KR102019887B1 - Ionic block copolymer and preparation method thereof - Google Patents

Ionic block copolymer and preparation method thereof Download PDF

Info

Publication number
KR102019887B1
KR102019887B1 KR1020180008337A KR20180008337A KR102019887B1 KR 102019887 B1 KR102019887 B1 KR 102019887B1 KR 1020180008337 A KR1020180008337 A KR 1020180008337A KR 20180008337 A KR20180008337 A KR 20180008337A KR 102019887 B1 KR102019887 B1 KR 102019887B1
Authority
KR
South Korea
Prior art keywords
formula
block copolymer
thin film
ion exchange
cationic
Prior art date
Application number
KR1020180008337A
Other languages
Korean (ko)
Other versions
KR20190089596A (en
Inventor
최성호
권후근
노승기
최형찬
Original Assignee
한남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한남대학교 산학협력단 filed Critical 한남대학교 산학협력단
Priority to KR1020180008337A priority Critical patent/KR102019887B1/en
Publication of KR20190089596A publication Critical patent/KR20190089596A/en
Application granted granted Critical
Publication of KR102019887B1 publication Critical patent/KR102019887B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • C08F212/16Halogens
    • C08F212/21Bromine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • C08F212/26Nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • C08F212/30Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2243Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/755Membranes, diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/017Additives being an antistatic agent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Abstract

본 발명은 양이온성 또는 음이온성을 띠는 블록 코폴리머 및 이의 제조방법에 관한 것으로서, ARGET ATRP 방법으로 이온 전도도가 향상된 친수성과 소수성을 동시에 지니고 있는 이온성 블록 코폴리머를 제조하였으며, 이는 계면활성제로 응용이 가능하고, 박막화 하여 전기투석막, 이차 전지, 슈퍼캐퍼시터, 연료전지, 레독스 흐름 전지 등에 적용할 수 있다.The present invention relates to a block copolymer having a cationic or anionic property and a method for preparing the same, wherein an ionic block copolymer having both hydrophilicity and hydrophobicity with improved ion conductivity is prepared by the ARGET ATRP method. Application is possible, and it can be applied to electrodialysis membranes, secondary batteries, supercapacitors, fuel cells, redox flow batteries, and the like by thinning them.

Description

이온성 블록 코폴리머 및 이의 제조방법 {Ionic block copolymer and preparation method thereof}Ionic block copolymer and preparation method thereof

본 발명은 양이온성 또는 음이온성을 띠는 블록 코폴리머 및 이의 제조방법에 관한 것이다.The present invention relates to a block copolymer having a cationic or anionic property and a method for preparing the same.

블록 코폴리머는 한 가지 단량체가 중합되어 고분자를 형성하고 이 폴리머의 말단기에 이어서 다른 단량체가 중합되어 블록을 형성하는 방식으로 얻어진 고분자들을 총칭한다. 이러한 블록 코폴리머들은 다른 종인 랜덤 공중합체 (random copolymer)나 교호 공중합체 (alternating copolymer) 등과는 다르게 친수성 단량체와 소수성 단량체가 블록을 형성하고 있기 때문에 상분리를 일으키려 하나 서로 공유결합으로 연결되어 있어 상분리의 정도가 제한되어 있기 때문에 라멜라 (lamella) 구조를 가진 나노 구조를 형성한다. 블록 코폴리머는 다른 폴리머보다 이러한 라멜라 구조의 도메인 크기를 극대화 할 수 있기 때문에 적용 환경에 따라 도메인의 크기를 조절하여 최적화된 퍼포먼스를 이끌어 낼 수 있다.Block copolymers collectively refer to polymers obtained in such a way that one monomer polymerizes to form a polymer and the end group of the polymer followed by another monomer polymerizes to form a block. Unlike other random copolymers such as random copolymers and alternating copolymers, these block copolymers form a block because hydrophilic monomers and hydrophobic monomers form a block, but are covalently linked to each other. Due to their limited degree, they form nanostructures with a lamella structure. Because block copolymers can maximize the domain size of these lamellar structures than other polymers, the size of the domain can be adjusted according to the application environment, resulting in optimized performance.

블록 코폴리머는 박막 형태로 제조하여 레독스 흐름 전지 (redox flow battery)에 적용시킬 수 있으며, 레독스 흐름 전지는 박막의 이온 전도도에 의해 그 효율이 결정된다. 현재 레독스 흐름 전지에 사용되는 상용 멤브레인은 Daramic사의 AMV막, Selemion사의 APS막, DuPont사의 Nafion막 등이 있으나, 이는 내구성이 약하고 바나듐 이온 투과에 의한 에너지 손실이 크며, 고온에서 급격하게 양성자의 전도성이 감소하는 문제점이 있다.The block copolymer may be prepared in a thin film form and applied to a redox flow battery, and the efficiency of the redox flow battery is determined by the ion conductivity of the thin film. Commercial membranes currently used in redox flow batteries include Daramic's AMV membrane, Selemion's APS membrane, and DuPont's Nafion membrane. There is this decreasing problem.

이러한 문제를 해결하기 위한 기술의 일 예로 공개특허 제10-2015-0060394호에는 이온 전도도와 투과도 특성이 개선된 고분자 복합막 및 이를 포함하는 레독스 흐름 전지에 대해 개시되어 있으며, 구체적으로는 수소이온 전도성을 갖는 술폰화된 탄화수소계 제 1 고분자 95 내지 99 중량%와 불소계 소수성 제 2 고분자를 1 내지 5 중량% 포함하는 고분자 혼합물;과 상기 고분자 혼합물 100 중량부에 대해, 술폰화된 실리카 1 내지 10 중량부 및 양친성 계면활성제 0.01 내지 20 중량부를 포함하는 것을 특징으로 하는 고분자 전해질 복합막이 개시되어 있다.As an example of a technique for solving such a problem, Patent Publication No. 10-2015-0060394 discloses a polymer composite membrane having improved ion conductivity and permeability characteristics and a redox flow battery including the same, and specifically, hydrogen ion A polymer mixture containing 95 to 99% by weight of the sulfonated hydrocarbon-based first polymer having conductivity and 1 to 5% by weight of the fluorine-based hydrophobic second polymer; and 1 to 10 sulfonated silica based on 100 parts by weight of the polymer mixture. Disclosed is a polymer electrolyte composite membrane comprising a weight part and 0.01 to 20 weight part of an amphiphilic surfactant.

또한, 공개특허 제10-2017-0113157호에는 소수성 블록; 및 친수성 블록;을 포함하고, 상기 친수성 블록은

Figure 112018008004678-pat00001
로부터 유래된 단위를 포함하며, 상기 소수성 블록은 양이온성기 및 할로겐기를 포함하는 것을 특징으로 하는 블록 중합체 및 이를 포함하는 고분자 전해질막에 대해 개시되어 있다.In addition, Patent Publication No. 10-2017-0113157 discloses a hydrophobic block; And a hydrophilic block, wherein the hydrophilic block is
Figure 112018008004678-pat00001
It includes a unit derived from, the hydrophobic block is disclosed for a block polymer and a polymer electrolyte membrane comprising the same, characterized in that it comprises a cationic group and a halogen group.

그러나 상기 개시된 기술의 경우, 일반적으로 고분자를 중합할 때, 금속 기반의 촉매가 필요한데, 이러한 금속 기반의 촉매는 이온성을 띠고 있기 때문에 블록 코폴리머의 친수성 부분에 흡착되어 정제가 힘들다는 단점이 있다. 또한, 수계 (aqueous) 레독스 흐름 전지는 황산을 지지 전해질로 사용함으로 인해 전극과 이온 교환막에 손상을 줄 수 있으며, 제한된 전위창 (potential window)을 갖고, 폭넓은 온도에서의 배터리 구동이 제한되는 문제가 있다.However, in the above-described technique, a metal-based catalyst is generally required when polymerizing a polymer, and since the metal-based catalyst is ionic, it is difficult to purify because it is adsorbed on the hydrophilic portion of the block copolymer. . In addition, aqueous redox flow cells can damage electrodes and ion exchange membranes by using sulfuric acid as a supporting electrolyte, have a limited potential window, and limit battery operation at a wide range of temperatures. there is a problem.

상기와 같은 문제를 해결하기 위하여 본 발명에서는 비수계 (non-aqueous) 레독스 흐름전지에 사용이 가능하며, 높은 이온 전도도를 가지고, 최소한의 금속 촉매를 사용할 수 있는 이온성 블록 코폴리머의 제조방법을 고안하였다.In order to solve the above problems, the present invention can be used in a non-aqueous redox flow battery, has a high ion conductivity, a method of producing an ionic block copolymer that can use a minimum metal catalyst. Devised.

본 발명의 목적은 금속을 환원시키기 위한 환원제를 추가로 부여하여 최소한의 금속 촉매를 사용하고, 우수한 이온 전도도를 가지며, 비수계에 사용 가능한 이온성 블록 코폴리머 및 이의 제조방법을 제공하는 것이다.It is an object of the present invention to further provide a reducing agent for reducing metal, to provide an ionic block copolymer having a minimum metal catalyst, having excellent ionic conductivity, and usable in a non-aqueous system and a method for producing the same.

상기 목적을 달성하기 위하여, 본 발명은In order to achieve the above object, the present invention

A) 하기 화학식 2로 표시되는 고분자를 합성하는 단계;A) synthesizing a polymer represented by Formula 2 below;

Figure 112018008004678-pat00002
Figure 112018008004678-pat00002

B) 친수성 단량체를 투입하는 단계;B) introducing a hydrophilic monomer;

C) 하기 화학식 3-1 또는 화학식 3-2로 표시되는 고분자를 수득하는 단계;C) obtaining a polymer represented by the following Chemical Formula 3-1 or Chemical Formula 3-2;

Figure 112018008004678-pat00003
Figure 112018008004678-pat00003

를 포함하는 이온성 블록 코폴리머의 제조방법을 제공한다.It provides a method for producing an ionic block copolymer comprising a.

{상기 화학식 2, 3-1 및 3-2에, X는 할로겐이며, A는 알칼리금속이고, n 및 m은 서로 독립적으로 1 내지 100,000의 정수이다.}{In Formulas 2, 3-1 and 3-2, X is halogen, A is an alkali metal, and n and m are each independently an integer of 1 to 100,000.}

상기 B) 단계에서 친수성 단량체는 하기 화학식 1 또는 소듐 4-스티렌 설포네이트 (sdium 4-styrene sulfonate)인 것이 바람직하다.In the step B), the hydrophilic monomer is preferably Formula 1 or sodium 4-styrene sulfonate.

Figure 112018008004678-pat00004
Figure 112018008004678-pat00004

또 다른 측면에서, 본 발명은 상기 화학식 3-1 또는 화학식 3-2로 표시되는 이온성 블록 코폴리머 및 이를 포함하는 이온 교환막을 제공한다. 상기 이온 교환막 두께는 10 내지 100 μm로 하는 것이 바람직하고, 보다 바람직하게는 10 내지 50 μm로 한다.In another aspect, the present invention provides an ionic block copolymer represented by Formula 3-1 or Formula 3-2 and an ion exchange membrane including the same. The ion exchange membrane thickness is preferably 10 to 100 µm, more preferably 10 to 50 µm.

본 발명의 이온 교환막은 비수계 전해액에 사용할 수 있으며, 본 발명에 따른 이온 교환막은 이차 전지에 사용할 수 있다. 즉, 본 발명에 따른 이온 교환막은 전해액이 비수계 전해액인 이차 전지에 사용할 수 있다.The ion exchange membrane of the present invention can be used for a non-aqueous electrolyte, and the ion exchange membrane according to the present invention can be used for a secondary battery. That is, the ion exchange membrane which concerns on this invention can be used for the secondary battery whose electrolyte solution is a non-aqueous electrolyte solution.

본 발명의 구현에 따른 음이온성 블록 코폴리머 또는 양이온성 블록 코폴리머는 비수계, 즉 유기계에서 최적화된 화학적, 물리적 안정성을 가지며, 특정 용매에 녹지 않는 화합물을 용매에 분산시키기 위한 계면활성제로 응용이 가능하다. 또한 이온성 블록 코폴리머를 박막화시킴으로써 전기투석막, 이차 전지, 슈퍼캐퍼시터, 연료전지, 레독스 흐름 전지 등에 적용할 수 있다.Anionic block copolymers or cationic block copolymers according to embodiments of the present invention have optimized chemical and physical stability in non-aqueous, organic systems, and are useful as surfactants for dispersing insoluble solvents in compounds. It is possible. In addition, by thinning the ionic block copolymer, it can be applied to electrodialysis membranes, secondary batteries, supercapacitors, fuel cells, redox flow batteries and the like.

도 1은 (a) 화학식 3-1 및 (b) 화학식 3-2의 핵자기 공명 분광법 (Proton Nuclear Magnetic Resonance spectroscopy; 1H-NMR) 데이터이다.
도 2는 (a) 화학식 2, (b) 화학식 3-2, (c) 화학식 3-1의 적외선 분광법 (Fourier Transfer Infrared spectroscopy; FT-IR) 데이터이다.
도 3은 (a) 화학식 3-1, (b) 화학식 3-2를 박막화 한 멤브레인 사진이다.
도 4는 (a) 화학식 3-1, (b) 화학식 3-2를 박막화 한 멤브레인의 주사전자현미경 (Scanning Electron Microscopy; SEM) 이미지이다.
도 5는 (a) 화학식 3-1, (b) 화학식 3-2를 박막화 한 멤브레인의 열적 특성 평가를 위한 TGA (Thermogravimetric analysis) 커브이다.
도 6은 (a) 화학식 3-1, (b) 화학식 3-2를 박막화 한 멤브레인의 레독스 흐름 전지에 대한 충방전을 테스트 한 충방전 커브이다.
1 is (a) Proton Nuclear Magnetic Resonance spectroscopy ( 1 H-NMR) data of Chemical Formulas 3-1 and (b) Chemical Formula 3-2.
FIG. 2 shows Fourier Transfer Infrared Spectroscopy (FT-IR) data of (a) Formula 2, (b) Formula 3-2, and (c) Formula 3-1.
3 is a membrane photograph of (a) a thin film of the formula (3-1), (b) formula (3-2).
FIG. 4 is a scanning electron microscope (SEM) image of a membrane obtained by thinning (a) Chemical Formula 3-1 and (b) Chemical Formula 3-2.
FIG. 5 is a TGA (Thermogravimetric analysis) curve for evaluating thermal characteristics of a membrane obtained by thinning (a) Chemical Formulas 3-1 and (b) Chemical Formula 3-2.
6 is a charge / discharge curve tested for charging and discharging of a redox flow battery of a membrane obtained by thinning (a) Chemical Formulas 3-1 and (b) Chemical Formula 3-2.

이하, 본 발명의 실시예를 참조하여 상세하게 설명한다. 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, with reference to the embodiment of the present invention will be described in detail. In describing the present invention, when it is determined that the detailed description of the related well-known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted.

본 발명은, 하기 반응식 1과 같이 친수성 단량체를 합성하는 단계; 하기 반응식 2로 표시되는 폴리스티렌을 중합하는 단계; 하기 반응식 3과 같은 화학식 3-1 또는 화학식 3-2로 표시되는 양이온성 블록 코폴리머 또는 음이온성 블록 코폴리머를 합성하는 단계;를 포함하는 이온성 블록 코폴리머 제조방법을 제공한다.The present invention comprises the steps of synthesizing a hydrophilic monomer as in Scheme 1; Polymerizing polystyrene represented by Scheme 2 below; It provides a method for producing an ionic block copolymer comprising the step of synthesizing a cationic block copolymer or anionic block copolymer represented by the formula (3-1) or (3-2) as shown in Scheme 3.

<반응식 1><Scheme 1>

Figure 112018008004678-pat00005
Figure 112018008004678-pat00005

<반응식 2><Scheme 2>

Figure 112018008004678-pat00006
Figure 112018008004678-pat00006

<반응식 3><Scheme 3>

Figure 112018008004678-pat00007
Figure 112018008004678-pat00007

보다 구체적으로 예를 들면, 상기 반응식 1과 같이 4-비닐 피리딘 (4-vinyl pyridine)과 아이오도에탄 (iodoethane)을 4차 아민화 반응시켜 하기 화학식 1로 표시되는 양이온성을 띠는 친수성 단량체인 4-비닐에틸피리디늄 아이오다이드 (4-vinylethylpyridinium iodide)를 합성하는 방법을 제공한다.More specifically, for example, as shown in Scheme 1, 4-vinyl pyridine and iodoethane are subjected to quaternary amination reaction to form a cationic hydrophilic monomer represented by Formula 1 below. Provided is a method for synthesizing 4-vinylethylpyridinium iodide.

Figure 112018008004678-pat00008
Figure 112018008004678-pat00008

상기 반응식 1은 4-비닐 피리딘과 아이오도에탄을 몰비율 1:1로 하여 아세토나이트릴 (acetonitrile)에서 반응시키는 것을 특징으로 하며, 반응온도는 60℃가 적절하고, 상온부터 환류시킬 수 있는 온도 등 넓은 폭의 온도에서 반응을 이끌어 낼 수 있다. 또한 상기 반응식 1에 의해 생성된 단량체는 반응이 완결되면 아세토나이트릴에 녹지 않고 침전물로 얻어내어 불순물을 제거할 수 있다.Scheme 1 is characterized in that 4-vinyl pyridine and iodoethane in a molar ratio of 1: 1 to react in acetonitrile, the reaction temperature is 60 ℃ is appropriate, the temperature that can be refluxed from room temperature The reaction can be elicited at a wide range of temperatures. In addition, the monomer produced by Scheme 1 may be obtained as a precipitate without being dissolved in acetonitrile when the reaction is completed to remove impurities.

또 다른 구체적인 예로서, 상기 반응식 2는 폴리스티렌을 중합하는 단계로, 증류된 스티렌 (styrene) 단량체를 아니솔 (anisole) 용매에 1-프로파질 브로마이드 (1-propargyl bromide)를 개시제로 하여 구리촉매 (copper(II) bromide/n, n, n′, n″,n″-pentamethyldiethylenetriamine)와 구리촉매 환원제인 틴(II) 2-에틸헥사노에이트 (Tin(II) 2-ethylhexanoate)를 사용하는 ARGET ATRP 방법을 이용하여 하기 화학식 2로 표시되는 폴리스티렌 (polystyrene)을 합성하는 방법을 제공한다.As another specific example, Reaction Scheme 2 is a step of polymerizing polystyrene, wherein a distilled styrene monomer is used as an initiator with 1-propargyl bromide as an initiator in an anisole solvent. ARGET ATRP using copper (II) bromide / n, n, n ', n ″, n ″ -pentamethyldiethylenetriamine and tin (II) 2-ethylhexanoate, a copper catalyst reducing agent It provides a method for synthesizing polystyrene represented by the following formula (2) using the method.

Figure 112018008004678-pat00009
Figure 112018008004678-pat00009

상기 반응식 2는 아니솔 (anisole)을 용매로 사용하며, 반응온도는 90℃가 바람직하고 48시간 동안 반응시키는 것을 특징으로 한다. 외부 산소가 반응용기 내에서 반응에 방해 작용을 일으키기 때문에 반응용기가 외부의 공기와 접촉하지 않도록 하는 게 중요하다.Scheme 2 uses anisole (anisole) as a solvent, the reaction temperature is preferably 90 ℃ and characterized in that for 48 hours. Since external oxygen interferes with the reaction in the reaction vessel, it is important to ensure that the reaction vessel does not come into contact with the outside air.

또 다른 구체적인 예로서, 상기 반응식 3은 폴리스티렌 말단기에 친수성 단량체를 추가로 중합하는 것으로, 상기 화학식 2를 개시제로 하여 소듐 4-스티렌 설포네이트 (sodium 4-styrene sulfonate) 또는 상기 화학식 1을 구리촉매 (copper(II) bromide/n, n, n′, n″,n″-pentamethyldiethylenetriamine)와 구리촉매 환원제인 틴(II) 2-에틸헥사노에이트 (Tin(II) 2-ethylhexanoate)를 사용하는 ARGET ATRP 방법을 이용하여 하기 화학식 3-1로 표시되는 polystyrene-block-poly(4-styrene sulfonate) 또는 하기 화학식 3-2로 표시되는 polystyrene-block-poly(4-vinylethylpyridinium iodide)를 합성하는 방법을 제공한다.As another specific example, Reaction Scheme 3 further polymerizes a hydrophilic monomer in a polystyrene end group, using sodium 4-styrene sulfonate or Chemical Formula 1 as an initiator. ARGET using copper (II) bromide / n, n, n ', n ″, n ″ -pentamethyldiethylenetriamine and tin (II) 2-ethylhexanoate, a copper catalyst reducing agent Provides a method for synthesizing polystyrene-block-poly (4-styrene sulfonate) represented by the following Chemical Formula 3-1 or polystyrene-block-poly (4-vinylethylpyridinium iodide) represented by the following Chemical Formula 3-2 using the ATRP method do.

Figure 112018008004678-pat00010
Figure 112018008004678-pat00010

{상기 화학식 3-1에 있어서, X는 할로겐이며,{In Chemical Formula 3-1, X is halogen,

상기 화학식 3-2에 있어서, A는 알칼리금속이고,In Chemical Formula 3-2, A is an alkali metal,

n 및 m은 서로 독립적으로 1 내지 100,000의 정수이다.}n and m are each independently an integer from 1 to 100,000.}

상기 반응식 3은 N, N- 디메틸포름아마이드 (N,N- dimethylformamide)를 용매로 하며, 반응온도는 90℃가 바람직하고 48시간 동안 반응시키는 것을 특징으로 한다. 외부의 산소가 반응용기 내에서 반응에 방해 작용을 일으키기 때문에 반응용기가 외부의 공기와 접촉하지 않도록 하는 게 중요하다.Scheme 3 is N, N- dimethylformamide (N, N- dimethylformamide) as a solvent, the reaction temperature is preferably 90 ℃ and characterized in that for 48 hours. It is important to ensure that the reaction vessel does not come into contact with the outside air because external oxygen interferes with the reaction in the reaction vessel.

상기와 같이 제공된 음이온성 블록 코폴리머 및 양이온성 블록 코폴리머는 친수성 부분과 소수성 부분이 하나의 고분자에 동시에 존재하고 있기 때문에 특정 용매에 용해되지 않는 화합물을 분산시키기 위한 계면활성제로 사용할 수 있으며, 용도를 이에 제한하지 않고 박막화 하여 전기투석막, 이차 전지, 슈퍼캐퍼시터, 연료전지, 레독스 흐름 전지 등에도 적용할 수 있다.The anionic block copolymer and cationic block copolymer provided as described above can be used as a surfactant for dispersing a compound that does not dissolve in a specific solvent since both the hydrophilic portion and the hydrophobic portion are present in one polymer. Without being limited thereto, the film may be thinned and applied to an electrodialysis membrane, a secondary battery, a supercapacitor, a fuel cell, a redox flow battery, and the like.

이하에서 상기 화학식 1, 화학식 2, 화학식 3-1 및 화학식 3-2로 표시되는 화합물의 합성예 및 이를 이용한 박막 제조예에 관하여 실시예를 들어 구체적으로 설명하지만, 본 발명이 하기 실시예로 한정되는 것은 아니다.Hereinafter, the synthesis examples of the compounds represented by Formula 1, Formula 2, Formula 3-1, and Formula 3-2 and thin film preparation examples using the same will be described in detail with reference to Examples, but the present invention is limited to the following Examples. It doesn't happen.

합성 예시Synthesis Example

<합성예 1> 화학식 1의 합성Synthesis Example 1 Synthesis of Chemical Formula 1

Two-neck round bottomed flask에 4-vinyl pyridine (4.2 g, 0.04 mmol), iodoethane (6.2 g, 0.04 mol), 용매인 acetonitrile (100 mL)을 넣고 질소 purge 하에 60℃에서 6시간 동안 교반시켰다. 이후 생성된 노란색 파우더를 감압하여 걸러낸 다음 methyl acetate와 diethylether로 충분히 씻어낸 후 건조시킨다.4-vinyl pyridine (4.2 g, 0.04 mmol), iodoethane (6.2 g, 0.04 mol) and acetonitrile (100 mL) were added to a two-neck round bottomed flask and stirred at 60 ° C. for 6 hours under a nitrogen purge. The resulting yellow powder was filtered under reduced pressure, washed well with methyl acetate and diethylether and dried.

<합성예 2> 화학식 2의 합성Synthesis Example 2 Synthesis of Chemical Formula 2

Two-neck round bottomed flask에 개시제인 propargyl bromide (8.12 μL)와 styrene (6.64 mL), anisole (4.22 mL), CuBr2 (0.0037 g), PMDETA (58 μL), Sn(EH)2 Tin(II) 2-ethylhexanoate (89.5 uL)를 넣고 액체질소에 담가 얼린 다음 vacuum pump를 이용하여 flask 내부를 진공 상태로 만들어 준 후 녹였다. 상기 과정을 3번 반복한 뒤 90℃에서 48시간 동안 교반시켰다. 반응이 끝난 용액을 methanol에 부어 흰색 침전물을 얻고, 상기 침전물을 감압 여과시켜 증류수로 충분히 씻어낸 다음 건조시킨다.Initiate propargyl bromide (8.12 μL) with styrene (6.64 mL), anisole (4.22 mL), CuBr 2 in a two-neck round bottomed flask (0.0037 g), PMDETA (58 μL), Sn (EH) 2 Tin (II) 2-ethylhexanoate (89.5 uL) was added, immersed in liquid nitrogen, frozen, and vacuumed inside the flask using a vacuum pump. . The procedure was repeated three times and then stirred at 90 ° C. for 48 hours. The reaction solution is poured into methanol to obtain a white precipitate. The precipitate is filtered under reduced pressure, washed thoroughly with distilled water and dried.

<합성예 3> 화학식 3-1 및 3-2의 합성Synthesis Example 3 Synthesis of Chemical Formulas 3-1 and 3-2

1) 화학식 3-1의 합성1) Synthesis of Chemical Formula 3-1

상기 화학식 2와 상기 화학식 1의 몰비율을 1:1.5, 1:2, 1:2.5로 조절해가며 two-neck round bottomed flask에 CuBr2 (0.0037 g), PMDETA (58 μL), Sn(EH)2 (89.5 uL), dimethylformamide (20 mL)를 함께 넣고 액체질소에 담가 얼린 후 vacuum pump를 이용하여 flask 내부를 진공 상태로 만들어 준 뒤 녹였다. 상기 과정을 3번 반복한 뒤 90℃에서 48시간 동안 교반시켰다. 상기 화학식 2는 녹는 시간이 필요하므로 완전히 녹인 후에 진행하였다. 반응이 끝난 용액을 methanol에 부어 갈색 침전물을 얻은 후 반응하지 않고 남아있는 이온교환그룹을 제거하기 위해 증류수로 충분히 씻은 뒤 건조시켜 화학식 3-1을 얻었다.The molar ratio of Formula 2 and Formula 1 was adjusted to 1: 1.5, 1: 2, 1: 2.5 and CuBr 2 in a two-neck round bottomed flask. (0.0037 g), PMDETA (58 μL), Sn (EH) 2 (89.5 uL) and dimethylformamide (20 mL) were added together, immersed in liquid nitrogen, frozen, and vacuumed inside the flask using a vacuum pump. The procedure was repeated three times and then stirred at 90 ° C. for 48 hours. Formula 2 requires a melting time, so it proceeds after complete melting. The reaction solution was poured into methanol to obtain a brown precipitate, washed sufficiently with distilled water to remove the ion exchange group remaining unreacted, and dried to obtain the formula 3-1.

2) 화학식 3-2의 합성2) Synthesis of Chemical Formula 3-2

상기 화학식 1 대신 sodium 4-styrene sulfonate를 첨가하고, 상기 화학식 2와 sodium 4-styrene sulfonate의 몰비율을 1:0.25, 1:0.5, 1:0.75, 1:1, 1:1.25로 하여 상기 화학식 3-1의 합성법을 이용하여 화학식 3-2를 얻었다.Sodium 4-styrene sulfonate is added instead of Formula 1, and the molar ratio of Formula 2 to sodium 4-styrene sulfonate is 1: 0.25, 1: 0.5, 1: 0.75, 1: 1, 1: 1.25 Chemical formula 3-2 was obtained using the synthesis method of -1.

<합성예 4> 박막 제조Synthesis Example 4 Thin Film Preparation

1) 양이온성 박막 제조1) Cationic Thin Film Preparation

상기 합성예 3에서 몰비율 (상기 화학식 2 : 상기 화학식 1 = 1:1.5, 1:2, 1:2.5)을 다르게 하여 합성한 화학식 3-1을 각각 N-methyl-2-pyrrolidone 용매에 10 wt% 로 완전히 용해시키고, 지름이 10 cm인 평평한 원형 유리접시에 부은 뒤 진공 오븐에서 80℃에서 24시간 동안 용액을 증발시켰다. 유리접시에 물을 부어 상기 몰비율 (상기 화학식 2 : 상기 화학식 1)에 따른 양이온성 박막 M1 (1:1.5), M2 (1:2), M3 (1:2.5)를 얻었다.10 wt% of the compound of Formula 3-1 synthesized by varying the molar ratio of the compound of Formula 3 (Chemical Formula 2: Chemical Formula 1 = 1: 1.5, 1: 2, 1: 2.5) in N-methyl-2-pyrrolidone solvent Completely dissolved in%, poured into a flat circular glass plate 10 cm in diameter, and the solution was evaporated for 24 hours at 80 ° C. in a vacuum oven. Water was poured on a glass plate to obtain a cationic thin film M1 (1: 1.5), M2 (1: 2), and M3 (1: 2.5) according to the molar ratio (Formula 2: Formula 1).

2) 음이온성 박막 제조2) Anionic Thin Film Manufacturing

상기 합성예 3에서 몰비율 (상기 화학식 2 : sodium 4-styrene sulfonate = 1:0.25, 1:0.5, 1:0.75, 1:1, 1:1.25)을 다르게 하여 제조한 화학식 3-2를 상기 양이온성 박막 제조법을 이용하여 상기 몰비율 (상기 화학식 2 : sodium 4-styrene sulfonate)에 따른 음이온성 박막 M4 (1:0.25), M5 (1:0.5), M6 (1:0.75), M7 (1:1), M8 (1:1.25)을 얻었다.Formula 3-2 prepared by varying the molar ratio (Scheme 2: Sodium 4-styrene sulfonate = 1: 0.25, 1: 0.5, 1: 0.75, 1: 1, 1: 1.25) in Synthesis Example 3 is the cation Anionic thin film M4 (1: 0.25), M5 (1: 0.5), M6 (1: 0.75), M7 (1: 1) according to the molar ratio (Formula 2: sodium 4-styrene sulfonate) using a thin film manufacturing method 1), M8 (1: 1.25) was obtained.

이온성 블록 Ionic block 코폴리머Copolymer 특성평가 Characteristic evaluation

실시예 1. 1H-NMR 분석Example 1. 1 H-NMR Analysis

상기 화학식 3-1 및 화학식 3-2를 양성자 핵자기공명 분광법 (Proton Nuclear Magnetic Resonance spectroscopy; 1H-NMR)으로 분석하여 합성 여부를 확인하였으며, 이를 도 1에 나타내었다. 도 1에서와 같이, 모든 피크가 관찰되었으며, 이를 통해 성공적으로 합성되었음을 확인하였다.Formula 3-1 and Formula 3-2 were analyzed by Proton Nuclear Magnetic Resonance spectroscopy ( 1 H-NMR) to confirm the synthesis, which is shown in FIG. 1. As in FIG. 1, all peaks were observed, confirming successful synthesis.

실시예 2. FT-IR 분석Example 2. FT-IR Analysis

상기 화학식 3-1 및 화학식 3-2를 적외선 분광법 (Fourier-transform infrared spectroscopy, FT-IR)으로 분석하였으며, 이를 도 2에 나타내었다. 도 2 (b)에서는 S=O 피크가 관찰되었으며, (c)에서는 -N3 피크가 관찰됨에 따라 성공적으로 합성되었음을 확인하였다.Formulas 3-1 and 3-2 were analyzed by Fourier-transform infrared spectroscopy (FT-IR), which is shown in FIG. 2. In Figure 2 (b) S = O peak was observed, in (c) it was confirmed that the synthesis was successful as -N 3 peak is observed.

실시예 3. 이온성 블록 코폴리머의 박막 특성평가Example 3 Thin Film Characterization of Ionic Block Copolymers

1) 시각적 분석1) visual analysis

상기 화학식 3-1 및 화학식 3-2를 이용하여 제조한 박막 사진을 도 3에 나타내었다. 도 3 (a) 및 도 3(b)는 각각 상기 화학식 3-1 및 화학식 3-2의 박막 사진으로, 딱딱하지 않고 유연하여 휘어질 수 있는 특성을 가지며, 노란색의 반투명성을 띤다.A thin film photograph prepared using the above Chemical Formula 3-1 and Chemical Formula 3-2 is shown in FIG. 3. 3 (a) and 3 (b) are thin film photographs of Chemical Formulas 3-1 and 3-2, respectively, and are not hard, flexible, and may be bent and have yellow translucent properties.

2) SEM 분석2) SEM analysis

제조된 박막을 주사전자현미경 (Scanning Electron Microscope; SEM)으로 분석하였으며, 이를 도 4에 나타내었다. 도 4에서 보는 바와 같이, 양이온성 및 음이온성 박막 모두 표면에 어떠한 크랙이나 구멍이 발견되지 않았으며, 박막이 굉장히 조밀하게 형성되었음을 확인하였다.The prepared thin film was analyzed by Scanning Electron Microscope (SEM), which is shown in FIG. As shown in Figure 4, both the cationic and anionic thin film was found no cracks or holes on the surface, it was confirmed that the thin film was formed very dense.

