KR102019139B1 - A method analyzing trace material of fragrance composition - Google Patents
A method analyzing trace material of fragrance composition Download PDFInfo
- Publication number
- KR102019139B1 KR102019139B1 KR1020170184241A KR20170184241A KR102019139B1 KR 102019139 B1 KR102019139 B1 KR 102019139B1 KR 1020170184241 A KR1020170184241 A KR 1020170184241A KR 20170184241 A KR20170184241 A KR 20170184241A KR 102019139 B1 KR102019139 B1 KR 102019139B1
- Authority
- KR
- South Korea
- Prior art keywords
- vuv
- minutes
- fragrance composition
- methyl
- analysis
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/62—Detectors specially adapted therefor
- G01N30/74—Optical detectors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N2030/022—Column chromatography characterised by the kind of separation mechanism
- G01N2030/025—Gas chromatography
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/88—Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
- G01N2030/8809—Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
- G01N2030/884—Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample organic compounds
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Fats And Perfumes (AREA)
Abstract
본 발명은 GC-VUV(Gas Chromatography Vacuum Ultraviolet) 분석을 통한 향료 조성물의 미량 물질 분석 방법에 관한 것으로서, 보다 상세하게는 GC-VUV 분석을 통하여 향료 조성물을 분석함으로써 GC-MS 로 찾을 수 없는 미량 물질 및 유해 물질을 검출하는 방법에 관한 것이다.The present invention relates to a trace material analysis method of the fragrance composition through gas chromatographic vacuum ultraviolet (GC-VUV) analysis, and more particularly, a trace material not found by GC-MS by analyzing the fragrance composition through GC-VUV analysis And a method for detecting a hazardous substance.
Description
본 발명은 GC-VUV(Gas Chromatography-Vacuum Ultraviolet) 분석을 통한 향료 조성물의 미량 물질 분석 방법에 관한 것으로서, 보다 상세하게는 GC-VUV 분석을 통하여 향료 조성물을 분석함으로써 GC-MS 로 찾을 수 없는 미량 물질 및 유해 물질을 검출하는 방법에 관한 것이다.The present invention relates to a trace material analysis method of the perfume composition through gas chromatography-vacuum ultraviolet (GC-VUV) analysis. A method for detecting substances and harmful substances.
최근 우리가 사용하는 다수의 제품들 중에 유해한 물질이 발견되어 사회 문제가 되고 있는데, 특히 소비자보호원의 조사에 의하면 국내에 수입되고 있는 향수에서 유럽연합(EU)이 안전성 문제로 사용을 금지한 HICC(하이드록시이소헥실-3-사이클로헥센카복스 알데하이드) 성분 및 접촉성 피부염 등 부작용을 일으킬 수 있는 리모넨 성분이 검출되었다. In recent years, harmful substances have been found among many of the products we use, which has become a social problem. In particular, according to the survey by the Consumer Protection Agency, HICC (Prohibition on Use of European Union (EU) as a safety issue in perfumes imported into Korea, Limonene components that could cause side effects such as hydroxyisohexyl-3-cyclohexenecarbox aldehyde) components and contact dermatitis were detected.
이러한 유해 미량 물질인 리모넨은 향료의 구성 물질로서 방향성 화학물질이고, HICC는 SCCNFP(화장품 및 식품 이외 제품 과학위원회)의 1999년 보고서 발표 이후 향료 알레르기를 가장 빈번히 일으키는 물질로 알려져 있다. Limonene, a harmful trace substance, is a fragrance chemical as a constituent of perfume, and HICC has been known to cause fragrance allergy most frequently since the publication of the 1999 report by the SCCNFP.
따라서 소비자들은 피부에 뿌리는 향수와 사람이 섭취하는 가공 식품에 사용되는 친환경 향료에 미량의 유해물질이 있는지에 관심이 있고, 기업들은 이들 미량의 유해물질을 분석하는 기술 확보에 역량을 집중하고 있다. 이러한 미량의 유해물질의 검출은 다양한 방법을 통해 이루어지는데, 대표적인 방법으로는 GS-MS 를 들 수 있다. Therefore, consumers are concerned about the presence of traces of harmful substances in the fragrance sprayed on the skin and environmentally friendly fragrances used in processed foods for human consumption. Companies are focusing on securing technologies to analyze these traces of harmful substances. . Detection of such traces of harmful substances is carried out through various methods, a typical method is GS-MS.
이와 관련하여 한국공개특허 제2006-0132600호는 액체크로마토그래프와 가스크로마토그래피로 환경 호르몬, 향료 등을 포함하는 유기화학 물질을 분석하는 방법을 개시하고 있다.In this regard, Korean Patent Laid-Open Publication No. 2006-0132600 discloses a method for analyzing organic chemical substances including environmental hormones and perfumes by liquid chromatography and gas chromatography.
또한 한국공개특허 제2007-0040374호는 향료 및 방향제 분야에서 유용한 화합물의 동정 또는 평가방법을 개시하고 있다. In addition, Korean Patent Publication No. 2007-0040374 discloses a method for identifying or evaluating compounds useful in the field of perfumes and fragrances.
그러나 상기 선행문헌에 개시된 GS-MS 분석기술은 미량물질의 피크가 겹치는 경우 감도가 좋지 않고, 이성질체와 같은 경우는 검출하기 어려워 향료의 미량 유해물질 검출을 위해서는 효과적이지 않다. However, the GS-MS analysis technique disclosed in the above-mentioned literature does not have good sensitivity when the peaks of trace materials overlap, and it is difficult to detect such isomers, so it is not effective for detecting trace harmful substances of perfume.
본 발명은 GC-VUV 분석을 통해 향료 조성물에 포함된 미량의 유해물질을 분석하는 방법을 제공하는데 목적이 있다. An object of the present invention is to provide a method for analyzing the trace amount of harmful substances contained in the fragrance composition through GC-VUV analysis.
또한 본 발명은 기존의 분석 방법인 GC-MS 에 비해 GC-VUV 분석을 통해 빠른 속도로 미량 물질을 효과적으로 분석하는 방법을 제공하는 것을 목적으로 한다. In addition, an object of the present invention is to provide a method for effectively analyzing a trace substance at a high speed through GC-VUV analysis compared to the conventional analysis method GC-MS.
상기와 같은 목적을 달성하기 위하여 본 발명은 향료 조성물을 샘플링하는 단계; 상기 샘플링한 향료 조성물을 GC-VUV에 공급하는 단계; 상기 공급된 향료 조성물에 열을 가하는 단계; 상기 열을 가한 향료 조성물을 컬럼에 주입하는 단계; 상기 컬럼을 통과한 향료 조성물에 자외선을 조사하여 여기 시키는 단계; 및 상기 여기된 향료 조성물을 분석하는 단계를 포함하는 향료 조성물의 미량 물질 분석방법을 제공한다.In order to achieve the above object, the present invention comprises the steps of sampling the fragrance composition; Supplying the sampled fragrance composition to GC-VUV; Applying heat to the supplied perfume composition; Injecting the heated flavor composition into a column; Irradiating ultraviolet rays to the fragrance composition passing through the column to excite; And it provides a trace material analysis method of the fragrance composition comprising the step of analyzing the excited fragrance composition.
본 발명의 일 실시예에 있어서, 상기 열을 가하는 단계는 50℃에서 320℃까지 10~25℃/min의 승온 속도로 온도를 증가시키는 것을 특징으로 한다.In one embodiment of the present invention, the step of applying the heat is characterized in that to increase the temperature at a temperature increase rate of 10 ~ 25 ℃ / min from 50 ℃ to 320 ℃.
본 발명의 일 실시예에 있어서, 상기 미량 물질은 유해 물질인 것을 특징으로 한다.In one embodiment of the present invention, the trace substance is characterized in that the harmful substance.
본 발명의 일 실시예에 있어서, 상기 미량 물질은 2-에틸헥실아세테이트(2-ethylhexylacetate), 1-메틸-4-n-프로필벤젠(1-methyl-4-n-propylbenzene), 1-메틸-4-에틸벤젠(1-Methyl-4-ethylbenzene) 및 부티르산 메틸 에스테르(butyric acid methyl ester) 중 어느 하나 이상인 것을 특징으로 한다.In one embodiment of the present invention, the trace material is 2-ethylhexylacetate, 2-methyl-4-n-propylbenzene, 1-methyl-4-n-propylbenzene, 1-methyl- It is characterized in that at least one of 4-ethylbenzene (1-Methyl-4-ethylbenzene) and butyric acid methyl ester (butyric acid methyl ester).
본 발명은 GC-VUV 분석을 통해 향료 조성물에 포함된 미량의 유해물질을 분석하는 방법을 제공할 수 있다. The present invention can provide a method for analyzing the trace amount of harmful substances included in the perfume composition through GC-VUV analysis.
또한 본 발명은 GC-VUV 분석을 통해 기존의 분석 방법인 GC-MS 에서 검출되지 않는 미량물질을 빠른 속도로 효과적으로 분석하는 방법을 제공할 수 있다.In addition, the present invention can provide a method for rapidly and effectively analyzing a trace material that is not detected in the existing analysis method GC-MS through GC-VUV analysis.
아울러 본 발명은 샘플링 조건 및 열처리 조건을 최적화함으로써, 기존 GS-MS보다 빠른 속도로 2-에틸헥실아세테이트(2-ethylhexylacetate), 1-메틸-4-n-프로필벤젠(1-methyl-4-n-propylbenzene), 1-메틸-4-에틸벤젠(1-Methyl-4-ethylbenzene), 부티르산 메틸 에스테르(butyric acid methyl ester) 등의 미량물질을 효과적으로 검출할 수 있어 유해물질이 포함되지 않는 친환경 향료 조성물을 제공할 수 있다. In addition, the present invention by optimizing the sampling conditions and heat treatment conditions, 2-ethylhexylacetate (2-ethylhexylacetate), 1-methyl-4-n-propylbenzene (1-methyl-4-n) at a faster rate than conventional GS-MS Eco-friendly fragrance composition that does not contain harmful substances because it can effectively detect traces such as -propylbenzene), 1-methyl-4-ethylbenzene, and butyric acid methyl ester Can be provided.
도 1은 본 발명의 GC-VUV의 구조를 나타낸다.
도 2는 본 발명의 천연 차나무 향료의 GC-MS 및 GC-VUV 분석 결과를 나타낸다: (a) GC-MS, (b) GC-VUV.
도 3은 본 발명의 천연 로즈마리 향료의 GC-MS 및 GC-VUV 분석 결과를 나타낸다: (a) GC-MS, (b) GC-VUV.
도 4는 본 발명의 합성 딸기 향료의 GC-MS 및 GC-VUV 분석 결과를 나타낸다: (a) GC-MS, (b) GC-VUV.1 shows the structure of the GC-VUV of the present invention.
Figure 2 shows the results of GC-MS and GC-VUV analysis of the natural tea fragrance of the present invention: (a) GC-MS, (b) GC-VUV.
Figure 3 shows the results of GC-MS and GC-VUV analysis of the natural rosemary flavor of the present invention: (a) GC-MS, (b) GC-VUV.
Figure 4 shows the results of GC-MS and GC-VUV analysis of the synthetic strawberry flavor of the present invention: (a) GC-MS, (b) GC-VUV.
이하 실시예를 바탕으로 본 발명을 상세히 설명한다. 본 발명에 사용된 용어, 실시예 등은 본 발명을 보다 구체적으로 설명하고 통상의 기술자의 이해를 돕기 위하여 예시된 것에 불과할 뿐이며, 본 발명의 권리범위 등이 이에 한정되어 해석되어서는 안 된다.Hereinafter, the present invention will be described in detail with reference to Examples. The terms, examples, etc. used in the present invention are merely illustrated to explain the present invention in more detail and to help those skilled in the art, and the scope of the present invention is not limited thereto.
본 발명에 사용되는 기술 용어 및 과학 용어는 다른 정의가 없다면 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 나타낸다. Technical terms and scientific terms used in the present invention represent the meanings that are commonly understood by those of ordinary skill in the art unless otherwise defined.
본 발명은 GC-VUV(Gas Chromatography Vacuum Ultraviolet)를 통한 향료 조성물의 미량 물질 분석방법에 관한 것이다. The present invention relates to a trace material analysis method of the fragrance composition through GC-VUV (Gas Chromatography Vacuum Ultraviolet).
상기와 같은 목적을 달성하기 위하여 본 발명은 향료 조성물을 샘플링하는 단계; 상기 샘플링한 향료 조성물을 GC-VUV에 공급하는 단계; 상기 공급된 향료 조성물에 열을 가하는 단계; 상기 열을 가한 향료 조성물을 컬럼에 주입하는 단계; 상기 컬럼을 통과한 향료 조성물에 자외선을 조사하여 여기 시키는 단계; 및 상기 여기된 향료 조성물을 분석하는 단계를 포함한다. In order to achieve the above object, the present invention comprises the steps of sampling the fragrance composition; Supplying the sampled fragrance composition to GC-VUV; Applying heat to the supplied perfume composition; Injecting the heated flavor composition into a column; Irradiating ultraviolet rays to the fragrance composition passing through the column to excite; And analyzing the excited fragrance composition.
GC-VUV는 도 1과 같은 구조를 통해 향료 조성물을 분석한다.GC-VUV analyzes the fragrance composition through the structure as shown in FIG.
시료를 샘플링하여 GC-VUV에 주입하고 열을 가하여 시료를 기화시킨 다음, 이를 GC 컬럼에 주입한다. 컬럼을 통과한 시료는 VUV 검출기의 transfer line을 통해서 Flow cell을 지나가게 된다. Samples are sampled and injected into the GC-VUV, heated to vaporize the sample, and then injected into a GC column. The sample passed through the column passes through the flow cell through the transfer line of the VUV detector.
이때 Flow cell을 통과하는 시료는 램프에서 나오는 VUV 파장을 흡수하여 여기 되고, 이러한 과정을 통해 검출기에서 흡수 파장을 검출하게 된다. At this time, the sample passing through the flow cell is excited by absorbing the VUV wavelength emitted from the lamp. Through this process, the absorption wavelength is detected by the detector.
검출기에서 싱크로트론과 동등한 흡수 스펙트럼을 얻게 되며, 소프트웨어를 통해 직관적으로 확인할 수 있다. 이후 소프트웨어 상의 library를 통해 정성 분석하며, 각 성분의 흡수단면적(Absorption cross section)을 이용하여 정량 분석할 수 있다. The detector will have an absorption spectrum equivalent to synchrotron and can be intuitively verified through software. After that, it is analyzed qualitatively through library on software and can be quantitatively analyzed using Absorption cross section of each component.
VUV(Vacuum Ultraviolet, 진공 자외선)는 전자기 복사(Electromagnetic radiation)의 일종으로 자외선 영역(10~400nm) 중 240nm 이하의 단파장을 말하며, 가스 상 화합물이 VUV 파장인 115~185nm 영역의 파장을 강하게 흡수하기 때문에 화합물의 분석에 사용될 수 있다. VUV (Vacuum Ultraviolet) is a kind of electromagnetic radiation and refers to the short wavelength of 240nm or less in the ultraviolet region (10 ~ 400nm), and the gas phase compound strongly absorbs the wavelength in the 115 ~ 185nm region, the VUV wavelength. Therefore, it can be used for analysis of the compound.
GC-VUV는 GC-MS에서 구분하기 어려운 이성질체를 구별할 수 있으며, 피크가 겹치더라도 파장을 구별할 수 있다는 장점이 있다. GC-VUV can distinguish isomers that are difficult to distinguish from GC-MS, and have the advantage of distinguishing wavelengths even when peaks overlap.
GC-VUV에서는 전통적인 UV/VIS 흡수 분광학에서 확인할 수 없는 σ→ σ*(매우 높은 에너지를 요구하며, 100~180nm의 진공 UV 영역으로 원자외선 영역) 영역의 반응 및 π→π*(UV/VIS 영역에서 항상 발견 되지 않으며, 125~240nm의 영역) 영역의 반응을 확인할 수 있어 이성질체와 미량물질을 구분할 수 있다. In GC-VUV, reactions in the σ → σ * (very high energy, far ultraviolet range with 100 ~ 180nm vacuum UV region) and π → π * (UV / VIS) are not found in traditional UV / VIS absorption spectroscopy. It is not always found in the region, and the reaction of the region (125-240 nm) can be confirmed, and it is possible to distinguish between isomers and trace substances.
본 출원인은 향료 조성물에 포함된 다양한 미량물질을 분석하기 위하여 샘플링 조건 및 열처리 조건을 다양하게 변경시켜 실험을 수행하였으며, 열처리 조건에 따라 향료 조성물의 분석 피크가 변화함을 확인하였고, 본 실험에서 사용된 향료 조성물의 경우, 특정 열처리 조건에서 기존 GS-MS 분석에서는 검출되지 않는 2-에틸헥실아세테이트(2-ethylhexylacetate), 1-메틸-4-n-프로필벤젠(1-methyl-4-n-propylbenzene), 1-메틸-4-에틸벤젠(1-Methyl-4-ethylbenzene), 부티르산 메틸 에스테르(butyric acid methyl ester) 등의 유해한 미량물질을 빠른 속도(30분 이내, 바람직하게는 15분 이내)로 효과적으로 검출할 수 있음을 확인하였다. Applicants conducted experiments by varying the sampling conditions and heat treatment conditions in order to analyze various trace substances included in the perfume composition, and confirmed that the analysis peak of the perfume composition changes according to the heat treatment conditions, used in this experiment In the case of modified perfume compositions, 2-ethylhexylacetate, 1-methyl-4-n-propylbenzene, which is not detected in conventional GS-MS analysis under certain heat treatment conditions ), Harmful traces such as 1-methyl-4-ethylbenzene and butyric acid methyl ester at high speed (less than 30 minutes, preferably less than 15 minutes) It was confirmed that it can be detected effectively.
상기 열을 가하는 단계는 공급된 향료 조성물에 열을 가하는데, 이때 공급되는 향료 조성물은 50℃에서 320℃까지 10~25℃/min의 승온 속도로 열을 가함으로써 열처리된다. The step of applying the heat is applied to the supplied perfume composition, wherein the supplied perfume composition is heat-treated by applying heat at a temperature increase rate of 10-25 ℃ / min from 50 ℃ to 320 ℃.
특히, 상기 향료 조성물에 열을 가하는 단계는 50℃에서 1~10분 유지한 후, 50℃에서 250℃까지 10~25℃/min의 승온 속도로 열을 가한 다음, 250℃에서 1~10분 유지한 후, 250℃에서 320℃까지 10~25℃/min의 승온 속도로 열을 가한 다음, 320℃에서 1~10분 유지하는 것이 바람직하다. In particular, the step of applying heat to the fragrance composition is maintained for 1 to 10 minutes at 50 ℃, heat is applied at a temperature rising rate of 10 to 25 ℃ / min from 50 ℃ to 250 ℃, then 1 to 10 minutes at 250 ℃ After holding, heat is applied at a temperature increase rate of 10 to 25 ° C./min from 250 ° C. to 320 ° C., and then maintained at 320 ° C. for 1 to 10 minutes.
또한 상기 향료 조성물에 열을 가하는 단계는 50℃에서 1~10분 유지한 후, 50℃에서 150℃까지 10~25℃/min의 승온 속도로 열을 가한 다음, 150℃에서 1~10분 유지한 후, 150℃에서 250℃까지 10~25℃/min의 승온 속도로 열을 가한 다음, 250℃에서 1~10분 유지한 후, 250℃에서 320℃까지 10~25℃/min의 승온 속도로 열을 가한 다음, 320℃에서 1~10분 유지하는 것이 바람직하다. In addition, the step of applying heat to the fragrance composition is maintained for 1 to 10 minutes at 50 ℃, heat is applied at a temperature rising rate of 10 to 25 ℃ / min from 50 ℃ to 150 ℃, then maintained at 150
상기와 같은 열처리 조건을 수행함으로써 자외선 조사에 의해 여기 되는 반응을 효과적으로 검출할 수 있어, 향료 조성물에 포함된 미량의 유해물질을 정확하게 분석할 수 있다. By performing the heat treatment conditions as described above it is possible to effectively detect the reaction excited by the ultraviolet irradiation, it is possible to accurately analyze the trace amount of harmful substances contained in the perfume composition.
천연 차나무 향료를 분석한 경우, GC-MS로는 유해물질로 벤젠을 검출하였으나, GC-VUV로는 훨씬 미량의 유해물질인 1-methyl-4-n-propylbenzene을 검출하였으며, 이외에 methyl cis-9,10-methylenehexadecanoate 등을 검출하여 미량물질을 보다 정확하게 검출할 수 있다. In the analysis of natural tea fragrance, benzene was detected as a harmful substance by GC-MS, but much less harmful 1-methyl-4-n-propylbenzene was detected by GC-VUV. In addition, methyl cis-9,10 was detected. By detecting -methylenehexadecanoate, trace substances can be detected more accurately.
천연 로즈마리 향료를 분석한 경우, GC-MS로는 검출되지 않은 유해물질인 1-methyl-4-ethylbenzene을 검출하였으며, 이외에 methyl cis-9,10-methylenehexadecanoate 등을 검출하여 미량물질을 보다 정확하게 검출할 수 있다. In the analysis of natural rosemary fragrances, GC-MS detected 1-methyl-4-ethylbenzene, a harmful substance that was not detected. In addition, methyl cis-9,10-methylenehexadecanoate, etc., can detect trace substances more accurately. have.
합성 딸기향료를 분석한 경우, GC-MS로는 검출되지 않은 유해물질 성분인 butyric acid methyl ester 및 2-ethylhexyl acetate를 검출하였으며, 합성 딸기향료에도 인체에 유해한 미량물질이 있음을 확인할 수 있다. In the analysis of synthetic strawberry flavors, butyric acid methyl ester and 2-ethylhexyl acetate, which were not detected by GC-MS, were detected.
이러한 미량의 유해성분을 검출할 수 있는 GC-VUV의 장점은 검출 속도인데, 본 발명에서는 향료 조성물의 열처리 시 승온 속도를 조절하여 분석 시간을 조절할 수 있다. The advantage of GC-VUV that can detect such a trace amount of harmful components is the detection rate, the present invention can control the analysis time by adjusting the temperature increase rate during the heat treatment of the perfume composition.
본 발명의 향료 조성물을 50℃에서 320℃까지 10℃/min, 15℃/min, 20℃/min의 속도로 승온하는 경우 미량의 유해물질이 모두 검출되었으며, 승온 속도가 증가하는 경우, 샘플링 타임이 줄어들게 되므로 현장에서 빠르게 미량 유해 물질을 검출하여 친환경 향료 개발에 사용할 수 있다. When raising the fragrance composition of the present invention at a rate of 10 ℃ / min, 15 ℃ / min, 20 ℃ / min from 50 ℃ to 320 ℃ all traces of harmful substances were detected, when the temperature increase rate, sampling time Because of this reduction, it is possible to quickly detect trace harmful substances in the field and use them in the development of eco-friendly fragrances.
이하 실시예를 통해 본 발명을 상세히 설명한다. 하기 실시예는 본 발명의 실시를 위하여 예시된 것일 뿐, 본 발명의 내용이 하기 실시예에 의하여 한정되는 것은 아니다. The present invention will be described in detail through the following examples. The following examples are merely illustrative for the practice of the present invention, but the content of the present invention is not limited by the following examples.
(GC-MS) (Instrument: Agilent 7890B-GC/5977a-MS) (GC-MS) (Instrument: Agilent 7890B-GC / 5977a-MS)
Injection: 1㎕ Injection: 1 μl
Inlet heater: 280℃Inlet heater: 280 ℃
Split ratio: 10 to 1Split ratio: 10 to 1
Column: HP-5ms (30m*250㎛, film: 0.25㎛) agilentColumn: HP-5ms (30m * 250㎛, film: 0.25㎛) agilent
Flow rate: Helium, 1㎖/minFlow rate: Helium, 1ml / min
Oven: 40℃(5min) 유지, 5℃/min로 120℃까지 승온, 20℃/min로 300℃까지 승온Oven: 40 degreeC (5min) hold | maintain, 5 degreeC / min, temperature rise to 120 degreeC, 20 degreeC / min, temperature rise to 300 degreeC
Aux heater: 280℃ Aux heater: 280 ℃
Solvent delay: 2.0minSolvent delay: 2.0min
Scan: 10-600m/zScan: 10-600m / z
(GC-VUV) (Instrument: VUV-ANALYTICS VGA-100) (GC-VUV) (Instrument: VUV-ANALYTICS VGA-100)
Inlet: 320℃, split: 20 to 1Inlet: 320 ℃, split: 20 to 1
Injection volume: l㎕Injection volume: lµl
Column: RXI-1MS 30M 0.25MMID 0.5UMColumn: RXI-1MS 30M 0.25MMID 0.5UM
Oven: 50℃에서 2분 유지, 10℃/min의 속도로 250℃까지 승온, 250℃에서 5분 유지, 10℃/min의 속도로 320℃까지 승온, 320℃에서 5분 유지Oven: Hold at 50 ° C for 2 minutes, heat up to 250 ° C at a rate of 10 ° C / min, hold at 250 ° C for 5 minutes, raise to 320 ° C at 10 ° C / min, and hold at 320 ° C for 5 minutes
Makeup gas: N2 Makeup gas: N 2
Column flow: 2㎖/minColumn flow: 2ml / min
Split ratio: 30 to 1Split ratio: 30 to 1
(실시예 1)(Example 1)
천연 차나무 향료로 Tea tree E.O(New diractions, Australia)를 사용하였다.Tea tree E.O (New diractions, Australia) was used as a natural tea flavor.
천연 차나무 향료 1㎕를 가한 후 GC-MS와 GC-VUV를 통하여 분석한 결과는 도 2와 같다. After adding 1 μl of natural tea fragrance, the results of analysis using GC-MS and GC-VUV are shown in FIG. 2.
GC-VUV에서, 공급된 향료 조성물에 열을 가하고 자외선을 조사하여 여기 시킨 후 상기 여기된 향료 조성물을 분석하였다.In GC-VUV, the supplied perfume composition was heated and excited by irradiation with ultraviolet rays, and then the excited perfume composition was analyzed.
이때 열처리는 향료 조성물을 50℃에서 2분 유지한 후, 50℃에서 250℃까지 10℃/min의 속도로 열을 가한 다음, 250℃에서 5분 유지한 후, 250℃에서 320℃까지 10℃/min의 속도로 열을 가한 다음, 320℃에서 5분 유지하였다. At this time, the heat treatment is maintained for 2 minutes at 50 ℃, the heat is applied at a rate of 10 ℃ / min from 50 ℃ to 250 ℃, then maintained for 5 minutes at 250 ℃, 10 ℃ from 250 ℃ to 320 ℃ Heat was applied at a rate of / min and then held at 320 ° C. for 5 minutes.
도 2에서 알 수 있듯이, GC-VUV를 사용한 경우, 30분 이내에 분석이 완료되고, 유해물질은 15분 이내에 분석이 완료됨을 알 수 있다. As can be seen in Figure 2, when using the GC-VUV, the analysis is completed within 30 minutes, the hazardous material can be seen that the analysis is completed within 15 minutes.
표 1은 GC-MS와 GC-VUV를 사용하여 분석된 미량물질을 나타내고 있다. Table 1 shows the traces analyzed using GC-MS and GC-VUV.
hexadecanoateMethyl cis-9,10-methylene
hexadecanoate
천연 차나무 향료를 분석한 결과, GC-MS로는 유해물질로 벤젠을 검출하였으나, GC-VUV로는 훨씬 미량의 유해물질인 1-methyl-4-n-propylbenzene을 검출하였으며, 이외에 methyl cis-9,10-methylenehexadecanoate 등을 검출하여 미량물질을 보다 정확하게 검출할 수 있다. As a result of analyzing natural tea fragrance, benzene was detected as harmful substance by GC-MS, but much less harmful substance 1-methyl-4-n-propylbenzene was detected by GC-VUV, and methyl cis-9,10 By detecting -methylenehexadecanoate, trace substances can be detected more accurately.
(실시예 2)(Example 2)
천연 로즈마리 향료로 Rosemary E.O(Florida Chemical, USA)를 사용하였다.Rosemary E.O (Florida Chemical, USA) was used as a natural rosemary fragrance.
천연 로즈마리 향료 1㎕를 가한 후 GC-MS와 GC-VUV를 통하여 분석한 결과는 도 3과 같다. After adding 1 μl of natural rosemary flavor, the result of analysis by GC-MS and GC-VUV is shown in FIG. 3.
GC-VUV에서, 공급된 향료 조성물에 열을 가하고 자외선을 조사하여 여기 시킨 후 상기 여기된 향료 조성물을 분석하였다.In GC-VUV, the supplied perfume composition was heated and excited by irradiation with ultraviolet rays, and then the excited perfume composition was analyzed.
이때 열처리는 향료 조성물을 50℃에서 2분 유지한 후, 50℃에서 250℃까지 10℃/min의 속도로 열을 가한 다음, 250℃에서 5분 유지한 후, 250℃에서 320℃까지 10℃/min의 속도로 열을 가한 다음, 320℃에서 5분 유지하였다. At this time, the heat treatment is maintained for 2 minutes at 50 ℃, the heat is applied at a rate of 10 ℃ / min from 50 ℃ to 250 ℃, then maintained for 5 minutes at 250 ℃, 10 ℃ from 250 ℃ to 320 ℃ Heat was applied at a rate of / min and then held at 320 ° C. for 5 minutes.
도 3에서 알 수 있듯이, GC-VUV를 사용한 경우, 30분 이내에 분석이 완료되고, 유해물질은 15분 이내에 분석이 완료됨을 알 수 있다. As can be seen in Figure 3, when using the GC-VUV, the analysis is completed within 30 minutes, the hazardous material can be seen that the analysis is completed within 15 minutes.
표 2는 GC-MS와 GC-VUV를 사용하여 분석된 미량물질을 나타내고 있다. Table 2 shows the traces analyzed using GC-MS and GC-VUV.
hexadecanoateMethyl cis-9,10-methylene
hexadecanoate
천연 로즈마리 향료를 GC-VUV로 분석한 결과, GC-MS로는 검출되지 않은 유해물질인 1-methyl-4-ethylbenzene을 검출하였으며, 이외에 methyl cis-9,10-methylenehexadecanoate 등을 검출하여 미량물질을 보다 정확하게 검출할 수 있다. Natural rosemary fragrance was analyzed by GC-VUV. As a result, GC-MS detected 1-methyl-4-ethylbenzene, a harmful substance that was not detected, and methyl cis-9,10-methylenehexadecanoate. Can be detected accurately.
(실시예 3)(Example 3)
Ethyl butyrate 30%, Iso-amyl acetate 5%, cis-3-hexanol 15%, Linalool 10%, Ethyl Maltol 25%, r-decalacetone 5%, butyric acid 10% 을 혼합하여 합성 딸기향료를 제조하였다.
천연 합성 딸기향료 1㎕를 가한 후 GC-MS와 GC-VUV를 통하여 분석한 결과는 도 4와 같다. 4 μl of natural synthetic strawberry flavor was added and analyzed by GC-MS and GC-VUV.
GC-VUV에서, 공급된 향료 조성물에 열을 가하고 자외선을 조사하여 여기 시킨 후 상기 여기된 향료 조성물을 분석하였다.In GC-VUV, the supplied perfume composition was heated and excited by irradiation with ultraviolet rays, and then the excited perfume composition was analyzed.
이때 열처리는 향료 조성물을 50℃에서 2분 유지한 후, 50℃에서 250℃까지 10℃/min의 속도로 열을 가한 다음, 250℃에서 5분 유지한 후, 250℃에서 320℃까지 10℃/min의 속도로 열을 가한 다음, 320℃에서 5분 유지하였다. At this time, the heat treatment is maintained for 2 minutes at 50 ℃, the heat is applied at a rate of 10 ℃ / min from 50 ℃ to 250 ℃, then maintained for 5 minutes at 250 ℃, 10 ℃ from 250 ℃ to 320 ℃ Heat was applied at a rate of / min and then held at 320 ° C. for 5 minutes.
도 4에서 알 수 있듯이, GC-VUV를 사용한 경우, 15분 이내에 분석이 완료됨을 알 수 있다. As can be seen in Figure 4, when using the GC-VUV, it can be seen that the analysis is completed within 15 minutes.
표 3은 GC-MS와 GC-VUV를 사용하여 분석된 미량물질을 나타내고 있다. Table 3 shows the traces analyzed using GC-MS and GC-VUV.
합성 딸기향료를 GC-VUV로 분석한 결과, GC-MS로는 검출되지 않은 유해물질 성분인 butyric acid methyl ester 및 2-ethylhexyl acetate를 검출하였으며, 합성 딸기향료에도 인체에 유해한 미량물질이 있음을 확인할 수 있다. As a result of analyzing synthetic strawberry fragrance by GC-VUV, butyric acid methyl ester and 2-ethylhexyl acetate, which were not detected by GC-MS, were detected. have.
(실시예 4)(Example 4)
GC-VUV 분석에서, 50℃에서 250℃까지의 승온 속도를 5℃/min, 15℃/min, 20℃/min, 30℃/min로 조절한 것을 제외하고는 실시예 1 내지 3과 동일한 방법으로 GC-VUV를 통하여 향료 조성물을 분석하였다.In GC-VUV analysis, the same method as in Examples 1 to 3 except that the temperature increase rate from 50 ° C to 250 ° C was adjusted to 5 ° C / min, 15 ° C / min, 20 ° C / min, 30 ° C / min. The fragrance composition was analyzed by GC-VUV.
1-Methyl-4-n-propylbenzene, 1-Methyl-4-ethylbenzene, Butyric acid methyl ester 및 2-Ethylhexyl acetate의 검출여부를 분석하여 검출되면 ○, 검출되지 않으면 ×로 표시하였다. 1-Methyl-4-n-propylbenzene, 1-Methyl-4-ethylbenzene, Butyric acid methyl ester and 2-Ethylhexyl acetate were analyzed and detected.
propylbenzene1-Methyl-4-n-
propylbenzene
50℃에서 250℃까지의 승온 속도를 15℃/min, 20℃/min 로 조절한 경우, 4가지 미량물질이 모두 검출되고, 승온 속도를 5℃/min, 30℃/min로 조절한 경우, 일부 미량물질은 검출되지 않았다. When the rate of temperature increase from 50 ° C. to 250 ° C. is adjusted to 15 ° C./min and 20 ° C./min, all four trace substances are detected, and the temperature increase rate is adjusted to 5 ° C./min and 30 ° C./min. Some traces were not detected.
(실시예 5)(Example 5)
GC-VUV 분석에서, 250℃에서 5분 유지하는 단계 없이, 50℃에서 320℃까지 10℃/min의 속도로 열을 가한 것을 제외하고는 실시예 1 내지 3과 동일한 방법으로 GC-VUV를 통하여 향료 조성물을 분석하였다.In the GC-VUV analysis, through the GC-VUV in the same manner as in Examples 1 to 3, except that heat was applied at a rate of 10 ° C / min from 50 ° C to 320 ° C without the step of holding at 250 ° C for 5 minutes. Perfume composition was analyzed.
1-Methyl-4-n-propylbenzene, 1-Methyl-4-ethylbenzene, Butyric acid methyl ester 및 2-Ethylhexyl acetate의 검출여부를 분석하여 검출되면 ○, 검출되지 않으면 ×로 표시하였다. 1-Methyl-4-n-propylbenzene, 1-Methyl-4-ethylbenzene, Butyric acid methyl ester and 2-Ethylhexyl acetate were analyzed and detected.
propylbenzene1-Methyl-4-n-
propylbenzene
250℃에서 5분 유지하는 단계 없이, 50℃에서 320℃까지의 승온 속도를 10℃/min 로 조절한 경우, 일부 미량물질은 검출되지 않았다. Some traces were not detected when the rate of temperature increase from 50 ° C. to 320 ° C. was adjusted to 10 ° C./min without the step of holding at 250 ° C. for 5 minutes.
(실시예 6)(Example 6)
GC-VUV 분석에서, 50℃에서 2분 유지한 후, 50℃에서 150℃까지 10℃/min의 승온 속도로 열을 가한 다음, 150℃에서 5분 유지한 후, 150℃에서 250℃까지 10℃/min의 승온 속도로 열을 가한 다음, 250℃에서 5분 유지한 후, 250℃에서 320℃까지 10℃/min의 승온 속도로 열을 가한 다음, 320℃에서 5분 유지하는 것을 제외하고는 실시예 1 내지 3과 동일한 방법으로 GC-VUV를 통하여 향료 조성물을 분석하였다.In GC-VUV analysis, after holding at 50 ° C. for 2 minutes, heat was applied at a temperature rising rate of 10 ° C./min from 50 ° C. to 150 ° C., and then maintained at 150 ° C. for 5 minutes, and then at 150 ° C. to 250 ° C. Heat was applied at a rate of temperature increase of ℃ / min, and then maintained at 250 ℃ for 5 minutes, then heat was applied at a temperature increase rate of 10 ℃ / min from 250 ℃ to 320 ℃, and then maintained at 320
1-Methyl-4-n-propylbenzene, 1-Methyl-4-ethylbenzene, Butyric acid methyl ester 및 2-Ethylhexyl acetate의 검출여부를 분석하여 검출되면 ○, 검출되지 않으면 ×로 표시하였다. 1-Methyl-4-n-propylbenzene, 1-Methyl-4-ethylbenzene, Butyric acid methyl ester and 2-Ethylhexyl acetate were analyzed and detected.
propylbenzene1-Methyl-4-n-
propylbenzene
승온 속도를 상기 조건으로 조절하는 경우, 4가지 미량물질이 모두 검출되었다. When the rate of temperature increase was adjusted to the above conditions, all four trace substances were detected.
(실시예 7)(Example 7)
GC-VUV 분석에서, 50℃에서 250℃까지의 승온 속도를 30℃/min로 조절한 것을 제외하고는 실시예 1 내지 3과 동일한 방법으로 GC-VUV를 통하여 향료 조성물을 분석하였다.In GC-VUV analysis, the fragrance composition was analyzed through GC-VUV in the same manner as in Examples 1 to 3 except that the temperature increase rate from 50 ° C to 250 ° C was adjusted to 30 ° C / min.
이때 검출기에 스펙트럼 필터를 설치하여 스펙트럼 필터링을 통해 분석을 수행하였다. At this time, the spectral filter was installed in the detector and the analysis was performed by spectral filtering.
특정 파장에 해당하는 영역만을 검출하는 스펙트럼 필터를 사용함으로써 특정 화합물에 대한 분석을 구체적으로 수행할 수 있다. By using a spectral filter that detects only a region corresponding to a specific wavelength, an analysis of a specific compound may be specifically performed.
예를 들면, 지방족 화합물을 분석하기 위해 124-160nm에 해당하는 스펙트럼 필터를 사용할 수 있고, 방향족 화합물을 분석하기 위해 170-200nm에 해당하는 스펙트럼 필터를 사용할 수 있으며, conjugation된 방향족 화합물을 분석하기 위해 200-240nm에 해당하는 스펙트럼 필터를 사용할 수 있다. For example, a spectral filter corresponding to 124-160 nm may be used to analyze aliphatic compounds, a spectral filter corresponding to 170-200 nm may be used to analyze aromatic compounds, and a conjugated aromatic compound may be analyzed. Spectral filters corresponding to 200-240 nm can be used.
본 실시예에서는 벤젠계 화합물의 검출을 위해 177-182nm에 해당하는 스펙트럼 필터를 사용하였고, 지방족 화합물을 분석하기 위해 124-160nm에 해당하는 스펙트럼 필터를 사용하였다. In this example, a spectral filter corresponding to 177-182 nm was used for the detection of benzene compounds, and a spectral filter corresponding to 124-160 nm was used for analyzing the aliphatic compounds.
1-Methyl-4-n-propylbenzene, 1-Methyl-4-ethylbenzene, Butyric acid methyl ester 및 2-Ethylhexyl acetate의 검출여부를 분석하여 검출되면 ○, 검출되지 않으면 ×로 표시하였다. 1-Methyl-4-n-propylbenzene, 1-Methyl-4-ethylbenzene, Butyric acid methyl ester and 2-Ethylhexyl acetate were analyzed and detected.
propylbenzene1-Methyl-4-n-
propylbenzene
실시예 4에서, 승온 속도를 30℃/min로 조절한 경우, 1-Methyl-4-n-propylbenzene, 1-Methyl-4-ethylbenzene, Butyric acid methyl ester 가 검출되지 않았으나, 스펙트럼 필터를 사용함으로써 4가지 화합물 모두 검출되었다. In Example 4, when the temperature increase rate was adjusted to 30 ℃ / min, 1-Methyl-4-n-propylbenzene, 1-Methyl-4-ethylbenzene, Butyric acid methyl ester was not detected, but by using a
Claims (4)
상기 샘플링한 향료 조성물을 GC-VUV에 공급하는 단계;
상기 공급된 향료 조성물에 열을 가하는 단계;
상기 열을 가한 향료 조성물을 컬럼에 주입하는 단계;
상기 컬럼을 통과한 향료 조성물에 자외선을 조사하여 여기 시키는 단계; 및
상기 여기된 향료 조성물을 분석하는 단계를 포함하는 향료 조성물의 미량 물질 분석방법에 있어서,
상기 열을 가하는 단계는 50℃에서 1~10분 유지한 후, 50℃에서 250℃까지 10~25℃/min의 승온 속도로 열을 가한 다음, 250℃에서 1~10분 유지한 후, 250℃에서 320℃까지 10~25℃/min의 승온 속도로 열을 가한 다음, 320℃에서 1~10분 유지하고,
상기 미량 물질은 2-에틸헥실아세테이트(2-ethylhexylacetate), 1-메틸-4-n-프로필벤젠(1-methyl-4-n-propylbenzene), 1-메틸-4-에틸벤젠(1-Methyl-4-ethylbenzene) 및 부티르산 메틸 에스테르(butyric acid methyl ester) 중 어느 하나 이상인 것을 특징으로 하는 향료 조성물의 미량 물질 분석방법.
Sampling the perfume composition;
Supplying the sampled fragrance composition to GC-VUV;
Applying heat to the supplied perfume composition;
Injecting the heated flavor composition into a column;
Irradiating ultraviolet rays to the fragrance composition passing through the column to excite; And
In the trace material analysis method of the fragrance composition comprising the step of analyzing the excited fragrance composition,
The step of applying the heat is maintained for 1 to 10 minutes at 50 ℃, heat is applied at a temperature rising rate of 10 to 25 ℃ / min from 50 ℃ to 250 ℃, and then maintained at 250 ℃ 1 to 10 minutes, 250 Heat was applied at a temperature increase rate of 10-25 ℃ / min from ℃ to 320 ℃, then held for 1 to 10 minutes at 320 ℃,
The trace substance is 2-ethylhexylacetate, 1-methyl-4-n-propylbenzene, 1-methyl-4-ethylbenzene, and 1-Methyl- 4-ethylbenzene) and butyric acid methyl ester (butyric acid methyl ester), characterized in that at least any one of the fragrance composition analysis method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170184241A KR102019139B1 (en) | 2017-12-29 | 2017-12-29 | A method analyzing trace material of fragrance composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170184241A KR102019139B1 (en) | 2017-12-29 | 2017-12-29 | A method analyzing trace material of fragrance composition |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20190081592A KR20190081592A (en) | 2019-07-09 |
KR102019139B1 true KR102019139B1 (en) | 2019-09-06 |
Family
ID=67261116
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020170184241A KR102019139B1 (en) | 2017-12-29 | 2017-12-29 | A method analyzing trace material of fragrance composition |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102019139B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102697843B1 (en) * | 2023-12-06 | 2024-08-22 | 이강록 | Method for Analysis of Components in Aromatic Compounds Mixtures |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002202287A (en) | 2001-01-05 | 2002-07-19 | Mitsubishi Heavy Ind Ltd | Photoionization mass spectrometer |
JP2004077176A (en) * | 2002-08-12 | 2004-03-11 | Mitsubishi Heavy Ind Ltd | Detecting device for trace organic component |
US20160363569A1 (en) | 2015-06-10 | 2016-12-15 | Vuv Analytics, Inc. | Method For Detailed And Bulk Classification Analysis Of Complex Samples Using Vacuum Ultra-Violet Spectroscopy And Gas Chromatography |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2004314503A1 (en) | 2003-12-05 | 2005-08-04 | Saika Technological Institute Foundation | Method of analyzing organic chemical substance and apparatus for analysis |
GB0416239D0 (en) | 2004-07-21 | 2004-08-25 | Givaudan Sa | Method to identify or evaluate compounds useful in the field of fragrances and aromas |
-
2017
- 2017-12-29 KR KR1020170184241A patent/KR102019139B1/en active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002202287A (en) | 2001-01-05 | 2002-07-19 | Mitsubishi Heavy Ind Ltd | Photoionization mass spectrometer |
JP2004077176A (en) * | 2002-08-12 | 2004-03-11 | Mitsubishi Heavy Ind Ltd | Detecting device for trace organic component |
US20160363569A1 (en) | 2015-06-10 | 2016-12-15 | Vuv Analytics, Inc. | Method For Detailed And Bulk Classification Analysis Of Complex Samples Using Vacuum Ultra-Violet Spectroscopy And Gas Chromatography |
Non-Patent Citations (3)
Title |
---|
C Qiu et al, Journal of Separation Science, Vol.40(4), pp. 869-877.(2016.12.31.)* |
H Fan et al, Food Chemistry, Vol.194, pp 265-271.(2015.08.04.)* |
I C. Santos et al, Food Analytical Methods, Vol.10, pp. 4068-4078.(2017.06.30.)* |
Also Published As
Publication number | Publication date |
---|---|
KR20190081592A (en) | 2019-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Alara et al. | Optimization of microwave-assisted extraction of flavonoids and antioxidants from Vernonia amygdalina leaf using response surface methodology | |
Garofulić et al. | The effect of gas phase plasma treatment on the anthocyanin and phenolic acid content of sour cherry Marasca (Prunus cerasus var. Marasca) juice | |
Li et al. | Green ultrasound-assisted extraction of carotenoids based on the bio-refinery concept using sunflower oil as an alternative solvent | |
Xu et al. | Optimization of ionic liquid based ultrasonic assisted extraction of antioxidant compounds from Curcuma longa L. using response surface methodology | |
Štěrbová et al. | Combined microwave-assisted isolation and solid-phase purification procedures prior to the chromatographic determination of phenolic compounds in plant materials | |
Herrera et al. | Ultrasound-assisted extraction of phenolic compounds from strawberries prior to liquid chromatographic separation and photodiode array ultraviolet detection | |
Huong et al. | The photoisomerization of the sunscreen ethylhexyl p-methoxy cinnamate and its influence on the sun protection factor | |
Norin et al. | Thin layer, column, and gas liquid chromatography of resin acid esters and related terpenes | |
Dugo et al. | Sicilian lemon oil: Composition of volatile and oxygen heterocyclic fractions and enantiomeric distribution of volatile components | |
Salthammer et al. | Formation of organic indoor air pollutants by UV-curing chemistry | |
Zareena et al. | Chemical investigation of gamma-irradiated saffron (Crocus sativus L.) | |
Nejad-Sadeghi et al. | Optimization of supercritical carbon dioxide extraction of essential oil from Dracocephalum kotschyi Boiss: An endangered medicinal plant in Iran | |
Marbán et al. | A simple visible spectrum deconvolution technique to prevent the artefact induced by the hypsochromic shift from masking the concentration of methylene blue in photodegradation experiments | |
Cativiela et al. | Solvent effects on endo/exo-and regio-selectivities of Diels–Alder reactions of carbonyl-containing dienophiles | |
Karlsson et al. | Investigation of the sunscreen octocrylene’s interaction with amino acid analogs in the presence of UV radiation | |
KR102019139B1 (en) | A method analyzing trace material of fragrance composition | |
Casilli et al. | Multidimensional gas chromatography hyphenated to mass spectrometry and olfactometry for the volatile analysis of citrus hybrid peel extract | |
Macmaster et al. | Quantification of selected furocoumarins by high-performance liquid chromatography and UV-detection: capabilities and limits | |
Hzounda et al. | Spectral and chemometric analyses reveal antioxidant properties of essential oils from four Cameroonian Ocimum | |
Nakajima et al. | Determination of free radicals generated from light exposed ketoprofen | |
Yang et al. | Comparison of headspace solid-phase microextraction with conventional extraction for the analysis of the volatile components in Melia azedarach | |
Maafi et al. | Φ-order spectrophotokinetic characterisation and quantification of trans-cis oxyresveratrol reactivity, photodegradation and actinometry | |
Rivelli et al. | Chlorogenic acid UVA–UVB photostability | |
Razboršek et al. | Stability studies and determination of carnosic acid and its oxidative degradation products by gas chromatography–mass spectrometry | |
Raudonis et al. | Investigation of contribution of individual constituents to antioxidant activity in herbal drugs using postcolumn HPLC method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |