KR102021037B1 - Bearing Element with Hydrophile Layer and the Producing Method thereof - Google Patents

Bearing Element with Hydrophile Layer and the Producing Method thereof Download PDF

Info

Publication number
KR102021037B1
KR102021037B1 KR1020180011451A KR20180011451A KR102021037B1 KR 102021037 B1 KR102021037 B1 KR 102021037B1 KR 1020180011451 A KR1020180011451 A KR 1020180011451A KR 20180011451 A KR20180011451 A KR 20180011451A KR 102021037 B1 KR102021037 B1 KR 102021037B1
Authority
KR
South Korea
Prior art keywords
hydrophilic layer
bearing element
monomer
alkyl group
methacryloyloxy
Prior art date
Application number
KR1020180011451A
Other languages
Korean (ko)
Other versions
KR20190092084A (en
Inventor
선두훈
김용식
신태진
김용화
정성욱
서지훈
임충만
장호
서지애
Original Assignee
주식회사 코렌텍
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 코렌텍, 고려대학교 산학협력단 filed Critical 주식회사 코렌텍
Priority to KR1020180011451A priority Critical patent/KR102021037B1/en
Publication of KR20190092084A publication Critical patent/KR20190092084A/en
Application granted granted Critical
Publication of KR102021037B1 publication Critical patent/KR102021037B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/38Joints for elbows or knees
    • A61F2/3868Joints for elbows or knees with sliding tibial bearing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30942Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/34Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/30004Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis
    • A61F2002/30024Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis differing in coefficient of friction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/30004Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis
    • A61F2002/30031Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis differing in wettability, e.g. in hydrophilic or hydrophobic behaviours
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/3006Properties of materials and coating materials
    • A61F2002/30065Properties of materials and coating materials thermoplastic, i.e. softening or fusing when heated, and hardening and becoming rigid again when cooled
    • A61F2002/30067Coating or prosthesis-covering structure made of thermoplastic material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2002/30934Special articulating surfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/24Materials or treatment for tissue regeneration for joint reconstruction

Abstract

본 발명은, 폴리머재료로 된 표면을 포함하는 인공관절에 관한 것으로, 특히 폴리머 표면에 인체의 관절구조와 유사한 친수성 층을 가져서 마찰계수를 감소시킬 수 있는 베어링요소와 그 제조방법에 관한 것이다. The present invention relates to an artificial joint including a surface made of a polymer material, and more particularly, to a bearing element capable of reducing a coefficient of friction by having a hydrophilic layer similar to a joint structure of a human body on a polymer surface and a method of manufacturing the same.

Description

친수성 층을 가진 베어링요소와 그 제조방법{Bearing Element with Hydrophile Layer and the Producing Method thereof}Bearing element with hydrophile layer and the producing method

본 발명은, 폴리머재료로 된 표면을 포함하는 베어링요소에 관한 것으로, 특히 폴리머 표면에 인체의 관절구조와 유사한 친수성 층을 가져서 마찰계수를 감소시킬 수 있는 베어링요소와 그 제조방법에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bearing element comprising a surface of polymer material, and more particularly, to a bearing element capable of reducing a coefficient of friction by having a hydrophilic layer similar to the joint structure of a human body on a polymer surface and a method of manufacturing the same.

인체의 관절은 그 표면에 섬모조직을 가지고 있어서 체액(body fluid)을 저장할 수 있는 친수성을 보유하고 있다. 따라서, 체액은 해당 섬모조직에 저장되어, 윤활유로서 기능함으로써 인체 관절의 자연스러운 운동을 가능하게 한다. The joints of the human body have ciliary tissue on its surface, which retains hydrophilicity to store body fluid. Therefore, the body fluid is stored in the ciliated tissue, and functions as a lubricant to enable natural movement of the human joint.

인체의 관절은 인체의 여러 부위 중에 신체의 전체적인 모양과 균형을 결정하고 무게를 지탱하는 기능을 수행하는 중요한 기관중 하나이다. 그 만큼, 관절은 빈번하게 사용되고 나아가 잦은 충격에 노출되어 시간이 지남에 따라 노화가 진행되거나 각종 질병이나 사고로 인해 관절의 기능이 약해지거나 상실되는 경우가 발생한다. 이와 같은 관절손상은 자연상태에서는 치료가 힘들기 때문에, 손상된 관절을 대체할 수 있는 인공관절의 개발이 꾸준히 진행되고 있다. 이와 같은 인공관절의 시술을 통해 삶의 질이 현저히 개선되고 있다. 무릎관절, 어깨관절, 고관절, 발목관절이 대표적인 인공관절에 속한다.The joints of the human body are one of the important organs that perform the functions of determining the overall shape and balance of the body and supporting the weight among various parts of the human body. As such, joints are frequently used and further exposed to frequent shocks, the aging progresses over time, or the function of the joints is weakened or lost due to various diseases or accidents. Since such joint damage is difficult to treat in a natural state, development of artificial joints that can replace damaged joints is steadily progressing. The quality of life is remarkably improved through the treatment of artificial joints. Knee, shoulder, hip, and ankle joints are typical artificial joints.

도 1은 인공관절 중 무릎관절을 도시하는 도면으로, 이는 한국공개특허공보 제10-2009-0076346호(2009.07.13.)에 개시되어 있다. 무릎관절은, 크게 대퇴골의 원위부 말단의 관절면을 대체하는 대퇴골요소(5)와, 경골의 근위부 말단의 관절면을 대체하는 경골요소(7)와, 상기 대퇴골요소와 경골요소 사이에 위치하면서 대퇴골요소의 관절면과 접촉하는 관절면을 가진 베어링요소(1)를 포함한다. 여기서, 대퇴골요소는 베어링요소와 접촉하면서 관절운동을 하게 되는데, 베어링요소의 관절면은 폴리머재료로 된 표면을 가지고 있다. 폴리머재료의 표면은 대퇴골요소와의 관절운동과정에서 마모되고 마모과정에서 마모입자를 발생시키게 된다. 이러한 마모입자는 관절 주위의 대식세포(macrophage)에 의해 섭취되고, 대식세포는 RANKL이라는 신호체계를 거쳐 마모입자의 섭취와 함께 특정 cytokine 및 prostaglandin을 분비하게 된다. 분비된 cytokine의 영향으로 관절 주위에는 파골세포(osteoclast)가 크게 활성화되며, 조골세포(osteoblast)와 파골세포간의 균형이 무너져 골용해 현상이 발생해 인공관절 주위의 골세포가 파괴되고, 시술된 인공관절이 그 기능을 상실하는 문제가 발생한다. 1 is a view showing a knee joint of the artificial joint, which is disclosed in Korean Patent Laid-Open No. 10-2009-0076346 (2009.07.13.). The knee joint includes a femur element 5 largely replacing the articular surface of the distal end of the femur, a tibia element 7 replacing the articular surface of the proximal end of the tibia, and a femur located between the femur element and the tibial element. Bearing element 1 having an articulation surface in contact with the articulation surface of the element. Here, the femur element is in contact with the bearing element and the joint movement, the joint surface of the bearing element has a surface of the polymer material. The surface of the polymer material wears out during the joint movement with the femoral element and generates wear particles during the wear process. These wear particles are ingested by macrophage around the joint, and macrophages secrete specific cytokine and prostaglandin along with the ingestion of wear particles through a signaling system called RANKL. Osteoclast is greatly activated around the joint under the influence of secreted cytokine, and the balance between osteoblast and osteoclast is broken and osteolysis occurs, resulting in destruction of osteocytes around the artificial joint. The problem is that the joints lose their function.

이와 같은 문제는, 베어링요소의 표면을 구성하는 폴리머재료가 소수성을 띠고 있고 있어서, 친수성을 가진 인체의 관절에 비해 현저히 떨어지는 윤활성으로부터 발생한다. 따라서, 폴리머 표면에 친수성을 부여하고자 하는 연구가 꾸준히 진행되고 있지만 고가의 비용으로 인해 대중화가 쉽지 않은 실정이다. 이러한 고비용은 고령화로 인한 인공관절의 수요가 급격히 증가하는 현실에서 환자의 부담을 증가시키는 요소로 작용할 수 있다. 따라서, 인공관절의 대중화를 위하여 친수성을 가진 폴리머 표면을 가진 인공관절을 제공하되 친수성을 이용한 마찰계수의 현저한 감소와 더불어 저렴한 인공관절의 개발이 요구되고 있다. Such a problem arises from the fact that the polymer material constituting the surface of the bearing element is hydrophobic, and thus has significantly lower lubricity than the joints of the human body having hydrophilicity. Therefore, studies to give hydrophilicity to the surface of the polymer is steadily progressing, but due to the high cost, it is not easy to popularize. This high cost may act as a factor that increases the burden on the patient in the reality that the demand for artificial joints is rapidly increased due to aging. Therefore, while providing artificial joints having a hydrophilic polymer surface for the popularization of artificial joints, development of inexpensive artificial joints with a significant reduction of the friction coefficient using hydrophilicity is required.

본 발명은 앞서 본 종래기술의 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은, 마찰계수를 줄여 마모입자의 발생을 최소화하는 베어링요소와 그 제조방법을 제공하는 것이다. The present invention has been made to solve the problems of the prior art, it is an object of the present invention to provide a bearing element and a method of manufacturing the same to reduce the friction coefficient to minimize the generation of wear particles.

본 발명의 다른 목적은, 마찰계수의 감소와 마모입자의 발생을 최소화하면서도 제조단가를 낮추어 인공관절의 대중화를 이끌어낼 수 있는 베어링요소와 그 제조방법을 제공하는 것이다. Another object of the present invention is to provide a bearing element and a method of manufacturing the same, which can lead to popularization of artificial joints by reducing the manufacturing cost while minimizing the reduction of friction coefficient and the occurrence of wear particles.

본 발명의 일실시예에 따르면, 본 발명의 베어링요소는, 폴리머표면을 포함하는 인공관절의 표면에 친수성 층을 가진다. According to one embodiment of the present invention, the bearing element of the present invention has a hydrophilic layer on the surface of the artificial joint including the polymer surface.

본 발명의 다른 실시예에 따르면, 본 발명의 베어링요소는, 상기 친수성 층은, 고분자 물질을 상기 폴리머 표면에 그래프트하여 형성된다. According to another embodiment of the present invention, in the bearing element of the present invention, the hydrophilic layer is formed by grafting a polymer material on the polymer surface.

본 발명의 또 다른 실시예에 따르면, 본 발명의 베어링요소는, 상기 고분자 물질은, 쌍성이온 고분자 물질이다. According to another embodiment of the present invention, in the bearing element of the present invention, the polymer material is a zwitterionic polymer material.

본 발명의 또 다른 실시예에 따르면, 본 발명의 베어링요소는, 상기 고분자 물질은 중합가능한 모노머를 그래프트함으로서 폴리머 표면에 부착하여 형성된다. According to another embodiment of the present invention, the bearing element of the present invention is formed by attaching the polymer material to the polymer surface by grafting a polymerizable monomer.

본 발명의 또 다른 실시예에 따르면, 본 발명의 베어링요소는, 상기 모노머는 메타아크릴로일옥시 알킬 그룹과, 술포프로필-수산화암모늄 그룹으로 이루어진다. According to another embodiment of the present invention, in the bearing element of the present invention, the monomer consists of a methacryloyloxy alkyl group and a sulfopropyl-ammonium hydroxide group.

본 발명의 또 다른 실시예에 따르면, 본 발명의 베어링요소는, 상기 메타아크릴로일옥시 알킬 그룹은 그 일단이 상기 폴리머 표면에 결합되고 상기 술포프로필-수산화암모늄 그룹은 상기 메타아크릴로일옥시 알킬 그룹에 연결된다. According to another embodiment of the present invention, in the bearing element of the present invention, one end of the methacryloyloxy alkyl group is bonded to the polymer surface and the sulfopropyl-ammonium hydroxide group is the methacryloyloxy alkyl. Connected to the group.

본 발명의 또 다른 실시예에 따르면, 본 발명의 베어링요소는, 상기 모노머는 2-(methacryloyloxy)ethyl dimethyl-(3-sulfopropyl) ammonium hydroxide 이다. According to another embodiment of the present invention, in the bearing element of the present invention, the monomer is 2- (methacryloyloxy) ethyl dimethyl- (3-sulfopropyl) ammonium hydroxide.

본 발명의 또 다른 실시예에 따르면, 본 발명의 베어링요소는, 상기 친수성 층은 복수의 스트랜드로 이루어진 브러쉬 구조를 가진다. According to another embodiment of the invention, the bearing element of the invention, the hydrophilic layer has a brush structure consisting of a plurality of strands.

본 발명의 또 다른 실시예에 따르면, 본 발명의 베어링요소는, 상기 폴리머 표면은 가교폴리에틸렌으로 형성된다.       According to another embodiment of the present invention, in the bearing element of the present invention, the polymer surface is formed of crosslinked polyethylene.

본 발명의 또 다른 실시예에 따르면, 본 발명의 베어링요소는, 상기 브러쉬 구조를 구성하는 각각의 스트랜드는 스트랜드간의 연결이나 엉김이 발생하지 않는다. According to another embodiment of the present invention, in the bearing element of the present invention, each strand constituting the brush structure does not cause connection or entanglement between the strands.

본 발명의 또 다른 실시예에 따르면, 본 발명의 베어링요소는, 상기 친수성 층은 35㎚ 이상의 두께를 가진다.       According to another embodiment of the invention, in the bearing element of the invention, the hydrophilic layer has a thickness of at least 35 nm.

본 발명의 또 다른 실시예에 따르면, 본 발명의 베어링요소는, 상기 친수성 층은 35㎚~300㎚의 두께를 가진다.According to another embodiment of the invention, in the bearing element of the invention, the hydrophilic layer has a thickness of 35nm to 300nm.

본 발명의 또 다른 실시예에 따르면, 본 발명의 베어링요소는, 상기 친수성 층의 마찰계수는 0.02이하이다. According to another embodiment of the present invention, in the bearing element of the present invention, the coefficient of friction of the hydrophilic layer is 0.02 or less.

본 발명의 또 다른 실시예에 따르면, 본 발명의 베어링요소는, 상기 친수성 층의 마찰계수는 0.0093~0.02이다. According to yet another embodiment of the present invention, in the bearing element of the present invention, the coefficient of friction of the hydrophilic layer is from 0.0093 to 0.02.

본 발명의 또 다른 실시예에 따르면, 본 발명의 베어링요소는,상기 친수성 층의 마모량은, 0.5mm3이하이다. According to another embodiment of the present invention, in the bearing element of the present invention, the wear amount of the hydrophilic layer is 0.5 mm 3 or less.

본 발명의 또 다른 실시예에 따르면, 본 발명의 베어링요소의 제조방법은, 폴리머표면을 가진 베어링요소를 광개시제가 포함된 용액에 일정 시간 동안 침지시키고 건조시켜 표면에 광개시제를 코팅하는 광개시제 코팅단계와, 베어링요소를 친수성 용액에 침지시킨 후 일정 시간 동안 자외선을 조사하여 친수성 층을 성장시키는 친수성 층 형성단계를 포함한다.According to another embodiment of the present invention, the manufacturing method of the bearing element of the present invention, the photoinitiator coating step of coating the photoinitiator on the surface by immersing and drying the bearing element having a polymer surface in a solution containing a photoinitiator for a predetermined time; And immersing the bearing element in a hydrophilic solution and irradiating ultraviolet light for a predetermined time to grow a hydrophilic layer.

본 발명의 또 다른 실시예에 따르면, 본 발명의 베어링요소의 제조방법은,상기 친수성 용액은 메타아크릴로일옥시 알킬 그룹과, 술포프로필-수산화암모늄 그룹으로 이루어진 모노머를 용해시킨 초순수이다. According to still another embodiment of the present invention, in the method of manufacturing a bearing element of the present invention, the hydrophilic solution is ultrapure water in which a monomer composed of a methacryloyloxy alkyl group and a sulfopropyl-ammonium hydroxide group is dissolved.

본 발명의 또 다른 실시예에 따르면, 본 발명의 베어링요소의 제조방법은,상기 베어링요소의 폴리머표면은 가교폴리에틸렌으로 형성된다. According to another embodiment of the present invention, in the method for manufacturing a bearing element of the present invention, the polymer surface of the bearing element is formed of crosslinked polyethylene.

본 발명의 또 다른 실시예에 따르면, 본 발명의 베어링요소의 제조방법은, 상기 친수성 층 형성단계는 메타아크릴로일옥시 알킬 그룹의 일단이 상기 폴리머 표면에 결합하여 브러쉬 구조를 형성하는 브러쉬 구조 형성단계를 포함한다. According to another embodiment of the present invention, the manufacturing method of the bearing element of the present invention, the hydrophilic layer forming step is a brush structure forming one end of the methacryloyloxy alkyl group is bonded to the polymer surface to form a brush structure Steps.

본 발명의 또 다른 실시예에 따르면, 본 발명의 베어링요소의 제조방법은, 상기 브러쉬 구조 형성단계는 상기 술포프로필-수산화암모늄 그룹이 상기 메타아크릴로일옥시 알킬 그룹에 연결된다. According to another embodiment of the present invention, in the method for manufacturing a bearing element of the present invention, in the brush structure forming step, the sulfopropyl-ammonium hydroxide group is connected to the methacryloyloxy alkyl group.

본 발명의 또 다른 실시예에 따르면, 본 발명의 베어링요소의 제조방법은, 상기 친수성 층 형성단계는, 0.25~0.5mol/L 농도의 친수성 용액에 10~40mW/㎠ 자외선 강도로 30분~120분 동안 조사하여 친수성 층을 성장시킨다. According to another embodiment of the present invention, the manufacturing method of the bearing element of the present invention, the hydrophilic layer forming step, 30 minutes ~ 120 to 10 ~ 40mW / ㎠ UV intensity in a hydrophilic solution of 0.25 ~ 0.5mol / L concentration Irradiate for minutes to grow the hydrophilic layer.

본 발명은 다음과 같은 효과를 가진다. The present invention has the following effects.

본 발명은, 마찰계수를 줄여 마모입자의 발생을 최소화하여 골용해 현상을 방지함으로써 인공관절의 사용수명을 연장할 수 있는 효과를 얻을 수 있다.  The present invention, by reducing the friction coefficient to minimize the occurrence of wear particles to prevent the osteolysis phenomenon can be obtained to extend the service life of the artificial joint.

본 발명은, 마찰계수의 감소와 마모입자의 발생을 최소화하면서도 제조단가를 낮추어 인공관절의 대중화를 이끌어낼 수 있는 효과를 도모할 수 있다. The present invention can reduce the friction coefficient and minimize the occurrence of wear particles while lowering the manufacturing cost can achieve the effect that can lead to the popularization of artificial joints.

도 1은 인공관절 중 무릎관절의 개략도.
도 2는 본 발명의 일 실시예에 따른 친수성 층을 가진 베어링요소의 단면도.
도 3은 도 2의 A 부분의 확대도.
도 4a 내지 4d는 도 3의 친수성 층이 형성되는 과정을 도시하는 도면.
도 5는 친수성 층이 없는 시편 표면의 XPS 표면 원소분석 그래프.
도 6은 친수성 층을 가진 시편 표면의 XPS 표면 원소분석 그래프.
도 7은 자외선 조사 시간에 따른 친수성 층이 없는 그리고 친수성 층을 가진 시편의 친수성 층 두께의 변화를 나타낸 TEM(투과전자현미경)사진.
도 8은 자외선 조사 시간과 친수성 층의 두께간의 관계를 보여주는 그래프.
도 9는 자외선 조사 강도에 따른 친수성 층이 없는 그리고 친수성 층을 가진 시편의 친수성 층 두께의 변화를 나타낸 TEM(투과전자현미경)사진.
도 10은 자외선 조사 강도와 친수성 층의 두께간의 관계를 보여주는 그래프.
도 11은 친수성 용액의 농도에 따른 친수성 층이 없는 그리고 친수성 층을 가진 CLPE 표면을 가진 시편의 친수성 층 두께의 변화를 나타낸 TEM(투과전자현미경)사진.
도 12는 친수성 용액의 농도와 친수성 층의 두께간의 관계를 보여주는 그래프.
도 13은 자외선 조사시간과 마찰계수간의 관계를 보여주는 그래프.
도 14는 자외선 조사강도와 마찰계수간의 관계를 보여주는 그래프.
도 15는 친수성 용액의 농도와 마찰계수간의 관계를 보여주는 그래프.
도 16은 온도와 마찰계수간의 관계를 보여주는 그래프.
도 17a는 친수성 층이 없는 시편을 물속에 담근 상태에서 마찰계수 측정 후 공초점 레이저 현미경의 3-D이미지.
도 17b는 친수성 층을 가진 시편을 물속에 담근 상태에서 마찰계수 측정 후 촬영한 공초점 레이저 현미경의 3-D이미지.
도 18a는 친수성 층이 없는 시편을 유사생체용액속에 담근 상태에서 마찰계수 측정 후 촬영한 공초점 레이저 현미경의 3-D이미지.
도 18b는 친수성 층을 가진 시편을 유사생체용액속에 담근 상태에서 마찰계수 측정 후 공초점 레이저 현미경의 3-D이미지.
도 19는 자외선 조사시간과 마모량간의 관계를 보여주는 그래프.
도 20은 자외선 조사강도와 마모량간의 관계를 보여주는 그래프.
도 21은 친수성 용액의 농도와 마모량간의 관계를 보여주는 그래프.
도 22는 물속에 담궈진 시편의 친수성 층의 두께와 마찰계수간의 관계를 보여주는 그래프.
도 23은 유사생체용액속에 담궈진 시편의 친수성 층의 두께와 마찰계수간의 관계를 보여주는 그래프.
1 is a schematic diagram of the knee joint of the artificial joint.
2 is a cross-sectional view of a bearing element with a hydrophilic layer in accordance with one embodiment of the present invention.
3 is an enlarged view of a portion A of FIG. 2.
4A-4D illustrate the process by which the hydrophilic layer of FIG. 3 is formed.
5 is an XPS surface elemental analysis graph of a specimen surface without a hydrophilic layer.
6 is an XPS surface elemental analysis graph of a specimen surface with a hydrophilic layer.
FIG. 7 is a TEM photograph showing the change in hydrophilic layer thickness of a specimen without hydrophilic layer and with hydrophilic layer with UV irradiation time. FIG.
8 is a graph showing the relationship between ultraviolet irradiation time and the thickness of a hydrophilic layer.
FIG. 9 is a TEM photograph showing the change in hydrophilic layer thickness of a specimen without hydrophilic layer and with hydrophilic layer depending on UV irradiation intensity. FIG.
10 is a graph showing the relationship between ultraviolet irradiation intensity and thickness of a hydrophilic layer.
FIG. 11 is a TEM (Transmission Electron Microscope) photograph showing the change in the hydrophilic layer thickness of a specimen with a hydrophilic layer-free and with a hydrophilic layer with a CLPE surface.
12 is a graph showing the relationship between the concentration of the hydrophilic solution and the thickness of the hydrophilic layer.
13 is a graph showing the relationship between UV irradiation time and friction coefficient.
14 is a graph showing the relationship between ultraviolet irradiation intensity and friction coefficient.
15 is a graph showing the relationship between the concentration of the hydrophilic solution and the friction coefficient.
16 is a graph showing the relationship between temperature and coefficient of friction.
FIG. 17A is a 3-D image of a confocal laser microscope after measuring a coefficient of friction in a state in which a specimen without a hydrophilic layer is immersed in water. FIG.
FIG. 17B is a 3-D image of a confocal laser microscope taken after measuring a coefficient of friction while submerging a specimen having a hydrophilic layer in water.
FIG. 18A is a 3-D image of a confocal laser microscope taken after measuring a friction coefficient in a state in which a specimen without a hydrophilic layer is immersed in a similar biological solution. FIG.
FIG. 18B is a 3-D image of a confocal laser microscope after measuring the coefficient of friction in a state in which a specimen having a hydrophilic layer is immersed in an analogous biological solution. FIG.
19 is a graph showing the relationship between UV irradiation time and wear amount.
20 is a graph showing the relationship between ultraviolet irradiation intensity and wear.
21 is a graph showing the relationship between the concentration of a hydrophilic solution and the amount of wear.
22 is a graph showing the relationship between the coefficient of friction and the thickness of the hydrophilic layer of a specimen immersed in water.
FIG. 23 is a graph showing the relationship between the thickness of the hydrophilic layer and the coefficient of friction of specimens immersed in analogous biological solution.

이하에서는 첨부도면을 참조하여 본 발명의 실시예를 살펴보도록 한다. Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.

본 발명은, 인체의 관절을 대체하는 인공관절의 구성요소 가운데 관절운동을 하는 부위인 베어링요소의 표면에 친수성 층을 형성하는 것이다. 인체의 관절은 크게 고관절, 무릎관절, 어깨관절, 발목관절을 포함하고 있다. 그 이외에는 뼈와 뼈가 접촉하여 상대운동을 하는 인체 부위를 모두 관절이라 칭하고, 이를 대체하는 임플란트를 인공관절이라 한다. 그리고 인공관절 중에서 친수성 층이 형성되는 요소는 전체가 폴리머재질을 만들어지거나 적어도 관절면은 폴리머재질로 코팅된 표면을 가진 베어링요소를 의미한다. 베어링요소는 상대 요소와 관절운동을 하는 요소로서 대퇴골요소와 경골요소가 베어링요소의 기능을 수행한다면 이들이 베어링요소가 될수도 있다. 폴리머재질은 폴리에틸렌(PE)이 바람직하며, 그 중에서도 가교폴리에틸렌(cross linked polyethylene, CLPE)이 적합하다. The present invention is to form a hydrophilic layer on the surface of the bearing element which is a part of the joint movement of the components of the artificial joint to replace the joint of the human body. Joints of the human body largely include the hip joint, knee joint, shoulder joint, ankle joint. Other than that, all the parts of the human body in which the bones and bones make relative movement are called joints, and the implants that replace them are called artificial joints. The element in which the hydrophilic layer is formed among the artificial joints refers to a bearing element having a polymer material or at least a joint surface having a polymer coated surface. Bearing elements are joint motions with other elements. If the femur and tibia elements perform the function of bearing elements, they may be bearing elements. The polymer material is preferably polyethylene (PE), and crosslinked polyethylene (CLPE) is particularly suitable.

도 2에 도시된 바와 같이, 본 발명의 베어링요소(1)는, 폴리머재질로 된 표면(이하, '폴리머 표면'이라 함, 2)을 포함하는 기재와 그 표면에 결합된 친수성 층(4)을 포함한다. As shown in FIG. 2, the bearing element 1 of the present invention comprises a substrate comprising a polymer material (hereinafter referred to as a 'polymer surface' 2) and a hydrophilic layer 4 bonded to the surface thereof. It includes.

상기 기재는 전체가 폴리머재질로 형성되어 그 표면(2)이 폴리머재질일 수 있지만, 관절운동을 하는 표면만 부분적으로 폴리머재질로 코팅하여 폴리머 표면(2)을 형성한 것일 수도 있다. The substrate may be formed entirely of a polymer material so that the surface 2 may be a polymer material. However, only the surface of the joint motion may be partially coated with the polymer material to form the polymer surface 2.

도 3에 도시된 바와 같이, 상기 친수성 층(4)은 하나 이상의 스트랜드(41)를 포함하는 브러쉬 구조를 가진다. 상기 브러쉬구조는 상기 각각의 스트랜드의 일단이 폴리머 표면(2)에 결합해 있고 타단은 자유로운 상태를 유지한다. 그리고, 이웃하는 스트랜드(41)들은 체액속에서 서로 엉기지 않도록 유지된다. 체액 속에서 엉기지 않도록 유지되는 것은, 스트랜드들 사이의 분자내 또는 분자간 결합 경향을 상쇄시킬 수 있는 이온들이 체액속에 존재하고, 이들 이온들이 스트랜드를 구성하는 분자들을 감싸게 되어 스트랜드의 분자간 또는 분자내 결합 경향을 감소시켜 엉김을 방지한다. As shown in FIG. 3, the hydrophilic layer 4 has a brush structure comprising one or more strands 41. The brush structure is such that one end of each strand is bonded to the polymer surface 2 and the other end remains free. And, the neighboring strands 41 are maintained so as not to entangle with each other in the body fluid. Maintaining non-tangling in body fluids means that ions are present in the body fluid that can offset the tendency for intramolecular or intermolecular binding between the strands, and these ions wrap up the molecules that make up the strand, resulting in intermolecular or intramolecular binding of the strands. Reduce the tendency to prevent tangles.

도 4a 내지 4d는 폴리머 표면(2)상에 친수성 층(4)이 성장해 가는 과정을 보여준다. 친수성 층을 가진 베어링요소를 제조하는 방법을 먼저 살펴본다. 4A to 4D show the process of growing the hydrophilic layer 4 on the polymer surface 2. First, a method of manufacturing a bearing element having a hydrophilic layer will be described.

베어링요소 제조방법은 광개시제 코팅단계와, 친수성 층 형성단계로 이루어진다. The bearing element manufacturing method comprises a photoinitiator coating step and a hydrophilic layer forming step.

상기 광개시제 코팅단계는, 폴리머표면을 가진 베어링요소를 광개시제가 포함된 용액에 일정 시간 동안 침지시키고 건조하여 폴리머표면에 광개시제를 코팅하는 단계이다. 광개시제는 Benzil :

Figure 112018010629719-pat00001
, Benzoin methyl ether :
Figure 112018010629719-pat00002
, 4-Benzoylbiphenyl :
Figure 112018010629719-pat00003
, 4,4'-Dimethylbenzil :
Figure 112018010629719-pat00004
, 4'-Ethoxyacetophenone :
Figure 112018010629719-pat00005
, Benzophenone :
Figure 112018010629719-pat00006
를 사용할 수 있다. 베어링요소를 광개시제 포함된 용액에 일정시간 동안 침지시킨 후 건조시키게 된다. 상기 광개시제가 용해시키는 용매는 아세톤이 사용될 수 있다. The photoinitiator coating step is a step of coating the photoinitiator on the polymer surface by immersing and drying the bearing element having a polymer surface in a solution containing the photoinitiator for a predetermined time. Photoinitiator Benzil:
Figure 112018010629719-pat00001
, Benzoin methyl ether:
Figure 112018010629719-pat00002
, 4-Benzoylbiphenyl:
Figure 112018010629719-pat00003
, 4,4'-Dimethylbenzil:
Figure 112018010629719-pat00004
, 4'-Ethoxyacetophenone:
Figure 112018010629719-pat00005
, Benzophenone:
Figure 112018010629719-pat00006
Can be used. The bearing element is dipped in a solution containing a photoinitiator for a certain time and then dried. Acetone may be used as the solvent in which the photoinitiator is dissolved.

상기 친수성 층 형성단계는, 건조된 베어링요소를 다시 모노머를 용해시킨 친수성 용액에 침지시킨 후 일정시간 동안 자외선을 조사하여 폴리머 표면(2)에 친수성 층(4)을 형성하게 된다. 상기 모노머는 용액속에서 쌍성이온(zwitter-ion)을 띠는 성질을 가져 친수성을 가진 모노머이며, 메타아크릴로일옥시 알킬 그룹과, 술포프로필-수산화암모늄 그룹으로 이루어진다. 상기 모노머는 다음과 같은 구조식을 가진다. In the hydrophilic layer forming step, the dried bearing element is again immersed in a hydrophilic solution in which the monomer is dissolved, and then irradiated with ultraviolet light for a predetermined time to form the hydrophilic layer 4 on the polymer surface 2. The monomer is a hydrophilic monomer having zwitter-ion in a solution, and is composed of a methacryloyloxy alkyl group and a sulfopropyl-ammonium hydroxide group. The monomer has the following structural formula.

Figure 112018010629719-pat00007
Figure 112018010629719-pat00007

[쌍성이온 모노머의 구조식]Structural Formula of Zwitterionic Monomer

R1,R2는 carbon chain으로 CnH2n-1(n=1,2,3,,,,,6)을 모두 포함하고, x,y 또한 carbon chain으로 0 이상을 모두 포함하며,A1은 C(carbon) 혹은 O(oxygen)를 의미한다.R 1 , R 2 includes all C n H 2n-1 (n = 1,2,3 ,,,, 6) as carbon chain, x, y also includes all zero or more as carbon chain, A 1 means C (carbon) or O (oxygen).

바람직하게는, 합성이 용이하고 저가인 쌍성이온을 띠는 모노머는 아래와 같은 구조식을 가진 2-(methacryloyloxy) ethyl dimethyl-(3-sulfopropyl) ammonium hydroxide 가 적합하다. Preferably, the monomer having a simple and inexpensive zwitterion is suitable 2- (methacryloyloxy) ethyl dimethyl- (3-sulfopropyl) ammonium hydroxide having the following structural formula.

Figure 112018010629719-pat00008
Figure 112018010629719-pat00008

[ 2-(methacryloyloxy) ethyl dimethyl-(3-sulfopropyl) ammonium hydroxide 구조식][Structure of 2- (methacryloyloxy) ethyl dimethyl- (3-sulfopropyl) ammonium hydroxide]

상기 친수성 층 형성단계는 브러쉬 구조 형성단계를 포함한다.The hydrophilic layer forming step includes a brush structure forming step.

이하에서는 브러쉬 구조 형성단계를 살펴본다.Hereinafter, the brush structure forming step will be described.

상기 친수성 용액은 상기 모노머를 증류수에 용해시키고 불순물을 제거한 초순수용액일 수 있다. 상기 증류수는 pH를 맞추고, 유기물과 무기물을 1차적으로 제거한 후 역삼투막, 살균 등을 통해 2차 정제수를 만들고 이온까지 제거한 3차 증류수로서 초순수(ultra-pure grade water)이다. The hydrophilic solution may be an ultrapure water solution in which the monomer is dissolved in distilled water and impurities are removed. The distilled water is ultra-pure grade water as a third distilled water to adjust the pH, and firstly remove the organic and inorganic materials, and then make a second purified water through reverse osmosis membrane, sterilization and the like.

건조된 베어링요소(1)를 상기 모노머가 용해된 친수성 용액에 침지한 상태에서 자외선을 일정 시간동안 조사하면, 도 4a에 도시된 바와 같이, 광개시제가 코팅된 폴리머표면에서 라디칼이 발생하고 건조된 폴리머 표면은 용액내에서 쌍성이온을 띠는 모노머(410)로 둘러싸이게 되고, 도 4b에 도시된 바와 같이, 모노머의 상기 메타아크릴로일옥시 알킬 그룹(methacryloyloxy alkyl group,412)은 그 일단이 베어링요소의 폴리머 표면(2)의 라디칼이 발생한 부위에 그래프트되고, 타단은 자유로운 상태를 유지하게 된다. 이때, 상기 술포프로필-수산화암모늄 그룹(dimethyl-(3-sulfopropyl) ammonium hydroxide group, 414)은 상기 메타아크릴로일옥시 알킬 그룹(methacryloyloxy alkyl group,412)에 결합된 상태에서 폴리머표면(2)과는 결합하지 아니한 상태를 유지하게 된다. 이어서, 도 4c에 도시된 바와 같이, 다른 모노머(410)가 폴리머 표면(1)에 이미 결합된 메타아크릴로일옥시 알킬 그룹(412)의 자유로운 타단에 중합되게 되는 과정을 거치면서 폴리머인 하나의 스트랜드(41)로 성장하게 된다. 이런 과정을 반복적으로 거치면서 도 4d에 도시된 바와 같이 다수의 스트랜드(41)가 폴리머 표면에서 성장하게 되어 브러쉬 구조를 가진 친수성 층(4)을 형성하게 된다. When the dried bearing element 1 is immersed in the hydrophilic solution in which the monomer is dissolved, ultraviolet rays are irradiated for a predetermined time. As shown in FIG. 4A, radicals are generated on the surface of the polymer coated with the photoinitiator and the polymer is dried. The surface is surrounded by a zwitterionic monomer 410 in solution, and as shown in FIG. 4B, the methacryloyloxy alkyl group 412 of the monomer has a bearing element at one end thereof. It is grafted to the site | part which generate | occur | produced the radical of the polymer surface 2 of, and the other end keeps a free state. In this case, the sulfopropyl-ammonium hydroxide group (dimethyl- (3-sulfopropyl) ammonium hydroxide group, 414) is bonded to the polymer surface (2) in the state bonded to the methacryloyloxy alkyl group (methacryloyloxy alkyl group, 412) Will remain unbound. Subsequently, as shown in FIG. 4C, the other monomer 410 is polymerized through the process of being polymerized at the free end of the methacryloyloxy alkyl group 412 already bonded to the polymer surface 1. The strand 41 is grown. Through this process repeatedly, as shown in FIG. 4D, a plurality of strands 41 grow on the polymer surface to form a hydrophilic layer 4 having a brush structure.

상기 친수성 층(4)은 다수의 스트랜드로 이루어져 있고, 상기 스트랜드는 쌍성이온을 띠는 술포프로필-수산화암모늄 그룹를 포함하고 있어서, 스트랜드 사이에 엉김이 발생할 수 있다고 생각할 수 있지만, 앞서 본 바와 같이, 스트랜드(41)들은 체액속에서 서로 엉기지 않도록 유지된다. 체액 속에서 엉기지 않도록 유지되는 것은, 스트랜드들 사이의 분자내 또는 분자간 결합 경향을 상쇄시킬 수 있는 이온들이 체액속에 존재하고, 이들 이온들이 스트랜드를 구성하는 분자들을 감싸게 되어 스트랜드의 분자간 또는 분자내 결합 경향을 감소시켜 엉김을 방지한다. 이와 같은 친수성 층은 인체의 관절면에 형성된 섬모층과 그 성분은 상이하지만, 그 구조가 비슷하여 체액을 담지하여 윤활기능을 제공함으로서 마찰계수와 마모량을 현저하게 줄일 수 있게 된다. 저가의 모노머를 이용하여 위와 같은 효과를 얻을 수 있게 된다. The hydrophilic layer 4 consists of a plurality of strands, the strands comprising a zwitterionic sulfopropyl-ammonium hydroxide group, which may be considered to cause entanglement between strands, but as previously seen, The 41 are kept intact in the body fluids. Maintaining non-tangling in body fluids means that ions are present in the body fluid that can offset the tendency for intramolecular or intermolecular binding between the strands, and these ions wrap up the molecules that make up the strand, resulting in intermolecular or intramolecular binding of the strands. Reduce the tendency to prevent tangles. The hydrophilic layer is different from the ciliated layer formed on the joint surface of the human body and its components, but the structure is similar, so that the friction coefficient and the amount of wear can be significantly reduced by providing a lubricating function by supporting the body fluid. By using a low cost monomer, the above effects can be obtained.

이하에서는 본 발명의 실시예를 각종 실험을 통해 그 효과를 검증한다. Hereinafter, the effect of the embodiment of the present invention through various experiments.

[시편의 준비] 비교예와 실시예 1 내지 8Preparation of Specimen Comparative Examples and Examples 1 to 8

가교폴리에틸렌(CLPE, Orthoplastice, USA)으로 제작된 디스크(직경 20mm×두께5mm)를, 벤조페논(Sigma-aldrich, USA)이 10mg/ml 농도로 용해된 아세톤(Sigma-aldrich, USA) 용액에 30초간 침지한 후 건조하였다. 이 과정을 통해, 아세톤은 증발하고 디스크 표면에는 벤조페논이 코팅된 상태로 남아 있게 된다. A disc made of cross-linked polyethylene (CLPE, Orthoplastice, USA) (diameter 20 mm x thickness 5 mm) was used in acetone (Sigma-aldrich, USA) solution in which benzophenone (Sigma-aldrich, USA) was dissolved at a concentration of 10 mg / ml. It was dipped for a second and then dried. Through this process, acetone evaporates and the disk surface remains coated with benzophenone.

이어서, 모노머 2-(methacryloyloxy) ethyl dimethyl-(3-sulfopropyl) ammonium hydroxide를 아래 농도로 용해시킨 초순수 용액에 건조한 디스크를 침지한 상태에서 자외선조사장치(Lichtzen, 한국)를 이용하여 친수성 용액의 농도, 자외선 조사시간과 자외선 조사강도를 변경해 가면서 친수성 층이 없는 디스크인 비교예와, 친수성 층(4)을 가진 실시예 1 내지 8을 준비하였다. Then, the concentration of the hydrophilic solution using an ultraviolet irradiator (Lichtzen, Korea) while immersing a dry disk in ultrapure water solution in which monomer 2- (methacryloyloxy) ethyl dimethyl- (3-sulfopropyl) ammonium hydroxide was dissolved at the following concentration, Comparative Examples of disks without a hydrophilic layer and Examples 1 to 8 having a hydrophilic layer 4 were prepared while changing the ultraviolet irradiation time and the ultraviolet irradiation intensity.

비교예와 실시예의 공정조건Process conditions of Comparative Example and Example 구분division 농도
(mol/L)
density
(mol / L)
UV 조사강도
(mW/㎠)
UV irradiation intensity
(mW / ㎠)
UV 조사시간
(min)
UV irradiation time
(min)
비교예Comparative example 00 00 00 실시예 1Example 1 0.50.5 4040 3030 실시예 2Example 2 0.50.5 4040 6060 실시예 3Example 3 0.50.5 4040 9090 실시예 4Example 4 0.50.5 4040 120120 실시예 5Example 5 0.50.5 1010 9090 실시예 6Example 6 0.50.5 2020 9090 실시예 7Example 7 0.50.5 3030 9090 실시예 8Example 8 0.250.25 4040 9090

[실험 1]: XPS 표면 원소 분석[Experiment 1]: XPS surface elemental analysis

폴리머 표면에 쌍성이온의 고분자의 친수성 층이 잘 코팅되었는지를 확인하기 위하여, 비교예와 실시예 3에 대하여 X선 광전자분광분석기(XPS:FEI, USA)를 이용하여 표면의 원소 분석을 시행하였다. In order to confirm that the hydrophilic layer of the zwitterionic polymer was well coated on the surface of the polymer, elemental analysis of the surface was performed by using an X-ray photoelectron spectrometer (XPS: FEI, USA) for Comparative Example and Example 3.

비교예는 도 5에 도시된 바와 같이 C1s에 해당하는 피크(peak)만 확인되는 반면 실시예3은 도 6에 도시된 바와 같이 C1S,N1S, S2P에 해당하는 피크들이 각각 관찰되었다. 따라서, 2-(methacryloyloxy) ethyl dimethyl-(3-sulfopropyl) ammonium hydroxide 모노머가 폴리머 표면에 안정적으로 결합되었음을 확인할 수 있다. In Comparative Example, only peaks corresponding to C 1s are identified as shown in FIG. 5, while in Example 3, peaks corresponding to C 1S , N 1S and S 2P were observed as shown in FIG. 6. . Thus, it can be seen that the 2- (methacryloyloxy) ethyl dimethyl- (3-sulfopropyl) ammonium hydroxide monomer was stably bound to the polymer surface.

[실험 2] 친수성 층의 두께[Experiment 2] thickness of hydrophilic layer

자외선 조사시간, 조사강도, 친수성 용액의 농도에 따른 친수성 층의 두께 변화를 확인하기 위하여, 투과전자현미경(TEM:FEI, USA)을 이용하여, 비교예, 실시예 1, 2, 3 과 4의 시편을 절단하여 조사시간에 따른 두께 변화를 측정하였고(도 7과 8), 비교예, 실시예 5, 6 , 7과 8의 시편을 절단하여 조사강도에 따른 두께 변화를 측정하였으며(도 9와 10), 비교예, 실시예 3과 8의 시편을 절단하여 친수성 용액의 농도에 따른 두께 변화를 측정하였다(도 11과 12). In order to confirm the change in the thickness of the hydrophilic layer according to the ultraviolet irradiation time, the irradiation intensity, and the concentration of the hydrophilic solution, a transmission electron microscope (TEM: FEI, USA) was used to compare the comparative examples, Examples 1, 2, 3 and 4 The thickness of the specimen was cut and measured according to the irradiation time (Figs. 7 and 8), and the specimens of Comparative Examples, Examples 5, 6, 7 and 8 were cut to measure the thickness change according to the irradiation intensity (Fig. 9 and 10), Comparative Examples, The specimens of Examples 3 and 8 were cut to measure the thickness change according to the concentration of the hydrophilic solution (Figs. 11 and 12).

조사시간과 두께의 상관관계를 도 7과 8을 참조하여 살펴보면, 비교예는 친수성 층이 형성되지 않았음을 확인했다. 그리고, 실시예 1, 2, 3, 4의 경우에는, 조사시간을 30분 단위로, 30분부터 120분까지 증가시켜감에 따라, 아래 [표2]와 같이 두께가 99.25㎚에서 278.25 ㎚ 까지 증가함을 확인할 수 있었다. Looking at the correlation between the irradiation time and the thickness with reference to Figures 7 and 8, the comparative example confirmed that no hydrophilic layer was formed. In Examples 1, 2, 3, and 4, as the irradiation time is increased from 30 minutes to 120 minutes in units of 30 minutes, the thickness is from 99.25 nm to 278.25 nm as shown in Table 2 below. It could be confirmed that the increase.

조사시간과 두께간의 상관관계Correlation between irradiation time and thickness 항목Item 두께(㎚)Thickness (nm) 비교예Comparative example 00 실시예1(30분)Example 1 (30 minutes) 99.2599.25 실시예2(60분)Example 2 (60 minutes) 106.75106.75 실시예3(90분)Example 3 (90 minutes) 204.00204.00 실시예4(120분)Example 4 (120 minutes) 278.25278.25

그리고, 조사강도와 두께의 상관관계를 도 9과 10을 참조하여 살펴보면, 비교예는 친수성 층이 형성되지 않았음을 확인했다. 그리고, 실시예 5, 6, 7, 8의 경우에는, 아래 [표3]에서 보다시피, 자외선의 조사세기가 10mW/㎠ 단위로, 10mW/㎠에서 40mW/㎠까지 증가함에 따라, 두께가 37.5㎚에서 204㎚까지 증가함을 확인할 수 있었다. In addition, looking at the correlation between the irradiation intensity and the thickness with reference to Figures 9 and 10, the comparative example confirmed that no hydrophilic layer was formed. In Examples 5, 6, 7, and 8, as shown in Table 3 below, as the irradiation intensity of ultraviolet rays increases from 10 mW / cm 2 to 40 mW / cm 2 in units of 10 mW / cm 2, the thickness is 37.5. It was confirmed that the increase from 204nm to 204nm.

조사강도와 두께간의 상관관계Correlation between irradiation intensity and thickness 항목Item 두께(㎚)Thickness (nm) 비교예Comparative example 00 실시예5(10mW/㎠)Example 5 (10 mW / cm 2) 37.5037.50 실시예6(20mW/㎠)Example 6 (20 mW / cm 2) 97.2597.25 실시예7(30mW/㎠)Example 7 (30 mW / cm 2) 171.50171.50 실시예8(40mW/㎠)Example 8 (40 mW / cm 2) 204.00204.00

마지막으로, 친수성 용액의 농도와 두께의 상관관계를 도 11과 12를 참조하여 살펴보면, 비교예는 친수성 층이 형성되지 않았음을 확인했다. 그리고, 실시예3과 8의 경우에는, 아래 [표4]에서 보다시피, 용액의 농도가 각각 0.5mol/L와 0.25mol/L일 때, 두께는 농도가 증가함에 따라 두께도 함께 증가한다는 사실을 확인했다. Finally, looking at the correlation between the concentration and the thickness of the hydrophilic solution with reference to Figures 11 and 12, the comparative example confirmed that no hydrophilic layer was formed. And, in the case of Examples 3 and 8, as shown in Table 4 below, when the concentration of the solution is 0.5 mol / L and 0.25 mol / L, respectively, the thickness increases with increasing concentration Confirmed.

농도와 두께간의 상관관계Correlation between Concentration and Thickness 항목Item 두께(㎚)Thickness (nm) 비교예Comparative example 00 실시예8(0.25mol/L)Example 8 (0.25 mol / L) 110.75110.75 실시예3(0.5mol/L)Example 3 (0.5 mol / L) 204.00204.00

위와 같이, 자외선의 조사시간 그리고 조사강도를 높여감에 따라 친수성 층의 두께가 증가하며, 친수성용액의 농도가 높을수록, 두께도 증가한다는 사실을 알 수 있다.As described above, it can be seen that the thickness of the hydrophilic layer increases as the irradiation time and irradiation intensity of ultraviolet rays increase, and as the concentration of the hydrophilic solution increases, the thickness also increases.

[실험 3] 마찰계수[Experiment 3] Friction Coefficient

자외선 조사시간, 조사강도, 친수성 용액의 농도에 따른 친수성 층의 마찰계수 변화를 확인하기 위하여, 마찰마모시험기(CETR, USA)를 이용해, 0.98N의 하중과 2mm/s의 속도로 10mm 슬라이딩 실험을 100회 진행하였다. 비교예, 실시예 1, 2, 3 과 4의 시편에 대해서는 조사시간에 따른 마찰계수 변화를 측정하였고(도 13), 비교예, 실시예 5, 6, 7과 8의 시편에 대해서는 조사강도에 따른 마찰계수 변화를 측정하였으며(도 14), 비교예, 실시예 3과 8의 시편에 대해서는 친수성 용액의 농도에 따른 마찰계수 변화를 측정하였고(도 15), 비교예와 실시예3에 대해서는 온도에 따른 마찰계수의 변화를 측정하였다(도 16). 그리고, 각각의 실험은 시편을 물(water)에 담근 상태에서 그리고 유사생체용액(Simulated Body Fluid)에 담근 상태에서 동일하게 시행하였다. In order to check the friction coefficient change of the hydrophilic layer according to the irradiation time, irradiation intensity and concentration of the hydrophilic solution, a friction tester (CETR, USA) was used to perform a 10 mm sliding test with a load of 0.98N and a speed of 2mm / s. 100 times. For the specimens of Comparative Examples, Examples 1, 2, 3 and 4, the friction coefficient change was measured according to the irradiation time (FIG. 13). For Comparative Examples, Examples 5, 6, 7 and 8, The friction coefficient change was measured (FIG. 14). For the specimens of Comparative Examples, Examples 3 and 8, the friction coefficient change was measured according to the concentration of the hydrophilic solution (FIG. 15). The change in the coefficient of friction was measured (Fig. 16). Each experiment was performed in the same manner as the specimen was immersed in water and in a simulated body fluid.

조사시간과 마찰계수의 상관관계를 도 13을 참조하여 살펴보면, 실시예1, 2, 3, 4는 비교예에 비해 마찰계수가 작음을 알수 있었다. 그리고, 실시예 1,2,3,4 간에도, 조사시간이 증가할수록, 마찰계수가 줄어든다는 사실을 확인했다. 다만, 실시예 3과 4 사이에는 유의미한 변화가 없음을 확인했다. Looking at the correlation between the irradiation time and the friction coefficient with reference to Figure 13, Examples 1, 2, 3, 4 it was found that the friction coefficient is smaller than the comparative example. In addition, it was confirmed that the friction coefficient decreased as the irradiation time increased among Examples 1, 2, 3, and 4, respectively. However, it was confirmed that there was no significant change between Examples 3 and 4.

조사시간과 마찰계수간의 상관관계Correlation between irradiation time and coefficient of friction 항목
Item
마찰계수Coefficient of friction
water 유사생체용액 Analogous biological solution 비교예Comparative example 0.02840.0284 0.02220.0222 실시예1(30분)Example 1 (30 minutes) 0.01240.0124 0.01310.0131 실시예2(60분)Example 2 (60 minutes) 0.01170.0117 0.01010.0101 실시예3(90분)Example 3 (90 minutes) 0.00930.0093 0.01070.0107 실시예4(120분)Example 4 (120 minutes) 0.00980.0098 0.01060.0106

그리고, 조사강도와 마찰계수의 상관관계를 도 14를 참조하여 살펴보면, 실시예 5,6,7,8은 비교예에 비해 마찰계수가 작음을 알 수 있었다. 그리고, 실시예 5, 6, 7, 8 간에도, 자외선의 조사세기가 10mW/㎠ 단위로, 10mW/㎠에서 40mW/㎠까지 증가함에 따라, 마찰계수가 감소함을 확인할 수 있었다. In addition, looking at the correlation between the irradiation strength and the friction coefficient with reference to Figure 14, Examples 5, 6, 7, and 8 it was found that the friction coefficient is smaller than the comparative example. In addition, even in Examples 5, 6, 7, and 8, as the irradiation intensity of the ultraviolet ray increases in units of 10 mW / cm 2, from 10 mW / cm 2 to 40 mW / cm 2, it was confirmed that the friction coefficient decreased.

조사강도와 마찰계수간의 상관관계Correlation between Irradiation Intensity and Friction Coefficient 항목
Item
마찰계수Coefficient of friction
water 유사생체용액 Analogous biological solution 비교예Comparative example 0.028400.02840 0.022200.02220 실시예5(10mW/㎠)Example 5 (10 mW / cm 2) 0.019030.01903 0.013100.01310 실시예6(20mW/㎠)Example 6 (20 mW / cm 2) 0.015600.01560 0.010100.01010 실시예7(30mW/㎠)Example 7 (30 mW / cm 2) 0.011690.01169 0.010700.01070 실시예8(40mW/㎠)Example 8 (40 mW / cm 2) 0.009300.00930 0.010600.01060

또한, 친수성 용액의 농도와 마찰계수의 상관관계를 도 15를 참조하여 살펴보면, 실시예 3과 8은 비교예에 비해 마찰계수가 작음을 알 수 있었다. 그리고, 실시예3과 8의 경우에는, 용액의 농도가 증가함에 따라, 마찰계수도 함께 감소한다는 사실을 확인했다. In addition, looking at the correlation between the hydrophilic solution concentration and the friction coefficient with reference to Figure 15, it can be seen that Examples 3 and 8 have a smaller friction coefficient than the comparative example. And in the case of Examples 3 and 8, it was confirmed that as the concentration of the solution increased, the friction coefficient also decreased.

농도와 두께간의 상관관계Correlation between Concentration and Thickness 항목
Item
마찰계수Coefficient of friction
water 유사생체용액Analogous biological solution 비교예Comparative example 0.028400.02840 0.02220.0222 실시예8(0.25mol/L)Example 8 (0.25 mol / L) 0.017210.01721 0.01220.0122 실시예3(0.5mol/L)Example 3 (0.5 mol / L) 0.009300.00930 0.01070.0107

마지막으로, 온도와 마찰계수의 상관관계를 도 16을 참조하여 살펴보면, 실온인 25℃와 체온인 37℃에서 마찰계수를 측정했을 때, 실온과 체온 모두에서, 실시예3이 비교예에 비해 마찰계수가 작음을 확인했다. 그리고, 실제 인체의 체온인 37℃에서도 실시예3이 비교예에 비해 현저히 낮은 마찰계수를 가짐을 확인할 수 있었다. Finally, referring to the correlation between the temperature and the friction coefficient with reference to Figure 16, when the friction coefficient is measured at room temperature 25 ℃ and body temperature 37 ℃, Example 3 is friction compared to the comparative example It was confirmed that the coefficient was small. In addition, it was confirmed that Example 3 has a significantly lower coefficient of friction than the comparative example even at a body temperature of 37 ° C.

온도와 두께간의 상관관계Correlation between Temperature and Thickness 항목Item 마찰계수Coefficient of friction 비교예(25℃)Comparative Example (25 ° C) water 유사생체용액Analogous biological solution 0.028400.02840 0.022200.02220 실시예3(25℃)Example 3 (25 ° C) 0.009300.00930 0.010700.01070 비교예37℃)Comparative Example 37 ° C.) 0.032730.03273 0.030960.03096 실시예3(37℃)Example 3 (37 ° C) 0.009240.00924 0.009230.00923

위와 같이, 자외선의 조사시간 그리고 조사강도를 높여감에 따라 마찰계수가 감소하며, 친수성용액의 농도가 높을수록, 마찰계수도 감소한다는 사실을 알 수 있다. 나아가, 실온과 체온에서도 마찰계수의 현저한 차이를 보이고 실제 체온에서도 낮은 마찰계수를 보임을 확인할 수 있다. As described above, it can be seen that the friction coefficient decreases as the irradiation time and irradiation intensity of ultraviolet rays increase, and the higher the hydrophilic solution concentration, the friction coefficient decreases. Furthermore, it can be seen that the friction coefficient is markedly different even at room temperature and body temperature, and that the friction coefficient is low even at actual body temperature.

[실험 4] 마모량 측정[Experiment 4] Abrasion Measurement

물(Water)속에 담근 상태와 유사생체용액(SBF)에 담근 상태에서 마찰계수 측정후 마찰실험을 진행한 시편의 마모 감소량을 확인하기 위하여, 공초점 레이저 현미경(Conforcal Microscopy:Lecia, Germany)을 통해, 비교예와 실시예 3의 시편의 표면 손상도와 마모도를 측정하였다.The confocal laser microscope (Conforcal Microscopy: Lecia, Germany) was used to determine the amount of abrasion reduction of the specimens subjected to the friction test after the friction coefficient was measured in the water and in the SBF. , Surface damage and wear of the specimens of Comparative Example and Example 3 were measured.

표면의 손상도Surface damage

도 17a와 도 18a는 각각 물과 유사생체용액속에서의 비교예의 3-D이미지이고 도 17b와 도 18b는 각각 물과 유사생체용액속에서의 실시예3의 3-D이미지이다. 이들 도면을 보면, 실시예3의 표면손상도가 비교예에 비해 현저히 감소된 것을 확인할 수 있다. 17A and 18A are 3-D images of Comparative Examples in water and similar biological solutions, respectively, and FIGS. 17B and 18B are 3-D Images of Example 3 in water and analogous biological solutions, respectively. Looking at these figures, it can be seen that the surface damage of Example 3 was significantly reduced compared to the comparative example.

마모도Wear

조사시간과 마모도의 상관관계를 도 19를 참조하여 살펴보면, 실시예1, 2, 3, 4는 비교예에 비해 마모량이 현저히 적음을 알수 있었다. 그리고, 실시예 1,2,3,4 간에도, 조사시간이 증가할수록, 마모량이 줄어든다는 사실을 확인했다. 다만, 실시예 3과 4 사이에는 유의미한 변화가 없음을 확인했다. Looking at the correlation between the irradiation time and the wear degree with reference to Figure 19, Examples 1, 2, 3, 4 it was found that the wear amount is significantly less than the comparative example. In addition, it was confirmed that the amount of wear decreases as the irradiation time increases among Examples 1, 2, 3, and 4, respectively. However, it was confirmed that there was no significant change between Examples 3 and 4.

조사시간과 마모도간의 상관관계Correlation between irradiation time and wear 항목
Item
마모량Wear
water 유사생체용액 Analogous biological solution 비교예Comparative example 1.341.34 1.031.03 실시예1(30분)Example 1 (30 minutes) 0.840.84 0.580.58 실시예2(60분)Example 2 (60 minutes) 0.760.76 0.480.48 실시예3(90분)Example 3 (90 minutes) 0.430.43 0.440.44 실시예4(120분)Example 4 (120 minutes) 0.490.49 0.440.44

그리고, 조사강도와 마모도의 상관관계를 도 20을 참조하여 살펴보면, 실시예 5,6,7,8은 비교예에 비해 마모량이 현저히 적음을 알 수 있었다. 그리고, 실시예 5, 6, 7, 8 간에도, 자외선의 조사세기가 10mW/㎠ 단위로, 10mW/㎠에서 40mW/㎠까지 증가함에 따라, 마모량이 감소함을 확인할 수 있었다. In addition, looking at the correlation between the irradiation strength and the wear degree with reference to Figure 20, Examples 5, 6, 7, and 8 it was found that the amount of wear is significantly less than the comparative example. In addition, even in Examples 5, 6, 7, and 8, as the irradiation intensity of the ultraviolet ray increases from 10mW / cm 2 to 40mW / cm 2 in units of 10mW / cm 2, it was confirmed that the amount of wear decreased.

조사강도와 마모도간의 상관관계Correlation between irradiation strength and wear 항목
Item
마모량Wear
water 유사생체용액 Analogous biological solution 비교예Comparative example 1.341.34 1.031.03 실시예5(10mW/㎠)Example 5 (10 mW / cm 2) 0.870.87 0.750.75 실시예6(20mW/㎠)Example 6 (20 mW / cm 2) 0.790.79 0.610.61 실시예7(30mW/㎠)Example 7 (30 mW / cm 2) 0.500.50 0.520.52 실시예8(40mW/㎠)Example 8 (40 mW / cm 2) 0.430.43 0.440.44

또한, 친수성 용액의 농도와 마찰계수의 상관관계를 도 21을 참조하여 살펴보면, 실시예 3과 8은 비교예에 비해 마모량이 적음을 알 수 있었다. 그리고, 실시예3과 8의 경우에는, 용액의 농도가 증가함에 따라, 마모량도 함께 감소한다는 사실을 확인했다. In addition, looking at the correlation between the hydrophilic solution concentration and the friction coefficient with reference to Figure 21, Examples 3 and 8 was found to be less wear than the comparative example. And in the case of Examples 3 and 8, it confirmed that the wear amount also decreased with the density | concentration of a solution.

농도와 마모도간의 상관관계Correlation between Concentration and Wear 항목Item 마모량Wear 비교예Comparative example water 유사생체용액Analogous biological solution 1.341.34 1.031.03 실시예8(0.25mol/L)Example 8 (0.25 mol / L) 0.900.90 0.560.56 실시예3(0.5mol/L)Example 3 (0.5 mol / L) 0.430.43 0.440.44

물에 담근 상태 그리고 유사생체용액에 담근 상태에서의 실험사이에는 유의미한 차이를 발견할 수 없었다. No significant difference was found between the experiments in water and in analogous biological solutions.

위와 같이, 자외선의 조사시간 그리고 조사강도를 높여감에 따라 마모도가 감소하며, 친수성용액의 농도가 높을수록, 마모도도 감소한다는 사실을 알 수 있다. As described above, it can be seen that the wear rate decreases as the irradiation time and irradiation intensity of ultraviolet rays increase, and as the concentration of the hydrophilic solution increases, the wear degree also decreases.

그리고, 앞서 측정한 실험결과들을 통해, 각 결과들의 연관성을 확인하기 위하여, 두께와 마찰계수간의 상관관계를 도 22와 23의 그래프로 나타내보았다. 도 22는 물속에 담궈진 시편의 친수성 층의 두께와 마찰계수간의 관계를 보여주는 그래프이고, 도 23은 유사생체용액속에 담궈진 시편의 친수성 층의 두께와 마찰계수간의 관계를 보여주는 그래프이다. 도 22와 23을 참조하면, 두께가 증가할수록 마찰계수가 감소함을 알 수 있었고, 이와 같은 현상은 물속에서나 유사생체용액속에서나 동일한 경향을 보여주었다. 또한, 물속에서의 마찰계수는 두께가 200㎚이후 일정해졌으며, 유사생체용액에서의 마찰계수는 40㎚이후로 일정해졌음을 확인했다. In addition, through the experimental results measured above, in order to confirm the correlation between the results, the correlation between the thickness and the friction coefficient is shown in the graphs of FIGS. 22 and 23. 22 is a graph showing the relationship between the thickness and the friction coefficient of the hydrophilic layer of the specimen immersed in water, Figure 23 is a graph showing the relationship between the thickness and friction coefficient of the hydrophilic layer of the specimen immersed in a similar biological solution. Referring to Figure 22 and 23, it can be seen that the friction coefficient decreases as the thickness increases, this phenomenon showed the same tendency in water or similar biological solution. In addition, it was confirmed that the coefficient of friction in water became constant after the thickness of 200 nm, and the coefficient of friction in the similar biological solution became constant after 40 nm.

두께와 마찰계수간의 상관관계Correlation between Thickness and Friction Coefficient 항목
Item
두께
thickness
마찰계수Coefficient of friction
water 유사생체용액Analogous biological solution 비교예Comparative example 00 0.028400.02840 0.022160.02216 실시예5Example 5 37.5037.50 0.019030.01903 0.012200.01220 실시예6Example 6 97.2597.25 0.015600.01560 0.012610.01261 실시예1Example 1 99.2599.25 0.012400.01240 0.013100.01310 실시예2Example 2 106.75106.75 0.011700.01170 0.010100.01010 실시예8Example 8 110.75110.75 0.017210.01721 0.012200.01220 실시예7Example 7 171.50171.50 0.011690.01169 0.012300.01230 실시예3Example 3 204.00204.00 0.009300.00930 0.010700.01070 실시예4Example 4 278.25278.25 0.009800.00980 0.010600.01060

Claims (21)

폴리머표면과, 상기 폴리머표면에 형성된 친수성층을 포함하고,
상기 친수성층은, 고분자 물질을 상기 폴리머표면에 그래프트하여 형성되며,
상기 고분자 물질은, 쌍성이온 고분자 물질로, 중합 가능한 모노머를 그래프트 중합에 의해 상기 폴리머표면에 부착하여 형성되고,
상기 모노머는, 메타아크릴로일옥시 알킬 그룹과, 술포프로필-수산화암모늄 그룹을 포함하며,
상기 술포프로필-수산화암모늄 그룹의 일단은 상기 메타아크릴로일옥시 알킬 그룹에 결합되고, 상기 술포프로필-수산화암모늄 그룹의 타단은 자유단을 형성하며,
일 모노머의 메타아크릴로일옥시 알킬 그룹의 일단은 상기 폴리머표면에 결합되고, 일 모노머의 메타아크릴로일옥시 알킬 그룹의 타단은 자유단을 형성하며, 상기 일 모노머의 메타아크릴로일옥시 알킬 그룹의 자유단에 다른 모노머의 메타아크릴로일옥시 알킬 그룹의 일단이 결합되면서 스트랜드로 성장하게 되는 것을 특징으로 하는, 베어링 요소.
A polymer surface and a hydrophilic layer formed on the polymer surface,
The hydrophilic layer is formed by grafting a polymer material on the polymer surface,
The polymer material is a zwitterionic polymer material, and is formed by attaching a polymerizable monomer to the polymer surface by graft polymerization,
The monomer comprises a methacryloyloxy alkyl group and a sulfopropyl-ammonium hydroxide group,
One end of the sulfopropyl-ammonium hydroxide group is bonded to the methacryloyloxy alkyl group, the other end of the sulfopropyl-ammonium hydroxide group forms a free end,
One end of the methacryloyloxy alkyl group of one monomer is bonded to the polymer surface, the other end of the methacryloyloxy alkyl group of one monomer forms a free end, and the methacryloyloxy alkyl group of the one monomer Characterized in that one end of the methacryloyloxy alkyl group of the other monomer is bonded to the free end of the growth to the strand.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 제1항에 있어서, 상기 모노머는 2-(methacryloyloxy)ethyl dimethyl-(3-sulfopropyl) ammonium hydroxide 인 베어링요소. The bearing element of claim 1, wherein the monomer is 2- (methacryloyloxy) ethyl dimethyl- (3-sulfopropyl) ammonium hydroxide. 제1항 또는 제7항에 있어서, 상기 친수성층은 복수의 스트랜드로 이루어진 브러쉬 구조를 가지는 베어링요소.The bearing element according to claim 1 or 7, wherein the hydrophilic layer has a brush structure composed of a plurality of strands. 제8항에 있어서, 상기 폴리머 표면은 가교폴리에틸렌인 베어링요소. The bearing element of claim 8, wherein the polymer surface is crosslinked polyethylene. 제9항에 있어서, 상기 브러쉬 구조를 구성하는 각각의 스트랜드는 이웃하는 스트랜드 간의 연결이나 엉김이 발생하지 않는 베어링요소.10. The bearing element according to claim 9, wherein each strand constituting the brush structure is free of connection or entanglement between neighboring strands. 제10항에 있어서, 상기 친수성 층은 35㎚ 이상의 두께를 가지는 베어링요소. The bearing element of claim 10, wherein the hydrophilic layer has a thickness of at least 35 nm. 제11항에 있어서, 상기 친수성 층은 35㎚~300㎚의 두께를 가지는 베어링요소.The bearing element of claim 11, wherein the hydrophilic layer has a thickness of 35 nm to 300 nm. 제12항에 있어서, 상기 친수성 층의 마찰계수는 0.02이하인 베어링요소. The bearing element of claim 12, wherein the coefficient of friction of the hydrophilic layer is 0.02 or less. 제13항에 있어서, 상기 친수성 층의 마찰계수는 0.0093~0.02인 베어링요소.The bearing element of claim 13, wherein the coefficient of friction of the hydrophilic layer is between 0.0093 and 0.02. 제10항에 있어서, 상기 친수성 층의 마모량은, 0.5mm3이하인 베어링요소. The bearing element of claim 10, wherein the amount of wear of the hydrophilic layer is 0.5 mm 3 or less. 폴리머표면을 가진 베어링요소를 광개시제가 포함된 용액에 일정 시간 동안 침지시키고 건조시켜 광개시제를 표면에 코팅하는 광개시제 코팅단계와,
베어링요소를 친수성 용액에 침지시킨 후 일정 시간 동안 자외선을 조사하여 친수성층을 성장시키는 친수성층 형성단계를 포함하고,
상기 친수성 용액은 메타아크릴로일옥시 알킬 그룹과, 술포프로필-수산화암모늄 그룹으로 이루어진 모노머를 용해시킨 초순수이며,
상기 술포프로필-수산화암모늄 그룹의 일단이 상기 메타아크릴로일옥시 알킬 그룹에 결합되고, 상기 술포프로필-수산화암모늄 그룹의 타단이 자유단을 형성하며, 일 모노머의 메타아크릴로일옥시 알킬 그룹의 일단이 상기 폴리머표면에 결합되고, 일 모노머의 메타아크릴로일옥시 알킬 그룹의 타단이 자유단을 형성하며, 상기 일 모노머의 메타아크릴로일옥시 알킬 그룹의 자유단에 다른 모노머의 메타아크릴로일옥시 알킬 그룹의 일단이 결합되면서 스트랜드로 성장하는 것을 특징으로 하는, 베어링요소 제조방법.
A photoinitiator coating step of coating the photoinitiator on the surface by immersing and drying the bearing element having a polymer surface in a solution containing the photoinitiator for a predetermined time;
After immersing the bearing element in a hydrophilic solution, a hydrophilic layer forming step of growing a hydrophilic layer by irradiating ultraviolet light for a predetermined time,
The hydrophilic solution is ultrapure water in which a monomer composed of a methacryloyloxy alkyl group and a sulfopropyl-ammonium hydroxide group is dissolved,
One end of the sulfopropyl-ammonium hydroxide group is bonded to the methacryloyloxy alkyl group, the other end of the sulfopropyl-ammonium hydroxide group forms a free end, and one end of the methacryloyloxy alkyl group of one monomer It is bonded to the polymer surface, the other end of the methacryloyloxy alkyl group of one monomer forms a free end, and the methacryloyloxy of the other monomer at the free end of the methacryloyloxy alkyl group of the one monomer. Characterized in that one end of the alkyl group is bonded to grow into strands, bearing element manufacturing method.
삭제delete 제16항에 있어서, 상기 폴리머표면은 가교폴리에틸렌인 베어링요소 제조방법. 17. The method of claim 16 wherein the polymer surface is crosslinked polyethylene. 제18항에 있어서, 상기 친수성층 형성단계는 메타아크릴로일옥시 알킬 그룹의 일단이 상기 폴리머 표면에 결합하여 브러쉬 구조를 형성하는 브러쉬 구조 형성단계를 포함하는 베어링요소 제조방법.19. The method of claim 18, wherein the forming of the hydrophilic layer comprises a brush structure forming step in which one end of the methacryloyloxy alkyl group is bonded to the polymer surface to form a brush structure. 삭제delete 제19항에 있어서, 상기 친수성층 형성단계는, 0.25~0.5mol/L 농도의 친수성 용액에 10~40mW/㎠ 자외선 강도로 30분~120분 동안 조사하여 친수성 층을 성장시키는 베어링요소 제조방법.20. The method of claim 19, wherein the forming of the hydrophilic layer comprises irradiating a hydrophilic solution having a concentration of 0.25˜0.5 mol / L at an intensity of 10˜40 mW / cm 2 for 30 minutes to 120 minutes to grow a hydrophilic layer.
KR1020180011451A 2018-01-30 2018-01-30 Bearing Element with Hydrophile Layer and the Producing Method thereof KR102021037B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180011451A KR102021037B1 (en) 2018-01-30 2018-01-30 Bearing Element with Hydrophile Layer and the Producing Method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180011451A KR102021037B1 (en) 2018-01-30 2018-01-30 Bearing Element with Hydrophile Layer and the Producing Method thereof

Publications (2)

Publication Number Publication Date
KR20190092084A KR20190092084A (en) 2019-08-07
KR102021037B1 true KR102021037B1 (en) 2019-11-04

Family

ID=67621350

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180011451A KR102021037B1 (en) 2018-01-30 2018-01-30 Bearing Element with Hydrophile Layer and the Producing Method thereof

Country Status (1)

Country Link
KR (1) KR102021037B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220078475A (en) 2020-12-03 2022-06-10 고려대학교 산학협력단 Metal film adhesive polymer substrate and manufacturing method thereof, electronic component for 5g communication

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240002448A (en) 2022-06-29 2024-01-05 주식회사 코렌텍 A Method for Manufacturing a Bearing Element Having a Uniform Hydrophile Layer and a Bearing Element by the Method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008148850A (en) * 2006-12-15 2008-07-03 Japan Medical Materials Corp Low-wear sliding member and artificial joint making use of the same
JP2016123491A (en) 2014-12-26 2016-07-11 住友ゴム工業株式会社 Surface-modified metal and method for modifying metal surface
US20160296322A1 (en) * 2015-04-09 2016-10-13 Boston Scientific Scimed, Inc. Synthetic heart valves composed of zwitterionic polymers

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120197407A1 (en) * 2009-08-20 2012-08-02 The University Of Tokyo Highly lubricating sliding member and artifical joint using same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008148850A (en) * 2006-12-15 2008-07-03 Japan Medical Materials Corp Low-wear sliding member and artificial joint making use of the same
JP2016123491A (en) 2014-12-26 2016-07-11 住友ゴム工業株式会社 Surface-modified metal and method for modifying metal surface
US20160296322A1 (en) * 2015-04-09 2016-10-13 Boston Scientific Scimed, Inc. Synthetic heart valves composed of zwitterionic polymers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220078475A (en) 2020-12-03 2022-06-10 고려대학교 산학협력단 Metal film adhesive polymer substrate and manufacturing method thereof, electronic component for 5g communication

Also Published As

Publication number Publication date
KR20190092084A (en) 2019-08-07

Similar Documents

Publication Publication Date Title
US9951190B2 (en) Surface crosslinked polyethylene
Moro et al. Wear resistance of artificial hip joints with poly (2-methacryloyloxyethyl phosphorylcholine) grafted polyethylene: comparisons with the effect of polyethylene cross-linking and ceramic femoral heads
Kyomoto et al. Self-initiated surface graft polymerization of 2-methacryloyloxyethyl phosphorylcholine on poly (ether ether ketone) by photoirradiation
JP5587612B2 (en) Hydrophilic coating
Moro et al. Long‐term hip simulator testing of the artificial hip joint bearing surface grafted with biocompatible phospholipid polymer
Kyomoto et al. Lubricity and stability of poly (2-methacryloyloxyethyl phosphorylcholine) polymer layer on Co–Cr–Mo surface for hemi-arthroplasty to prevent degeneration of articular cartilage
KR102021037B1 (en) Bearing Element with Hydrophile Layer and the Producing Method thereof
US20090169715A1 (en) Hydrophilic coating comprising a polyelectrolyte
JP6702939B2 (en) Cross-linked polyphosphorylcholine coated implant inserts and methods of coating implant inserts
Kyomoto et al. Cartilage-mimicking, high-density brush structure improves wear resistance of crosslinked polyethylene: a pilot study
Griffin et al. Enhancing tissue integration and angiogenesis of a novel nanocomposite polymer using plasma surface polymerisation, an in vitro and in vivo study
CN105879116B (en) A kind of artificial joint and preparation method thereof of low friction high abrasion
Kyomoto et al. Effect of UV‐irradiation intensity on graft polymerization of 2‐methacryloyloxyethyl phosphorylcholine on orthopedic bearing substrate
Moro et al. 2006 Frank Stinchfield Award: grafting of biocompatible polymer for longevity of artificial hip joints.
KR102021047B1 (en) Bearing Element with Hydrophile Layer and the Producing Method thereof
WO2014074134A1 (en) Multilayered collagen scaffold
CN113527749A (en) Method for preparing multi-scale porous structure on surface of polyether-ether-ketone
WO2017142047A1 (en) Method of manufacturing sliding member for prosthetic joint
US20220226546A1 (en) Surface coating structure of surgical prosthesis and method for modifying surface of surgical prosthesis using same
JP6061670B2 (en) Method for manufacturing sliding member for artificial joint and sliding member for artificial joint
KR20240002448A (en) A Method for Manufacturing a Bearing Element Having a Uniform Hydrophile Layer and a Bearing Element by the Method
WO2013071062A1 (en) Multilayered collagen tubular scaffold
JP6292815B2 (en) Antioxidant prosthetic material
JP5936566B2 (en) Manufacturing method of sliding member
Vasudev et al. Polyethylene glycol-grafted bovine pericardium: a novel hybrid tissue resistant to calcification

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant