KR102028480B1 - High Efficiency and Low Cost Multi-Output Converter - Google Patents

High Efficiency and Low Cost Multi-Output Converter Download PDF

Info

Publication number
KR102028480B1
KR102028480B1 KR1020180000892A KR20180000892A KR102028480B1 KR 102028480 B1 KR102028480 B1 KR 102028480B1 KR 1020180000892 A KR1020180000892 A KR 1020180000892A KR 20180000892 A KR20180000892 A KR 20180000892A KR 102028480 B1 KR102028480 B1 KR 102028480B1
Authority
KR
South Korea
Prior art keywords
output
transformer
circuit
voltage
parallel
Prior art date
Application number
KR1020180000892A
Other languages
Korean (ko)
Other versions
KR20190083226A (en
Inventor
김재국
이범석
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020180000892A priority Critical patent/KR102028480B1/en
Publication of KR20190083226A publication Critical patent/KR20190083226A/en
Application granted granted Critical
Publication of KR102028480B1 publication Critical patent/KR102028480B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/337Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration
    • H02M3/3372Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration of the parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • Y02T10/7216
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

본 발명은 고효율 저가격 다중 출력 컨버터에 관한 것으로서, 변압기의 2차측 출력 회로를 병렬로 구성하여 출력 인덕터의 수를 기존 2개에서 1개로 줄이고, 또한 인덕터에 흐르는 RMS 전류를 기존에 비해 줄일 수 있는 효과를 얻을 수 있다.The present invention relates to a high-efficiency, low-cost, multi-output converter, by configuring the secondary output circuit of the transformer in parallel to reduce the number of output inductors from two to one, and also to reduce the RMS current flowing in the inductor compared to the conventional one. Can be obtained.

Description

고효율 저가격 다중 출력 컨버터{High Efficiency and Low Cost Multi-Output Converter}High Efficiency and Low Cost Multi-Output Converter

본 발명은 고효율 저가격 다중 출력 컨버터에 관한 것으로서, 변압기의 2차측의 각 출력을 병렬 회로로 구성하여 다중 전압을 동시에 출력하는 더블 엔디드 액티브 클램프 포워드 컨버터(double-ended active clamp forward converter)에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high efficiency, low cost multiple output converter, and more particularly, to a double-ended active clamp forward converter configured to output multiple voltages simultaneously by configuring each output of a secondary side of a transformer in a parallel circuit.

최근 차량 안전과 자율주행 기술의 발전으로 차량에서 소모하는 전력은 해마다 증가하고 있다. 또한 CO2 배출 규제로 연비 개선을 위한 Mild hybrid 차량 개발이 진행 중이다. 커져가는 전력공급을 위해 차량 전기시스템에 대한 관심이 커져가고 있으며 관련 업계에서는 48V 전기 시스템을 대안으로 제시하고 있다. 이에 기존 14V 차량 납 배터리와 새로운 48V 차량용 리튬이온 배터리를 동시에 충전하는 DC/DC converter가 주목받고 있다. 이에 따라, LDC 출력 전압 14V와 새로운 출력전압 48V를 모두 얻기 위해 14V 출력과 48V를 직렬로 연결한 컨버터를 많이 사용하고 있다.Recently, with the development of vehicle safety and autonomous driving technology, the power consumed by the vehicle is increasing year by year. In addition, Mild hybrid vehicles are under development to improve fuel efficiency. There is a growing interest in vehicle electrical systems for increasing power supply, and the industry offers 48V electrical systems as an alternative. Attention is being paid to DC / DC converters that simultaneously charge existing 14V vehicle lead-acid batteries and new 48V vehicle lithium-ion batteries. As a result, many converters in which a 14V output and 48V are connected in series are used to obtain both an LDC output voltage of 14V and a new output voltage of 48V.

도 1은 14V와 48V 전압을 출력하는 기존 컨버터의 회로이다. 도 1에 도시된 바와 같이, 회로의 14V 출력 구성은 변압기와 연결된 정류 다이오드(rectifier diode)와 변압기의 센터탭(centertap) 양단에 출력 인덕터(Lo1)와 출력 커패시터 (Co1)가 연결되고, 이에 부하(Ro1)가 병렬로 연결되어 있다. 또한, 48V 출력 구성은 첫번째 출력 커패시터(Co1) 양단에 출력 인덕터(Lo2)와 출력 커패시터(Co2)가 연결되고, 이에 부하(Ro2)가 병렬로 연결되어 있다. 즉, 기존 컨버터 회로의 첫번째 14V 출력과 두번째 48V 출력은 2차측 변압기를 기준으로 직렬로 연결되어, 출력 인덕터(Lo1)에는 48V 부하 전류까지 흐르게 되고 이로 인해 인덕터(Lo1)의 부담이 가중되는 문제점이 있다.1 is a circuit of a conventional converter that outputs 14V and 48V voltages. As shown in FIG. 1, the 14V output configuration of the circuit includes a rectifier diode connected to a transformer and an output inductor Lo1 and an output capacitor Co1 connected to a center tap of the transformer and a load thereof. (Ro1) is connected in parallel. In addition, in the 48V output configuration, the output inductor Lo2 and the output capacitor Co2 are connected to both ends of the first output capacitor Co1, and the load Ro2 is connected in parallel. In other words, the first 14V output and the second 48V output of the conventional converter circuit are connected in series with the secondary transformer, so that the output inductor Lo1 flows up to 48V load current, thereby increasing the burden on the inductor Lo1. have.

대한민국 등록특허공보 10-0967031(등록일자 2010년06월22일)Republic of Korea Patent Publication 10-0967031 (Registration date June 22, 2010)

본 발명은 상기 문제점을 해결하기 위한 것으로서, 변압기의 2차측 출력 회로를 병렬로 구성하여 출력 인덕터의 수를 기존 2개에서 1개로 줄이고, 또한 인덕터에 흐르는 RMS 전류를 기존에 비해 줄일 수 있는 고효율 저가격 다중 출력 컨버터를 제공하는 데 그 목적이 있는 것이다.The present invention is to solve the above problems, by configuring the secondary output circuit of the transformer in parallel to reduce the number of output inductors from the existing two to one, and also to reduce the RMS current flowing in the inductor compared to the existing high efficiency The purpose is to provide multiple output converters.

상기 목적을 달성하기 위한 본 발명에 따른 고효율 저가격 다중 출력 컨버터는, 다중 출력 컨버터로서, 코일의 권선비에 따라 입력 전압에 대해 변환된 출력 전압을 제공하는 변압기(10); 복수의 스위치(S1, S2)를 포함하고, 상기 변압기(10)의 1차측 코일에 접속되는 변압기의 1차측 회로(20); 및 서로 병렬로 연결된 제 1 출력 회로(32)와 제 2 출력 회로(34)를 포함하고, 상기 변압기(10)의 2차측 코일에 접속되는 변압기의 2차측 회로(30);를 포함한다.According to an aspect of the present invention, there is provided a high-efficiency low-cost multi-output converter comprising: a transformer (10) for providing a converted output voltage with respect to an input voltage according to a turns ratio of a coil; A primary side circuit (20) of the transformer including a plurality of switches (S1, S2) and connected to the primary side coil of the transformer (10); And a secondary side circuit 30 of the transformer including a first output circuit 32 and a second output circuit 34 connected in parallel with each other, and connected to the secondary coil of the transformer 10.

상기 제 1 출력 회로(32)는, 상기 변압기(10) 센터탭과 상기 변압기(10) 출력에 연결된 정류 다이오드(D1, D2) 양단에 출력 인덕터(Lo1)와 제 1 출력 커패시터(Co1)가 연결되고, 이에 제 1 부하(Ro1)가 병렬로 연결되어 제 1 출력 전압(Vo1)을 출력한다.The first output circuit 32 has an output inductor Lo1 and a first output capacitor Co1 connected to the center tap of the transformer 10 and the rectifier diodes D1 and D2 connected to the output of the transformer 10. As a result, the first load Ro1 is connected in parallel to output the first output voltage Vo1.

상기 제 2 출력 회로(34)는, 상기 변압기(10) 센터탭과 상기 정류 다이오드(D1, D2) 양단에 제 1 스위치(S3)가 연결되고, 이에 제 2 스위치(S4)와 제 2 출력 커패시터(Co2)가 병렬로 연결되며, 이에 제 2 부하(Ro2)가 병렬로 연결되어 제 2 출력 전압(Vo2)를 출력한다.In the second output circuit 34, a first switch S3 is connected to both the center tap of the transformer 10 and the rectifier diodes D1 and D2, so that the second switch S4 and the second output capacitor are connected to each other. Co2 is connected in parallel, and the second load Ro2 is connected in parallel to output the second output voltage Vo2.

이때, 상기 변압기의 2차측 회로(30)는 하나의 인덕터를 포함하는 것을 특징으로 한다.At this time, the secondary circuit 30 of the transformer is characterized in that it comprises one inductor.

본 발명에 따르면, 변압기의 2차측 출력 회로를 병렬로 구성하여 출력 인덕터의 수를 기존 2개에서 1개로 줄이고, 또한 인덕터에 흐르는 RMS 전류를 기존에 비해 줄일 수 있는 효과를 얻을 수 있다.According to the present invention, the secondary output circuit of the transformer can be configured in parallel to reduce the number of output inductors from two to one, and also to reduce the RMS current flowing through the inductor.

도 1은 기존의 다중 출력 컨버터의 회로이다.
도 2는 본 발명에 따른 고효율 저가격 다중 출력 컨버터의 회로이다.
도 3 내지 도 5는 도 2에 도시된 고효율 저가격 다중 출력 컨버터 회로의 모드별 동작 파형도이다.
1 is a circuit of a conventional multiple output converter.
2 is a circuit of a high efficiency low cost multiple output converter according to the present invention.
3 to 5 are operation waveform diagrams for each mode of the high efficiency low cost multiple output converter circuit shown in FIG. 2.

이하에서 첨부한 도면을 참조하여 본 발명에 따른 고효율 저가격 다중 출력 컨버터의 바람직한 실시예에 대해 상세하게 설명한다.Hereinafter, exemplary embodiments of a high efficiency low cost multiple output converter according to the present invention will be described in detail with reference to the accompanying drawings.

먼저, 도 2를 참조하여, 본 발명에 따른 고효율 저가격 다중 출력 컨버터에 대하여 설명한다.First, a high efficiency low cost multiple output converter according to the present invention will be described with reference to FIG. 2.

도 2는 본 발명에 따른 고효율 저가격 다중 출력 컨버터의 회로이다.2 is a circuit of a high efficiency low cost multiple output converter according to the present invention.

도 2에 도시된 바와 같이, 본 발명에 따른 고효율 저가격 다중 출력 컨버터(이하 '다중 출력 컨버터'라 한다)는 변압기(10)와 변압기의 1차측 회로(20) 및 변압기의 2차측 회로(30)로 구성된다.As shown in FIG. 2, the high efficiency low cost multiple output converter (hereinafter referred to as a 'multiple output converter') according to the present invention includes a transformer 10, a primary circuit 20 of the transformer and a secondary circuit 30 of the transformer. It consists of.

변압기(10)는 코일의 권선비에 따라 입력 전압을 변환하여 출력 전압을 제공한다.The transformer 10 converts the input voltage according to the turns ratio of the coil to provide an output voltage.

변압기의 1차측 회로(20)는 복수의 스위치들(S1, S2)을 포함하고 변압기(10)의 1차측 코일에 접속되어, 외부로부터 인가받은 전원을 복수의 스위치들(S1, S2)을 이용하여 변압기(10)로 전달한다. The primary circuit 20 of the transformer includes a plurality of switches (S1, S2) and is connected to the primary coil of the transformer 10, using a plurality of switches (S1, S2) for power applied from the outside To the transformer 10.

변압기의 2차측 회로(30)는 변압기(10)의 2차측 코일에 접속되어, 변압기의 1차측 회로(20)로부터 인가되어 권선비에 따라 변환된 직류 전압을 출력할 수 있다.The secondary side circuit 30 of the transformer may be connected to the secondary side coil of the transformer 10 to output a DC voltage applied from the primary side circuit 20 of the transformer and converted according to the turns ratio.

이때, 변압기의 2차측 회로(30)는 제 1 출력 회로(32)와 제 2 출력 회로(34)를 포함한다.At this time, the secondary circuit 30 of the transformer includes a first output circuit 32 and a second output circuit 34.

제 1 출력 회로(32)는 변압기(10) 센터탭과, 변압기(10) 출력에 연결된 정류 다이오드(D1, D2) 양단에 출력 인덕터(Lo1)와 제 1 출력 커패시터(Co1)가 연결되고, 이에 제 1 부하(Ro1)가 병렬로 연결되어 제 1 출력 전압(Vo1)인 14V를 출력한다.The first output circuit 32 has a center tap of a transformer 10, an output inductor Lo1 and a first output capacitor Co1 connected to the rectifier diodes D1 and D2 connected to the output of the transformer 10. The first load Ro1 is connected in parallel to output 14V, which is the first output voltage Vo1.

제 2 출력 회로(34)는 변압기(10) 센터탭과 정류 다이오드(D1, D2) 양단에 제 1 스위치(S3)가 연결되고, 이에 제 2 스위치(S4)와 제 2 출력 커패시터(Co2)가 병렬로 연결되며, 이에 제 2 부하(Ro2)가 병렬로 연결되어 제 2 출력 전압(Vo2)인 48V를 출력한다. In the second output circuit 34, the first switch S3 is connected to the center tap of the transformer 10 and the rectifier diodes D1 and D2, so that the second switch S4 and the second output capacitor Co2 are connected to each other. In parallel, the second load Ro2 is connected in parallel to output 48V, which is the second output voltage Vo2.

이때, 제 1 출력 회로(32)와 제 2 출력 회로(34)는 병렬로 연결되어 제 1 출력 전압(Vo1)과 제 2 출력 전압(Vo2)이 동시에 출력되고, 이에 따라 변압기의 2차측 회로(30)에 포함된 하나의 인덕터에 흐르는 RMS 전류가 감소되며, 또한 스위치(S3, S4)를 이용하여 제 1 출력 전압(Vo1)과 제 2 출력 전압(Vo2) 간에 양방향(Bi-directional) 동작이 가능하다.At this time, the first output circuit 32 and the second output circuit 34 are connected in parallel so that the first output voltage Vo1 and the second output voltage Vo2 are simultaneously output, and accordingly, the secondary side circuit of the transformer ( RMS current flowing through one inductor included in 30 is reduced, and bi-directional operation between the first output voltage Vo1 and the second output voltage Vo2 is performed using the switches S3 and S4. It is possible.

본 발명에 따른 다중 출력 컨버터 회로의 동작원리는 3가지 모드(mode)로 나뉜다. The operation principle of the multiple output converter circuit according to the present invention is divided into three modes.

모드 1은 1차측 입력 전압(Vs)으로부터 1차측 스위치(S1, S2)의 제어를 통해 2차측 제 1 출력 전압(Vo1)을 출력하며, 이때 2차측 스위치(S3, S4)는 turn off 되어있다. Mode 1 outputs the secondary side output voltage Vo1 from the primary side input voltage Vs through the control of the primary side switches S1 and S2, and the secondary side switches S3 and S4 are turned off. .

모드 2는 제 1 출력 전압(Vo1)으로부터 2차측 스위치(S3, S4)의 제어를 통해 제 2 출력 전압(Vo2)을 출력하는 경우이며, 이 모드에서는 1차측 스위치(S1, S2)는 turn off 되어있다. Mode 2 is a case where the second output voltage Vo2 is output from the first output voltage Vo1 through the control of the secondary switches S3 and S4. In this mode, the primary switches S1 and S2 are turned off. It is.

모드 3은 제 2 출력 전압(Vo2)으로부터 2차측 스위치(S3, S4)의 제어를 통해 제 1 출력 전압(Vo1)을 출력하는 경우이며 모드 2와 마찬가지로 1차측 회로에 영향을 받지 않는다.Mode 3 is a case in which the first output voltage Vo1 is output from the second output voltage Vo2 through the control of the secondary switches S3 and S4, and is not affected by the primary circuit as in the mode 2.

도 3 내지 도 5는 도 2에 도시된 고효율 저가격 다중 출력 컨버터 회로의 모드별 동작 파형도이다. 동작의 스펙은 입력 전압 360V, 제 1 출력 전압(Vo1) 14 V/1.2 kW, 제 2 출력 전압(Vo2) 48 V/600W 이다. 3 to 5 are operation waveform diagrams for each mode of the high efficiency low cost multiple output converter circuit shown in FIG. 2. The specifications of operation are input voltage 360V, first output voltage Vo1 14 V / 1.2 kW, and second output voltage Vo2 48 V / 600W.

[모드 1. 동작 파형][Mode 1. Operation Waveform]

도 3을 참조하면, Vg_S1, Vg_S2는 각각 Main 스위치(S1), Auxiliary 스위치(S2)의 gate 전압 파형이며, Vg_S3/2, Vg_S4/2는 2차측 스위치(S3, S4)의 gate 전압을 1/2의 배율로 변경한 파형이다. V_S1, V_S2는 스위치(S1, S2)의 drain-source 전압 파형이며, 본 발명에 따른 다중 출력 컨버터 회로의 전압 stress는 기존의 Double-ended active clamp forward converter 와 같이 입력 전압(Vs)와 Clamp-capacitor의 전압(V_Cc)의 합으로 클램핑되는 것을 볼 수 있다. 3, Vg_S1 and Vg_S2 are the gate voltage waveforms of the main switch S1 and the auxiliary switch S2, respectively, and Vg_S3 / 2 and Vg_S4 / 2 are the gate voltages of the secondary switches S3 and S4. The waveform is changed by 2 magnification. V_S1 and V_S2 are drain-source voltage waveforms of the switches S1 and S2, and the voltage stress of the multiple output converter circuit according to the present invention is equal to the input voltage Vs and the clamp-capacitor as in the conventional double-ended active clamp forward converter. It can be seen that it is clamped by the sum of the voltage V_Cc.

또한, I(Lr), I(Lm)는 변압기의 누설 전류(leakage current)와 자화 전류(Magnetizing Current)를 나타낸 파형으로 1차측 스위치(S1, S2)가 on/off 동작을 할 때 전류의 기울기가 달라지는 것을 알 수 있다.In addition, I (Lr) and I (Lm) are waveforms representing leakage current and magnetizing current of the transformer, and the slope of the current when the primary switches S1 and S2 are on / off. You can see that is changed.

다음으로, I(Lo1)은 출력 인덕터의 전류 파형을 나타낸 것이다. 본 발명에 따른 다중 출력 컨버터 회로의 경우, 출력 인덕터(Lo1)의 전류인 I(Lo1)의 RMS 전류가 기존 파형에 비해 크게 줄어든 것을 알 수 있다. 따라서 인덕터에서 발생하는 손실을 줄일 수 있고 인덕터의 포화 문제를 개선시킬 수 있다.Next, I (Lo1) represents the current waveform of the output inductor. In the case of the multiple output converter circuit according to the present invention, it can be seen that the RMS current of I (Lo1), which is the current of the output inductor Lo1, is greatly reduced compared to the existing waveform. This reduces losses in the inductor and improves the saturation problem of the inductor.

[모드 2. 동작 파형][Mode 2. Operation Waveform]

도 4를 참조하면, 모드 2는 제 1 출력 전압(Vo1)으로부터 제 2 출력 전압(Vo2)을 출력하는 경우이며, 1차측 스위치(S1, S2)가 off 되어있고 제 1 출력 전압(Vo1)이 입력 전압이며 제 2 출력 전압(Vo2)이 출력인 부스트 컨버터(Boost converter)로 볼 수 있다.Referring to FIG. 4, mode 2 is a case in which the second output voltage Vo2 is output from the first output voltage Vo1, and the primary side switches S1 and S2 are turned off and the first output voltage Vo1 is turned off. The input voltage and the second output voltage Vo2 may be viewed as a boost converter.

Vg_S1, Vg_S2는 각각 Main 스위치(S1), Auxiliary 스위치(S2)의 gate 전압 파형이며, Vg_S3/2, Vg_S4/2는 2차측 스위치(S3, S4)의 gate 전압을 1/2의 배율로 변경한 파형이다. Vg_S1 and Vg_S2 are the gate voltage waveforms of Main switch (S1) and Auxiliary switch (S2), respectively. Vg_S3 / 2 and Vg_S4 / 2 are the gate voltages of secondary switch (S3, S4) changed to 1/2 magnification. Waveform.

I(Lo1)는 인덕터 전류 파형이며, I_S3, I_S4는 스위치(S3, S4)의 전류 파형이다. 파형의 값의 부호는 회로도의 전류 방향을 기준으로 하였다. Vo1, Vo2 는 각각 제 1 출력 전압과 제 2 출력 전압을 의미하며 Vo1은 14V로 Vo2는 48V로 출력되는 것을 나타내었다.I (Lo1) is an inductor current waveform, and I_S3 and I_S4 are current waveforms of the switches S3 and S4. The sign of the waveform value was based on the current direction of the circuit diagram. Vo1 and Vo2 represent the first output voltage and the second output voltage, respectively, and Vo1 is 14V and Vo2 is output at 48V.

[모드 3. 동작 파형][Mode 3. Operation Waveform]

도 5를 참조하면, 모드 3은 제 2 출력 전압(Vo2)으로부터 제 1 출력 전압(Vo1)을 출력하는 경우이며, 제 2 출력 전압(Vo2)이 입력 전압이며 제 1 출력 전압(Vo1)이 출력인 벅 컨버터(Buck converter)로 볼 수 있다. 각 기호의 표기는 모드 2와 동일하다.Referring to FIG. 5, mode 3 is a case in which the first output voltage Vo1 is output from the second output voltage Vo2, the second output voltage Vo2 is an input voltage, and the first output voltage Vo1 is output. It can be seen as an in-buck converter. The notation of each symbol is the same as in mode 2.

이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위 내에서 다양한 수정, 변경, 및 치환이 가능할 것이다. 본 발명의 보호 범위는 아래의 청구 범위에 의해서 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리 범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and various modifications, changes, and substitutions may be made by those skilled in the art without departing from the essential characteristics of the present invention. It will be possible. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.

10 : 변압기 20 : 변압기의 1차측 회로
30 : 변압기의 2차측 회로 32 : 제 1 출력 회로
34 : 제 2 출력 회로
10: transformer 20: the primary circuit of the transformer
30: secondary circuit of the transformer 32: first output circuit
34: second output circuit

Claims (3)

코일의 권선비에 따라 입력 전압에 대해 변환된 출력 전압을 제공하는 변압기(10);
복수의 스위치(S1, S2)를 포함하고, 상기 변압기(10)의 1차측 코일에 접속되는 변압기의 1차측 회로(20); 및
서로 병렬로 연결된 제 1 출력 회로(32)와 제 2 출력 회로(34)를 포함하고, 상기 변압기(10)의 2차측 코일에 접속되는 변압기의 2차측 회로(30);
를 포함하며,
상기 제 1 출력 회로(32)는, 상기 변압기(10) 센터탭과 상기 변압기(10) 출력에 연결된 정류 다이오드(D1, D2) 양단에 출력 인덕터(Lo1)와 제 1 출력 커패시터(Co1)가 연결되고, 이에 제 1 부하(Ro1)가 병렬로 연결되어 제 1 출력 전압(Vo1)을 출력하고,
상기 제 2 출력 회로(34)는, 상기 변압기(10) 센터탭과 상기 정류 다이오드(D1, D2) 양단에 제 1 스위치(S3)가 연결되고, 이에 제 2 스위치(S4)와 제 2 출력 커패시터(Co2)가 병렬로 연결되며, 이에 제 2 부하(Ro2)가 병렬로 연결되어 제 2 출력 전압(Vo2)를 출력하는 다중 출력 컨버터.
A transformer 10 providing a converted output voltage with respect to the input voltage in accordance with the turns ratio of the coil;
A primary side circuit (20) of the transformer including a plurality of switches (S1, S2) and connected to the primary side coil of the transformer (10); And
A secondary side circuit (30) of the transformer including a first output circuit (32) and a second output circuit (34) connected in parallel with each other and connected to the secondary side coil of the transformer (10);
Including;
The first output circuit 32 has an output inductor Lo1 and a first output capacitor Co1 connected to the center tap of the transformer 10 and the rectifier diodes D1 and D2 connected to the output of the transformer 10. The first load Ro1 is connected in parallel to output the first output voltage Vo1.
In the second output circuit 34, a first switch S3 is connected to both the center tap of the transformer 10 and the rectifier diodes D1 and D2, so that the second switch S4 and the second output capacitor are connected to each other. Multiple output converters (Co2) are connected in parallel, the second load (Ro2) is connected in parallel to output a second output voltage (Vo2).
삭제delete 제1항에 있어서,
상기 변압기의 2차측 회로(30)는 하나의 인덕터를 포함하는 것을 특징으로 하는, 다중 출력 컨버터.





The method of claim 1,
The secondary output circuit (30) of the transformer is characterized in that it comprises one inductor.





KR1020180000892A 2018-01-03 2018-01-03 High Efficiency and Low Cost Multi-Output Converter KR102028480B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180000892A KR102028480B1 (en) 2018-01-03 2018-01-03 High Efficiency and Low Cost Multi-Output Converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180000892A KR102028480B1 (en) 2018-01-03 2018-01-03 High Efficiency and Low Cost Multi-Output Converter

Publications (2)

Publication Number Publication Date
KR20190083226A KR20190083226A (en) 2019-07-11
KR102028480B1 true KR102028480B1 (en) 2019-10-04

Family

ID=67254374

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180000892A KR102028480B1 (en) 2018-01-03 2018-01-03 High Efficiency and Low Cost Multi-Output Converter

Country Status (1)

Country Link
KR (1) KR102028480B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100067259A1 (en) 2008-09-17 2010-03-18 Delta Electronics, Inc. Forward-flyback converter with active-clamp circuit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0530736A (en) * 1991-07-18 1993-02-05 Murata Mfg Co Ltd Switching power supply
KR100967031B1 (en) 2008-04-01 2010-06-30 삼성전기주식회사 Dc/dc converter with multi-output

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100067259A1 (en) 2008-09-17 2010-03-18 Delta Electronics, Inc. Forward-flyback converter with active-clamp circuit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
김재국 외. "영전압 스위칭 다중 출력 포워드 컨버터". 전력전자학회 학술대회 논문집. 2009.

Also Published As

Publication number Publication date
KR20190083226A (en) 2019-07-11

Similar Documents

Publication Publication Date Title
US10581334B2 (en) DC-DC converter and control method
US10554141B2 (en) Parallel hybrid converter apparatus and method
Wang et al. A PSFB-based integrated PEV onboard charger with extended ZVS range and zero duty cycle loss
US9490708B2 (en) Multiple-output DC/DC converter and power supply having the same
Andersen et al. A ZVS-PWM three-phase current-fed push–pull DC–DC converter
US10177671B2 (en) Modified dual active half bridge DC/DC converter with transformer DC bias
JP2016019463A (en) Pulse width modulation resonant converter, and vehicle charger utilizing the same
WO2013110090A1 (en) Enhanced flyback converter
US6961254B2 (en) Insulating switching DC/DC converter
KR101140336B1 (en) Isolated buck-boost dc-dc converter
Zhu et al. Two-stage vs one-stage design for a bidirectional 400V/12V 6kW auxiliary power module in electric vehicles
US6487094B1 (en) High efficiency DC-DC power converter
KR102211454B1 (en) Isolated DC-DC converter and driving method thereof
Aldosari et al. A High-Efficiency Isolated PFC AC–DC Topology with Reduced Number of Semiconductor Devices
KR102028480B1 (en) High Efficiency and Low Cost Multi-Output Converter
KR102049840B1 (en) ZVS Double-Ended Active Clamp Forward Converter with Low Magnetizing Offset Current
KR101558770B1 (en) Charging device of vehicle
KR102009911B1 (en) High Efficiency Multi-output DC Converter
Itoh et al. Design and modulation method of Multi-port DC/DC converter for next generation HV sub system
KR102033478B1 (en) Active Clamp Forward Converter And Method Of Driving The Same
KR101980021B1 (en) High efficiency multi-output converter with asymmetric powering
KR101813778B1 (en) Hybride type LED Power Supply
El Kattel et al. Interleaved Bidirectional DC-DC Converter with single-phase high-frequency isolation for the Wide Range of Industrial Applications.
Larico et al. Three-phase flyback push–pull DC–DC converter: analysis, design, and experimentation
KR102030918B1 (en) High Efficiency EV Charger with Small Ripple Current

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right