 방출되는 자외선에 조성물이 충분히 경화되지 못하거나 조성물 내에 존재하는 광중합 올리고머와 반응희석제 간의 조성비 문제로 낮은 모듈러스(Modulus) 값을 가지기 때문에 낮은 자외선 광량에서 높은 경도를 나타내지 못하는 기술적 한계가 존재했다.However, the existing compositions have low modulus values due to the composition ratio between the photopolymerization oligomer and the reaction diluent present in the composition, due to insufficient curing of the composition to the ultraviolet rays emitted from the light sources of the SLA and DLP 3D printers, and low amount of ultraviolet light. There was a technical limitation that does not show high hardness at.

이를 해결하기 위해 현재에도 다양한 연구가 진행되고 있으며, 기존의 조성물을 이용한 방법으로는 우수한 수준의 기계적 물성을 확보하기가 어렵기 때문에 탄소나노튜브 등의 필러를 추가하여 조성물의 기계적 강도를 향상시키려는 시도들이 이루어지고 있으나, 탄소나노튜브는 강한 반데르발스 힘으로 인하여 다발로 응집되는 경향이 강하므로 물이나 기타 용매에 대한 용해성이 매우 낮아서 가공이 까다롭다는 문제점이 존재했다.In order to solve this problem, various researches are still underway, and it is difficult to secure an excellent level of mechanical properties by using the existing composition. Therefore, an attempt to improve the mechanical strength of the composition by adding a filler such as carbon nanotubes is performed. However, carbon nanotubes have a strong tendency to agglomerate into bundles due to strong van der Waals forces, so that the solubility in water or other solvents is very low, and thus, processing is difficult.

본 발명은 상술한 문제점을 해결하기 위한 것으로, 강도가 향상된 3차원 프린터용 조성물에 관한 기술을 제공하는데 그 목적이 있다.The present invention has been made to solve the above problems, and an object thereof is to provide a technology relating to a composition for three-dimensional printer with improved strength.

본 발명이 해결하려는 과제는 전술한 과제로 제한되지 아니하며, 언급되지 아니한 또 다른 기술적 과제들은 후술할 내용으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The problem to be solved by the present invention is not limited to the above-described problem, other technical problems that are not mentioned will be clearly understood by those skilled in the art from the following description.

이러한 목적을 달성하기 위하여 본 발명의 일 태양으로 3차원 프린터용 광경화 조성물은 탄소나노튜브 분산액 0.01~20 중량%; 다관능성 지방족 (메타)아크릴레이트 25~50 중량%; 지방족 우레탄 (메타)아크릴레이트 올리고머 25~50 중량%; 광안정제 0.1~0.5 중량%; 및 광개시제 0.1~5 중량%;를 포함할 수 있다.In order to achieve this object, in one aspect of the present invention, the photocurable composition for a three-dimensional printer is a carbon nanotube dispersion of 0.01 to 20% by weight; 25-50% by weight of polyfunctional aliphatic (meth) acrylates; 25-50 wt% aliphatic urethane (meth) acrylate oligomers; 0.1 to 0.5 wt% light stabilizer; And photoinitiator 0.1 to 5% by weight; may include.

그리고, 탄소나노튜브 분산액은 탄소나노튜브 0.1~5 중량%; 1관능성 아크릴레이트 40~50 중량%; 2관능성 디(메타)아크릴레이트 40~50 중량%; 및 분산제 0.1~5 중량%;를 포함할 수 있다.And, carbon nanotube dispersion is 0.1 to 5% by weight of carbon nanotubes; 40-50% by weight of monofunctional acrylate; 40-50% by weight of bifunctional di (meth) acrylate; And 0.1 to 5% by weight dispersant; may include.

또한, 3차원 프린터용 광경화 조성물은 유색 안료 0.05~3 중량%; 레벨링제 0.1~3 중량%; 및 산화방지제 0.1~5 중량%;를 더 포함할 수 있다.In addition, the photocuring composition for a three-dimensional printer is 0.05 to 3% by weight colored pigment; 0.1 to 3 wt% leveling agent; And 0.1 to 5% by weight antioxidant; may further include.

상술한 과제의 해결 수단은 단지 예시적인 것으로서, 본 발명을 제한하려는 의도로 해석되지 않아야 한다. 상술한 예시적인 실시예 외에도, 도면 및 발명의 상세한 설명에 기재된 추가적인 실시예가 존재할 수 있다.Means for solving the above problems are merely exemplary and should not be construed as limiting the present invention. In addition to the exemplary embodiments described above, there may be additional embodiments described in the drawings and detailed description of the invention.

이상에서 설명한 바와 같이 본 발명에 의하면, 광경화 조성물은 탄소나노튜브가 균일하게 분산된 탄소나노튜브 분산액을 포함하므로 조성물의 광경화시 강도가 높고, 수축율이 낮아 치수 안정성이 높은 장점이 있으며, 내구성이 높아 시제품을 위한 목업(mockup)이나 모형뿐만 아니라 실제 사용 용도로도 제조할 수 있다.As described above, according to the present invention, the photocurable composition includes a carbon nanotube dispersion in which carbon nanotubes are uniformly dispersed, and thus has high strength, high shrinkage and low dimensional stability at photocuring of the composition, and high durability. Its high height makes it possible to manufacture not only mockups or models for prototypes, but also for practical use.

따라서, 본 발명을 이용하여 SLA 또는 DLP 방식의 3D 프린트 인쇄물을 제조할 경우, 원활한 작업성을 나타내고, 결과 인쇄물도 우수한 물리적 특성을 가지므로 본 발명의 일 실시예에 따른 광경화 조성물은 가정용 및 상업적으로 사용되는 3D 프린터용 재료로서 유용하게 사용될 수 있다.Therefore, when manufacturing the 3D printed SLA or DLP printing method using the present invention, it shows a smooth workability, the resulting printed material also has excellent physical properties, so the photocurable composition according to an embodiment of the present invention is used for home and commercial It can be usefully used as a material for 3D printer used as.

본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The effects of the present invention are not limited to the above-mentioned effects, and other effects not mentioned will be clearly understood by those skilled in the art from the description of the claims.

본 발명의 바람직한 실시예에 대하여 이하에서 더 구체적으로 설명하되, 이미 주지되어진 기술적 부분에 대해서는 설명의 간결함을 위해 생략하거나 압축하기로 한다. Preferred embodiments of the present invention will be described in more detail below, but the technical parts that are well known will be omitted or compressed for brevity of description.

본 발명의 일 실시예에 따른 3차원 프린터용 광경화 조성물은 탄소나노튜브 분산액, 다관능성 지방족 (메타)아크릴레이트, 지방족 우레탄 (메타)아크릴레이트 올리고머, 광안정제 및 광개시제를 포함할 수 있다.The photocuring composition for a three-dimensional printer according to an embodiment of the present invention may include a carbon nanotube dispersion, a polyfunctional aliphatic (meth) acrylate, an aliphatic urethane (meth) acrylate oligomer, a light stabilizer, and a photoinitiator.

일 실시예에서 탄소나노튜브 분산액은 탄소나노튜브가 용매 내에 분산되어 액상으로 제조된 것이며, 균일하게 분산된 탄소나노튜브로 인해 3차원 프린터용 광경화 조성물의 기계적 물성을 향상시킬 수 있다.In one embodiment, the carbon nanotube dispersion may be prepared in a liquid phase by dispersing carbon nanotubes in a solvent, and may improve mechanical properties of the photocurable composition for a 3D printer due to uniformly dispersed carbon nanotubes.

탄소나노튜브 분산액은 3차원 프린터용 광경화 조성물의 총 중량 내에서 0.01~20 중량%로 포함될 수 있다. 만일, 탄소나노튜브 분산액이 0.01 중량% 미만으로 포함될 경우에는 탄소나노튜브에 의한 강도 상승 효과가 미미하며, 20 중량%를 초과할 경우에는 상대적으로 다관능성 지방족 (메타)아크릴레이트와 지방족 우레탄 (메타)아크릴레이트 올리고머의 양이 감소함에 따라 광경화시 과경화로 인한 크랙이 발생할 우려가 있으므로 전술한 범위 이내에서 실시되는 것이 바람직하다.The carbon nanotube dispersion may be included in an amount of 0.01 to 20% by weight within the total weight of the photocuring composition for a three-dimensional printer. If the carbon nanotube dispersion is less than 0.01% by weight, the strength increase effect by the carbon nanotubes is insignificant, and when it exceeds 20% by weight, the polyfunctional aliphatic (meth) acrylate and the aliphatic urethane (meth) As the amount of the acrylate oligomer decreases, cracks due to overcuring may occur during photocuring.

또한, 탄소나노튜브 분산액은 탄소나노튜브, 1관능성 아크릴레이트, 2관능성 디(메타)아크릴레이트 및 분산제를 포함할 수 있다. 구체적으로, 탄소나노튜브(carbon nano tube)는 탄소나노튜브 분산액의 총 중량 내에서 0.1~5 중량%로 포함될 수 있다. In addition, the carbon nanotube dispersion may include carbon nanotubes, monofunctional acrylates, bifunctional di (meth) acrylates, and dispersants. Specifically, carbon nanotubes (carbon nanotubes) may be included in 0.1 to 5% by weight within the total weight of the carbon nanotube dispersion.

일 실시예에서 탄소나노튜브는 단일벽 탄소나노튜브, 다중벽 탄소나노튜브, 탄소나노섬유 및 이들의 혼합물로 이루어진 군에서 선택된 적어도 하나로 선택될 수 있으나, 이에 국한되지 않고 공지된 다른 종류의 탄소나노소재로 적용될 수도 있다.In one embodiment, the carbon nanotubes may be selected from at least one selected from the group consisting of single-walled carbon nanotubes, multi-walled carbon nanotubes, carbon nanofibers, and mixtures thereof, but is not limited thereto. It can also be applied as a material.

탄소나노튜브가 탄소나노튜브 분산액 내에서 0.1 중량% 미만일 경우에는 광경화 조성물의 경도 및 인장강도가 저하될 우려가 있고, 5 중량%를 초과할 경우에는 분산액 내에서 탄소나노튜브들 간에 작용하는 반데르발스 힘에 의해 다발로 응집되어 분산성이 떨어지고, 다른 첨가제들과의 혼합도가 불량하고, 광경화 조성물의 치수 안정성(dimensional stability)이 저하될 수 있으므로 전술한 범위 이내에서 적용되는 것이 바람직하다.If the carbon nanotubes are less than 0.1% by weight in the carbon nanotube dispersion, the hardness and tensile strength of the photocurable composition may be lowered. It is preferable to be applied within the above-mentioned range because it is agglomerated into bundles by the Derbals force, the dispersibility thereof is poor, the degree of mixing with other additives is poor, and the dimensional stability of the photocurable composition may be degraded. .

일 실시예에서 1관능성 아크릴레이트는 탄소나노튜브 분산액 내에서 점도를 낮게 조절함으로써 탄소나노튜브의 분산이 용이하게 이루어지도록 하며, 탄소나노튜브가 타 첨가제들과 잘 섞이도록 돕는다. 1관능성 아크릴레이트는 탄소나노튜브 분산액 내에서 40~50 중량%로 포함될 수 있다.In one embodiment, the monofunctional acrylate facilitates the dispersion of the carbon nanotubes by adjusting the viscosity in the carbon nanotube dispersion, and helps the carbon nanotubes to mix well with other additives. Monofunctional acrylate may be included in 40 to 50% by weight in the carbon nanotube dispersion.

만일, 1관능성 아크릴레이트가 40 중량% 미만일 경우에는 탄소나노튜브 분산액의 점도 조절이 까다로워 탄소나노튜브의 응집이 일어나고, 그로 인해 광경화 조성물의 기계적 물성 저하가 발생할 우려가 있으며, 50 중량%를 초과할 경우에는 상대적으로 탄소나노튜브와 분산제의 양이 감소하여 광경화 조성물의 기계적 물성을 일정한 수준 이상으로 유지하기에 제한적이므로 전술한 범위 이내에서 실시되는 것이 바람직하다.If the monofunctional acrylate is less than 40% by weight, it is difficult to control the viscosity of the carbon nanotube dispersion, so that the agglomeration of the carbon nanotubes occurs, which may cause a decrease in mechanical properties of the photocurable composition. If exceeded, the amount of carbon nanotubes and the dispersant is relatively reduced, and thus the mechanical properties of the photocurable composition are limited to maintain a certain level or more.

일 실시예에 따른 1관능성 아크릴레이트는 단관능성 하이드록시 아크릴레이트로 적용될 수 있으며, 보다 구체적으로는 하이드록시에틸 아크릴레이트, 하이드록시에틸 메타아크릴레이트, 하이드록시프로필 아크릴레이트, 하이드록시프로필 메타아크릴레이트, 하이드록시부틸 아크릴레이트, 하이드록시펜틸 아크릴레이트, 하이드록시헥실 아크릴레이트 및 카프로락톤 변성 하이드록시 아크릴레이트로 이루어진 군으로부터 하나 또는 그 이상이 선택될 수 있고, 그 중에서도 2-페녹시에틸 아크릴레이트(2-phenoxyethyl acrylate, 2-PHEA) 또는 비페닐 아크릴레이트(biphenyl acrylate)를 적용하는 것이 점도 조절면에서 바람직하다.Monofunctional acrylate according to one embodiment may be applied as monofunctional hydroxy acrylate, more specifically hydroxyethyl acrylate, hydroxyethyl methacrylate, hydroxypropyl acrylate, hydroxypropyl methacryl One or more may be selected from the group consisting of latex, hydroxybutyl acrylate, hydroxypentyl acrylate, hydroxyhexyl acrylate and caprolactone modified hydroxy acrylate, among which 2-phenoxyethyl acrylate It is preferable to apply (2-phenoxyethyl acrylate, 2-PHEA) or biphenyl acrylate in terms of viscosity control.

일 실시예에서 2관능성 디(메타)아크릴레이트는 1관능성 아크릴레이트와 함께 탄소나노튜브 분산액의 점도를 낮게 조절함으로써, 탄소나노튜브의 분산이 용이하게 이루어지도록 하며, 탄소나노튜브가 타 첨가제들과 잘 섞이도록 돕는다. In one embodiment, the bifunctional di (meth) acrylate together with the monofunctional acrylate controls the viscosity of the carbon nanotube dispersion to be low, so that the carbon nanotubes are easily dispersed, and the carbon nanotubes are other additives. Help them mix well with the fields.

2관능성 디(메타)아크릴레이트는 탄소나노튜브 분산액 내에서 40~50 중량%로 포함될 수 있다. 만일, 2관능성 디(메타)아크릴레이트가 40 중량% 미만일 경우에는 탄소나노튜브 분산액의 점도 조절이 까다로워 탄소나노튜브의 응집이 일어나고, 그로 인해 광경화 조성물의 기계적 물성 저하가 발생할 우려가 있으며, 50 중량%를 초과할 경우에는 상대적으로 탄소나노튜브와 분산제의 양이 감소하여 광경화 조성물의 기계적 물성을 일정한 수준 이상으로 유지하기에 제한적이므로 전술한 범위 이내에서 실시되는 것이 바람직하다.The bifunctional di (meth) acrylate may be included in the carbon nanotube dispersion in 40 to 50% by weight. If the bifunctional di (meth) acrylate is less than 40% by weight, it is difficult to control the viscosity of the carbon nanotube dispersion, so that the agglomeration of the carbon nanotube occurs, which may cause a decrease in mechanical properties of the photocurable composition. When the amount exceeds 50% by weight, the amount of carbon nanotubes and the dispersant is relatively reduced, so that the mechanical properties of the photocurable composition are limited to a certain level or more.

일 실시예에 따른 2관능성 디(메타)아크릴레이트는 에틸렌글라이콜 다이아크릴레이트(ethyleneglycol diacrylate), 에틸렌글라이콜 다이메타아크릴레이트 (ethyleneglycol dimethacrylate), 다이에텔렌글라이콜 다이아크릴레이트 (diethyleneglycol diacrylate), 에틸렌글라이콜 다이메타아크릴레이트(diethyleneglycol dimethacrylate), 트리에틸렌글라이콜 다이아크릴레이트 (triethyleneglycol diacrylate), 트리에틸렌클리아톨 다이메타아크릴레이트 (triethyleneglycol dimethacrylate), 네오펜틸글라이콜 다이아크릴레이트 (neopentylglycol diacrylate), 네오펜틸글라이콜 다이메타아크릴레이트 (neopentylglycol dimethacrylate), 폴리에틸렌글라이콜 200 다이아크릴레이트 (polyehtyleneglycol 200 diacrylate), 폴리에틸렌글라이콜 200 다이메타아크릴레이트(polyehtyleneglycol 200 dimethacrylate), 폴리에틸렌글라이콜 400 다이아크릴레이트(polyehtyleneglycol 400 diacrylate), 폴리에틸렌글라이콜 400 다이메타아크릴레이트(polyehtyleneglycol 400 dimethacrylate), 폴리에틸렌글라이콜 600 다이아크릴레이트(polyehtyleneglycol 600 diacrylate), 폴리에틸렌글라이콜 600 다이메타아크릴레이(polyehtyleneglycol 600 dimethacrylate), 폴리에틸렌글라이콜 1000 다이아크릴레이트(polyehtyleneglycol 1000 diacrylate), 폴리에틸렌글라이콜 1000 다이메타아크릴레이트(polyehtyleneglycol 1000 dimethacrylate), 폴리프로필렌글라이콜 400 다이아크릴레이트(polypropyleneglycol 400 diacrylate), 폴리프로필렌글라이콜 400 다이메타아크릴레이트(polypropyleneglycol 400 dimethacrylate), 1,3-부탄다이올 다이아크릴레이트(1,3-butanediol diacrylate), 1,3-부탄다이올 다이메타아크릴레이트(1,3-butanediol dimethacrylate), 1,4-부탄다이올 다이아크릴레이트(1,4-butanediol diacrylate), 1,4-부탄다이올 다이메타아크릴레이트(1,4-butanediol dimethacrylate), 1,6-헥산다이올 다이아크릴레이트 (1,6-hexanediol diacrylate), 1,6-헥산다이올 다이메타아크릴레이트 (1,6-hexanediol dimethacrylate), 1,9-노난다이올 다이아크릴레이트 (1,9-nonanediol diacrylate), 1,9-노난다이올 다이메타아크릴레이트 (1,9-nonanediol dimethacrylate), 1,10-데칸다이올 다이아크릴레이트 (1,10-decanediol diacrylate), 1,10-데칸다이올 다이메타아크릴레이트 (1,10-decandiol dimethacrylate), 폴리테트라메틸렌 글라이콜 다이아크릴레이트 (polytetramethyleneglycol diacrylate), 폴리테트라메틸렌 글라이콜 다이메타아크릴레이트(polytetramethyleneglycol dimethacrylate), 글리세린 다이아크릴레이트 (glycerin diacrylate), 글리세린 다이메타아크릴레이트 (glycerin dimethacrylate), 트리메틸로프로판 벤조에이트 아크릴레이트(trimethylopropane benzoate acrylate), 트리메틸로프로판 벤조에이크 메타아크릴레이트(trimethylopropane benzoate methacrylate), 다이메틸올 트리싸이클로 데칸 다이아크릴레이트 (dimethylol tricyclo decane diacrylate), 다이메틸올 트리싸이클로 데칸 다이메타아크릴레이트(dimethylol tricyclo decane dimethacrylate), 2,2-비스 (4-(아크릴록시에톡시)페닐) 프로판(2,2-bis(4-acryloxyethoxy) phenyl) propane), 2,2-비스(4-(메타아크릴록시에톡시)페닐) 프로판(2,2-bis(4-methacryloxyethoxy) phenyl) propane), 2,2-비스(4-(아크릴록시다이에톡시)페닐) 프로판 (2,2-bis(4-acryloxydiethoxy) phenyl) propane), 2,2-비스(4-(메타아크릴록시다이에톡시)페닐) 프로판 (2,2-bis(4-methacryloxydiethoxy) phenyl) propane), 2,2-비스(4-(아크릴록시폴리에톡시)페닐) 프로판(2,2-bis(4-acryloxypolyethoxy) phenyl) propane), 2,2-비스(4-(메타아크릴록시폴리에톡시)페닐) 프로판 (2,2-bis(4-methacryloxypolyethoxy) phenyl) propane), 에톡실레이티드 비스페놀 에이 다이아크릴레이트(ethoxylated bisphenol A diacrylate), 에톡실레이티드 비스페놀 에이 다이메타아크릴레이트(ethoxylated bisphenol A dimethacrylate), 에톡실레이티드 (2) 비스페놀 에이 다이아크릴레이트(ethoxylated (2) bisphenol A diacrylate), 에톡실레이티드 (2) 비스페놀 에이 다이메타아크릴레이트(ethoxylated (2) bisphenol A dimethacrylate), 에톡실레이티드 (3) 비스페놀 에이 다이아크릴레이트(ethoxylated (3) bisphenol A diacrylate), 에톡실레이티드 (3) 비스페놀 에이 다이메타아크릴레이트(ethoxylated (3) bisphenol A dimethacrylate), 에톡실레이티드 (4) 비스페놀 에이 다이아크릴레이트(ethoxylated (4) bisphenol A diacrylate), 에톡실레이티드 (4) 비스페놀 에이 다이메타아크릴레이트(ethoxylated (4) bisphenol A dimethacrylate), 에톡실레이티드 (8) 비스페놀 에이 다이아크릴레이트 (ethoxylated (8) bisphenol A diacrylate), 에톡실레이티드 (8) 비스페놀 에이 다이메타아크릴레이트(ethoxylated (8) bisphenol A dimethacrylate), 에톡실레이티드 (10) 비스페놀 에이 다이아크릴레이트(ethoxylated (10) bisphenol A diacrylate), 에톡실레이티드 (10) 비스페놀 에이 다이메타아크릴레이트(ethoxylated (10) bisphenol A dimethacrylate), 에톡실레이티드 (30) 비스페놀 에이 다이아크릴레이트(ethoxylated (30) bisphenol A diacrylate) 및 에톡실레이티드 (30) 비스페놀 에이 다이메타아크릴레이트(ethoxylated (30) bisphenol A dimethacrylate)로 이루어진 군으로부터 적어도 하나 이상이 선택될 수 있으나, 이에 국한되지 않는다.The bifunctional di (meth) acrylate according to one embodiment is ethyleneglycol diacrylate, ethyleneglycol dimethacrylate, ethyleneglycol dimethacrylate, diethylene glycol diacrylate (diethyleneglycol) diacrylate), ethylene glycol dimethacrylate, triethyleneglycol diacrylate, triethyleneglycol dimethacrylate, neopentylglycol diacrylate (neopentylglycol diacrylate), neopentylglycol dimethacrylate (neopentylglycol dimethacrylate), polyethylene glycol 200 diacrylate, polyethylene glycol 200 dimethacrylate (polyehtyleneglycol 200 dimethacrylate), polyethylene glycol Richol 400 Diacryle (Polyehtyleneglycol 400 diacrylate), polyethylene glycol 400 dimethacrylate (polyehtyleneglycol 400 dimethacrylate), polyethylene glycol 600 diacrylate, polyethylene glycol 600 dimethacrylate (polyehtyleneglycol 600 dimethacrylate) , Polyethyleneglycol 1000 diacrylate, polyethyleneglycol 1000 dimethacrylate, polypropyleneglycol 400 diacrylate, polypropyleneglycol Polypropyleneglycol 400 dimethacrylate, 1,3-butanediol diacrylate, 1,3-butanediol dimethacrylate, 1,3-butanediol dimethacrylate, 1,4-butanediol diacrylate, 1,4-butanediol diacrylate Acrylate (1,4-butanediol dimethacrylate), 1,6-hexanediol diacrylate (1,6-hexanediol diacrylate), 1,6-hexanediol dimethacrylate (1,6-hexanediol dimethacrylate), 1,9-nonanediol diacrylate, 1,9-nonanediol dimethacrylate, 1,10-decanediol diacrylate ( 1,10-decanediol diacrylate, 1,10-decandiol dimethacrylate, polytetramethyleneglycol diacrylate, polytetramethylene glycol dimethacrylate Acrylate (polytetramethyleneglycol dimethacrylate), glycerin diacrylate, glycerin dimethacrylate, trimethylopropane benzoate acrylate, trimethyllopropane ben Trimethylopropane benzoate methacrylate, dimethylol tricyclo decane diacrylate, dimethylol tricyclo decane dimethacrylate, 2,2-bis 4- (acryloxyethoxy) phenyl) propane (2,2-bis (4-acryloxyethoxy) phenyl) propane), 2,2-bis (4- (methacryloxyethoxy) phenyl) propane (2,2- bis (4-methacryloxyethoxy) phenyl) propane), 2,2-bis (4- (acryloxydiethoxy) phenyl) propane (2,2-bis (4-acryloxydiethoxy) phenyl) propane), 2,2-bis (4- (methacryloxydiethoxy) phenyl) propane (2,2-bis (4-methacryloxydiethoxy) phenyl) propane), 2,2-bis (4- (acryloxypolyethoxy) phenyl) propane (2 , 2-bis (4-acryloxypolyethoxy) phenyl) propane), 2,2-bis (4- (methacryloxypolyethoxy) phenyl) propane (2,2-bis (4-methacryloxypolyethoxy) phenyl) propane), ethoxy Siliti Ethoxylated bisphenol A diacrylate, ethoxylated bisphenol A dimethacrylate, ethoxylated (2) ethoxylated (2) bisphenol A diacrylate , Ethoxylated (2) bisphenol A dimethacrylate, ethoxylated (3) ethoxylated (3) bisphenol A diacrylate, ethoxylated (3) Ethoxylated (3) bisphenol A dimethacrylate, ethoxylated (4) Ethoxylated (4) bisphenol A diacrylate, ethoxylated (4) Bisphenol A dimethacrylate Ethoxylated (4) bisphenol A dimethacrylate, ethoxylated (8) bisphenol A diacrylate (ethoxylated (8) bisphenol A diacrylate), ethoxylated (8) bisphenol A dimethacrylate, ethoxylated (10) ethoxylated (10) bisphenol A diacrylate, ethoxyl (10) bisphenol A dimethacrylate, ethoxylated (30) bisphenol A diacrylate and ethoxylated (30) At least one or more may be selected from the group consisting of bisphenol A dimethacrylate (ethoxylated (30) bisphenol A dimethacrylate), but is not limited thereto.

일 실시예에서 분산제는 탄소나노튜브 분산액 내에서 탄소나노튜브를 균일하게 분산시켜 탄소나노튜브의 응집 현상을 방지한다. 분산제는 탄소나노튜브 분산액 내에서 0.1~5 중량%로 포함될 수 있다.In one embodiment, the dispersant uniformly disperses the carbon nanotubes in the carbon nanotube dispersion to prevent agglomeration of the carbon nanotubes. Dispersant may be included in 0.1 to 5% by weight in the carbon nanotube dispersion.

분산제가 0.1 중량% 미만일 경우에는 탄소나노튜브의 분산이 원활하게 이루어지지 못하여 타 첨가제와의 혼합도가 불량하고, 광경화 조성물의 강도 저하를 일으킬 우려가 있고, 5 중량%를 초과할 경우에는 초과하는 투입량에 비해 분산효과의 향상 정도가 미미하므로 전술한 범위 이내에서 적용되는 것이 바람직하다.If the dispersant is less than 0.1% by weight, the dispersion of carbon nanotubes may not be performed smoothly, so that the mixing with other additives may be poor, and the strength of the photocurable composition may be reduced. Since the degree of improvement of the dispersing effect is insignificant compared to the input amount to be applied, it is preferable to be applied within the aforementioned range.

일 실시예에 따른 분산제는 폴리옥시에틸렌 솔비탄 모노라우레이트, 폴리옥시에틸렌 솔비탄 모노팔미테이트, 폴리옥시에틸렌 솔비탄 모노스테아레이트 및 폴리옥시에틸렌 솔비탄 모노올레에이트로 이루어진 군으로부터 선택된 적어도 하나로 적용될 수 있다.Dispersant according to one embodiment is applied to at least one selected from the group consisting of polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate and polyoxyethylene sorbitan monooleate Can be.

한편, 일 실시예에서 다관능성 지방족 (메타)아크릴레이트 올리고머는 광 조사시에 광개시제나 광안정제와 함께 광경화 반응을 일으키며, 전체 광경화 조성물 내에서 25~50 중량%로 포함될 수 있다. Meanwhile, in one embodiment, the polyfunctional aliphatic (meth) acrylate oligomer may cause a photocuring reaction with a photoinitiator or a light stabilizer upon light irradiation, and may be included in an amount of 25 to 50% by weight in the entire photocurable composition.

만일, 다관능성 지방족 (메타)아크릴레이트가 25 중량% 미만일 경우에는 광경화 조성물의 경도, 인장강도 등의 기계적 물성이 저하될 우려가 있고, 50 중량%를 초과할 경우에는 점도가 높아져 작업성이 저하되고, 경화 도막의 가교 밀도가 지나치게 높아져서 도막이 부서지기 쉽고, 열이나 충격에 의하여 크랙이 발생할 수 있으므로 전술한 범위 이내에서 실시되는 것이 바람직하다.If the polyfunctional aliphatic (meth) acrylate is less than 25% by weight, mechanical properties such as hardness and tensile strength of the photocurable composition may be deteriorated. If the polyfunctional aliphatic (meth) acrylate is more than 50% by weight, the viscosity increases to increase workability. Since the crosslinking density of a cured coating film becomes high too much, a coating film becomes brittle, and a crack may arise by heat or an impact, it is preferable to carry out within the above-mentioned range.

일 실시예에 따른 다관능성 지방족 (메타)아크릴레이트는 에톡실레이티드 펜타에리트리톨 테트라아크릴레이트(ethoxylated pentaerythritol tetraacrylate), 에톡실레이티드 디펜타에리트리톨 펜타아크릴레이트(ethoxylated dipentaerythritol pentaacrylate) 및 에톡실레이티드 디펜타에리트리톨 헥사아크릴레이트(ethoxylated dipentaerythritol hexaacrylate)로 이루어진 군으로부터 선택된 적어도 하나로 적용될 수 있으나, 전술한 종류에 국한되지 않는다.According to one embodiment, the multifunctional aliphatic (meth) acrylate is ethoxylated pentaerythritol tetraacrylate, ethoxylated dipentaerythritol pentaacrylate, and ethoxylated. It may be applied to at least one selected from the group consisting of tide dipentaerythritol hexaacrylate (ethoxylated dipentaerythritol hexaacrylate), but is not limited to the above-mentioned kind.

일 실시예에서 지방족 우레탄 (메타)아크릴레이트 올리고머는 광 조사에 의한 광경화 반응(예컨대, 가교 반응)을 일으키며, 전체 광경화 조성물 내에서 25~50 중량%로 포함될 수 있다.In one embodiment, the aliphatic urethane (meth) acrylate oligomer causes a photocuring reaction (eg, a crosslinking reaction) by light irradiation, and may be included in an amount of 25 to 50% by weight in the entire photocurable composition.

만일, 지방족 우레탄 (메타)아크릴레이트 올리고머가 25 중량% 미만일 경우에는 광경화 조성물의 경화 수축률이 증가하여 광경화 조성물에 의해 제조된 3차원 물품의 기계적 물성이 저하되는 문제가 있고, 50 중량%를 초과할 경우에는 전체 광경화 조성물의 점도가 높아져 작업성이 저하되고, 광경화시 크랙이 발생할 우려가 있으므로 전술한 범위 이내에서 적용되는 것이 바람직하다.If the aliphatic urethane (meth) acrylate oligomer is less than 25% by weight, there is a problem in that the curing shrinkage of the photocurable composition is increased to lower the mechanical properties of the three-dimensional article manufactured by the photocurable composition. When it exceeds, since the viscosity of all the photocurable compositions becomes high and workability falls, there exists a possibility that a crack may arise at the time of photocuring, It is preferable to apply within the said range.

일 실시예에 따른 지방족 우레탄 (메타)아크릴레이트 올리고머는 2관능 내지 15관능 지방족 우레탄 (메타)아크릴레이트 중 적어도 하나로 적용될 수 있으나, 이에 한정되지 않으며 공지된 다른 종류의 지방족 우레탄 (메타)아크릴레이트도 사용 가능하다.The aliphatic urethane (meth) acrylate oligomer according to one embodiment may be applied to at least one of bifunctional to 15 functional aliphatic urethane (meth) acrylates, but is not limited thereto, and other types of aliphatic urethane (meth) acrylates are also known. Can be used

일 실시예에서 광안정제는 광경화 조성물의 열적 및 산화 안정성과 저장안정성을 향상시키기 위해 투입되며, 전체 광경화 조성물 내에서 0.1~0.5 중량%로 포함될 수 있다. 만일, 광안정제가 0.1 중량% 미만일 경우에는 광안정 효과가 미미하고, 0.5 중량%를 초과할 경우에는 경제성이 좋지 않으므로 전술한 범위 이내에서 적용되는 것이 바람직하다. In one embodiment, the light stabilizer is added to improve the thermal and oxidative stability and storage stability of the photocurable composition, it may be included in 0.1 to 0.5% by weight in the total photocurable composition. If the light stabilizer is less than 0.1% by weight, the light stabilizer effect is insignificant, and if the light stabilizer is more than 0.5% by weight, it is preferable that the light stabilizer is applied within the aforementioned range.

일 실시예에 따른 광안정제는 디에틸에탄올아민, 트리헥실아민, 힌더드 아민(hindered amine), 유기 인산염 및 힌더드 페놀로 이루어진 군 중에서 선택된 적어도 하나로 적용될 수 있으나, 전술한 종류 이외의 공지된 광안정제를 사용할 수도 있다.The light stabilizer according to one embodiment may be applied to at least one selected from the group consisting of diethylethanolamine, trihexylamine, hindered amine, organic phosphate, and hindered phenol, Tablets can also be used.

일 실시예에서 광개시제는 광원으로부터 에너지를 흡수하여 광경화 조성물의 광중합 반응을 시작시키며, 전체 광경화 조성물 내에서 0.1~5 중량%로 포함될 수 있다. 만일, 광개시제가 0.1 중량% 미만일 경우에는 광경화 조성물의 경화 속도가 늦어져 미경화가 발생함으로 인해 기계적 물성이 떨어지고, 5 중량%를 초과하면 과경화에 의해 크랙이 발생할 수 있으므로 전술한 범위 이내에서 적용되는 것이 바람직하다.In one embodiment, the photoinitiator absorbs energy from the light source to start the photopolymerization reaction of the photocurable composition, and may be included in an amount of 0.1 to 5% by weight in the total photocurable composition. If the photoinitiator is less than 0.1% by weight, the curing speed of the photocurable composition is slowed down and mechanical properties are lowered due to uncuring. If the photoinitiator exceeds 5% by weight, cracking may occur due to overcuring. It is desirable to be.

일 실시예에 따른 광개시제는 페닐포스핀옥사이드(Phenylphosphineoxide), 모노아크릴포스핀(MonoAcylphosphine), 알파-하이드록시케톤(-Hydroxyketone), 알파-아미노케톤(-Aminoketone), (오-에톡시카르복실)옥심(O-ethoxycarboxy)oxime), 아세토페논(acetophenone), 페닐 글리옥실릭(Phenyl glyoxylic), 벤질디메틸-케탈(Benzyldimethyl-ketal), 미힐러케톤(Michler's Ketone), 이미다졸(imidazole), 메틸리디네트리스디메틸아닐린(methylidynetrisdimethylaniline), 아이도늄(iodonium), 설포니움 티모네이트(sulfonium timonate), 설포니움포스포네이트(sulfoniumphosphonate), 메탈로센(Metallocene), 올리고머릭 알파-하이드로케톤(oligomeric -hydroxyketone), 티오크산톤(thioxanthone), 벤조일-설파이드(Benzoyl-sulphide), 벤조페논(Benzophenone), 아미노벤조에이트(Amino-benzoate) 및 히드록시시클로헥실페닐케톤(hydroxycyclohexylphenylketone)으로 이루어진 군 중에서 선택된 적어도 하나로 적용될 수 있으나, 이에 한정되지 않는다.Photoinitiator according to one embodiment phenylphosphine oxide (Phenylphosphineoxide), monoacrylphosphine (MonoAcylphosphine), alpha-hydroxyketone (-Hydroxyketone), alpha-aminoketone (-Aminoketone), (o-ethoxycarboxyl) O-ethoxycarboxyoxime, acetophenone, phenyl glyoxylic, benzyldimethyl-ketal, Michler's Ketone, imidazole, methylididi Methylidynetrisdimethylaniline, idonium, sulfonium timonate, sulfonium phosphonate, metallocene, oligomeric alpha-hydroketone group consisting of -hydroxyketone, thioxanthone, benzoyl-sulphide, benzophenone, aminobenzoate and hydroxycyclohexylphenylketone But it can be applied in at least one selected, and the like.

한편, 본 발명의 일 실시예에 따른 3차원 프린터용 광경화 조성물은 유색 안료, 레벨링제 및 산화방지제를 더 포함할 수 있다.On the other hand, the photocuring composition for a three-dimensional printer according to an embodiment of the present invention may further include a color pigment, leveling agent and antioxidant.

구체적으로, 일 실시예에서 유색 안료는 전체 광경화 조성물 내에서 0.05~3 중량%로 포함될 수 있다. 만일, 유색 안료가 0.05~3 중량% 범위를 벗어날 경우에는 조성물의 색소 조정이 용이하지 않으므로 전술한 범위 이내에서 실시되는 것이 바람직하다.Specifically, in one embodiment, the colored pigment may be included in 0.05 to 3% by weight in the total photocurable composition. If the colored pigment is out of the range of 0.05 to 3% by weight, it is not easy to adjust the pigment of the composition is preferably carried out within the above-mentioned range.

일 실시예에 따른 유색 안료로는 카본 블랙 안료, 금속산화물 안료 및 흑연 안료로 이루어진 군 중에서 선택된 적어도 1종 이상을 사용할 수 있고, 전술한 종류 이외의 공지된 안료를 사용하는 것도 가능하다.As the colored pigment according to an embodiment, at least one selected from the group consisting of carbon black pigments, metal oxide pigments, and graphite pigments may be used, and known pigments other than the above-described types may be used.

일 실시예에서 레벨링제는 광경화 조성물의 경화시 표면 균일도 향상을 위해 투입되며, 전체 광경화 조성물 내에서 0.1~3 중량%로 포함될 수 있다. 만일, 레벨링제가 0.1 중량% 미만일 경우에는 도막 표면의 평활도가 떨어지고, 5 중량%를 초과할 경우에는 제조단가가 상승하는 문제가 있으므로 전술한 범위 이내에서 적용되는 것이 바람직하다. 아울러, 일 실시예에 따른 레벨링제의 종류로는 Tego사의 RAD2100, RAD2200N, RAD2300 제품 등을 사용할 수 있으나, 이에 국한되지 않는다.In one embodiment, the leveling agent is added to improve the surface uniformity during curing of the photocurable composition, it may be included in 0.1 to 3% by weight in the total photocurable composition. If the leveling agent is less than 0.1% by weight, the smoothness of the surface of the coating film is lowered, and when the leveling agent exceeds 5% by weight, there is a problem that the manufacturing cost increases, so it is preferable to be applied within the aforementioned range. In addition, the leveling agent according to an embodiment may be used Tego RAD2100, RAD2200N, RAD2300 products, etc., but is not limited thereto.

일 실시예에서 산화방지제는 전체 광경화 조성물 내에서 0.1~5 중량%로 포함될 수 있다. 만일, 산화방지제가 0.1 중량% 미만일 경우에는 산화방지 효과가 미미하여 작업성이 떨어지고, 5 중량%를 초과하면 도막에 황변을 초래하거나 가교속도에 영향을 미칠 수 있으므로 전술한 범위 이내에서 실시되는 것이 바람직하다.In one embodiment, the antioxidant may be included in 0.1 to 5% by weight in the total photocurable composition. If the antioxidant is less than 0.1% by weight, the antioxidant effect is insignificant and the workability is inferior. When the antioxidant is more than 5% by weight, it may cause yellowing or affect the crosslinking rate of the coating film. Do.

일 실시예에 따른 산화방지제는 3,5-다이-터셔리-4-부틸하이드록시 톨루엔(3,5-di-tertiary-4-butylhydroxy toluene), 테트라키스[메틸렌(3,5-다이-터트-부틸-4-하이드록실페닐)프로피오네이트 메탄(Tetrakis[methylene(3,5-di-tert-butyl-4-hydroxyphenyl)propionate methane), 1,2-비스(3,5-다이-터트-부틸-4-하이드록시하이드키나몰리)하이드라진(1,2-Bis(3,5-di-tert-butyl-4-hydroxyhydrocinnamoly) hydrazine), 트리오다이에틸렌 비스[3-(3,5-다이-타틀-부틸-4-하이드록시페닐)프로피오네이트](Thiodiethylene bis[3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate]), 옥타데실-3-(3,5-다이-터트-부틸-4-하이드록시페닐)프로피오네이트(Octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate), 아이소트릴데실-3-(3,5-다이-터트-부틸-4-하이드록시페닐)프로피오네이트(Isotridecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate), N,N'-헥사메틸렌 비스(3,5-다이-부틸-4-하이드록시하이드로신나마이드)(N,N'-Hexamethylene bis(3,5-di-t-butyl-4-hydroxyhydrocinnamamide)), 벤젠에프로파노익 엑시드(Benzenepropanoic acid), 3,5-비스(1,1-다이메틸에틸)-4-하이드록시-C7-9-브랜치드 알킬 에스터(3,5-bis(1,1-dimethylethyl)-4-hydroxy-C7-9-branched alkylesters), 2,2'- 에티리데네비스(4,6-다이-터트-부틸페놀)(2,2'-Ethylidenebis(4,6-di-tert-butylphenol)), 1,3,5-트리에틸-2,4,6-트리(3,5-다이-부틸-4-하이드록시 벤질)벤젠(1,3,5-Triethyl-2,4,6-tris(3,5-di-tbutyl-4-hydroxy benzyl) benzene), 1,3,5-트리(2,6-다이메틸-3-하이드록시-4-터트-부틸벤질)아이소시아누레이트(1,3,5-Tris(2,6-dimethyl-3-hydroxy-4-tert-butylbenzyl) isocyanurate), 트리에틸렌 글리콜-비스-3-(3-터트-부틸-4하이드록시-5-메틸페닐)프로피오네이트(Triethylene glycol-bis-3-(3-tert-butyl-4-hydroxy-5-methylphenyl) propionate), 트리-(3,5-다이-터트부틸하이드록시벤질)아이소시아누레이트(Tris-(3,5-di-tertbutylhydroxybenzyl)isocyanurate) 및 4,4'-부티리데네비스(6-터트-부틸-3-메틸페놀)(4,4'-Butylidenebis(6-tert-butyl-3-methylphenol))로 이루어진 군 중에서 선택된 적어도 하나로 적용될 수 있으나, 이에 국한되지 않는다.Antioxidant according to one embodiment 3,5-di-tertiary-4-butylhydroxy toluene (3,5-di-tertiary-4-butylhydroxy toluene), tetrakis [methylene (3,5-di-tert Butyl-4-hydroxyphenyl) propionate methane (Tetrakis [3,5-di-tert-butyl-4-hydroxyphenyl) propionate methane), 1,2-bis (3,5-di-tert- Butyl-4-hydroxyhydrokinamoly) hydrazine (1,2-Bis (3,5-di-tert-butyl-4-hydroxyhydrocinnamoly) hydrazine), triodiethylene bis [3- (3,5-di-tartle -Butyl-4-hydroxyphenyl) propionate] (Thiodiethylene bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate]), octadecyl-3- (3,5-di- Tert-butyl-4-hydroxyphenyl) propionate (Octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate), isotryldecyl-3- (3,5-di-tert -Butyl-4-hydroxyphenyl) propionate (Isotridecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate), N, N'-hexamethylene bis (3,5-di- part 4-hydroxyhydrocinamide) (N, N'-Hexamethylene bis (3,5-di-t-butyl-4-hydroxyhydrocinnamamide)), Benzenepropanoic acid, 3,5-bis (1,1-dimethylethyl) -4-hydroxy-C7-9-branched alkyl ester (3,5-bis (1,1-dimethylethyl) -4-hydroxy-C7-9-branched alkylesters), 2 , 2'-ethyridenebis (4,6-di-tert-butylphenol) (2,2'-Ethylidenebis (4,6-di-tert-butylphenol)), 1,3,5-triethyl-2, 4,6-tri (3,5-di-butyl-4-hydroxy benzyl) benzene (1,3,5-Triethyl-2,4,6-tris (3,5-di-tbutyl-4-hydroxy benzyl ) benzene, 1,3,5-tri (2,6-dimethyl-3-hydroxy-4-tert-butylbenzyl) isocyanurate (1,3,5-Tris (2,6-dimethyl- 3-hydroxy-4-tert-butylbenzyl) isocyanurate), triethylene glycol-bis-3- (3-tert-butyl-4hydroxy-5-methylphenyl) propionate (Triethylene glycol-bis-3- (3- tert-butyl-4-hydroxy-5-methylphenyl) propionate), tri- (3,5-di-tertbutylhydroxybenzyl) isocy Tris- (3,5-di-tertbutylhydroxybenzyl) isocyanurate and 4,4'-butyridenebis (6-tert-butyl-3-methylphenol) (4,4'-Butylidenebis (6-tert-butyl -3-methylphenol)) may be applied to at least one selected from the group consisting of, but is not limited to.

이하에서는 구체적인 실시예를 통해 본 발명을 보다 상세하게 설명한다. 하기 실시예들은 본 발명의 이해를 돕기 위한 하나의 예시에 불과하므로 본 발명의 권리범위가 이에 제한되거나 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to specific examples. The following examples are only examples to help the understanding of the present invention, and thus the scope of the present invention is not limited or limited thereto.

1. 탄소나노튜브 분산액의 제조1. Preparation of Carbon Nanotube Dispersion

하기와 같은 방법으로 실시예 1 및 2, 비교예 1 및 2의 탄소나노튜브 분산액을 제조하였고, 분산액에 포함된 각 성분별 함량은 하기 표1에 기재된 바와 같다.Carbon nanotube dispersions of Examples 1 and 2 and Comparative Examples 1 and 2 were prepared in the following manner, and the content of each component included in the dispersion was as shown in Table 1 below.

먼저, 탄소나노튜브(CNT, MWCNT MR99, Carbon Nano-material Technology Co., Ltd.)를 60분간 세척하여 탄소나노튜브의 표면의 불순물을 제거한 후, 건조기 내에 투입하여 12시간 동안 60℃의 온도로 건조시켰다. 그 후, 완전 건조된 탄소나노튜브는 1관능성 아크릴레이트 용액(Miramer M1192, Miwon Specialty Chemical Co.,Ltd), 2관능성 디아크릴레이트 용액(Miramer M200, Miwon Specialty Chemical Co.,Ltd), 분산제(KAO社의 tween 20)와 혼합하였다. 이 혼합물을 균질기(IKA社의 homogenizer)에 투입하고 균질기의 회전속도를 4000rpm으로 설정하여 1시간 동안 강하게 분산시켰다. 그 후, 초음파 주파수가 40kHz로 설정된 초음파 장치(탁상형 초음파 세정기 4020, 주식회사 고도기연)를 이용하여 2시간 동안 혼합물을 초음파 처리함으로써 탄소나노튜브를 물리적으로 분산시켜 탄소나노튜브 분산액을 제조하였다. First, the carbon nanotubes (CNT, MWCNT MR99, Carbon Nano-material Technology Co., Ltd.) are washed for 60 minutes to remove impurities from the surface of the carbon nanotubes, and then put into a dryer at a temperature of 60 ° C. for 12 hours. Dried. Subsequently, the completely dried carbon nanotubes were monofunctional acrylate solution (Miramer M1192, Miwon Specialty Chemical Co., Ltd), difunctional diacrylate solution (Miramer M200, Miwon Specialty Chemical Co., Ltd), dispersant (Tween 20 from KAO). The mixture was introduced into a homogenizer (IKA homogenizer) and the dispersion was strongly dispersed for 1 hour by setting the rotation speed of the homogenizer to 4000 rpm. Thereafter, the carbon nanotubes were physically dispersed by ultrasonically treating the mixture for 2 hours using an ultrasonic device (desktop type ultrasonic cleaner 4020, Co., Ltd.) having an ultrasonic frequency set to 40 kHz to prepare a carbon nanotube dispersion.

단위:gUnit: g 실시예 1Example 1 실시예 2Example 2 비교예 1Comparative Example 1 비교예 2Comparative Example 2 탄소나노튜브Carbon nanotubes 55 22 0.050.05 1010 분산제Dispersant 55 22 0.050.05 1010 1관능성 아크릴레이트 Monofunctional acrylate 4545 4848 51.551.5 4040 2관능성 디아크릴레이트Difunctional diacrylate 4545 4848 48.448.4 4040

2. 광경화 조성물의 제조2. Preparation of Photocuring Composition

하기와 같은 방법으로 제조예 1 내지 4의 광경화 조성물을 제조하였고, 광경화 조성물 내에 각 성분별 함량은 하기 표2에 기재된 바와 같다.The photocurable compositions of Preparation Examples 1 to 4 were prepared by the following method, and the content of each component in the photocurable composition was as described in Table 2 below.

먼저, 다관능성 지방족 아크릴레이트, 지방족 우레탄 아크릴레이트 올리고머를 하기 표2의 함량에 따라 혼합하고, 1시간 동안 기계적으로 교반하였다. 그 후, 실시예 1, 실시예 2, 비교예 1, 비교예 2의 각 탄소나노튜브 분산액을 표2의 함량대로 교반물에 투입하고 2시간 동안 균질기(회전속도: 4000rpm)를 이용하여 혼합한 후, 초음파 장치(40kHz)로 2시간 동안 분산 처리를 하여 균일하게 분산시켰다. 그 뒤에 진공 탈포기 내에서 저속 교반하면서 30분간 탈포시켜 혼합시 발생된 기포를 제거하였다.First, polyfunctional aliphatic acrylates and aliphatic urethane acrylate oligomers were mixed according to the contents of Table 2 below, and mechanically stirred for 1 hour. Thereafter, each of the carbon nanotube dispersions of Examples 1, 2, Comparative Example 1, and Comparative Example 2 was added to the stirred solution in the amount shown in Table 2, and mixed using a homogenizer (rotational speed: 4000 rpm) for 2 hours. After that, it was uniformly dispersed by dispersion treatment for 2 hours with an ultrasonic device (40 kHz). Thereafter, the mixture was degassed for 30 minutes with low speed stirring in a vacuum deaerator to remove bubbles generated during mixing.

탈포된 예비 광경화 조성물에 표2의 함량대로 광개시제 및 광안정제를 투입하되, 균질기를 이용하여 교반하면서 투입하여 광경화 조성물을 완성하였다. The photoinitiator and the light stabilizer were added to the defoamed preliminary photocurable composition in the amount shown in Table 2, and the mixture was added with stirring using a homogenizer to complete the photocurable composition.

단위:gUnit: g 제조예 1Preparation Example 1 제조예 2Preparation Example 2 제조예 3Preparation Example 3 제조예 4Preparation Example 4 1탄소나노튜브 분산액 1 Carbon Nanotube Dispersion 1919 1919 1919 1919 2다관능성 지방족 아크릴레이트 2 polyfunctional aliphatic acrylates 5050 5050 5050 5050 3지방족 우레탄 아크릴레이트 올리고머 3 aliphatic urethane acrylate oligomer 3030 3030 3030 3030 4광안정제 4 Light Stabilizer 0.50.5 0.50.5 0.50.5 0.50.5 5광개시제 5 Photoinitiators 0.50.5 0.50.5 0.50.5 0.50.5 주)
1: 탄소나노튜브 분산액 - 제조예 1은 실시예 1, 제조예 2는 실시예 2, 제조예 3은 비교예 1, 제조예 4는 비교예 2의 탄소나노튜브 분산액을 사용함
2: 다관능성 지방족 아크릴레이트 - Miramer M4004, Miwon Specialty Chemical Co.,Ltd
3: 지방족 우레탄 아크릴레이트 올리고머 - Miramer PU622, Miwon Specialty Chemical Co.,Ltd
4: 광안정제 - benetex OB+, Mayzo社
5: 광개시제 - Irgacure 819, ciba社
week)
1: Carbon nanotube dispersion-Preparation Example 1 is Example 1, Preparation Example 2 is Example 2, Preparation Example 3 is Comparative Example 1, Preparation Example 4 uses the carbon nanotube dispersion of Comparative Example 2
2: Multifunctional Aliphatic Acrylate-Miramer M4004, Miwon Specialty Chemical Co., Ltd
3: Aliphatic urethane acrylate oligomer-Miramer PU622, Miwon Specialty Chemical Co., Ltd
4: Light Stabilizer-benetex OB +, Mayzo
5: Photoinitiators-Irgacure 819, ciba

3. 광경화 조성물의 기계적 물성 평가 실험3. Experimental Evaluation of Mechanical Properties of Photocurable Composition

제조예 1 내지 4에서 각각 제조된 광경화 조성물들을 이용하여 3D 인쇄물을 제작한 후에 제작물의 강도를 측정하였다. 3D 인쇄물의 제작시, 3차원 프린터로는 자체 제작한 DLP 방식의 프린터와 SLA 방식의 프린터를 사용하였다. 제작물의 기계적 물성 측정 방법 및 결과는 하기 표3에 기재된 바와 같다.After preparing the 3D printed matter using the photocuring compositions prepared in Preparation Examples 1 to 4, the strength of the manufactured product was measured. In the production of 3D printed materials, 3D printers using self-made DLP type printers and SLA type printers were used. Methods and results of measuring mechanical properties of the fabrics are as shown in Table 3 below.

물성Properties 시험규격Test specification 제조예 1Preparation Example 1 제조예 2Preparation Example 2 제조예 3Preparation Example 3 제조예 4Preparation Example 4 로크웰 경도Rockwell hardness ASTM D785ASTM D785 48.248.2 43.743.7 36.536.5 34.334.3 인장강도(MPa)Tensile Strength (MPa) ASTM D638ASTM D638 41.641.6 38.238.2 32.432.4 31.831.8

기계적 물성 평가 실험 결과, 탄소나노튜브, 분산제, 1관능성 아크릴레이트 및 2관능성 디아크릴레이트의 함량이 전술한 함량 범위 내에서 설정된 제조예 1과 제조예 2의 광경화 조성물은 로크웰 경도와 인장강도가 제조예 3 및 4에 비해 우수한 것을 확인할 수 있다.As a result of the evaluation of mechanical properties, the photocurable compositions of Preparation Examples 1 and 2, in which the contents of carbon nanotubes, dispersant, monofunctional acrylate, and difunctional diacrylate were set within the above-mentioned content ranges, showed Rockwell hardness and tensile strength. It can be seen that the strength is superior to Preparation Examples 3 and 4.

아울러, 제조예 3과 제조예 4의 물성 평가 결과를 통해서 탄소나노튜브 분산액에 포함된 각 성분의 함량이 성분별 투입량 범위를 초과하거나 미만일 경우에는 탄소나노튜브의 응집이 발생하고 점도 조절이 용이하지 않아 작업성이 저하되며, 광경화 반응이 불량하여 광경화 조성물로 제조한 3D 제작물의 기계적 물성이 떨어지는 것을 알 수 있다.In addition, when the content of each component included in the carbon nanotube dispersion is greater than or less than the input range of each component through the evaluation results of the physical properties of Preparation Example 3 and Preparation Example 4, aggregation of carbon nanotubes occurs and viscosity control is not easy. As a result, the workability is lowered, and the photocuring reaction is poor, indicating that the mechanical properties of the 3D fabricated product made from the photocurable composition are poor.

결국, 본 발명은 탄소나노튜브가 균일하게 분산된 탄소나노튜브 분산액을 포함하므로 조성물의 광경화시 강도가 높고, 수축율이 낮아 치수 안정성이 높은 장점이 있으며, 내구성이 높아 시제품을 위한 목업이나 모형뿐만 아니라 실제 사용 용도로도 제조할 수 있다. As a result, the present invention includes a carbon nanotube dispersion in which carbon nanotubes are uniformly dispersed, and thus has high strength, high shrinkage and low dimensional stability when photocuring the composition, and high durability. It can also be manufactured for practical use.

즉, 강철보다 인장강도가 8배나 높고 구리보다 열전도성이 5배가 크고, 전기적, 기계적, 열적 성질이 기존의 다른 첨가제들에 비해 월등하게 발휘될 수 있는 잠재성을 가지고 있는 탄소나노튜브를 이용하여 탄소나노튜브 분산액을 제조하고, 이를 광경화 수지에 도입함으로써, 높은 기계적 강도와 치수 안정성 및 내구성이 탁월한 3차원 프린터용 광경화 수지 조성물의 제조가 가능하다.That is, by using carbon nanotubes that have the potential to be 8 times higher in tensile strength than steel and 5 times higher in thermal conductivity than copper, and have the potential to exhibit excellent electrical, mechanical and thermal properties compared to other additives. By preparing a carbon nanotube dispersion and introducing it into a photocurable resin, it is possible to prepare a photocurable resin composition for a three-dimensional printer excellent in high mechanical strength, dimensional stability, and durability.

특히, 탄소나노튜브는 강한 반데르발스 힘으로 인하여 다발로 응집되는 경향이 강하므로 물 또는 기타 용매에 대한 용해성이 매우 낮고, 탄소나노튜브가 응집되면 탄소나노튜브의 고유한 특성인 기계적 물성을 충분히 발휘하기가 제한되지만, 본 발명의 일 실시예에 따른 탄소나노튜브 분산액은 분산액 내에 존재하는 탄소나노튜브들이 서로 응집되지 않도록 점도를 낮은 수준으로 조절하므로 탄소나노튜브의 기계적 특성은 손상시키지 않으면서 분산액 내에서 탄소나노튜브를 고농도로 용해시킬 수 있다.In particular, carbon nanotubes have a strong tendency to agglomerate into bundles due to strong van der Waals forces, so their solubility in water or other solvents is very low, and when carbon nanotubes are agglomerated, the mechanical properties that are inherent to carbon nanotubes are sufficiently Although limited to exhibit, the carbon nanotube dispersion according to an embodiment of the present invention is adjusted to a low level so that the carbon nanotubes present in the dispersion do not aggregate with each other, so that the dispersion without impairing the mechanical properties of the carbon nanotubes. It can dissolve the carbon nanotubes in high concentration.

정리하면, 본 발명은 탄소나노튜브 자체의 기계적 물성을 손상시키지 않으면서도 탄소나노튜브를 용액 내에서 잘 분산시킬 수 있다. 즉, 탄소나노튜브 분산액 내의 1관능성 아크릴레이트와 2관능성 디(메타)아크릴레이트가 분산액의 점도를 조절하여 탄소나노튜브 자체의 특성을 손상시키지 않고, 탄소나노튜브가 균일하게 분산되게 하므로 탄소나노튜브의 강도를 우수한 수준으로 유지할 수 있다.In summary, the present invention can disperse carbon nanotubes well in a solution without impairing the mechanical properties of the carbon nanotubes themselves. That is, the monofunctional acrylate and the difunctional di (meth) acrylate in the carbon nanotube dispersion control the viscosity of the dispersion so that the carbon nanotubes are uniformly dispersed without impairing the properties of the carbon nanotubes themselves. The strength of the nanotubes can be maintained at an excellent level.

또한, 본 발명은 화학적인 공정을 통해 탄소나노튜브의 표면에 특정한 작용기를 개질시키는 것이 아니므로 표면 개질 과정에서 탄소나노튜브의 표면이 손상되어 기계적 물성이 저하되는 것을 방지하는 효과가 있다.In addition, since the present invention does not modify specific functional groups on the surface of the carbon nanotubes through a chemical process, the surface of the carbon nanotubes is damaged during the surface modification process, thereby preventing the mechanical properties from deteriorating.

아울러, 본 발명을 이용하여 SLA 또는 DLP 방식의 3D 프린트 인쇄물을 제조할 경우, 원활한 작업성을 나타내고, 결과 인쇄물도 우수한 물리적 특성을 가지므로 본 발명의 일 실시예에 따른 광경화 조성물은 가정용 및 상업적으로 사용되는 3D 프린터용 재료로서 유용하게 사용될 수 있다. 즉, 본 발명의 실시예들에 따른 조성물은 SLA 및 DLP 방식 중 적어도 하나를 사용하는 3차원 프린터의 광경화성 재료로서의 사용이 가능하다. In addition, when manufacturing the 3D printed SLA or DLP printing method using the present invention, it shows a smooth workability, and the resulting printed material also has excellent physical properties, so that the photocurable composition according to an embodiment of the present invention is used for home and commercial It can be usefully used as a material for 3D printer used as. That is, the composition according to the embodiments of the present invention can be used as a photocurable material of the three-dimensional printer using at least one of the SLA and DLP scheme.

위에서 설명한 바와 같이 본 발명에 대한 구체적인 설명은 첨부된 표를 참조한 실시예에 의해서 이루어졌지만, 상술한 실시예는 본 발명의 바람직한 예를 들어 설명하였을 뿐이기 때문에, 본 발명이 상기의 실시예에만 국한되는 것으로 이해되어져서는 아니 되며, 본 발명의 권리범위는 후술하는 청구범위 및 그 균등개념으로 이해되어져야 할 것이다.As described above, the detailed description of the present invention has been made by the embodiments with reference to the attached table. However, since the above-described embodiments have only been described by way of example, the present invention is limited to the above embodiments. It should not be understood that the scope of the present invention is to be understood by the claims and equivalent concepts described below.

Claims (3)

탄소나노튜브 분산액 0.01~20 중량%;
다관능성 지방족 (메타)아크릴레이트 25~50 중량%;
지방족 우레탄 (메타)아크릴레이트 올리고머 25~50 중량%;
광안정제 0.1~0.5 중량%; 및
광개시제 0.1~5 중량%;를 포함하고,
상기 탄소나노튜브 분산액은
탄소나노튜브 0.1~5 중량%;
1관능성 아크릴레이트 40~50 중량%;
2관능성 디(메타)아크릴레이트 40~50 중량%; 및
분산제 0.1~5 중량%;를 포함하는 것을 특징으로 하는
3차원 프린터용 광경화 조성물.
0.01-20% by weight of carbon nanotube dispersion;
25-50% by weight of polyfunctional aliphatic (meth) acrylates;
25-50 wt% aliphatic urethane (meth) acrylate oligomers;
0.1 to 0.5 wt% light stabilizer; And
0.1 to 5% by weight of photoinitiator;
The carbon nanotube dispersion is
0.1-5% by weight of carbon nanotubes;
40-50% by weight of monofunctional acrylate;
40-50% by weight of bifunctional di (meth) acrylate; And
0.1 to 5% by weight of dispersant; characterized in that it comprises
Photocuring composition for a three-dimensional printer.
삭제delete 제1항에 있어서,
상기 3차원 프린터용 광경화 조성물은
유색 안료 0.05~3 중량%;
레벨링제 0.1~3 중량%; 및
산화방지제 0.1~5 중량%;를 더 포함하는 것을 특징으로 하는
3차원 프린터용 광경화 조성물.
The method of claim 1,
The 3D printer photocurable composition
0.05-3% by weight of colored pigments;
0.1 to 3 wt% leveling agent; And
0.1 to 5% by weight of antioxidant; characterized in that it further comprises
Photocuring composition for a three-dimensional printer.
KR1020170104564A 2017-08-18 2017-08-18 Photo-curable composition for three dimensional printer KR102041235B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170104564A KR102041235B1 (en) 2017-08-18 2017-08-18 Photo-curable composition for three dimensional printer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170104564A KR102041235B1 (en) 2017-08-18 2017-08-18 Photo-curable composition for three dimensional printer

Publications (2)

Publication Number Publication Date
KR20190019507A KR20190019507A (en) 2019-02-27
KR102041235B1 true KR102041235B1 (en) 2019-11-06

Family

ID=65560874

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170104564A KR102041235B1 (en) 2017-08-18 2017-08-18 Photo-curable composition for three dimensional printer

Country Status (1)

Country Link
KR (1) KR102041235B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022081271A1 (en) * 2020-10-13 2022-04-21 Cabot Corporation Conductive photo-curable compositions for additive manufacturing

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102536153B1 (en) * 2020-03-18 2023-05-26 한국과학기술연구원 Conductive composite resin composition for photocurable three-dimensional printing, preparation method thereof and Photocurable three-dimensional printed material using the same
CN111732694A (en) * 2020-07-02 2020-10-02 深圳市布尔三维技术有限公司 Functional 3D printing photosensitive resin and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101136776B1 (en) * 2009-09-21 2012-04-20 (주)월드튜브 Manufacturing method of nanocarbon dispersion solution, nanocarbon dispersion solution, evaluation method of nanocarbon, manufacturing method of nanocarbon material using the same using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2986654B1 (en) * 2013-04-18 2020-03-18 Dentca, Inc. Photo-curable resin compositions and method of using the same in three-dimensional printing for manufacturing artificial teeth and denture base

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101136776B1 (en) * 2009-09-21 2012-04-20 (주)월드튜브 Manufacturing method of nanocarbon dispersion solution, nanocarbon dispersion solution, evaluation method of nanocarbon, manufacturing method of nanocarbon material using the same using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022081271A1 (en) * 2020-10-13 2022-04-21 Cabot Corporation Conductive photo-curable compositions for additive manufacturing

Also Published As

Publication number Publication date
KR20190019507A (en) 2019-02-27

Similar Documents

Publication Publication Date Title
US11905387B2 (en) Functionalized graphene oxide curable formulations
KR102041235B1 (en) Photo-curable composition for three dimensional printer
KR101838520B1 (en) Curable resin composition for 3D printing with good developing properties and contraction percentage comprising cycloaliphatic epoxy acrylic compound having cation curing and UV curing mechanizm
KR102048770B1 (en) Photo-curable resin ink composition for 3D printing with heat resisting and high mechanical property comprising dicyclopentadien epoxy acrylate
KR20170010299A (en) Low viscosity oligomer, and resin composition for stereolithography apparatus 3D printing comprising the same
JP2018016688A (en) Resin for active energy ray-curable ink, active energy ray-curable ink composition, active energy ray-curable ink and cured film
US20220111582A1 (en) Conductive photo-curable compositions for additive manufacturing
CN103319923B (en) Actinic-radiation curable composition and application film
KR101980037B1 (en) Photocurable resin composition for Stereolithography 3D printing
Chiu et al. Mechanical and thermal properties of photopolymer/CB (carbon black) nanocomposite for rapid prototyping
CA3058543A1 (en) Radiation-curable resin composition and production method thereof
TW201311835A (en) Dispersion composition for hard coat, coating composition for hard coat and hard coated substance
TW202000780A (en) Curable compositions based on multistage polymers
US20220380553A1 (en) Crosslinkable polysiloxane
WO2005056686A1 (en) Radiation curing conductive composition
JP2021530380A (en) Articles prepared with curable compositions based on polymerizable ionic species
JP2004001459A (en) Thermoplastic polymer filling paste
Pavlacky et al. Polymer/clay nanocomposite plasticization: elucidating the influence of quaternary alkylammonium organic modifiers
US20100256254A1 (en) Jettable ink composition
KR101403067B1 (en) Ultraviolet-curable coating material composition and hard coating film by employing the same
JP2015010169A (en) Resin composition for optical three-dimensional molding, and three-dimensional molded article
JP2005089657A (en) Radiation-curable composition and its use
JP6079023B2 (en) Active energy ray-curable composition and method for producing film
KR20160079296A (en) Photocurable pigment dispersion liquid and photocurable ink composition using the same
Lee et al. Physical properties of UV-cured epoxy nanocomposite films

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant