KR102025652B1 - 사운드 이벤트 탐지 모델 학습 방법 - Google Patents
사운드 이벤트 탐지 모델 학습 방법 Download PDFInfo
- Publication number
- KR102025652B1 KR102025652B1 KR1020190007575A KR20190007575A KR102025652B1 KR 102025652 B1 KR102025652 B1 KR 102025652B1 KR 1020190007575 A KR1020190007575 A KR 1020190007575A KR 20190007575 A KR20190007575 A KR 20190007575A KR 102025652 B1 KR102025652 B1 KR 102025652B1
- Authority
- KR
- South Korea
- Prior art keywords
- sound
- event
- data
- cnn
- event sound
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B27/00—Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
- G11B27/10—Indexing; Addressing; Timing or synchronising; Measuring tape travel
- G11B27/19—Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B20/00—Signal processing not specific to the method of recording or reproducing; Circuits therefor
- G11B20/10—Digital recording or reproducing
- G11B20/10527—Audio or video recording; Data buffering arrangements
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Signal Processing (AREA)
- Evolutionary Computation (AREA)
- Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Multimedia (AREA)
- Circuit For Audible Band Transducer (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
대상 사운드에서 특정 이벤트 사운드의 재생구간을 탐지하는 모델의 학습 방법 및 그 장치가 제공 된다. 본 발명의 일 실시예에 따른 이벤트 사운드 탐지 모델 학습 방법은, 인공 합성된 제1 이벤트 사운드를 포함하는 인공 합성 사운드의 데이터를 이용하여 초기 학습(initial learning)된 CBRNN에 포함된 제1 CNN(Convolutional Neural Networks)을 획득하는 단계, 실제 녹음된 상기 제1 이벤트 사운드가 포함된 제1 대상 사운드의 데이터를 이용하여 제2 CNN 및 상기 제2 CNN의 출력 레이어에서 출력 된 데이터를 입력 받는 양방향 LSTM 구조의 RNN을 학습시키는 단계를 포함하되, 상기 제2 CNN은 상기 제1 CNN의 가중치(weight)를 이용하여 전이 학습(transfer learning)된 것이다.
Description
본 발명은 폴리포닉 사운드에서 특정 사운드 이벤트를 정확하게 검출하는 방법 및 그 장치에 관한 것이다. 보다 자세하게는, 복수개의 사운드 이벤트를 포함하는 대상 사운드에서 상기 복수개의 이벤트 사운드가 재생되는 구간을 탐지함에 있어 높은 정확도와 속도를 갖는 모델을 학습시키는 방법 및 그 장치에 관한 것이다.
동시 음향 사건 검출 분야에서는 복수의 이벤트 사운드를 포함하는 폴리포닉 사운드(Polyphonic Sound)에서, 각각의 이벤트 사운드를 추출하고 재생 구간을 정확히 탐지하는 모델을 학습시키기 위한 다양한 신경망 아키텍처가 제시된다. 예를 들어, 학습이 완료된 상기 신경망 아키텍처는 개가 짖는 소리와 자동차 경적 소리가 일부 시간 구간에서 동시에 재생되는 경우에도 개가 짖는 소리의 재생 구간 및 자동차 경적 소리의 재생 구간이 식별될 수 있다.
그러나, 종래 CNN 및 RNN을 포함하는 신경망 아키텍쳐는 만족스러운 정확도를 가진 폴리포닉 사운드 이벤트 검출 모델을 수립하지 못하였으므로 높은 정확도를 갖는 신경망 아키텍쳐에 대한 기술의 제공이 요구된다.
또한, 이벤트 사운드 탐지를 수행하는 인공신경망을 학습하기 위한 방대한 데이터 확보에 어려움이 따르므로, 방대한 학습 데이터 없이 복수개의 이벤트 소리를 정확하게 탐지하는 인공신경망을 학습시킬 수 있는 기술의 제공이 요구 된다.
본 발명이 해결하고자 하는 기술적 과제는, 적은 양의 학습 데이터를 이용하여 정확도 높은 폴리포닉 사운드 이벤트 탐지 모델을 학습시키는 방법 및 그 장치를 제공하는 것이다.
본 발명이 해결하고자 하는 다른 기술적 과제는, 제어된 방식으로 인공합성 폴리포닉 사운드 학습 데이터를 통해 폴리포닉 사운드 이벤트 탐지 모델의 학습 효과를 극대화 시키는 방법 및 그 장치를 제공하는 것이다.
본 발명의 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명의 기술분야에서의 통상의 기술자에게 명확하게 이해 될 수 있을 것이다.
본 발명의 일 실시예에 따른 이벤트 사운드 탐지 모델 학습 방법은, 인공 합성된 제1 이벤트 사운드를 포함하는 인공 합성 사운드의 데이터를 이용하여 초기 학습(initial learning)된 CBRNN(Convolutional Bi-directional Neruarl Network)에 포함된 제1 CNN(Convolutional Neural Networks)을 획득하는 단계, 실제 녹음된 상기 제1 이벤트 사운드가 포함된 제1 대상 사운드의 데이터를 이용하여 제2 CNN 및 상기 제2 CNN의 출력 레이어에서 출력 된 데이터를 입력 받는 양방향 LSTM 구조의 RNN을 학습시키는 단계를 포함하되, 상기 제2 CNN은 상기 제1 CNN의 가중치(weight)를 이용하여 전이 학습(transfer learning)된 것일 수 있다.
일 실시예에 따른 상기 인공 합성된 제1 이벤트 사운드를 포함하는 인공 합성 사운드의 데이터를 이용하여 초기 학습된 CBRNN에 포함된 제1 CNN을 획득하는 단계는, 인공 합성된 제2 이벤트 사운드를 포함하는 상기 인공 합성 사운드의 데이터를 이용하여 초기 학습된 CBRNN에 포함된 상기 제1 CNN을 획득하는 단계를 더 포함하되, 상기 인공 합성 사운드 데이터의 상기 제1 이벤트 사운드의 재생 구간과 상기 제2 이벤트 사운드의 재생 구간은 지정된 시간만큼 겹치는 것 일 수 있다.
일 실시예에 따른, 상기 인공 합성된 제2 이벤트 사운드를 포함하는 상기 인공 합성 사운드의 데이터를 이용하여 초기 학습된 CBRNN에 포함된 상기 제1 CNN을 획득하는 단계는,
랜덤 함수에 의해 지정된 시간만큼 상기 제1 이벤트 사운드와 상기 제2 이벤트 사운드의 재생 구간이 겹치는 상기 인공합성 사운드의 데이터를 이용하여 초기 학습된 CBRNN에 포함된 상기 제1 CNN을 획득하는 단계를 포함할 수 있다.
일 실시예에 따른, 상기 인공 합성된 제2 이벤트 사운드를 포함하는 상기 인공 합성 사운드의 데이터를 이용하여 초기 학습된 CBRNN에 포함된 상기 제1 CNN을 획득하는 단계를 더 포함하는 단계는, 지정된 비율만큼 상기 제1 이벤트 사운드와 상기 제2 이벤트 사운드의 재생 구간이 겹치도록 생성된 상기 인공 합성 데이터를 이용하여 초기 학습된 CBRNN에 포함된 상기 제1 CNN을 획득하는 단계를 포함할 수 있다.
일 실시예에 따른, 상기 인공 합성된 제1 이벤트 사운드를 포함하는 인공 합성 사운드의 데이터를 이용하여 초기 학습된 CBRNN에 포함된 제1 CNN을 획득하는 단계는, 상기 제2 이벤트 사운드와 상이한 제3 이벤트 사운드를 포함하는 상기 인공 합성 사운드의 데이터를 이용하여 초기 학습된 CBRNN에 포함된 상기 제1 CNN을 획득하는 단계를 더 포함할 수 있다.
일 실시예에 따른, 상기 인공 합성된 제1 이벤트 사운드를 포함하는 인공 합성 사운드의 데이터를 이용하여 초기 학습된 CBRNN에 포함된 제1 CNN을 획득하는 단계는, 지정된 개수만큼의 이벤트 사운드를 더 포함하는 인공 합성 사운드의 데이터를 이용하여 초기 학습된 CBRNN에 포함된 제1 CNN을 획득하는 단계를 포함할 수 있다.
일 실시예에 따른, 상기 인공 합성된 제2 이벤트 사운드를 포함하는 상기 인공 합성 사운드의 데이터를 이용하여 초기 학습된 CBRNN에 포함된 상기 제1 CNN을 획득하는 단계를 더 포함하는 단계는, 지정된 개수만큼의 이벤트 사운드의 재생 구간이 더 겹치도록 생성된 상기 인공 합성 데이터를 이용하여 초기 학습된 CBRNN에 포함된 상기 제1 CNN을 획득하는 단계를 포함하되, 상기 지정된 개수는 동시에 겹칠 수 있는 이벤트 사운드의 최대 개수인 것 일 수 있다.
일 실시예에 따른, 상기 실제 녹음된 상기 제1 이벤트 사운드가 포함된 제1 대상 사운드의 데이터를 이용하여 제2 CNN 및 상기 제2 CNN의 출력 레이어에서 출력 된 데이터를 입력 받는 양방향 LSTM 구조의 RNN을 학습시키는 단계는, 상기 학습된 양방향 LSTM 구조의 RNN을 이용하여 상기 제1 대상 사운드의 재생 구간 중 복수개의 이벤트 사운드의 재생 구간을 동시에 탐지하는 모델을 학습하는 단계를 포함하되, 상기 복수개의 이벤트 사운드는 상기 제1 대상 사운드에 포함된 것 일 수 있다.
본 발명의 다른 실시예에 따른 이벤트 사운드 탐지 모델 학습 장치는 이벤트 사운드 탐지 모델 학습 프로그램이 로드 되는 메모리; 및
상기 메모리에 로드된 이벤트 사운드 탐지 모델 학습 프로그램을 실행하는 프로세서를 포함하되, 상기 이벤트 사운드 탐지 모델 학습 프로그램은, 인공 합성된 제1 이벤트 사운드를 포함하는 인공 합성 사운드의 데이터를 이용하여 초기 학습(initial learning)된 CBRNN에 포함된 제1 CNN(Convolutional Neural Networks)을 획득하는 인스트럭션(instruction), 실제 녹음된 상기 제1 이벤트 사운드가 포함된 제1 대상 사운드의 데이터를 이용하여 제2 CNN 및 상기 제2 CNN의 출력 레이어에서 출력 된 데이터를 입력 받는 양방향 LSTM 구조의 RNN을 학습시키는 인스트럭션을 포함하되, 상기 제2 CNN은 상기 제1 CNN의 가중치(weight)를 이용하여 전이 학습(transfer learning)된 것일 수 있다.
도 1a은 본 발명의 일 실시예에 따른 이벤트 사운드 탐지 시스템을 설명하기 위한 도면이다.
도 1b은 본 발명의 다른 실시예에 따른 이벤트 사운드 탐지 모델의 학습 방법을 설명하기 위한 도면이다.
도 2는 본 발명의 또 다른 실시예에 따른 이벤트 사운드 탐지 모델 학습 방법에 대한 순서도이다.
도 3 내지 도 4는 도 2을 참조하여 설명될 방법의 일부 동작을 자세히 설명하기 위한 순서도이다.
도 5는 도 4의 일부 동작을 자세히 설명하기 위한 순서도이다.
도 6 내지 도 10은 본 발명의 몇몇 실시예들에서 학습 데이터로서 이용될 수 있는 인공 합성 사운드를 설명하기 위한 도면이다.
도 11은 도 4를 참조하여 설명될 방법의 일부 동작을 자세히 설명하기 위한 순서도이다.
도 12는 도 6을 참조하여 설명될 방법의 일부 동작을 자세히 설명하기 위한 순서도이다.
도 13은 본 발명의 또 다른 실시예에 따른 이벤트 사운드 탐지 모델 학습 장치의 동작을 설명하기 위한 블록도이다.
도 14는 본 발명의 또 다른 실시예에 따른 이벤트 사운드 탐지 모델 학습 장치의 하드웨어 구성도이다.
도 1b은 본 발명의 다른 실시예에 따른 이벤트 사운드 탐지 모델의 학습 방법을 설명하기 위한 도면이다.
도 2는 본 발명의 또 다른 실시예에 따른 이벤트 사운드 탐지 모델 학습 방법에 대한 순서도이다.
도 3 내지 도 4는 도 2을 참조하여 설명될 방법의 일부 동작을 자세히 설명하기 위한 순서도이다.
도 5는 도 4의 일부 동작을 자세히 설명하기 위한 순서도이다.
도 6 내지 도 10은 본 발명의 몇몇 실시예들에서 학습 데이터로서 이용될 수 있는 인공 합성 사운드를 설명하기 위한 도면이다.
도 11은 도 4를 참조하여 설명될 방법의 일부 동작을 자세히 설명하기 위한 순서도이다.
도 12는 도 6을 참조하여 설명될 방법의 일부 동작을 자세히 설명하기 위한 순서도이다.
도 13은 본 발명의 또 다른 실시예에 따른 이벤트 사운드 탐지 모델 학습 장치의 동작을 설명하기 위한 블록도이다.
도 14는 본 발명의 또 다른 실시예에 따른 이벤트 사운드 탐지 모델 학습 장치의 하드웨어 구성도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예들을 상세히 설명한다. 본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 게시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시 예들은 본 발명의 게시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다. 본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다.
이하, 도면들을 참조하여 본 발명의 몇몇 실시예들을 설명한다.
본 발명의 일 실시예에 따른 이벤트 사운드 탐지 모델을 포함하는 시스템의 구성 및 동작을 도 1a를 참조하여 설명한다. 최근 인공신경망을 이용한 동시 음향 사건 검출(Polyphonic sound event detection)분야에 대한 연구가 활발히 진행되고 있다. 동시 음향의 특성상 상기 동시 음향에 포함된 이벤트 사운드의 종류 및 재생 구간을 정확하고 빠르게 검출해야 하기 때문이다. 특히 소리 데이터(21, 22, 23, 24)는 스펙트로그램 형태의 이미지 데이터(31, 32, 33, 45)로 전처리 된 후, 인공신경망(40)의 학습 데이터로 사용된다.
학습된 후, 예측 단계에서 인공신경망(40)에 실제 사운드 데이터(20)가 전처리된 Mel-Spectrogram 형태의 입력데이터(30)를 삽입한다. 예측 단계에서는 상기 실제 사운드에 포함된 이벤트 사운드의 종류 및 재생구간이 검출(50)될 수 있다.
하지만 종래 신경망 아키텍쳐인 CRNN (CNN 및 RNN을 포함하는 인공 신경망)에서는 이벤트 사운드를 검출함에 있어 속도 및 정확성 측면에서 만족스러운 결과를 얻을 수 없었다. 따라서 본 발명의 몇몇 실시예에 따른 이벤트 사운드 검출 모델 학습 시스템은 CBRNN(Convolutional Bi-directional Recurrent Neural Network) 구조의 신경망 아키텍처(40)를 포함한다. 본 실시예에 따른 시스템의 CBRNN(40)은 학습단계(10a)에서, 학습을 위해 수집된 사운드(21, 22, 23, 24)가 변환된 멜스펙트로그램(Mel-Spectrogram)(31, 32, 33, 34)을 학습 데이터로서 이용하여 학습된다.
CBRNN(40)은 제1 CNN(Convolutional Neural Network), 제2 CNN 및 Bi-directional LSTM(Long Short-Term Memory)을 포함한다. 이 때, 상기 제2 CNN은 전이 학습 된 것일 수 있다. 즉, 상기 제2 CNN의 가중치는 초기 학습(initial training)이 완료된 CBRNN에 포함된 제1 CNN의 가중치를 이용해 초기화된 것일 수 있다. 본 발명의 몇몇 실시예에 따른 CBRNN은 여러 실험을 통하여 가장 정확도가 높은 학습방법인, 초기 학습 된 CBRNN중 CNN을 이용한 전이학습 단계를 포함하나, 이에 한하지 않고 CBRNN중 RNN 또는 CBRNN 전체를 모두 전이학습에 이용할 수 있고, CNN 또는 RNN중 적어도 하나를 초기학습 시킨 후 전이학습에 이용할 수도 있다.
또한 본 실시예에 따른 신경망 아키텍쳐는 상기 CNN 및 Bi-directional LSTM의 학습결과 데이터의 라벨링을 위하여 완전 결합 레이어(Full-connected layer, dense layer)을 더 포함할 수 있다.
상기 제1 CNN을 포함하는 CBRNN의 학습을 위해 수집된 사운드 데이터(21, 22, 23, 24)는 특정 이벤트 사운드의 패턴 분류를 위해 인공적으로 합성된 사운드 데이터 일 수 있고, 상기 제2 CNN의 학습을 위해 수집된 사운드 데이터(21, 22, 23, 24)는 특정 이벤트 사운드를 포함하는 실제 녹음된 사운드 데이터일 수 있다.
예측단계(10b)에서는, 실제 대상 사운드 데이터(20)를 Mel-Spectrogram(30)으로 변환하는 전처리 후, 상기 학습단계(10)에서 학습된 CBRNN(40)을 이용하여 대상 사운드 데이터에 포함된 이벤트 사운드의 종류 및 재생 구간을 탐지한다. 특히 복수개의 이벤트 사운드로 구성된 대상 데이터에 대하여, 각각의 이벤트 사운드의 재생구간이 겹치더라도 본 실시예에 따르면 각각의 이벤트 사운드에 대한 재생 구간을 높은 정확도와 속도로 탐지해 낼 수 있다.
도 1b를 참조하여 본 실시예에 따른 시스템의 학습 관련 구성 및 동작을 보다 상세히 설명한다.
본 실시예에 따라 학습되는 이벤트 사운드 탐지 모델은 인공 합성 데이터가 학습된 제1 CNN, 전이학습 된 제2 CNN(71) 및 양방향 LSTM(Bi-directional LSTM)(80)을 포함할 수 있다.
제2 CNN(71)은 인공 합성 데이터(60)를 이용하여 초기 학습 된 CBRNN에 포함된 제1 CNN(70)의 가중치(weight)와 동일한 가중치를 가지도록 초기 설정된 상태에서, 실제 데이터(61)를 입력 받아 학습 될 수 있다. 이러한 의미에서 제2 CNN(71)은 전이 학습(transfer learning)을 통해 학습되는 것이다.
인공 합성 데이터(60)는 하나 이상의 이벤트 사운드(예를 들어, 개 짖는 소리, 차량 경적 소리)를 인공 합성 데이터(60)의 재생 구간 내의 제어된 방식에 따른 위치에 배치한 것으로 이해될 수 있을 것이다. 인공 합성 데이터(60)는 이벤트 사운드의 다양한 배치 형태를 가질 수 있되, 상기 배치 형태는 상기 제어된 방식에 따른 기준을 만족하는 것인 점에서 학습 효율 측면에서 좋은 품질을 가진 학습 데이터이다. 인공 합성 데이터(60)의 다양한 구성 방법에 대하여 도 6 내지 도 10을 참조하여 추후 자세히 설명하기로 한다.
실제 데이터(61)는 실제 발생된 사운드가 녹음 된 사운드 데이터에 대하여 소정의 전처리 프로세스가 적용된 데이터이다. 예를 들어, 실제 데이터(61)는 상기 사운드 데이터가 변환된 멜-스펙트로그램(Mel-Spectrogram)일 수 있다. 상기 멜-스펙트로그램은 40*200(decibel * time) 사이즈의 벡터로 구성될 수 있다.
또한 제2 CNN(71)은 3개의 컨볼루셔널 레이어(3 Convolutional Layers)를 포함하여 구성될 수 있다. 또한 제2 CNN(71)의 필터(Filter)는 각각의 레이어에 256개가 있을 수 있고, 각 커널(kernel)의 사이즈는 3x3으로 고정될 수 있다. 또한 시그모이드(sigmoid) 활성 함수가 이용될 수 있으며 매번 가중치는 무작위로 초기화될 수도 있다.
상기 3개의 컨볼루셔널 레이어(Convolutional Layer)에서 컨볼루셔널이 수행된 후, 최대 풀링(Max Pool), 드롭아웃(Dropout), Batch 정규화(Normalization)가 수행될 수 있다. 상기 풀링, 드롭아웃, Batch 정규화는 통상의 기술자가 용이하게 이해할 수 있는 용어의 의미를 갖는다. 상기 최대 풀링은 데시벨 축에서만 진행될 수 있으며, 제1 레이어에서 수행되는 최대 풀링의 스트라이드(stride) 크기 5, 제2 레이어에서 수행되는 최대 풀링의 스트라이드 크기는 4 및 제3 레이어에서 수행되는 최대 풀링의 스트라이드 크기는 2일 수 있다. 또한 드롭 아웃 비율은 0.3으로 고정될 수 있다.
상기 제2 CNN(71)의 출력 데이터(output) 1*200*256(decibel*time*number of filter) 크기의 벡터로 생성될 수 있다. 상기 출력 데이터는 필터 축과 데시벨 축을 연관시켜 양방향 LSTM(80)의 입력 데이터(input)인 256*200(number of filter*time) 크기의 벡터로 변환될 수 있다. 상기 제2 CNN(71)의 출력 데이터는 이벤트 사운드에 대한 특징정보를 포함하고 있으며, 양방향 LSTM(80)의 입력 데이터로 입력될 수 있다.
양방향 LSTM(80)은 3개의 레이어(81a, 81b, 81c)를 포함할 수 있고, 각 레이어(81a, 81b, 81c)는 100 개의 LSTM 셀(cell)로 구성 될 수 있으며 각각의 셀은 100개의 유닛을 포함할 수 있다. 상기 양방향 LSTM(80)은 batch 정규화 대신 레이어 정규화가 적용될 수 있고 상기 전이 학습 된 CNN(71)과 마찬가지로 시그모이드 활성 함수가 사용될 수 있다.
양방향 LSTM(80)의 각 레이어(81a, 81b, 81c)는 정방향 LSTM 및 역방향 LSTM이 학습된 결과 벡터 데이터를 연결한 벡터(concatenate vector)(82a, 82b, 82c)가 출력 데이터가 될 수 있고, 각 레이어의 입력 데이터는 이전 레이어의 출력 데이터일 수 있다. 예를 들어 제2 레이어(81b)의 학습을 위한 입력 데이터는 제1 레이어(81a)의 학습 결과 출력 데이터(82a)일 수 있고, 제3 레이어(81c)의 학습을 위한 입력 데이터는 제2 레이어(81b)의 학습 결과 출력 데이터(82b)일 수 있다.
상기 양방향 LSTM(80)의 최종 레이어(81c)에서 출력된 벡터 값(82c)은 시계열 데이터상에서 시간의 흐름에 따른 이벤트 사운드의 변화까지 고려된 것 일 수 있다. 상기 최종 출력된 벡터 값(82c)은 완전 결합 레이어(90)를 이용해 상기 최종 학습 결과데이터에 각각의 이벤트 사운드에 상응하는 클래스에 따라 분류되고 각 클래스에 상응하는 라벨링이 수행될 수 있다.
도 2는 본 발명의 일 실시예에 따라 학습된 이벤트 사운드 탐지 모델의 이벤트 사운드 탐지 방법에 대한 순서도이다.
단계 S100에서 탐지 대상 사운드 데이터가 수집될 수 있다. 상기 탐지 대상 사운드는 복수개의 이벤트 사운드를 포함할 수 있다. 예를 들어 탐지 대상 사운드가 야구 경기장에서의 소리를 녹음한 것이라면, 이벤트 사운드는 관객의 함성소리, 중계소리, 야구공을 야구 배트로 치는 소리일 수 있다. 상기 탐지 대상 사운드 데이터는 오디오 형태의 데이터일 수 있다.
단계 S200에서 상기 수집된 탐지 대상 사운드 데이터가 전처리 될 수 있다. 본 발명의 일 실시예에 따른 CBRNN은 이미지의 특징을 추출하기 위한 신경망 이므로 상기 수집된 오디오 형태의 탐지 대상 사운드 데이터가 이미지 형태의 데이터로 전처리 될 수 있다.
단계 S300에서 본 발명의 일 실시예에 따른 CBRNN의 학습 결과, 이벤트 사운드를 탐지하는 모델이 수립될 수 있다. 상세한 설명은 이하 도 4 내지 도 7에서 후술한다.
단계 S400에서 본 발명의 일 실시예에 따른 CBRNN에서 수립된 모델에 의해 대상 사운드에 포함된 이벤트 사운드의 존재 여부가 예측될 수 있다. 예를 들어 본 실시예에 따라 학습된 모델인 CBRNN을 통해 대상 사운드 데이터의 구간별로 복수개의 이벤트 사운드의 존재 확률이 계산될 수 있고, 상기 확률이 특정 임계값을 초과하는 경우 해당 구간에 이벤트 사운드 데이터가 존재한다고 예측될 수 있다.
도 3을 참조하여 대상 데이터의 전처리를 수행하는 과정에 대하여 상세히 설명한다. 대부분의 사운드 데이터는 오디오 형태(Audio file format)이다. 예를 들어 비압축 형태인 WAV, AIRR 및 AU, 비손실 압축 포맷인 FLAC, TTA 및 WavPack, 손실 압축 포맷인 MP3, AAC 와 같은 형태가 있을 수 있다. 하지만 이와 같은 오디오 형태의 사운드 데이터는 시계열 데이터 상태에서 어떤 이벤트 사운드가 포함되어 있는지, 특정 이벤트 사운드가 어떤 특징을 갖고 있는지 파악하기 어렵다.
따라서 단계 S210에서 오디오 형태의 대상 사운드 데이터에 대한 신호처리가 수행될 수 있다. 신호처리는 예를 들어 STFT(Short Time Fourier Transform)일 수 있다. 종래 사용하던 신호처리 기술인 FFT는 상기 사운드 데이터에 대한 주파수 성분을 알 수 있으나, 시간축에 대한 정보를 잃어버려 어떤 대상 사운드 데이터의 특정 구간에서 재생되는 이벤트 사운드에 대한 주파수 성분만을 알 수 없다는 문제가 발생한다.
따라서 본 발명의 일 실시예에 따른 STFT를 이용한 사운드 데이터 신호처리 방법은, 대상 사운드 데이터를 5초 단위로 나누고 나누어진 구간 별로 FFT를 수행하는 STFT 신호처리가 수행될 수 있다. 또한 상기 5초 단위로 나뉜 구간은 STFT 처리됨으로써 50%씩 겹쳐지는 50ms의 프레임으로 변형 될 수 있다.
하지만 신호처리 결과는 CBRNN을 포함하는 신경망 아키텍쳐를 이용한 이벤트 사운드 탐지 모델의 학습을 위한 데이터로 사용될 수 없다. 본 발명의 일 실시예에 따르면 CBRNN의 학습에 사용되는 이미지 형태의 데이터를 생성하기 위해 Mel-Spectrogram 형태로의 변환이 한번 더 수행될 수 있다.
단계 S220에서 상기 신호처리 결과를 Mel-Spectrogram 형태로 변환하는 전처리가 수행될 수 있다. 예를 들어 상기 50ms의 프레임에 대하여 프레임당 40 멜(Mel)의 로그 크기를 갖는 Mel-Spectrogram형태로 변환될 수 있다. 또한 Mel-Spectrogram 형태의 프레임에 라벨링을 수행하여, 각각의 프레임에 대하여 라벨 벡터가 할당될 수 있다.
즉, 대상 사운드 데이터의 STFT이후 획득한 spectrogram의 주파수 성분을 Mel 곡선에 따라 압축한 Mel-Spectrogram 형태의 데이터를 획득할 수 있다.
이하 도 4를 참조하여 CBRNN 인공신경망을 이용하여 이벤트 사운드 탐지 모델이 학습되는 과정을 상세히 설명한다.
CBRNN은 제1 CNN, 제2 CNN 및 양방향 LSTM(Bi-directional LSTM)을 포함할 수 있다.
단계 S310에서 제1 CNN 및 제2 CNN을 이용하여 대상 사운드에 존재하는 이벤트 사운드 데이터의 패턴에 대한 분류 모델이 수립될 수 있다. 제2 CNN은 제1 CNN을 이용해 전이학습 된 것일 수 있다. 도 5에서 전이학습에 대해 상세히 설명한다.
단계 S320에서 상기 CNN의 출력 데이터가 포함하는 상기 이벤트 사운드 데이터의 특징 및 패턴은 양방향 LSTM의 입력 데이터로 이용될 수 있다. 상기 이벤트 사운드 데이터의 특징 및 패턴이 학습된 양방향 LSTM은 실제 대상 사운드 데이터에서 상기 이벤트 사운드 데이터가 재생되는 구간을 탐지할 수 있다. 상세한 설명은 이하 도 6내지 도 7에서 한다.
LSTM을 사용함으로써 종래 RNN을 사용함으로써 발생되었던 정보 손실 문제인 Vanishing gradient problem의 발생을 감소 시킬 수 있다.
도 5에서 전이 학습된 제2 CNN에 의해 이벤트 사운드 분류 모델이 수립되는 과정을 상세히 설명한다. 전이 학습은 이미 학습된 알고리즘의 가중치(weight)를 이용하여 향상된 속도와 성능을 갖는 모델을 수립하기 위해 사용된다.
단계 S311에서 제1 CNN은 인공 합성 사운드 데이터를 학습 할 수 있다. 상기 인공 합성 사운드 데이터는 예를 들어 다양한 종류의 인공 이벤트 사운드 데이터를 5초동안의 빈 사운드 데이터에 합성한 데이터 일 수 있다. 즉, 인공 합성 사운드 데이터는 5초 동안의 빈 사운드 데이터에 지정된 길이와 지정된 구간에 위치하도록 합성된 것 일 수 있다. 또한 상기 인공 데이터 합성시, 전체 평균에 의해 얻어진 가우시안 랜덤 값과 표준편차를 곱하여 상기 사운드의 진폭이 정규화 될 수 있다. 상세한 설명은 이하 도 6내지 도 8에서 후술한다.
상기 인공 사운드 데이터는 웹 사이트에서 획득한 퍼블릭 사운드 데이터, 연구용으로 만들어진 사운드 데이터 및 실시간 사운드 데이터 에서 추출된 사운드 데이터일 수 있다. 상기 추출되는 사운드 데이터의 종류는 논문 'T. Heittola, A.Mesaros, A.Eronen and T.Virtanen, "Context-dependent sound event detection", EURASIP Journal on Audio, Speech, and Music Processing, pp. 1-13, 2013'에 따른 분류에 의해 나눠진 20가지 종류일 수 있다.
단계 S312에서 제1 CNN의 가중치(weight)를 이용하여 전이 학습된 제2 CNN이 획득될 수 있다. 인공 합성 사운드가 학습된 제1 CNN을 이용해 전이 학습 됨으로써, 전이 학습된 제2 CNN이 이벤트 사운드 데이터의 특징 및 패턴을 분류하는 모델의 학습 시간을 감소시킬 수 있고, 상기 학습을 위한 충분한 데이터 확보의 어려움에 대한 문제점을 해결할 수 있다. 특히, 제1 CNN에서 인공 합성 데이터를 이용해 학습을 함으로써 CBRNN 신경망 아키텍쳐의 전체적인 속도 향상뿐 아니라, 정확성도 매우 높아졌다.
본 발명의 몇몇 실시예에 따른 CBRNN의 정확도를 측정하기 위한 수치는 F1과 ER(Error Rate)이 이용될 수 있다. 또한 이하 다른 모델과의 성능 비교를 위해 전이 학습된 CBRNN의 경우 tl(transfer learning)-CBRNN으로 표현한다.
이벤트 사운드 데이터를 정확하게 탐지해내는 정도를 의미하는 수치를 F1, 새로운 이벤트 사운드를 탐지한 경우를 의미하는 수치를 P(precision) 및 과거에 탐지한 이벤트 사운드에 대한 회기를 의미하는 수치를 R(recall)이라 할 때, F1에 대한 정의는 아래와 같다.
[수식 1]
또한, 오류율(ER, Error Rate)은 삽입(I), 삭제(D), 대체(S) 및 활성 클래스(N)를 이용하여 아래와 같이 정의된다.
[수식 2]
인공 합성 데이터가 학습된 CNN을 이용하여 전이학습된 CNN을 포함하는 tl-CBRNN(transfer learned CBRNN)의 성능과 인공 합성 데이터로 학습 되지 않은 CNN에 의해 전이학습된 CNN을 포함하는 tl-CBRNN의 성능을 비교한 결과는 아래와 같다.
Method | F1 | ER |
tl-CBRNN | 55.9±1.9 | 0.56±0.03 |
tl-CBRNN(using synthetic data) | 74.0±0.5 | 0.36±0.01 |
표 1을 참조하면, 인공 합성 데이터를 사용하여 전이 학습된 tl_CRBNN의 F1수치는 74.0에 오차범위 0.5인 반면, 인공 합성 데이터를 사용하지 않고 전이 학습된 tl-CBRNN의 F1수치는 55.9에 오차범위 1.9이다. F1 수치의 정의에 따라 인공 합성 데이터를 사용하여 전이 학습된 tl-CBRNN의 경우가 인공 합성 데이터를 사용하지 않은 tl-CBRNN보다 정확성 측면에서 더 높은 결과를 보임을 알 수 있다.
또한, 인공 합성 데이터를 이용하여 학습된 CNN을 이용하여 전이학습된 CNN을 포함하는 tl-CBRNN의 성능과 전이 학습 되지 않고 직접 인공 합성 데이터를 이용하여 학습된 CNN포함하는 CBRNN의 성능을 비교한 결과는 아래와 같다.
Method | F1 | ER |
CBRNN(using synthetic data) | 70.7±0.6 | 0.40±0.01 |
tl-CBRNN(using synthetic data) | 74.0±0.5 | 0.36±0.01 |
표 2을 참조하면, 인공 합성 데이터를 사용하여 전이 학습된 tl_CRBNN의 F1수치는 74.0에 오차범위 0.5인 반면, 인공 합성 데이터를 사용하였으나 전이 학습되지 않은 tl-CBRNN의 F1수치는 70.7에 오차범위 0.6이다. F1 수치의 정의에 따라 인공 합성 데이터를 사용하여 전이 학습된 tl-CBRNN의 경우가 전이 학습 되지 않은 CBRNN보다 정확성 측면에서 더 높은 결과를 보임을 알 수 있다.
상기 표 1 및 표 2를 참조할 때, 인공합성 데이터를 이용하여 학습된 CNN을 이용해 전이학습된 CNN을 포함하는 tl-CBRNN이 다른 모델보다 정확도(F1)가 높고 오류율(ER)이 낮음을 알 수 있다.
단계 S313에서, 제2 CNN은 실제 사운드 데이터를 이용하여 학습될 수 있다. 상기 제2 CNN이 실제 대상 사운드 데이터를 이용하여 학습 됨으로써 발생할 수 있는 과적합(overfitting)문제는 단계 S311 내지 단계 S312에서 수행된 전이 학습에 의해 미리 방지될 수 있다.
과적합 이란, 머신러닝에서 학습 데이터를 과하게 잘 학습하여, 상기 학습 데이터를 이용하여 검증(Validation) 할 경우 오차가 매우 적지만, 실제 다른 데이터에 대하여는 오차가 증가하는 지점이 존재하는 문제이다. 본 발명의 일 실시예에 따른 인공 학습 데이터를 학습한 CNN을 이용해 전이학습된 CNN을 통해 실제 데이터를 모두 수집하지 않더라도 다양한 데이터를 통해 학습된 모델을 획득할 수 있으므로 상기 과적합 문제의 발생은 배제될 수 있다.
단계 S314에서 이벤트 사운드의 패턴을 분류하는 모델이 수립될 수 있다. 상기 수립된 모델은 이후 예측 단계에서 실제 대상 사운드 데이터에 포함된 이벤트 사운드를 탐지한 수 있다.
이하 도 6 내지 도 8을 참조하여 인공 합성 사운드 데이터를 생성하는 방법을 상세히 설명한다.
본 발명의 일 실시예에 따른 인공 합성 데이터에는 지정된 길이의 빈 사운드 데이터 또는 노이즈 사운드 데이터에 이벤트 사운드를 삽입된 형태일 수 있다.
도 6을 참조하면 5초 동안 재생되는 인공 합성 사운드(300)는 5초 동안 재생되는 빈 사운드 데이터에 자동차 이벤트 사운드(301, 302, 303)를 삽입하여 생성될 수 있다. 상기 삽입되는 이벤트 사운드(301, 302, 303)은 지정된 위치에 지정된 시간동안 재생되도록 합성될 수 있고, 랜덤으로 삽입 위치 및 시간이 결정될 수도 있으며, 지정된 이벤트 사운드 데이터의 재생 비율에 상응하는 재생시간을 갖도록 상기 이벤트 사운드가 삽입될 수도 있다.
예를 들어 전체 인공 합성 사운드 데이터의 60% ~ 80%가 이벤트 사운드의 재생 구간이 되도록 인공 합성 사운드 데이터가 생성될 경우, 3개의 자동차 소리(301, 302, 303)가 전체 재생 시간의 60%의 비율을 차지하도록 인공 합성 사운드(300)가 생성될 수 있고, 2개의 음악 소리(311, 312)가 전체 재생 시간의 80%의 비율을 차지하도록 인공 합성 사운드 데이터(310)가 생성될 수도 있다.
또한 도 7을 참조할 때, 본 발명의 다른 실시예에 따라 복수개의 이벤트 사운드 데이터가 포함된 인공 합성 사운드 데이터가 생성될 수 있다.
본 발명의 일 실시예에 따른 인공 합성 데이터는 지정된 개수의 이벤트 사운드를 포함하도록 생성될 수 있다. 또한 지정된 구간 또는 비율만큼 상기 이벤트 사운드간 재생 구간이 겹치도록 합성될 수 있다.
예를 들어 2개의 이벤트 사운드의 재생 구간이 전체 대상 사운드의 30% 비율만큼 겹치는 구간(321, 322, 323, 331, 332)을 포함하는 인공 합성 사운드(320, 330)가 생성되는 경우, 도 7을 참조할 때 생성되는 인공 합성 사운드 데이터(320. 330)에 포함된 복수개의 이벤트 사운드의 재생 구간(321, 322, 323, 331, 332)은 상이하더라도 복수개의 이벤트 사운드의 재생 구간이 겹치는 구간의 길이는 동일할 수 있다.
도 8을 참조할 때, 본 발명의 또 다른 실시예에 따라 다양한 조합의 복수개의 이벤트 사운드가 포함된 인공 합성 사운드가 생성될 수 있다.
예를 들어 자동차 소리를 포함하는 인공 합성 사운드 데이터(340, 350)를 생성하되, 상기 인공 합성 사운드 데이터(340, 350)는 자동차 소리의 재생 구간과 자동차 소리가 아닌 이벤트 사운드 데이터의 재생 구간과 겹치는 구간(341, 342, 343, 351, 352, 353)이 존재하도록 생성될 수 있다. 본 실시예에 따른 인공 합성 데이터(340)의 자동차 소리가 아닌 다른 이벤트 사운드는 랜덤으로 지정될 수 있으며, 이벤트 사운드간 겹치는 재생 구간의 비율은 지정된 수치일 수도 있고, 랜덤으로 정해질 수도 있음에 유의한다.
도 9를 참조할 때, 본 발명의 또 다른 실시예에 따라 지정된 개수의 이벤트 사운드가 포함된 인공 합성 사운드가 생성될 수 있다.
예를 들어 3개의 이벤트 사운드를 포함하는 인공 합성 사운드가 생성되도록 지정된 경우 경고음, 자동차 소리 및 음악 소리를 포함하는 사운드 데이터(360, 370)가 생성될 수 있다. 이 경우 이벤트 사운드간 겹치는 구간에 대한 지정을 하지 않으면, 겹치는 구간이 존재하지 않는 인공 합성 사운드 데이터(360)가 생성될 수 있고, 2개의 이벤트 사운드만 겹치는 구간(371, 372)이 존재하는 인공 합성 사운드 데이터(370)가 생성될 수도 있다. 상기 이벤트 사운드의 개수는 랜덤 함수에 의해 지정된 다양한 숫자가 될 수 있다. 이로써 이벤트 사운드 탐지 모델의 학습 데이터가 더욱 다양하게 생성됨으로써 상기 모델의 정확성이 높아질 수 있다.
도 10을 참조할 때, 본 발명의 또 다른 실시예에 따른 최대 겹칠 수 있는 이벤트 사운드의 개수가 지정된 경우 생성된 인공 합성 사운드에 대해 설명한다.
예를 들어 최대 3개까지 이벤트 사운드가 겹칠 수 있도록 지정된 경우 경고음, 자동차 소리 및 음악소리가 모두 겹치는 구간(381, 391, 392)이 존재할 수 있고, 본 실시예에 따라 반드시 3개가 겹치는 구간이 인공 합성 사운드(380, 390)에 존재해야 할 수도 있다. 상기 최대 겹칠 수 있는 이벤트 사운드의 개수는 랜덤 함수에 의해 지정된 다양한 숫자가 될 수 있음에 유의한다.
이하 도 11을 참조하여 양방향 LSTM의 학습과정을 상세히 설명한다. 양방향 LSTM은 복수개의 레이어로 구성될 수 있다. 본 발명의 일 실시예에 따른 양방향 LSTM은 세개의 레이어로 구성될 수 있다.
단계 S321에서 양방향 LSTM의 제1 레이어에서 전이학습된 CNN의 결과값을 이용하여 학습이 진행될 수 있다. 본 발명의 일 실시예에 따른 양방향 LSTM의 각각의 레이어는 100개의 LSTM 셀(cell)로 구성될 수 있고, 각각의 셀(cell)은 100개의 유닛(unit)을 가질 수 있다.
단계 S322에서 양방향 LSTM의 제2 레이어는 제1 레이어의 학습 결과값을 이용하여 학습이 진행 될 수 있다. 상기 제1 레이어의 학습 결과값은 벡터 형태의 데이터 일 수 있다.
단계 S323에서 양방향 LSTM의 제3 레이어는 제2 레이어의 학습 결과값을 이용하여 학습이 진행될 수 있다. 상기 제1 내지 제3 레이어는 대상 사운드 데이터에서 이벤트 사운드 데이터가 재생되는 구간을 탐지하기 위한 학습을 수행한다. 따라서 본 발명의 일 실시예에 따라, 양방향 LSTM의 학습 결과는 완전 결합 레이어에 의하여 탐지되는 이벤트 사운드에 대한 분류(classification) 및 라벨링(labeling)이 수행 될 수 있다.
단계 S324에서 상기 복수개의 레이어의 학습 결과 대상 사운드 데이터에 존재하는 복수개의 이벤트 사운드 데이터 및 상기 이벤트 사운드가 재생되는 재생구간을 탐지하는 모델이 수립될 수 있다.
이하 도 12을 참조하여 양방향 LSTM의 각 레이어에서 수행되는 학습 과정을 상세히 설명한다. 각 레이어에서 수행되는 방법에 대한 중복 서술을 최소화 하기 위해 제1 레이어에 대한 학습 수행 방법만 설명한다.
양방향 LSTM(Bi-directional LSTM)은 정방향 LSTM(forward LSTM)및 역방향 LSTM(backward LSTM)에 의한 학습이 모두 수행된다. 상기 정방향 LSTM과 역방향 LSTM은 입력값이 입력되는 순서가 다르다. 역방향 LSTM의 입력값은 정방향 LSTM과 반대방향으로 입력된다.
단계 S3211에서, 정방향 LSTM에서 이벤트 사운드 패턴 데이터에 대한 학습이 수행될 수 있다.
단계 S3212에서, 역방향 LSTM에서 이벤트 사운드 패턴 데이터에 대한 학습이 수행될 수 있다. 단계 S3211과 단계 S3212는 병렬적으로 수행될 수 있으며 행관계에 있는 것은 아니다.
단계 S3213에서 상기 정"?* LSTM의 학습 결과 및 상기 역방향 LSTM의 학습 결과를 결합한 벡터가 양방향 LSTM의 제1 레이어 학습 결과값이 될 수 있다. 상기 제1 레이어 학습 결과값은 다음 레이어의 입력값이 될 수 있다.
양방향 LSTM을 포함하는 CBRNN의 성능과, 단방향의 RNN을 포함하는 CRNN의 성능을 비교한 결과는 아래와 같다. 아래 성능 비교는 양방향 LSTM을 사용한 효과만을 확인하기 위하여, 인공 합성 데이터로 학습되지 않고, 전이 학습 되지 않은 CNN을 포함하는 CBRNN 및 CBNN의 성능에 대한 비교임을 유의한다.
Method | F1 | ER |
CRNN | 27.5±2.6 | 0.98±0.04 |
CBRNN | 49.9±5.8 | 0.61±0.06 |
표 3을 참조하면, 양방향 LSTM을 포함하는 CBRNN의 F1수치는 49.9에 오차범위 5.8인 반면, RNN을 포함하는 CRNN의 F1수치는 27.5에 오차범위 2.6이다. F1 수치의 정의에 따라 양방향 LSTM을 포함하는 CBRNN의 경우가 단순 RNN을 포함하는 CRNN보다 정확성 측면에서 더 높은 결과를 보임을 알 수 있다.
따라서, 본 발명의 일 실시예에 따른 특징인 인공합성 데이터를 학습한 CNN을 이용하여 전이학습된 CNN 및 양방향 LSTM을 사용한 CBRNN은 종래의 CNN 및 RNN을 이용한 CRNN과 비교했을 때 아래의 성능 차이가 발생한다. 종래 CRNN은 논문 'T. Heittola, A. Mesaros, A, Eronen, and T.Virtanen, "Audio context recognition using audio event histograms,"Proc. Of the 18소 European Signal Processing Conference(EUSIPCO), pp. 1272-1276, 2010.'에서 소개된 CBNN일 수 있다.
따라서, 상기 설명한 본 발명의 일 실시예에 따른 tl-CBRNN의 성능과 종래 CRNN의 성능을 비교하면 아래와 같다.
Method | F1 | ER |
CRNN | 27.5±2.6 | 0.98±0.04 |
tl-CBRNN(using synthetic data) | 74.0±0.5 | 0.36±0.01 |
표 4를 참조하면, 인공 합성 데이터를 이용하여 전이학습된 CNN 및 양방향 LSTM을 포함하는 tl-CBRNN의 F1 수치는 74.0에 오차범위 0.5인 반면, 종래 CNN과 RNN을 포함하는 CRNN의 F1수치는 27.5에 오차범위 2.6으로 본 발명의 일 실시예에 따른 tl-CBRNN의 정확성이 월등히 높음을 알 수 있다. 또한 오류율을 측면에서도 tl-CBRNN의 ER수치는 0.36에 0.01의 오차범위를 갖는 반면 CRNN의 ER수치는 0.98에 오차범위 0.04로 본 발명의 일 실시예에 따른 tl-CBRNN의 오류율 수치가 월등히 낮음을 알 수 있다.
본 발명의 일 실시예에 따라 상기 설명한 CBRNN(이하, tl-CNRNN과 동일한 의미로 사용)을 이용하여 다양한 이벤트 사운드를 포함하는 대상 사운드 데이터에 대하여 어떤 이벤트를 포함하는 지 알려주는 비디오 자동 태깅(tagging)서비스를 제공할 수 있다. 예를 들어 스포츠 중계 방송 영상에서 중계 음성만 탐지해 낼 수 있고, 관객의 함성만 탐지해낼 수 있다.
또한, 본 발명의 일 실시 예에 따라 CBRNN을 이용하여 보안 서비스에 이용할 수 있다. 예를 들어 이미지 분석이 힘든 환경의 주차장에서 차량 소리만으로 차량 인식을 수행할 수 있고, 차량의 충돌 소리를 탐지하여 사고 발생 여부를 판단할 수 있다. 또한 사람의 비명소리 및 총소리 등을 탐지하여 다양한 사고 발생 여부를 탐지해낼 수도 있을 것이다.
이에 한하지 않고 본 발명의 일 실시예에 따라 CBRNN을 이용하여, Sound Visualization, 낙상 감지 등의 서비스를 제공할 수도 있다.
도 13을 참조하여 본 발명의 일 실시예에 따른 이벤트 사운드 탐지 모델 학습 장치의 하드웨어 구성도를 상세히 설명한다.
이벤트 사운드 탐지 모델 학습 장치(100)는 데이터 전처리부(120), 인공신경망부(130), 데이터 예측부(140) 및 인공 합성 사운드 데이터 DB(150)를 포함할 수 있고, 데이터 수집부(110) 및 사운드 데이터 DB(160)중 적어도 하나를 더 포함할 수 있다.
데이터 수집부(110)는 본 발명의 이벤트 사운드를 탐지하기 위해 필요한 사운드 데이터를 수집할 수 있다. 특히 이벤트 사운드를 포함하는 대상 사운드가 저장된 사운드 데이터 DB(160)에서 상기 사운드 데이터를 불러올 수 있다.
사운드 데이터 DB(160)에는 이벤트 사운드를 포함하는 대상 사운드 데이터가 저장 되어 있다. 예를 들어 대상 사운드에는 학습용 대상 사운드 데이터 및 예측용 대상 사운드 데이터가 포함될 수 있다. 사운드 데이터 DB(160)는 반드시 이벤트 사운드 장치(100)에 물리적으로 포함되어 있어야 하는 것은 아니며 물리적으로 분리된 외부 DB일 수 있고, 네트워크 상에서 접근할 수 있는 DB일 수도 있다.
데이터 전처리부(120)는 오디오 형태의 사운드 데이터를 신호처리 및 Spectrogram으로 변환하는 전처리를 수행할 수 있다. 본 발명의 일 실시예에 따라 오디오 형태의 사운드 데이터를 STFT로 처리한 후, Mel-Spectrogram 형태로 변환할 수 있다. 다만 이에 한하지 않고 FTT와 같은 다양한 신호처리를 할 수 있고, 단순 Spectrogram 형태로 변환할 수도 있으며, STFT와 Mel-Spectrogram중 어느 하나의 전처리만 수행될 수도 있음에 유의한다.
인공신경망부(130)는 본 발명의 일 실시예에 따른 신경망에 의해 이벤트 사운드 탐지를 위한 인공신경망을 포함할 수 있다. 즉, CBRNN을 이용하여 상기 사운드 데이터를 학습할 수 있다. 인공신경망부(130)는 인공 합성 사운드 데이터 DB(150)에서 수신한 인공 합성 데이터를 이용하여 상기 CBRNN을 학습 시킬 수 있다.
인공 합성 사운드 데이터 DB(150)는 이벤트 사운드와 관련된 사운드 데이터를 인공적으로 합성한 데이터를 포함할 수 있다. 상기 인공 합성 데이터는 다양한 외부 소스에서 획득한 이벤트 사운드와 빈 오디오를 합성하여 생성될 수 있다. 인공 합성 데이터를 이용한 학습을 통해 정확도와 속도가 높은 이벤트 사운드 탐지가 수행될 수 있다.
데이터 예측부(140)는 본 발명의 일 실시예에 따른 신경망에 의해 이벤트 대상 사운드의 재생 구간에서 복수개의 이벤트 사운드에 대해 각각의 이벤트 사운드의 재생 구간을 탐지할 수 있다. 즉, CBRNN을 이용하여 상기 사운드 데이터에 포함된 이벤트 사운드 데이터를 예측할 수 있다.
이하, 도 14를 참조하여 본 발명의 일 실시예에 따른 이벤트 사운드 탐지 장치의 하드웨어 구성에 대해 상세히 설명한다.
이벤트 사운드 탐지 장치(200)는 프로세서(210) 및 메모리(220)를 포함하고, 몇몇 실시예들에서 스토리지(240), 네트워크 인터페이스(230) 및 시스템 버스(250) 중 적어도 하나를 더 포함할 수 있다.
메모리(220)에 로드 되어 저장되는 하나 이상의 인스트럭션(221, 222)은 프로세서(210)를 통하여 실행된다. 본 실시예에 따른 이벤트 사운드 탐지 모델 학습을 수행하는 컴퓨팅 장치(200)는 별도의 설명이 없더라도 도 1a 및 도 1b 참조하여 설명한 이벤트 사운드 탐지 모델 학습 방법을 수행할 수 있는 점을 유의한다.
네트워크 인터페이스(230)는 대상 사운드 데이터를 수신하거나, 대상 사운드 데이터에서 탐지한 이벤트 사운드에 대한 정보를 송신할 수 있다. 상기 수신된 대상 사운드 데이터에 대한 정보는 스토리지(240)에 저장되도록 할 수 있다.
스토리지(240)는 탐지 대상 사운드 데이터(241)를 저장할 수 있다.
상기 하나 이상의 인스트럭션은, 대상 사운드에 포함되는 복수개의 이벤트 사운드의 재생 구간을 탐지하는 모델을 수립하는 인스트럭션(222)을 포함할 수 있고, 몇몇 실시예에 따라 이벤트 사운드 데이터의 패턴을 분류하는 모델을 수립하는 인스트럭션(221)을 더 포함할 수 있다.
일 실시예에서, 이벤트 사운드 데이터 패턴 분류 모델 인스트럭션(221)은 메모리상에 로드 된 인공 합성 데이터(223)를 이용하여 전이 학습된 알고리즘을 사용하여 이벤트 사운드 데이터의 특징 및 패턴을 분류하는 모델을 수립할 수 있다.
일 실시예에서, 이벤트 사운드 탐지 모델 인스트럭션(222)은 대상 사운드 데이터(241)에 포함된 이벤트 사운드에 대하여 상기 수립된 이벤트 사운드 데이터 패턴 분류 모델의 결과값을 이용하여 대상 사운드 데이터의 재생 구간중 복수개의 이벤트 사운드에 대하여 각각의 이벤트 사운드의 재생 구간을 탐지할 수 있다.
지금까지 설명된 본 발명의 실시예에 따른 방법들은 컴퓨터가 읽을 수 있는 코드로 구현된 컴퓨터프로그램의 실행에 의하여 수행될 수 있다. 상기 컴퓨터프로그램은 인터넷 등의 네트워크를 통하여 제1 컴퓨팅 장치로부터 제2 컴퓨팅 장치에 전송되어 상기 제2 컴퓨팅 장치에 설치될 수 있고, 이로써 상기 제2 컴퓨팅 장치에서 사용될 수 있다. 상기 제1 컴퓨팅 장치 및 상기 제2 컴퓨팅 장치는, 서버 장치, 클라우드 서비스를 위한 서버 풀에 속한 물리 서버, 데스크탑 피씨와 같은 고정식 컴퓨팅 장치를 모두 포함한다.
상기 컴퓨터프로그램은 DVD-ROM, 플래시 메모리 장치 등의 기록매체에 저장된 것일 수도 있다.
이상 첨부된 도면을 참조하여 본 발명의 실시예들을 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다.
Claims (9)
- 컴퓨팅장치에 의해 수행되는 방법에 있어서,
인공 합성된 제1 이벤트 사운드를 포함하는 인공 합성 사운드의 데이터 및 제2 이벤트 사운드를 포함하는 인공 합성 사운드의 데이터를 이용하여 초기 학습(initial learning)된 CBRNN(Convolutional Bi-directional Recurrent Neural Networks)에 포함된 제1 CNN(Convolutional Neural Networks)을 획득하는 단계; 및
실제 녹음된 상기 제1 이벤트 사운드 및 상기 제2 이벤트 사운드가 포함된 제1 대상 사운드의 데이터를 이용하여 제2 CNN 및 상기 제2 CNN의 출력 레이어에서 출력 된 데이터를 입력 받는 양방향 LSTM 구조의 RNN을 학습시키는 단계를 포함하되,
상기 제2 CNN은 상기 제1 CNN의 가중치(weight)를 이용하여 전이 학습(transfer learning)된 것이고,상기 학습된 양방향 LSTM 구조의 RNN은 상기 제1 대상 사운드의 재생 구간 중 제1 이벤트 사운드의 재생 구간 및 제2 이벤트 사운드의 재생 구간을 동시에 탐지하는 모델인 것인,
이벤트 사운드 탐지 모델 학습 방법. - 제1 항에 있어서,
상기 제1 CNN을 획득하는 단계는,
인공 합성된 제2 이벤트 사운드를 포함하는 상기 인공 합성 사운드의 데이터를 이용하여 초기 학습된 CBRNN에 포함된 상기 제1 CNN을 획득하는 단계를 더 포함하되,
상기 인공 합성 사운드에 포함된 상기 제1 이벤트 사운드의 재생 구간과 상기 제2 이벤트 사운드의 재생 구간은 지정된 시간만큼 겹치는,
이벤트 사운드 탐지 모델 학습 방법. - 제2 항에 있어서,
상기 제1 CNN을 획득하는 단계는,
랜덤 함수에 의해 지정된 시간만큼 상기 제1 이벤트 사운드와 상기 제2 이벤트 사운드의 재생 구간이 겹치는 상기 인공 합성 사운드의 데이터를 이용하여 초기 학습된 CBRNN에 포함된 상기 제1 CNN을 획득하는 단계를 포함하는,
이벤트 사운드 탐지 모델 학습 방법. - 제2 항에 있어서,
상기 제1 CNN을 획득하는 단계는,
지정된 비율만큼 상기 제1 이벤트 사운드와 상기 제2 이벤트 사운드의 재생 구간이 겹치도록 생성된 상기 인공 합성 사운드의 데이터를 이용하여 초기 학습된 CBRNN에 포함된 상기 제1 CNN을 획득하는 단계를 포함하는,
이벤트 사운드 탐지 모델 학습 방법. - 제2 항에 있어서,
상기 제1 CNN을 획득하는 단계는,
상기 제2 이벤트 사운드와 상이한 제3 이벤트 사운드를 포함하는 상기 인공 합성 사운드의 데이터를 이용하여 초기 학습된 CBRNN에 포함된 상기 제1 CNN을 획득하는 단계를 더 포함하는,
이벤트 사운드 탐지 모델 학습 방법. - 제2 항에 있어서,
상기 제1 CNN을 획득하는 단계는,
지정된 개수만큼의 이벤트 사운드를 더 포함하는 인공 합성 사운드의 데이터를 이용하여 초기 학습된 CBRNN에 포함된 제1 CNN을 획득하는 단계를 포함하는,
이벤트 사운드 탐지 모델 학습 방법. - 제2 항에 있어서,
상기 제1 CNN을 획득하는 단계는,
지정된 개수만큼의 이벤트 사운드의 재생 구간이 더 겹치도록 생성된 상기 인공 합성 사운드의 데이터를 이용하여 초기 학습된 CBRNN에 포함된 상기 제1 CNN을 획득하는 단계를 포함하되,
상기 지정된 개수는 동시에 겹칠 수 있는 이벤트 사운드의 최대 개수인,
이벤트 사운드 탐지 모델 학습 방법. - 제1 항에 있어서,
상기 실제 녹음된 상기 제1 이벤트 사운드가 포함된 제1 대상 사운드의 데이터를 이용하여 제2 CNN 및 상기 제2 CNN의 출력 레이어에서 출력 된 데이터를 입력 받는 양방향 LSTM 구조의 RNN을 학습시키는 단계는,
상기 학습된 양방향 LSTM 구조의 RNN을 이용하여 상기 제1 대상 사운드의 재생 구간 중 복수개의 이벤트 사운드의 재생 구간을 동시에 탐지하는 모델을 학습하는 단계를 포함하되,
상기 복수개의 이벤트 사운드는 상기 제1 대상 사운드에 포함된 것인,
이벤트 사운드 탐지 모델 학습 방법. - 이벤트 사운드 탐지 모델 학습 프로그램이 로드 되는 메모리; 및
상기 메모리에 로드된 이벤트 사운드 탐지 모델 학습 프로그램을 실행하는 프로세서를 포함하되,
상기 이벤트 사운드 탐지 모델 학습 프로그램은,
인공 합성된 제1 이벤트 사운드를 포함하는 인공 합성 사운드의 데이터 및 제2 이벤트 사운드를 포함하는 인공 합성 사운드의 데이터를 이용하여 초기 학습(initial learning)된 CBRNN(Convolutional Bi-directional Recurrent Neural Networks)에 포함된 제1 CNN(Convolutional Neural Networks)을 획득하는 인스트럭션(instruction); 및
실제 녹음된 상기 제1 이벤트 사운드 및 상기 제2 이벤트 사운드가 포함된 제1 대상 사운드의 데이터를 이용하여 제2 CNN 및 상기 제2 CNN의 출력 레이어에서 출력 된 데이터를 입력 받는 양방향 LSTM 구조의 RNN을 학습시키는 인스트럭션을 포함하되, 상기 제2 CNN은 상기 제1 CNN의 가중치(weight)를 이용하여 전이 학습(transfer learning)된 것이고,상기 학습된 양방향 LSTM 구조의 RNN은 상기 제1 대상 사운드의 재생 구간 중 제1 이벤트 사운드의 재생 구간 및 제2 이벤트 사운드의 재생 구간을 동시에 탐지하는 모델인 것인,
컴퓨팅 장치.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190007575A KR102025652B1 (ko) | 2019-01-21 | 2019-01-21 | 사운드 이벤트 탐지 모델 학습 방법 |
PCT/KR2019/012932 WO2020153572A1 (ko) | 2019-01-21 | 2019-10-02 | 사운드 이벤트 탐지 모델 학습 방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190007575A KR102025652B1 (ko) | 2019-01-21 | 2019-01-21 | 사운드 이벤트 탐지 모델 학습 방법 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020190115875A Division KR102172475B1 (ko) | 2019-09-20 | 2019-09-20 | 사운드 이벤트 탐지 모델 학습 방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR102025652B1 true KR102025652B1 (ko) | 2019-09-27 |
Family
ID=68096977
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020190007575A KR102025652B1 (ko) | 2019-01-21 | 2019-01-21 | 사운드 이벤트 탐지 모델 학습 방법 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102025652B1 (ko) |
WO (1) | WO2020153572A1 (ko) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020153572A1 (ko) * | 2019-01-21 | 2020-07-30 | 휴멜로 주식회사 | 사운드 이벤트 탐지 모델 학습 방법 |
KR102148378B1 (ko) * | 2020-01-22 | 2020-08-26 | 강태욱 | 기계 학습 모델을 이용한 관심 이벤트의 알림 제공 장치 및 방법 |
CN111998936A (zh) * | 2020-08-25 | 2020-11-27 | 四川长虹电器股份有限公司 | 一种基于迁移学习的设备异音检测方法及系统 |
KR102213768B1 (ko) * | 2020-05-19 | 2021-02-08 | 주식회사 스타일씨코퍼레이션 | 빅데이터 기반의 ai가 고객의 정보를 기반으로 구매전환율이 높은 상품을 노출시키는 고객 맞춤형 상품 추천 시스템 |
KR102217414B1 (ko) * | 2019-12-24 | 2021-02-19 | 광운대학교 산학협력단 | 4d 영화 이펙트 자동 생성장치 |
KR102225212B1 (ko) * | 2020-09-29 | 2021-03-09 | 이대성 | 인공지능 기반의 고객 맞춤형 쇼핑몰 상품 추천 및 상품 페이지 자동 구성 시스템 |
KR102247023B1 (ko) * | 2020-05-08 | 2021-05-03 | 주식회사 사운드에어 | 사운드 데이터 기반 자율주행 시스템, 이동체 이동 안전 시스템 및 방법 |
CN113221277A (zh) * | 2021-05-14 | 2021-08-06 | 西安交通大学 | 一种基于数字孪生模型的轴承性能退化评估方法及系统 |
CN114730566A (zh) * | 2019-11-25 | 2022-07-08 | 高通股份有限公司 | 声音事件检测学习 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11769332B2 (en) * | 2020-06-15 | 2023-09-26 | Lytx, Inc. | Sensor fusion for collision detection |
CN112632319B (zh) * | 2020-12-22 | 2023-04-11 | 天津大学 | 基于迁移学习的提升长尾分布语音总体分类准确度的方法 |
CN113724733B (zh) * | 2021-08-31 | 2023-08-01 | 上海师范大学 | 生物声音事件检测模型训练方法、声音事件的检测方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070042565A1 (en) | 2003-07-15 | 2007-02-22 | Smith Mark A | Fluidic MEMS device |
KR20170046751A (ko) * | 2014-12-15 | 2017-05-02 | 바이두 유에스에이 엘엘씨 | 음성 전사를 위한 시스템 및 방법 |
KR101891778B1 (ko) * | 2017-04-07 | 2018-08-24 | 네이버 주식회사 | 음원의 하이라이트 구간을 결정하는 방법, 장치 및 컴퓨터 프로그램 |
KR20180122171A (ko) * | 2017-05-02 | 2018-11-12 | 서강대학교산학협력단 | 심층 신경망을 기반으로 한 사운드 이벤트 검출 방법 및 사운드 이벤트 검출 장치 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9263036B1 (en) * | 2012-11-29 | 2016-02-16 | Google Inc. | System and method for speech recognition using deep recurrent neural networks |
KR102025652B1 (ko) * | 2019-01-21 | 2019-09-27 | 휴멜로 주식회사 | 사운드 이벤트 탐지 모델 학습 방법 |
-
2019
- 2019-01-21 KR KR1020190007575A patent/KR102025652B1/ko active IP Right Grant
- 2019-10-02 WO PCT/KR2019/012932 patent/WO2020153572A1/ko active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070042565A1 (en) | 2003-07-15 | 2007-02-22 | Smith Mark A | Fluidic MEMS device |
KR20170046751A (ko) * | 2014-12-15 | 2017-05-02 | 바이두 유에스에이 엘엘씨 | 음성 전사를 위한 시스템 및 방법 |
KR101891778B1 (ko) * | 2017-04-07 | 2018-08-24 | 네이버 주식회사 | 음원의 하이라이트 구간을 결정하는 방법, 장치 및 컴퓨터 프로그램 |
KR20180122171A (ko) * | 2017-05-02 | 2018-11-12 | 서강대학교산학협력단 | 심층 신경망을 기반으로 한 사운드 이벤트 검출 방법 및 사운드 이벤트 검출 장치 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020153572A1 (ko) * | 2019-01-21 | 2020-07-30 | 휴멜로 주식회사 | 사운드 이벤트 탐지 모델 학습 방법 |
CN114730566A (zh) * | 2019-11-25 | 2022-07-08 | 高通股份有限公司 | 声音事件检测学习 |
KR102217414B1 (ko) * | 2019-12-24 | 2021-02-19 | 광운대학교 산학협력단 | 4d 영화 이펙트 자동 생성장치 |
KR102148378B1 (ko) * | 2020-01-22 | 2020-08-26 | 강태욱 | 기계 학습 모델을 이용한 관심 이벤트의 알림 제공 장치 및 방법 |
KR102247023B1 (ko) * | 2020-05-08 | 2021-05-03 | 주식회사 사운드에어 | 사운드 데이터 기반 자율주행 시스템, 이동체 이동 안전 시스템 및 방법 |
KR102213768B1 (ko) * | 2020-05-19 | 2021-02-08 | 주식회사 스타일씨코퍼레이션 | 빅데이터 기반의 ai가 고객의 정보를 기반으로 구매전환율이 높은 상품을 노출시키는 고객 맞춤형 상품 추천 시스템 |
CN111998936A (zh) * | 2020-08-25 | 2020-11-27 | 四川长虹电器股份有限公司 | 一种基于迁移学习的设备异音检测方法及系统 |
KR102225212B1 (ko) * | 2020-09-29 | 2021-03-09 | 이대성 | 인공지능 기반의 고객 맞춤형 쇼핑몰 상품 추천 및 상품 페이지 자동 구성 시스템 |
CN113221277A (zh) * | 2021-05-14 | 2021-08-06 | 西安交通大学 | 一种基于数字孪生模型的轴承性能退化评估方法及系统 |
CN113221277B (zh) * | 2021-05-14 | 2022-12-09 | 西安交通大学 | 一种基于数字孪生模型的轴承性能退化评估方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
WO2020153572A1 (ko) | 2020-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102025652B1 (ko) | 사운드 이벤트 탐지 모델 학습 방법 | |
US11900947B2 (en) | Method and system for automatically diarising a sound recording | |
US11227603B2 (en) | System and method of video capture and search optimization for creating an acoustic voiceprint | |
Makino et al. | Recurrent neural network transducer for audio-visual speech recognition | |
Jin et al. | Event-based Video Retrieval Using Audio. | |
CN112418011A (zh) | 视频内容的完整度识别方法、装置、设备及存储介质 | |
Vogl et al. | Drum transcription from polyphonic music with recurrent neural networks | |
CN102486920A (zh) | 音频事件检测方法和装置 | |
Jung et al. | Polyphonic sound event detection using convolutional bidirectional lstm and synthetic data-based transfer learning | |
KR102397563B1 (ko) | 사운드 이벤트 탐지 모델 학습 방법 | |
EP4425482A2 (en) | Model training and tone conversion method and apparatus, device, and medium | |
Lemaire et al. | Temporal convolutional networks for speech and music detection in radio broadcast | |
CN111640456A (zh) | 叠音检测方法、装置和设备 | |
Tzanetakis et al. | A framework for audio analysis based on classification and temporal segmentation | |
CN113936667A (zh) | 一种鸟鸣声识别模型训练方法、识别方法及存储介质 | |
WO2021166207A1 (ja) | 認識装置、学習装置、それらの方法、およびプログラム | |
KR102172475B1 (ko) | 사운드 이벤트 탐지 모델 학습 방법 | |
Zhang et al. | Acoustic traffic event detection in long tunnels using fast binary spectral features | |
CN114512134A (zh) | 声纹信息提取、模型训练与声纹识别的方法和装置 | |
JPWO2011062071A1 (ja) | 音響画像区間分類装置および方法 | |
CN116312640A (zh) | 一种自适应环境声音情感识别方法及装置 | |
CN112837688B (zh) | 语音转写方法、装置、相关系统及设备 | |
Bai et al. | CIAIC-BAD system for DCASE2018 challenge task 3 | |
Bhavya et al. | Deep Learning Approach for Sound Signal Processing | |
JP7279800B2 (ja) | 学習装置、推定装置、それらの方法、およびプログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
GRNT | Written decision to grant |