3) TGA 분석3) TGA Analysis

제조된 박막에 대한 열중량 분석 (Thermogravimetric analysis; TGA)을 실시하였으며, 이를 도 5에 나타내었다. TGA 커브를 확인한 결과, 양이온성 및 음이온성 블록 코폴리머 박막 모두 400℃ 부근부터 450℃까지 이온 교환 그룹이 열분해 되는 것을 확인하였다.Thermogravimetric analysis (TGA) was performed on the prepared thin films, which are shown in FIG. 5. As a result of confirming the TGA curve, it was confirmed that the ion exchange groups were pyrolyzed from around 400 ° C to 450 ° C in both the cationic and anionic block copolymer thin films.

4) 물리적 평가4) physical evaluation

제조한 양이온성 및 음이온성 박막의 이온 교환 용량, 이온 전도도, 전해질 흡착률 및 팽윤률을 측정하였다.The ion exchange capacity, ion conductivity, electrolyte adsorption rate and swelling rate of the prepared cationic and anionic thin films were measured.

- 이온 교환 용량 (Ion exchange capacity; IEC)Ion exchange capacity ( IEC )

제조된 박막의 이온 교환 용량은 역적정 방법으로 결정되었다. 양이온성 및 음이온성 박막을 각각 24시간 동안 80℃에서 완전히 건조시킨 후, 1 M NaOH 용액에서 24시간 동안 교반시켜 박막을 OH- 형태로 변환시켰다. 양이온성 및 음이온성 박막을 24시간 동안 80℃에서 완전히 건조시킨 후, 0.1 M HCl 용액에서 48시간 동안 교반시킨 후에, 남아 있는 용액을 페놀프탈레인 지시약을 사용하여 0.01 M NaOH 용액으로 적정하였다. 이온 교환 용량은 하기 식으로 계산하였다.The ion exchange capacity of the prepared thin film was determined by a back titration method. The cationic and anionic thin films were completely dried at 80 ° C. for 24 hours, and then stirred for 24 hours in 1 M NaOH solution to convert the thin films to OH form. The cationic and anionic thin films were completely dried at 80 ° C. for 24 hours, then stirred for 48 hours in 0.1 M HCl solution, and the remaining solution was titrated with 0.01 M NaOH solution using phenolphthalein indicator. The ion exchange capacity was calculated by the following formula.

Figure 112018008004678-pat00011
Figure 112018008004678-pat00011

(MHCl: HCl의 몰수, MNaOH: 종말점까지 적정하기 위해 투입된 NaOH의 몰수, Mdry: 완전히 건조되어있는 박막의 질량 (g))(M HCl : number of moles of HCl, M NaOH : number of moles of NaOH added to titrate to the end point, M dry : mass of completely dried thin film (g))

- 이온 전도도 (Ion conductivity)Ion conductivity

제조된 양이온성 박막의 BF4 - 이온 전도도와 음이온성 박막의 Et4N+는 4-전극법 AC 임피던스 스펙트로스코피 방법으로 측정하였다. 측정 전에, 양이온성 박막과 음이온성 박막은 각각 테트라에틸암모늄 테트라플루오르보레이트 (Tetraethylammonium Tetrafluoroborate)가 녹아있는 1 M 아세토나이트릴 용액 (1 M Et4NBF4 - in acetonitrile)에서 5일 동안 교반시켜 박막을 BF4 - 형태로 변환시켰다. 5일 후에, 양이온성 박막 및 음이온성 박막을 꺼내 깨끗한 아세토나이트릴 용액으로 씻어준 후, 음이온 교환막을 Bekktech cell에 장착하고 아세토나이트릴 용액에 cell을 담근 후, 1 Hz에서 2 MHz 사이의 주파수 하에 0.01 μA의 진폭으로 이온 전도도를 측정하여 박막의 저항을 얻었다. BF4 - 및 Et4N+ 이온 전도도는 하기 식으로 계산되었으며, 그 결과 2.77 mS/cm의 높은 이온전도도를 가짐을 확인하였다.BF 4 ion conductivity and Et 4 N + of the cationic thin film were measured by the four-electrode AC impedance spectroscopy method. Prior to the measurement, the cationic thin film and the anionic thin film were stirred for 5 days in a 1 M acetonitrile solution (1 M Et 4 NBF 4 - in acetonitrile) in which tetraethylammonium Tetrafluoroborate was dissolved, respectively. BF 4 - were converted into a form. After 5 days, the cationic thin film and the anionic thin film were taken out and washed with a clean acetonitrile solution. Then, the anion exchange membrane was mounted in a Bekktech cell, the cell was soaked in acetonitrile solution, and then the frequency was between 1 Hz and 2 MHz. Ion conductivity was measured at an amplitude of 0.01 μA to obtain the resistance of the thin film. The BF 4 and Et 4 N + ion conductivity were calculated by the following equation, and as a result, it was confirmed that it has a high ion conductivity of 2.77 mS / cm.

Figure 112018008004678-pat00012
Figure 112018008004678-pat00012

(L: 전극 간의 거리 (cm), R: 임피던스를 통해 측정된 박막의 저항 (ohm), T: 박막의 두께 (cm), W: 박막의 전극에 평행한 길이 (cm))(L: distance between electrodes (cm), R: resistance of thin film measured through impedance (ohm), T: thickness of thin film (cm), W: length parallel to electrode of thin film (cm))

- 전해질 흡착률 및 팽윤률 (Electrolyte uptake (EU) and swelling ratio)Electrolyte uptake ( EU ) and swelling ratio

양이온성 및 음이온성 박막의 전해질 흡착률 (Electrolyte uptake; EU) 및 팽윤률 (Swelling ratio)은 증류수에서 측정하였다. 먼저 양이온성 및 음이온성 박막을 80℃에서 24시간 동안 건조시킨 후, 증류수에 48시간 담가 둔 다음, 전해질 흡착률과 팽윤률을 측정하였으며, 하기 식으로 계산하였다.Electrolyte uptake (EU) and swelling ratio of cationic and anionic thin films were measured in distilled water. First, the cationic and anionic thin films were dried at 80 ° C. for 24 hours, immersed in distilled water for 48 hours, and then the electrolyte adsorption rate and swelling rate were measured and calculated by the following equation.

Figure 112018008004678-pat00013
Figure 112018008004678-pat00013

(mwet: 증류수에 젖은 박막의 무게, mdry: 완전히 건조된 박막의 무게)(m wet : weight of thin film soaked in distilled water, m dry : weight of thin film completely dried)

Figure 112018008004678-pat00014
Figure 112018008004678-pat00014

(Swet: 증류수에 젖은 막막의 길이, Sdry: 완전히 건조된 박막의 길이)(S wet : length of membrane wetted with distilled water, S dry : length of thin film completely dried)

하기 표 1에 제조된 양이온성 및 음이온성 박막의 이온 교환 용량, 저항, 이온 전도도, 물 흡착률, 팽윤률을 나타내었다. 양이온성 및 음이온성 박막은 고분자의 친수성 부분이 길어질수록 이온 교환 용량이 높게 나타났으며, 그에 따른 이온 저항을 측정한 결과, 이온 전도도는 이온 교환 용량에 비례하였다. 양이온성 박막은 M3, 음이온성 박막은 M7에서 이온 전도도가 가장 높은 것으로 나타났다. 물 흡착률은 블록 코폴리머의 고유 특성에 따라 크게 차이가 나지 않았으며, 같은 맥락으로 팽윤률 또한 큰 차이가 없는 것을 확인하였다.To Table 1 shows the ion exchange capacity, resistance, ion conductivity, water adsorption rate, swelling rate of the cationic and anionic thin film prepared. The longer the hydrophilic portion of the polymer, the higher the ion exchange capacity of the cationic and anionic thin films. The ion resistance was measured, and the ion conductivity was proportional to the ion exchange capacity. Cationic thin films showed the highest ionic conductivity at M3 and anionic thin films at M7. The water adsorption rate did not differ significantly according to the intrinsic properties of the block copolymer, and it was confirmed that the swelling rate also did not differ significantly in the same context.

MembraneMembrane IEC (meq/g)IEC (meq / g) Resistance (Ω/cm2)Resistance (Ω / cm 2 ) IC (mS/cm) IC (mS / cm) Water uptake (%)Water uptake (%) Swelling ratio (%)Swelling ratio (%) M1M1 0.950.95 1078010780 0.0110.011 1313 6.06.0 M2M2 1.471.47 75847584 0.0160.016 6.86.8 5.65.6 M3M3 1.891.89 63476347 0.0350.035 77 14.414.4 M4M4 0.2530.253 1201712017 0.0170.017 7.77.7 8.08.0 M5M5 1.2301.230 77927792 0.0160.016 1616 4.04.0 M6M6 2.1302.130 54855485 0.0220.022 7.17.1 3.33.3 M7M7 2.6702.670 49434943 0.0400.040 6.26.2 6.76.7 M8M8 2.3302.330 65056505 0.0360.036 7.17.1 6.76.7

5) 충방전 테스트5) Charge / discharge test

제조된 양이온성 및 음이온성 박막을 레독스 흐름전지에 적용하여 갈바노스태틱 충전/방전 테스트를 실시하였으며, 이를 도 6에 나타내었다.The cationic and anionic thin films thus prepared were applied to a redox flow battery to perform a galvanostatic charge / discharge test, which is shown in FIG. 6.

양이온성 박막의 경우 바나듐(III) 아세틸아세토네이트 (0.01 M)와 테트라에틸암모늄 테트라플루오르보레이트 (0.5 M)를 아세토나이트릴 유기 전해질로 사용하였으며, 전위는 1.7 V~2.5 V로 하여, 0.1 mA/cm2 충방 정전류하에 충방전 테스트를 진행하였다.In the case of cationic thin films, vanadium (III) acetylacetonate (0.01 M) and tetraethylammonium tetrafluoroborate (0.5 M) were used as the acetonitrile organic electrolyte, and the potential was 1.7 V to 2.5 V, and 0.1 mA / A charge and discharge test was conducted under a cm 2 charge and discharge constant current.

음이온성 박막의 경우 바나딜(IV) 설페이트 (1.5 M)와 황산 (3.0 M)을 수용성 전해질로 사용하였으며, 전위는 0.3 V~1.4 V로 하여, 20 mA/cm2 충방 정전류하에 충방전 테스트를 진행하였다.For anionic thin vanadyl (IV) sulfate (1.5 M) and sulfuric acid (3.0 M) a was used as a water-soluble electrolyte, the potential is 0.3 V ~ 1.4 and a V, the charge-discharge test under 20 mA / cm 2 chungbang constant Proceeded.

도 6의 충방전 커브는 양이온성 및 음이온성 박막 모두 레독스 흐름 전지에서 충전과 방전이 원할하게 진행되었음을 나타낸다. 시간이 지남에 따라 충방전 싸이클이 증가하면서 충전 시간과 방전 시간의 감소가 일어나지 않았음을 확인하였으며, 이를 통해 박막을 이루고 있는 이온성 블록 코폴리머의 화학적 안정성이 굉장히 뛰어남을 확인할 수 있다.The charge and discharge curves of FIG. 6 indicate that charge and discharge proceed smoothly in the redox flow battery in both the cationic and the anionic thin film. It was confirmed that the charging and discharging cycles did not occur as the charge and discharge cycles increased over time, and the chemical stability of the ionic block copolymer forming the thin film was excellent.

이상의 설명은 본 발명을 예시적으로 설명한 것에 불과한 것으로, 본 발명에 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 변형이 가능할 것이다. 따라서, 본 명세서에 개시된 실시예들은 본 발명을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 사상과 범위가 한정되는 것은 아니다. 본 발명의 보호범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술은 본 발명의 권리범위에 포함하는 것으로 해석되어야 한다.The above description is merely illustrative of the present invention, and those skilled in the art will appreciate that various modifications can be made without departing from the essential features of the present invention. Accordingly, the embodiments disclosed herein are not intended to limit the present invention but to describe the present invention, and the spirit and scope of the present invention are not limited by these embodiments. The scope of protection of the present invention should be interpreted by the following claims, and all the technologies within the equivalent scope should be construed as being included in the scope of the present invention.

Claims (9)

A) 하기 화학식 2로 표시되는 고분자를 합성하는 단계;
Figure 112019016243943-pat00015

B) 친수성 단량체를 투입하는 단계;
C) 하기 화학식 3-1 또는 화학식 3-2로 표시되는 고분자를 수득하는 단계;
Figure 112019016243943-pat00016

를 포함하는 이온성 블록 코폴리머의 제조방법
{상기 화학식 2, 3-1 및 3-2에, X는 할로겐이며, A는 알칼리금속이고, n 및 m은 서로 독립적으로 100 내지 100,000의 정수이다.}
A) synthesizing a polymer represented by Formula 2 below;
Figure 112019016243943-pat00015

B) introducing a hydrophilic monomer;
C) obtaining a polymer represented by the following Chemical Formula 3-1 or Chemical Formula 3-2;
Figure 112019016243943-pat00016

Method for producing an ionic block copolymer comprising a
{In Formulas 2, 3-1 and 3-2, X is halogen, A is an alkali metal, and n and m are each independently an integer of 100 to 100,000.}
제 1항에 있어서, 상기 B) 단계에서 상기 친수성 단량체는 하기 화학식 1인 것을 특징으로 하는 제조방법
Figure 112018008004678-pat00017

The method of claim 1, wherein the hydrophilic monomer in step B) is characterized in that the formula (1)
Figure 112018008004678-pat00017

제 1항에 있어서, 상기 B) 단계에서 상기 친수성 단량체는 소듐 4-스티렌 설포네이트 (sdium 4-styrene sulfonate)인 것을 특징으로 하는 제조방법
The method of claim 1, wherein the hydrophilic monomer in step B) is characterized in that sodium 4-styrene sulfonate (sodium 4-styrene sulfonate)
하기 화학식 3-1로 표시되는 이온성 블록 코폴리머
Figure 112019016243943-pat00025

{상기 화학식 3-1에서, X는 할로겐이며, n 및 m은 서로 독립적으로 100 내지 100,000의 정수이다.}
Ionic block copolymer represented by the following formula (3-1)
Figure 112019016243943-pat00025

{In Formula 3-1, X is halogen, n and m are each independently an integer of 100 to 100,000.}
하기 화학식 3-1 또는 3-2로 표시되는 이온성 블록 코폴리머를 포함하는 이온 교환막
Figure 112019016243943-pat00026

{상기 화학식 3-1 및 3-2에서, X는 할로겐이며, A는 알칼리금속이고, n 및 m은 서로 독립적으로 100 내지 100,000의 정수이다.}
An ion exchange membrane comprising an ionic block copolymer represented by the following formula 3-1 or 3-2
Figure 112019016243943-pat00026

{In Formulas 3-1 and 3-2, X is halogen, A is an alkali metal, and n and m are each independently an integer of 100 to 100,000.}
제 5항에 있어서, 비수계 전해액에 사용하는 것을 특징으로 하는 이온 교환막
The ion exchange membrane of Claim 5 used for a non-aqueous electrolyte solution.
제 5항에 있어서, 교환막 두께는 10 내지 50 μm로 하는 것을 특징으로 하는 이온 교환막
6. The ion exchange membrane as claimed in claim 5, wherein the exchange membrane has a thickness of 10 to 50 m.
제 5항 내지 7항 중 어느 한 항에 따른 이온 교환막을 포함하는 이차 전지
A secondary battery comprising the ion exchange membrane according to any one of claims 5 to 7.
제 8항에 있어서, 상기 이온 교환막은 비수계 전해액에 사용하는 것을 특징으로 하는 이차 전지
The secondary battery of claim 8, wherein the ion exchange membrane is used for a non-aqueous electrolyte.
KR1020180008337A 2018-01-23 2018-01-23 Ionic block copolymer and preparation method thereof KR102019887B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180008337A KR102019887B1 (en) 2018-01-23 2018-01-23 Ionic block copolymer and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180008337A KR102019887B1 (en) 2018-01-23 2018-01-23 Ionic block copolymer and preparation method thereof

Publications (2)

Publication Number Publication Date
KR20190089596A KR20190089596A (en) 2019-07-31
KR102019887B1 true KR102019887B1 (en) 2019-09-09

Family

ID=67474161

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180008337A KR102019887B1 (en) 2018-01-23 2018-01-23 Ionic block copolymer and preparation method thereof

Country Status (1)

Country Link
KR (1) KR102019887B1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130003676A (en) * 2011-06-30 2013-01-09 광주과학기술원 Synthesis of amphiphilic block copolymers and method of fabricating titania nano-structures using micelles of the same
WO2017171290A1 (en) * 2016-03-29 2017-10-05 주식회사 엘지화학 Block polymer and polymer electrolyte membrane comprising same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
J. of Electroanalytical Chem., 567 (2004) 243-248*
J. PHYS. CHEM. B 2012, 116, 11552-11559
Polym. Chem., 2013, 4, 2919*
POLYMER CHEMISTRY DOI 10.1002/POLA

Also Published As

Publication number Publication date
KR20190089596A (en) 2019-07-31

Similar Documents

Publication Publication Date Title
Si et al. Alkaline stable imidazolium-based ionomers containing poly (arylene ether sulfone) side chains for alkaline anion exchange membranes
KR102048070B1 (en) Chemically modified anion-exchange membrane and method of preparing the same
KR102061633B1 (en) Composite membrane based on polyphenylene oxide, preparation method thereof and anion-exchange membrane for fuel cell comprising the same
Niepceron et al. Composite fuel cell membranes based on an inert polymer matrix and proton-conducting hybrid silica particles
JP2007112722A (en) Polymerizable imidazole salt
US11970590B2 (en) Polyphenylenes, methods, and uses thereof
CN114524919A (en) Polyaryl anion exchange membrane and preparation method thereof
KR20190078049A (en) Anion Exchange Membrane with Large Size Ionic Channel for Non-aqueous Vanadium Redox Flow Battery and preparation method thereof
CN113067024A (en) Alkaline electrolyte membrane and preparation and application thereof
Yuan et al. Mussel-inspired functionalized LDH as covalent crosslinkers for constructing micro-crosslinking fluorenyl-containing polysulfone-based composite anion exchange membranes with enhanced properties
US20230391968A1 (en) Chemically modified anion exchange membrane
JP2007270028A (en) Preparation process for substituted polyacetylene membrane having sulfonic acid group, membrane obtained thereby and its use
Sinirlioglu et al. Investigation of proton conductivity of PVDF based anhydrous proton exchange membranes (PEMs) obtained via a facile “Grafting Through” strategy
KR102019887B1 (en) Ionic block copolymer and preparation method thereof
US9590269B2 (en) Polyelectrolyte and energy storage device
US8829131B2 (en) Fluorinated copolymers, membranes prepared using the latter and fuel cell device including said membranes
KR101802352B1 (en) Carbon electrode material comprising radiation-crosslinkable poly(vinyl alcohol) and preparation method of carbon electrode
CN114759238A (en) Star-shaped cross-linked alkaline polyelectrolyte and preparation method thereof
JP2023519957A (en) Fluoropolymers containing pendant groups with ionic bis(sulfonyl)imide moieties and perfluoroether end groups
CN107978778B (en) High-temperature anhydrous proton exchange membrane and preparation method thereof
Lee et al. Preparation and characterization of various poly (ether ether ketone) containing imidazolium moiety for anion exchange membrane fuel cell application
US20240170704A1 (en) Polymer electrolyte material, polymer electrolyte molded body using same, electrolytic membrane having catalyst layer attached thereto, membrane-electrode assembly, solid polymer fuel cell, and water-electrolysis-type hydrogen generator
US20240178424A1 (en) Polymer electrolyte membrane, block copolymer, polymer electrolyte material, polymer electrolyte molded body, electrolyte membrane with catalyst layer, membrane electrode composite, solid polymer fuel cell, and water electrolytic hydrogen generator
US9184459B2 (en) Sulfonated polymers useful for forming fuel cell membranes
KR102053622B1 (en) Polymer electrolyte membrane for alkaline fuel cell, fuel cell having the polymer electrolyte membrane, and method of manufacturing the polymer electrolyte membrane for alkaline fuel cell

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant