KR102009308B1 - Bifacial solar cell with gallium oxide passivation layer and manufacturing method for the solar cell, tandem solar cell and bipv module using the solar cell - Google Patents

Bifacial solar cell with gallium oxide passivation layer and manufacturing method for the solar cell, tandem solar cell and bipv module using the solar cell Download PDF

Info

Publication number
KR102009308B1
KR102009308B1 KR1020180024297A KR20180024297A KR102009308B1 KR 102009308 B1 KR102009308 B1 KR 102009308B1 KR 1020180024297 A KR1020180024297 A KR 1020180024297A KR 20180024297 A KR20180024297 A KR 20180024297A KR 102009308 B1 KR102009308 B1 KR 102009308B1
Authority
KR
South Korea
Prior art keywords
layer
transparent electrode
solar cell
metal nanoparticles
passivation layer
Prior art date
Application number
KR1020180024297A
Other languages
Korean (ko)
Inventor
김기환
박주형
신동협
안세진
안승규
어영주
유진수
정인영
조아라
조준식
곽지혜
윤재호
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to KR1020180024297A priority Critical patent/KR102009308B1/en
Application granted granted Critical
Publication of KR102009308B1 publication Critical patent/KR102009308B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0384Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including other non-monocrystalline materials, e.g. semiconductor particles embedded in an insulating material
    • H01L31/03845Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including other non-monocrystalline materials, e.g. semiconductor particles embedded in an insulating material comprising semiconductor nanoparticles embedded in a semiconductor matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/60Planning or developing urban green infrastructure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention relates to a CIGS-based high-efficiency bifacial-transmission solar cell with a Ga_2O_3 passivation layer inserted thereinto comprising: a lower substrate of a transparent material; a lower transparent electrode layer of a transparent conductive oxide material formed on the lower substrate; metal nanoparticles dispersed on the lower transparent electrode layer; a passivation layer of a Ga_2O_3 material formed on the lower transparent electrode layer on which the metal nanoparticles are dispersed to prevent back surface recombination; a light absorbing layer of a CIGS-based material formed on the passivation layer; an upper buffer layer formed on the light absorbing layer; and an upper transparent electrode layer formed on the upper buffer layer. The light absorbing layer forms a localized contact by coming in contact with the metal nanoparticles exposed on the surface of the passivation layer. A Ga_2O_3 layer is used as a passivation layer and a lower transparent electrode and a light absorbing layer form a localized contact to prevent back surface recombination and efficiently connect the lower transparent electrode and the light absorbing layer to increase efficiency of the solar cell.

Description

산화갈륨 패시베이션층이 삽입된 고효율 양면 투광형 CIGS계 태양전지와 그 제조방법 및 이를 적용한 건물일체형태양광발전모듈과 탠덤태양전지{BIFACIAL SOLAR CELL WITH GALLIUM OXIDE PASSIVATION LAYER AND MANUFACTURING METHOD FOR THE SOLAR CELL, TANDEM SOLAR CELL AND BIPV MODULE USING THE SOLAR CELL}BIFACIAL SOLAR CELL WITH GALLIUM OXIDE PASSIVATION LAYER AND MANUFACTURING METHOD FOR THE SOLAR CELL, TANDEM SOLAR CELL AND BIPV MODULE USING THE SOLAR CELL}

본 발명은 CIGS계 태양전지 셀에 관한 것으로, 더욱 자세하게는 상부뿐만 아니라 하부에도 투명전극을 적용한 CIGS계 태양전지 및 그 제조방법에 관한 것이다.The present invention relates to a CIGS-based solar cell, and more particularly, to a CIGS-based solar cell and a method for manufacturing the same, wherein a transparent electrode is applied to a lower portion as well as an upper portion.

최근 심각한 환경오염 문제와 화석 에너지 고갈로 차세대 청정에너지 개발에 대한 중요성이 증대되고 있다. 그 중에서도 태양전지는 태양 에너지를 직접 전기 에너지로 전환하는 장치로서, 공해가 적고, 자원이 무한적이며 반영구적인 수명이 있어 미래 에너지 문제를 해결할 수 있는 에너지원으로 기대되고 있다.Recently, the importance of developing the next generation of clean energy is increasing due to severe environmental pollution and depletion of fossil energy. Among them, the solar cell is a device that directly converts solar energy into electrical energy, and is expected to be an energy source capable of solving future energy problems due to its low pollution, infinite resources, and a semi-permanent lifetime.

태양전지는 광흡수층으로 사용되는 물질에 따라서 다양한 종류로 구분되며, 현재 가장 많이 사용되는 것은 실리콘을 이용한 실리콘 태양전지이다. 그러나 실리콘 태양전지는 두꺼운 결정질 실리콘 웨이퍼를 사용하여 소재 의존성이 크고, 제조공정의 일관화가 힘들어서 박막형 태양전지에 대한 관심이 증가하고 있다. 박막형 태양전지는 얇은 두께로 제작되므로 재료의 소모량이 적고, 무게가 가볍기 때문에 활용범위가 넓다. 이러한 박막형 태양전지의 재료로서 실용화가 진행된 물질로는 CdTe가 있으며, 최근에는 높은 광흡수 계수를 가지는 CIGS(Copper Indium Gallium Selenide)가 각광받고 있다.Solar cells are classified into various types according to materials used as light absorption layers, and at present, the most commonly used are silicon solar cells using silicon. However, since silicon solar cells use thick crystalline silicon wafers, material dependence is large, and manufacturing processes are difficult to cope with, and thus, interest in thin-film solar cells is increasing. Thin-film solar cells are manufactured with a thin thickness, so the materials are consumed less and the weight is lighter, so the application range is wide. As a material of such a thin-film solar cell, a material that has been put to practical use is CdTe, and recently, CIGS (Copper Indium Gallium Selenide) having a high light absorption coefficient has been in the spotlight.

한편, 태양전지를 구성하는 기본 단위인 태양전지 셀은 빛이 투과되는 전면전극 방향에서 입사되는 빛을 이용하여 발전을 수행하고, 후면전극은 빛이 투과되지 않는 금속재질로 구성함이 일반적이었다. 하지만, 최근에는 박막형 태양전지를 유리창 등에 부착하거나 건물일체형태양광발전(BIPV)로 사용하기 위한 목적으로 투명 또는 반투명한 태양전지에 대한 요구가 높아지고 있으며, 나아가 태양전지의 후면으로 입사된 빛을 이용하기 위하여 전후 양면으로 빛이 투과되는 태양전지를 구성하거나, 다양한 파장의 빛을 효율적으로 사용하기 위하여 태양전지 셀을 다층으로 구성한 탠덤태양전지의 상부셀에 적용하기 위하여 후면전극으로도 빛이 투과하도록 후면투명전극을 적용한 태양전지에 대한 기술이 개발되고 있다.On the other hand, the solar cell is a basic unit constituting the solar cell is a power generation using light incident from the front electrode direction through which light is transmitted, and the rear electrode was generally composed of a metal material that does not transmit light. Recently, however, there is a growing demand for transparent or translucent solar cells for the purpose of attaching thin-film solar cells to glass windows or using them as building integrated photovoltaic power generation (BIPV). In order to construct a solar cell that transmits light to both sides of the front and rear, or to apply the solar cell to the upper cell of a tandem solar cell having multiple layers of solar cells for efficient use of light of various wavelengths, The technology for the solar cell applying the rear transparent electrode is being developed.

다만, 현재 투명전극으로 가장 많이 사용되는 TCO 재질의 경우에 CIGS에 포함된 Ga과 반응하여 Ga2O3를 형성하기 때문에, CIGS계 태양전지에 대해서는 투명한 후면전극을 적용하는 경우에 비저항이 증가하여 태양전지의 효율이 크게 감소하는 단점이 있었다. 나아가 문제가 되는 Ga2O3의 형성을 방지하기 위해서는 CIGS층의 형성 방법의 제한되어 태양전지의 효율이 나빠지는 문제가 있다.However, in the case of TCO material, which is currently used as the most transparent electrode, Ga 2 O 3 is formed by reacting with Ga contained in CIGS, so the specific resistance of CIGS solar cell is increased when transparent back electrode is applied. There was a disadvantage that the efficiency of the solar cell is greatly reduced. Furthermore, in order to prevent the formation of Ga 2 O 3 which is a problem, there is a problem in that the efficiency of the solar cell is deteriorated due to the limitation in the method of forming the CIGS layer.

따라서 저렴한 TCO 재질을 투명한 후면전극으로 사용하면서 Ga2O3 형성에 의한 효율 저하를 방지할 수 있는 CIGS계 태양전지 셀 및 그 제조방법에 대한 요구가 계속되고 있는 실정이다.Therefore, there is a continuing demand for a CIGS-based solar cell and a method of manufacturing the same, which can prevent a decrease in efficiency due to Ga 2 O 3 formation while using an inexpensive TCO material as a transparent back electrode.

대한민국 등록특허 10-1497955Republic of Korea Patent Registration 10-1497955

본 발명은 전술한 종래 기술의 문제점을 해결하기 위한 것으로서 Ga2O3 층을 후면재결합을 방지하는 패시베이션층으로 사용하면서 로컬라이즈드 컨택을 적용한 새로운 구조의 CIGS계 태양전지를 제공하는데 그 목적이 있다.The present invention is to solve the above-described problems of the prior art Ga 2 O 3 The purpose of the present invention is to provide a CIGS-based solar cell with a new structure using localized contacts while using the layer as a passivation layer to prevent back-combination.

상기 목적을 달성하기 위한 본 발명에 의한 산화갈륨 패시베이션층이 삽입된 고효율 양면 투광형 CIGS계 태양전지는, 투명 재질의 하부 기판; 하부 기판 위에 형성된 투명전도성산화물 재질의 하부 투명 전극층; 상기 하부 투명 전극층 위에 분산된 금속 나노입자; 금속 나노입자가 분산된 하부 투명 전극 위에 형성되어 후면재결합을 방지하는 산화갈륨 재질의 패시베이션층; 상기 패시베이션층 위에 형성된 CIGS계 재질의 광흡수층; 상기 광흡수층 위에 형성된 상부 버퍼층; 및 상기 상부 버퍼층 위에 형성된 상부 투명 전극층을 포함하여 구성되며, 상기 광흡수층은 상기 패시베이션층의 표면에 노출된 금속 나노입자에 접촉하여 로컬라이즈드 컨택을 형성한 것을 특징으로 한다.According to an aspect of the present invention, a high-efficiency double-sided transmissive CIGS solar cell having a gallium oxide passivation layer inserted therein comprises a lower substrate made of a transparent material; A lower transparent electrode layer made of a transparent conductive oxide material formed on the lower substrate; Metal nanoparticles dispersed on the lower transparent electrode layer; A passivation layer of gallium oxide material formed on the lower transparent electrode on which the metal nanoparticles are dispersed to prevent back recombination; A light absorption layer of CIGS-based material formed on the passivation layer; An upper buffer layer formed on the light absorption layer; And an upper transparent electrode layer formed on the upper buffer layer, wherein the light absorption layer contacts the metal nanoparticles exposed on the surface of the passivation layer to form a localized contact.

종래에는 하부 투명 전극과 광흡수층 사이에서 Ga2O3가 형성되는 방지하는 것을 목적으로 기술이 개발되었으나, 본 발명의 발명자들은 Ga2O3의 형성을 방지하지 않고 Ga2O3층을 후면재결합 방지를 위한 패시베이션층으로 적용하고, 광흡수층과 하부 투명 전극층 사이는 금속 나노입자를 분산하여 로컬라이즈드 컨택을 형성하는 방법으로 효율을 더욱 향상시키는 새로운 구조의 태양전지를 발명하였다.Conventionally, the lower transparent electrode, but the development of technology between the light absorption layer for the purpose of preventing formed the Ga 2 O 3, the inventors of the present invention Ga 2 O does not prevent the third form of the Ga 2 O rear recombine the three-layer Invented as a passivation layer for prevention, and invented a solar cell having a new structure to further improve efficiency by dispersing metal nanoparticles to form localized contacts between the light absorption layer and the lower transparent electrode layer.

금속 나노입자가 Mo 재질인 것이 좋다. 금속 나노입자의 입경이 2~50nm 범위이고, 금속 나노입자가 하부 투명 전극층 표면의 10% 이하를 덮도록 분산하여 위치 된 것이 바람직하다.The metal nanoparticle is preferably Mo material. It is preferable that the particle diameter of the metal nanoparticles is in the range of 2 to 50 nm, and the metal nanoparticles are dispersed and positioned to cover 10% or less of the surface of the lower transparent electrode layer.

또한, 로컬라이즈드 컨택은 광흡수층의 두께가 얇은 경우에 효과가 더욱 뛰어나므로, 광흡수층의 두께가 500nm 이하인 것이 바람직하다.In addition, since the localized contact is more effective when the thickness of the light absorption layer is thin, the thickness of the light absorption layer is preferably 500 nm or less.

본 발명의 다른 형태에 의한, Ga2O3 패시베이션층이 삽입된 고효율 양면 투광형 CIGS계 태양전지의 제조방법은, 투명 재질의 하부 기판 위에 투명전도성산화물 재질의 하부 투명 전극층을 형성하는 단계; 상기 하부 투명 전극층의 위에 금속 나노입자를 분산하여 위치시키는 단계; 금속 나노입자가 분산된 하부 투명 전극층 위에 CIGS계 재질의 광흡수층을 형성하는 단계; 상기 광흡수층의 위에 상부 버퍼층을 형성하는 단계; 및 상기 상부 버퍼층 위에 상부 투명 전극층을 형성하는 단계를 포함하며, 상기 광흡수층을 형성하는 단계에서, 상기 광흡수층과 상기 하부 투명 전극층의 계면에서 산화갈륨이 형성되며, 산화갈륨 재질층이 후면재결합을 방지하는 패시베이션층으로 기능하고, 상기 광흡수층은 상기 패시베이션층의 표면에 노출된 금속 나노입자에 접촉하여 로컬라이즈드 컨택을 형성하는 것을 특징으로 한다.According to another aspect of the present invention, a method for manufacturing a high-efficiency double-sided transmissive CIGS solar cell having a Ga 2 O 3 passivation layer inserted therein includes: forming a lower transparent electrode layer of a transparent conductive oxide material on a lower substrate of a transparent material; Dispersing and placing metal nanoparticles on the lower transparent electrode layer; Forming a light absorption layer of a CIGS-based material on the lower transparent electrode layer in which metal nanoparticles are dispersed; Forming an upper buffer layer on the light absorbing layer; And forming an upper transparent electrode layer on the upper buffer layer, wherein in the forming of the light absorbing layer, gallium oxide is formed at an interface between the light absorbing layer and the lower transparent electrode layer, and the gallium oxide material layer is formed on the rear surface recombination layer. It functions as a passivation layer to prevent, the light absorption layer is characterized in that the contact with the metal nanoparticles exposed on the surface of the passivation layer to form a localized contact.

광흡수층을 형성하는 단계를 수행하는 과정에서 적어도 일부를 500℃이상의 온도에서 수행함으로써 산화갈륨 재질의 패시베이션층이 광흡수층 형성 과정에서 동시에 형성되도록 할 수 있다. By performing at least a portion of the light absorbing layer at a temperature of 500 ° C. or more, the passivation layer of gallium oxide may be simultaneously formed in the light absorbing layer forming process.

광흡수층을 형성하는 단계 이후에 500℃ 이상의 온도로 열처리하여 산화갈륨 재질의 패시베이션층을 형성하는 단계를 더 수행할 수도 있다.After forming the light absorbing layer may be further heat-treated at a temperature of 500 ℃ or more to form a passivation layer of gallium oxide material.

광흡수층을 형성하는 과정에서 형성되는 광흡수층의 두께가 500nm 이하인 것이 바람직하다.It is preferable that the thickness of the light absorption layer formed in the process of forming the light absorption layer is 500 nm or less.

금속 나노입자는 Mo 재질인 것이 좋다. 금속 나노입자의 입경이 2~50nm 범위이고, 금속 나노입자가 하부 투명 전극층 표면의 10% 이하를 덮도록 분산하여 위치시키는 것이 바람직하다.The metal nanoparticle is preferably Mo material. The particle diameter of the metal nanoparticles is in the range of 2 to 50 nm, and it is preferable to disperse and position the metal nanoparticles so as to cover 10% or less of the lower transparent electrode layer surface.

금속 나노입자를 분산하여 위치시키는 공정이 스프레이법, 디핑법 및 스핀 코팅법 중에 하나의 방법으로 수행되는 것이 바람직하다.The process of dispersing and placing the metal nanoparticles is preferably performed by one of spraying, dipping and spin coating.

본 발명의 또 다른 형태에 의한, 건물일체형태양광발전모듈은, 양면에 입사되는 빛을 모두 발전에 사용할 수 있는 태양전지를 포함하는 건물일체형태양광발전모듈로서, 상기 태양전지가, 투명 재질의 하부 기판; 하부 기판 위에 형성된 투명전도성산화물 재질의 하부 투명 전극층; 상기 하부 투명 전극층 위에 분산된 금속 나노입자; 금속 나노입자가 분산된 하부 투명 전극 위에 형성되어 후면재결합을 방지하는 산화갈륨 재질의 패시베이션층; 상기 패시베이션층 위에 형성된 CIGS계 재질의 광흡수층; 상기 광흡수층 위에 형성된 상부 버퍼층; 및 상기 상부 버퍼층 위에 형성된 상부 투명 전극층을 포함하여 구성되며, 상기 광흡수층은 상기 패시베이션층의 표면에 노출된 금속 나노입자에 접촉하여 로컬라이즈드 컨택을 형성한, 산화갈륨 패시베이션층이 삽입된 고효율 양면 투광형 CIGS계 태양전지인 것을 특징으로 한다.According to still another aspect of the present invention, a building integrated photovoltaic module is a building integrated photovoltaic module including a solar cell capable of generating all of the light incident on both sides thereof, wherein the solar cell is formed of a transparent material. Lower substrate; A lower transparent electrode layer made of a transparent conductive oxide material formed on the lower substrate; Metal nanoparticles dispersed on the lower transparent electrode layer; A passivation layer of gallium oxide material formed on the lower transparent electrode on which the metal nanoparticles are dispersed to prevent back recombination; A light absorption layer of CIGS-based material formed on the passivation layer; An upper buffer layer formed on the light absorption layer; And an upper transparent electrode layer formed on the upper buffer layer, wherein the light absorbing layer contacts local metal nanoparticles exposed on the surface of the passivation layer to form a localized contact. It is characterized in that the transmissive CIGS-based solar cell.

본 발명의 마지막 형태에 의한, 탠덤태양전지는, 2개 이상의 태양전지 셀이 적층된 탠덤태양전지로서, 상기 복수의 태양전지 셀 중에 적어도 하나가, 투명전도성산화물 재질의 하부 투명 전극층; 상기 하부 투명 전극층 위에 분산된 금속 나노입자; 금속 나노입자가 분산된 하부 투명 전극 위에 형성되어 후면재결합을 방지하는 산화갈륨 재질의 패시베이션층; 상기 패시베이션층 위에 형성된 CIGS계 재질의 광흡수층; 상기 광흡수층 위에 형성된 상부 버퍼층; 및 상기 상부 버퍼층 위에 형성된 상부 투명 전극층을 포함하여 구성되며, 상기 광흡수층은 상기 패시베이션층의 표면에 노출된 금속 나노입자에 접촉하여 로컬라이즈드 컨택을 형성한, 산화갈륨 패시베이션층이 삽입된 고효율 양면 투광형 CIGS계 태양전지인 것을 특징으로 한다.According to the last aspect of the present invention, a tandem solar cell includes a tandem solar cell in which two or more solar cell cells are stacked, wherein at least one of the plurality of solar cell cells includes a lower transparent electrode layer made of a transparent conductive oxide material; Metal nanoparticles dispersed on the lower transparent electrode layer; A passivation layer of gallium oxide material formed on the lower transparent electrode on which the metal nanoparticles are dispersed to prevent back recombination; A light absorption layer of CIGS-based material formed on the passivation layer; An upper buffer layer formed on the light absorption layer; And an upper transparent electrode layer formed on the upper buffer layer, wherein the light absorbing layer contacts local metal nanoparticles exposed on the surface of the passivation layer to form a localized contact. It is characterized in that the transmissive CIGS-based solar cell.

상술한 바와 같이 구성된 본 발명은, Ga2O3 층을 패시베이션층으로 사용하고 하부 투명 전극과 광흡수층은 로컬라이즈드 컨택을 구성함으로써, 후면 재결합을 방지하면서도 하부 투명 전극과 광흡수층을 효율적으로 연결하여 태양전지의 효율이 향상되는 효과가 있다.According to the present invention configured as described above, by using a Ga 2 O 3 layer as a passivation layer and the lower transparent electrode and the light absorbing layer to form a localized contact, it is possible to efficiently connect the lower transparent electrode and the light absorbing layer while preventing rear recombination. Thus, the efficiency of the solar cell is improved.

도 1 내지 도 4는 본 발명의 실시예에 따른 양면 투광형 CIGS계 태양전지를 제조하는 과정을 나타낸 모식도이다.1 to 4 are schematic diagrams showing a process of manufacturing a double-sided transmissive CIGS-based solar cell according to an embodiment of the present invention.

첨부된 도면을 참조하여 본 발명에 따른 실시예를 상세히 설명한다. With reference to the accompanying drawings will be described embodiments of the present invention;

도 1 내지 도 4는 본 발명의 실시예에 따른 양면 투광형 CIGS계 태양전지를 제조하는 과정을 나타낸 모식도이다.1 to 4 are schematic diagrams showing a process of manufacturing a double-sided transmissive CIGS-based solar cell according to an embodiment of the present invention.

먼저, 도 1에 도시된 것과 같이, 투명 기판(100)의 위에 투명전도성 산화물 재질의 하부 투명 전극층(200)을 형성한다.First, as shown in FIG. 1, the lower transparent electrode layer 200 of the transparent conductive oxide material is formed on the transparent substrate 100.

투명 기판(100)은 완전 투명 또는 반투명 재질을 적용할 수 있으며, CIGS계 광흡수층의 효율이 높이는 것으로 알려진 소다라임 유리 기판을 적용할 수 있다.The transparent substrate 100 may apply a completely transparent or translucent material, and may apply a soda lime glass substrate known to increase the efficiency of the CIGS-based light absorbing layer.

하부 투명 전극층(200)으로는 투명전도성 산화물 재질을 다양하게 적용할 수 있으며, 대표적으로 ITO를 사용할 수 있다. 투명전도성 산화물 재질로 하부 전극을 구성하여, 종래에 Mo 재질의 전극층을 구성하였던 종래의 CIGS계 태양전지와 달리 아래쪽(하부 기판)을 통해서 유입된 빛이 광흡수층에 도달할 수 있다.The transparent conductive oxide material may be variously applied to the lower transparent electrode layer 200, and representatively, ITO may be used. The lower electrode is composed of a transparent conductive oxide material, and unlike the conventional CIGS-based solar cell, in which the electrode layer of Mo is conventionally formed, light introduced through the lower side (lower substrate) may reach the light absorbing layer.

다음으로 도 2에 도시된 것과 같이, 하부 투명 전극층(200) 위에 금속 나노입자(300)를 분산하여 배치한다.Next, as shown in FIG. 2, the metal nanoparticles 300 are dispersed and disposed on the lower transparent electrode layer 200.

금속 나노입자(300)는 광흡수층과 하부 투명 전극층 사이의 로컬라이즈드 컨택(localized contact)을 형성하기 위하여 추가된 구성이다. 로컬라이즈드 컨택은 종래에 하부 전극층 전체와 광흡수층이 면대 면으로서 접촉하였던 것과 달리, 나노입자에 의한 부분적인 접촉 또는 국부 접촉에 의해서 전기적으로 연결된 것이다. 이후에 자세하게 설명하겠지만, 본 발명은 광흡수층과 하부 투명 전극층 사이에 패시베이션층으로서 Ga2O3층이 형성되도록 구성하였기 때문에, 광흡수층과 하부 투명 전극층을 전기적으로 연결하기 위한 구성이 필요하다. The metal nanoparticle 300 is a component added to form a localized contact between the light absorption layer and the lower transparent electrode layer. Localized contacts are electrically connected by partial contact or local contact by nanoparticles, unlike the entire lower electrode layer and the light absorbing layer contacted as face-to-face. As will be described in detail later, since the present invention is configured to form a Ga 2 O 3 layer as a passivation layer between the light absorption layer and the lower transparent electrode layer, a configuration for electrically connecting the light absorption layer and the lower transparent electrode layer is required.

금속 나노입자(300)를 분산하는 방법은 특별히 제한되지 않으며, 스프레이법, 디핑법, 스핀 코팅법 등이 적용될 수 있다. 또한 금속 나노입자(300)의 재질은 광흡수층과 하부 투명 전극층을 전기적으로 연결할 수 있는 재질이면 특별히 제한되지 않고 적용될 수 있으며, CIGS와의 전기적 연결성이 뛰어난 것으로 알려진 Mo 재질을 적용할 수 있다.The method of dispersing the metal nanoparticles 300 is not particularly limited, and a spray method, a dipping method, a spin coating method, or the like may be applied. In addition, the material of the metal nanoparticle 300 may be applied without particular limitation as long as it is a material capable of electrically connecting the light absorbing layer and the lower transparent electrode layer, and may apply a Mo material known to have excellent electrical connection with CIGS.

상기한 분산 방법을 적용하여도 모든 금속 나노입자(300) 각각이 단독으로 분산되어 위치하기는 어렵고, 일부가 뭉쳐서 배치되지만 금속 나노입자 각각이 Ga2O3층을 관통하여 광흡수층과 하부 투명 전극층을 전기적으로 연결할 수 있도록 입경의 분포가 2~50nm 범위인 것이 바람직하다.Even if the above-described dispersion method is applied, all of the metal nanoparticles 300 are each dispersed in a single position, and a part of the metal nanoparticles 300 are placed together but each of the metal nanoparticles penetrates the Ga 2 O 3 layer to absorb the light absorbing layer and the lower transparent electrode layer. It is preferable that the distribution of particle diameters is in the range of 2 to 50 nm so as to electrically connect them.

한편, 하부 투명 전극층(200) 위에 분산된 금속 나노입자(300)는 하부 투명 전극층(200) 면적의 10% 이하를 덮도록 구성하는 것이 바람직하다. 금속 나노입자를 이보다 많이 분산시키는 경우에는 성능 향상 효과가 증가하는 것에 비하여 투명도가 낮아지는 결과가 생긴다. 하한은 특별히 정해지지 않지만, 로컬라이즈 컨택으로 기능할 수 있는 정도의 양은 필요하다.Meanwhile, the metal nanoparticles 300 dispersed on the lower transparent electrode layer 200 may be configured to cover 10% or less of the area of the lower transparent electrode layer 200. Dispersing more of the metal nanoparticles results in lower transparency as compared with an increase in the performance improvement effect. The lower limit is not specifically defined, but an amount is required to function as a localized contact.

그리고 도 3과 같이, 금속 나노입자(300)가 분산된 하부 투명 전극층(200)의 위에 CIGS계 재질의 광흡수층(400)을 형성한다.As shown in FIG. 3, the light absorption layer 400 of the CIGS-based material is formed on the lower transparent electrode layer 200 in which the metal nanoparticles 300 are dispersed.

본 발명은 광흡수층(400)을 형성하는 과정에서, 광흡수층(400)과 하부 투명 전극층(200) 사이에 Ga2O3 재질의 패시베이션층(410)이 형성되도록 한다. 본 발명에서 적용된 패시베이션층(410)은 종래에 Al2O3 패시베이션층과 같이 별도의 재질을 적용하여 따로 형성하는 것이 아니고, 하부투명전극층(200)에 CIGS계 재질의 광흡수층(400)을 형성하는 과정에서 광흡수층(400)과 하부 투명 전극층(200)의 계면에서 반응을 통해서 형성된다. 일반적으로 기판 온도가 500℃인 분위기에서 CIGS계 광흡수층을 형성하면 CIGS와 TCO의 계면에서 Ga2O3이 생성되는 것으로 알려져 있으므로, 광흡수층(400)을 형성하는 공정을 수행하는 과정에서 일정 시간 이상을 500℃ 이상의 온도까지 올림으로써 CIGS계 재질의 광흡수층(400)과 Ga2O3 재질의 패시베이션층(410)을 동시에 형성할 수 있다.In the process of forming the light absorption layer 400, the passivation layer 410 made of Ga 2 O 3 is formed between the light absorption layer 400 and the lower transparent electrode layer 200. The passivation layer 410 applied in the present invention is not formed separately by applying a separate material as in the conventional Al 2 O 3 passivation layer, and forms a light absorption layer 400 of CIGS-based material on the lower transparent electrode layer 200. In the process, it is formed through the reaction at the interface between the light absorbing layer 400 and the lower transparent electrode layer 200. In general, when the CIGS-based light absorption layer is formed in an atmosphere having a substrate temperature of 500 ° C., Ga 2 O 3 is known to be generated at the interface between the CIGS and the TCO, and thus, a predetermined time during the process of forming the light absorption layer 400 is performed. By raising the temperature to 500 ° C. or more, the light absorption layer 400 of the CIGS material and the passivation layer 410 of the Ga 2 O 3 material may be simultaneously formed.

이와 같이, Ga2O3 재질의 패시베이션층(410)은 별도의 패시베이션층 형성 공정을 수행하지 않고 CIGS계 재질의 광흡수층(400)을 형성하는 과정에서 함께 형성될 수 있다. 다만, 패시베이션층(410)을 더욱 안정적으로 형성하기 위하여 CIGS계 재질의 광흡수층(400)을 형성하는 공정 이후에 추가적으로 500℃ 이상의 온도로 열처리 하는 공정 등을 수행할 수도 있으며, 이러한 경우도 종래에 Al2O3 패시베이션층을 형성하는 공정을 먼저 수행하고 광흡수층을 형성하였던 것과는 차이가 있다.As such, the passivation layer 410 made of Ga 2 O 3 may be formed together in the process of forming the light absorption layer 400 of the CIGS-based material without performing a separate passivation layer forming process. However, in order to form the passivation layer 410 more stably, after the process of forming the light absorbing layer 400 of the CIGS-based material, an additional heat treatment may be performed at a temperature of 500 ° C. or higher. The process of forming the Al 2 O 3 passivation layer is first performed, and there is a difference from forming the light absorption layer.

본 발명의 패시베이션층(410)은 후면재결합(back surface recombination)으로 인한 손실을 방지하는 기능을 수행한다.The passivation layer 410 of the present invention functions to prevent loss due to back surface recombination.

한편, 패시베이션층(410)의 두께가 금속 나노입자(300)의 크기에 비하여 너무 두꺼운 경우에는 금속 나노입자(300)가 광흡수층(400)과 하부 투명 전극층(210)을 전기적으로 연결하지 못하는 경우가 있으므로, 후면재결합을 방지할 수 있는 패시베이션층(410)의 두께와 금속 나노입자(300)가 광흡수층(400)과 하부 투명 전극층(210)을 전기적으로 연결하기 위한 금속 나노입자(300)의 크기를 적절하게 조절하여야 한다.On the other hand, when the thickness of the passivation layer 410 is too thick compared to the size of the metal nanoparticles 300 when the metal nanoparticles 300 can not electrically connect the light absorption layer 400 and the lower transparent electrode layer 210. Therefore, the thickness of the passivation layer 410 and the metal nanoparticles 300 to prevent the back recombination of the metal nanoparticles 300 for electrically connecting the light absorption layer 400 and the lower transparent electrode layer 210 Size should be adjusted accordingly.

그리고 광흡수층(400)의 두께는 특별히 제한되지 않지만, 광흡수층(400)의 두께에 따라서 종래의 면접촉에 의한 전기적 연결의 경우보다 본 발명의 금속 나노입자(300)에 의한 로컬라이즈드 컨택으로 연결하는 경우에 효율이 향상되는 것을 확인하였다. 구체적으로, 광흡수층(400)의 두께가 500nm 이하인 경우에 로컬라이즈드 컨택에 의한 효율이 더 높아지므로, 두께 500nm 이하로 광흡수층(400)을 형성하는 것이 바람직하다. 광흡수층 두께의 하한값은 특별히 정해지지 않지만, 광전변환을 수행할 수 있을 정도의 두께는 필요하다.The thickness of the light absorbing layer 400 is not particularly limited, but according to the thickness of the light absorbing layer 400, the localized contact by the metal nanoparticles 300 of the present invention is more than the case of the electrical connection by the conventional surface contact. It was confirmed that the efficiency is improved when connecting. Specifically, when the thickness of the light absorbing layer 400 is 500 nm or less, the efficiency due to localized contact is further increased. Therefore, it is preferable to form the light absorbing layer 400 with a thickness of 500 nm or less. The lower limit of the thickness of the light absorption layer is not particularly determined, but a thickness sufficient to perform photoelectric conversion is required.

마지막으로, 도 4에 도시된 것과 같이, 광흡수층(400)의 위로 상부 버퍼층(500)과 상부 투명 전극층(600)을 형성한다.Finally, as shown in FIG. 4, the upper buffer layer 500 and the upper transparent electrode layer 600 are formed on the light absorbing layer 400.

상부 버퍼층(500)은 CIGS계 태양전지에 일반적으로 사용되는 CdS층을 적용할 수 있고, 상부 투명 전극층(600)은 ITO 또는 ZnO계열의 투명 전극을 적용할 수 있다. 나아가 상부 투명 전극층(600)과 함께 반사방지층과 그리드 전극 등을 형성할 수 있으며, 이러한 구성은 CIGS 태양전지에서 일반적으로 적용되는 구성이므로 구체적인 설명은 생략한다. The upper buffer layer 500 may apply a CdS layer generally used in CIGS-based solar cells, and the upper transparent electrode layer 600 may apply an ITO or ZnO-based transparent electrode. Furthermore, an anti-reflection layer, a grid electrode, etc. may be formed together with the upper transparent electrode layer 600. Since such a configuration is generally applied to CIGS solar cells, a detailed description thereof will be omitted.

이상에서 확인된 본 발명의 양면 투광형 CIGS계 태양전지는 상부와 하부에 입사된 빛을 모두 발전에 사용할 수 있기 때문에, 양면 투광성이 요구되는 건물일체형태양광발전(BIPV)시스템에 사용되는 건물일체형태양광발전모듈에 적용할 수 있으며, 본 발명의 양면 투광형 CIGS계 태양전지를 적용하는 것을 제외하고 건물일체형태양광발전모듈의 일반적인 기술이 모두 적용될 수 있으므로 구체적인 설명은 생략한다.Since the double-sided transmissive CIGS-based solar cell of the present invention identified above can use both the light incident on the top and the bottom for power generation, the all-in-one building type used in the BIPV system which requires double-sided transmissivity It can be applied to the photovoltaic module, except for applying the double-sided light-transmitting CIGS-based solar cell of the present invention can be applied to the general technology of the integrated building type photovoltaic module all the detailed description is omitted.

또한 본 발명의 양면 투광형 CIGS계 태양전지는 상부에서 입사된 빛이 광흡수층을 지나서 하부 기판까지 통과할 수 있으므로, 전면에서 입사된 빛이 하부셀까지 진행하여야 하는 탠덤태양전지의 상부셀에 적용할 수 있다. 탠텀태양전지에 본 발명의 양면 투광형 CIGS계 태양전지를 적용할 경우에 상부셀의 효율이 향상되면서 전체 탠덤태양전지의 효율이 향상된 탠덤태양전지를 제공할 수 있다. 이때, 상부셀은 상대적으로 아래쪽에 위치하는 셀에 빛을 보내야하는 모든 경우를 포함하는 것이다. 또한, 상부셀 뿐만 아니라 최하부에 위치하는 바닥셀에도 본 발명의 양면 투광형 CIGS계 태양전지 셀을 적용할 수 있으며, 이 경우 양면투과형 탠덤태양전지를 구성하게 된다. 탠덤태양전지에 본 발명의 양면 투광형 CIGS계 태양전지 셀을 적용하는 경우, 상부셀에 적용할 경우 하부 투명 기판을 사용하지 않을 수 있는 점을 제외하고 상기한 구성 및 제조방법을 그대로 적용할 수 있으며, 또한 본 발명의 특징을 해치지 않는 범위에서 일반적으로 알려진 모든 탠덤태양전지의 구조 및 제조방법을 적용할 수 있으므로 구체적인 설명은 생략한다.In addition, the double-sided transmissive CIGS-based solar cell of the present invention can pass through the light absorbing layer to the lower substrate, the light incident from the upper, it is applied to the upper cell of the tandem solar cell that the incident light from the front should proceed to the lower cell can do. When the double-sided transmissive CIGS-based solar cell of the present invention is applied to a tandem solar cell, it is possible to provide a tandem solar cell having improved efficiency of the entire tandem solar cell while improving the efficiency of the upper cell. At this time, the upper cell includes all cases that need to send light to the cell located relatively lower. In addition, the double-sided transmissive CIGS-based solar cell of the present invention can be applied not only to the top cell but also to the bottom cell positioned at the bottom thereof, in which case the double-sided transmissive tandem solar cell is configured. When applying the double-sided transmissive CIGS-based solar cell of the present invention to tandem solar cells, the above configuration and manufacturing method can be applied as it is, except that the lower transparent substrate may not be used when applied to the upper cell. In addition, since the structure and manufacturing method of all known tandem solar cells can be applied in a range that does not impair the features of the present invention, a detailed description thereof will be omitted.

이상 본 발명을 바람직한 실시예를 통하여 설명하였는데, 상술한 실시예는 본 발명의 기술적 사상을 예시적으로 설명한 것에 불과하며, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 변화가 가능함은 이 분야에서 통상의 지식을 가진 자라면 이해할 수 있을 것이다. 따라서 본 발명의 보호범위는 특정 실시예가 아니라 특허청구범위에 기재된 사항에 의해 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술적 사상도 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.While the present invention has been described through the preferred embodiments, the above-described embodiments are merely illustrative of the technical idea of the present invention, and various changes may be made without departing from the technical idea of the present invention. Those of ordinary skill will understand. Therefore, the protection scope of the present invention should be interpreted not by the specific embodiments, but by the matters described in the claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.

100: 투명 기판
200: 하부 투명 전극층
300: 금속 나노입자
400: CIGS계 광흡수층
410: 패시베이션층
500: 상부 버퍼층
600: 상부 투명 전극층
100: transparent substrate
200: lower transparent electrode layer
300: metal nanoparticles
400: CIGS light absorption layer
410: passivation layer
500: upper buffer layer
600: upper transparent electrode layer

Claims (15)

투명 재질의 하부 기판;
하부 기판 위에 형성된 투명전도성산화물 재질의 하부 투명 전극층;
상기 하부 투명 전극층 위에 분산된 금속 나노입자;
금속 나노입자가 분산된 하부 투명 전극 위에 형성되어 후면재결합을 방지하는 산화갈륨 재질의 패시베이션층;
상기 패시베이션층 위에 형성된 CIGS계 재질의 광흡수층;
상기 광흡수층 위에 형성된 상부 버퍼층; 및
상기 상부 버퍼층 위에 형성된 상부 투명 전극층을 포함하여 구성되며,
입경이 2~50nm 범위인 금속 나노입자가 상기 하부 투명 전극층 표면의 10% 이하를 덮도록 분산됨으로써, 상기 광흡수층은 상기 패시베이션층의 표면에 노출된 금속 나노입자에 접촉하여 로컬라이즈드 컨택을 형성한 것을 특징으로 하는 산화갈륨 패시베이션층이 삽입된 고효율 양면 투광형 CIGS계 태양전지.
A lower substrate of a transparent material;
A lower transparent electrode layer made of a transparent conductive oxide material formed on the lower substrate;
Metal nanoparticles dispersed on the lower transparent electrode layer;
A passivation layer of gallium oxide material formed on the lower transparent electrode on which the metal nanoparticles are dispersed to prevent back recombination;
A light absorption layer of CIGS-based material formed on the passivation layer;
An upper buffer layer formed on the light absorption layer; And
It comprises a top transparent electrode layer formed on the upper buffer layer,
By dispersing metal nanoparticles having a particle diameter in a range of 2 to 50 nm to cover 10% or less of the surface of the lower transparent electrode layer, the light absorption layer contacts local metal nanoparticles exposed on the surface of the passivation layer to form localized contacts. A high efficiency double-sided transmissive CIGS solar cell having a gallium oxide passivation layer inserted therein.
청구항 1에 있어서,
상기 금속 나노입자가 Mo 재질인 것을 특징으로 하는 산화갈륨 패시베이션층이 삽입된 고효율 양면 투광형 CIGS계 태양전지.
The method according to claim 1,
High-efficiency double-sided transmissive CIGS-based solar cell is inserted gallium oxide passivation layer, characterized in that the metal nanoparticles are Mo material.
삭제delete 삭제delete ◈청구항 5은(는) 설정등록료 납부시 포기되었습니다.◈Claim 5 was abandoned upon payment of a set-up fee. 청구항 1에 있어서,
상기 광흡수층의 두께가 500nm 이하인 것을 특징으로 하는 산화갈륨 패시베이션층이 삽입된 고효율 양면 투광형 CIGS계 태양전지.
The method according to claim 1,
A high efficiency double-sided transmissive CIGS solar cell having a gallium oxide passivation layer inserted therein, wherein the light absorption layer has a thickness of 500 nm or less.
투명 재질의 하부 기판 위에 투명전도성산화물 재질의 하부 투명 전극층을 형성하는 단계;
상기 하부 투명 전극층의 위에 입경이 2~50nm 범위인 금속 나노입자를 상기 하부 투명 전극층 표면의 10% 이하를 덮도록 분산하여 위치시키는 단계;
금속 나노입자가 분산된 하부 투명 전극층 위에 CIGS계 재질의 광흡수층을 형성하는 단계;
상기 광흡수층의 위에 상부 버퍼층을 형성하는 단계; 및
상기 상부 버퍼층 위에 상부 투명 전극층을 형성하는 단계를 포함하며,
상기 광흡수층을 형성하는 단계에서, 상기 광흡수층과 상기 하부 투명 전극층의 계면에서 산화갈륨이 형성되어 상기 금속 나노입자가 배치된 곳을 제외한 곳에 산화갈륨 재질의 층을 형성하고, 산화갈륨 재질의 층이 후면재결합을 방지하는 패시베이션층으로 기능하며, 상기 광흡수층은 상기 패시베이션층의 표면에 노출된 금속 나노입자에 접촉하여 로컬라이즈드 컨택을 형성하는 것을 특징으로 하는 산화갈륨 패시베이션층이 삽입된 고효율 양면 투광형 CIGS계 태양전지의 제조방법.
Forming a lower transparent electrode layer of a transparent conductive oxide material on a lower substrate of a transparent material;
Dispersing and placing metal nanoparticles having a particle size in a range of 2 to 50 nm on the lower transparent electrode layer to cover 10% or less of the surface of the lower transparent electrode layer;
Forming a light absorption layer of a CIGS-based material on the lower transparent electrode layer in which metal nanoparticles are dispersed;
Forming an upper buffer layer on the light absorbing layer; And
Forming an upper transparent electrode layer on the upper buffer layer;
In the forming of the light absorption layer, gallium oxide is formed at the interface between the light absorption layer and the lower transparent electrode layer to form a gallium oxide layer except where the metal nanoparticles are disposed, and the gallium oxide layer It functions as a passivation layer that prevents the back recombination, the light absorption layer is a high efficiency double-sided gallium oxide passivation layer is inserted, characterized in that to form a localized contact in contact with the metal nanoparticles exposed on the surface of the passivation layer Method of manufacturing a transmissive CIGS solar cell.
청구항 6에 있어서,
상기 광흡수층을 형성하는 단계를 수행하는 과정에서 적어도 일부는 500℃이상의 온도에서 수행되는 것을 특징으로 하는 산화갈륨 패시베이션층이 삽입된 고효율 양면 투광형 CIGS계 태양전지의 제조방법.
The method according to claim 6,
At least a part of the process of forming the light absorption layer is a manufacturing method of a high efficiency double-sided transmissive CIGS-based solar cell inserted gallium oxide passivation layer, characterized in that carried out at a temperature of 500 ℃ or more.
청구항 6에 있어서,
상기 광흡수층을 형성하는 단계 이후에 500℃ 이상의 온도로 열처리하여 산화갈륨 재질의 패시베이션층을 형성하는 단계를 더 수행하는 것을 특징으로 하는 산화갈륨 패시베이션층이 삽입된 고효율 양면 투광형 CIGS계 태양전지의 제조방법.
The method according to claim 6,
After the step of forming the light absorption layer of the high-efficiency double-sided transmissive CIGS-based solar cell is inserted into the gallium oxide passivation layer characterized in that the step of further performing a heat treatment at a temperature of 500 ℃ or more. Manufacturing method.
◈청구항 9은(는) 설정등록료 납부시 포기되었습니다.◈Claim 9 was abandoned upon payment of a set-up fee. 청구항 6에 있어서,
상기 광흡수층의 두께가 500nm 이하가 되도록 하는 것을 특징으로 하는 산화갈륨 패시베이션층이 삽입된 고효율 양면 투광형 CIGS계 태양전지의 제조방법.
The method according to claim 6,
The method of manufacturing a high-efficiency double-sided transmissive CIGS solar cell having a gallium oxide passivation layer inserted, characterized in that the thickness of the light absorption layer is 500nm or less.
◈청구항 10은(는) 설정등록료 납부시 포기되었습니다.◈Claim 10 has been abandoned upon payment of a setup registration fee. 청구항 6에 있어서,
상기 금속 나노입자가 Mo 인 것을 특징으로 하는 산화갈륨 패시베이션층이 삽입된 고효율 양면 투광형 CIGS계 태양전지의 제조방법.
The method according to claim 6,
The method of manufacturing a high-efficiency double-sided transmissive CIGS-based solar cell with a gallium oxide passivation layer is characterized in that the metal nanoparticles are Mo.
삭제delete 삭제delete ◈청구항 13은(는) 설정등록료 납부시 포기되었습니다.◈Claim 13 was abandoned upon payment of a set-up fee. 청구항 6에 있어서,
상기 금속 나노입자를 분산하여 위치시키는 공정이 스프레이법, 디핑법 및 스핀 코팅법 중에 하나의 방법으로 수행되는 것을 특징으로 하는 산화갈륨 패시베이션층이 삽입된 고효율 양면 투광형 CIGS계 태양전지의 제조방법.
The method according to claim 6,
The method of dispersing and positioning the metal nanoparticles is performed by one of a spray method, a dipping method and a spin coating method.
양면에 입사되는 빛을 모두 발전에 사용할 수 있는 태양전지를 포함하는 건물일체형태양광발전모듈로서,
상기 태양전지가,
투명 재질의 하부 기판;
하부 기판 위에 형성된 투명전도성산화물 재질의 하부 투명 전극층;
상기 하부 투명 전극층 위에 분산된 금속 나노입자;
금속 나노입자가 분산된 하부 투명 전극 위에 형성되어 후면재결합을 방지하는 산화갈륨 재질의 패시베이션층;
상기 패시베이션층 위에 형성된 CIGS계 재질의 광흡수층;
상기 광흡수층 위에 형성된 상부 버퍼층; 및
상기 상부 버퍼층 위에 형성된 상부 투명 전극층을 포함하여 구성되며,
입경이 2~50nm 범위인 금속 나노입자가 상기 하부 투명 전극층 표면의 10% 이하를 덮도록 분산됨으로써, 상기 광흡수층은 상기 패시베이션층의 표면에 노출된 금속 나노입자에 접촉하여 로컬라이즈드 컨택을 형성한, 산화갈륨 패시베이션층이 삽입된 고효율 양면 투광형 CIGS계 태양전지인 것을 특징으로 하는 건물일체형태양광발전모듈.
As a building integrated photovoltaic power generation module including a solar cell that can use both the light incident on both sides for power generation,
The solar cell,
A lower substrate of a transparent material;
A lower transparent electrode layer made of a transparent conductive oxide material formed on the lower substrate;
Metal nanoparticles dispersed on the lower transparent electrode layer;
A passivation layer of gallium oxide material formed on the lower transparent electrode on which the metal nanoparticles are dispersed to prevent back recombination;
A light absorption layer of CIGS-based material formed on the passivation layer;
An upper buffer layer formed on the light absorption layer; And
It is configured to include an upper transparent electrode layer formed on the upper buffer layer,
By dispersing metal nanoparticles having a particle diameter in a range of 2 to 50 nm to cover 10% or less of the surface of the lower transparent electrode layer, the light absorption layer contacts local metal nanoparticles exposed on the surface of the passivation layer to form localized contacts. The building integrated solar power generation module, characterized in that the gallium oxide passivation layer is a high-efficiency double-sided transmission type CIGS-based solar cell.
2개 이상의 태양전지 셀이 적층된 탠덤태양전지로서,
복수의 태양전지 셀 중에 적어도 하나가,
투명전도성산화물 재질의 하부 투명 전극층;
상기 하부 투명 전극층 위에 분산된 금속 나노입자;
금속 나노입자가 분산된 하부 투명 전극 위에 형성되어 후면재결합을 방지하는 산화갈륨 재질의 패시베이션층;
상기 패시베이션층 위에 형성된 CIGS계 재질의 광흡수층;
상기 광흡수층 위에 형성된 상부 버퍼층; 및
상기 상부 버퍼층 위에 형성된 상부 투명 전극층을 포함하여 구성되며,
입경이 2~50nm 범위인 금속 나노입자가 상기 하부 투명 전극층 표면의 10% 이하를 덮도록 분산됨으로써, 상기 광흡수층은 상기 패시베이션층의 표면에 노출된 금속 나노입자에 접촉하여 로컬라이즈드 컨택을 형성한, 산화갈륨 패시베이션층이 삽입된 고효율 양면 투광형 CIGS계 태양전지인 것을 특징으로 하는 탠덤태양전지.
Tandem solar cells in which two or more solar cells are stacked,
At least one of the plurality of solar cells,
A lower transparent electrode layer made of a transparent conductive oxide material;
Metal nanoparticles dispersed on the lower transparent electrode layer;
A passivation layer of gallium oxide material formed on the lower transparent electrode on which the metal nanoparticles are dispersed to prevent back recombination;
A light absorption layer of CIGS-based material formed on the passivation layer;
An upper buffer layer formed on the light absorption layer; And
It comprises a top transparent electrode layer formed on the upper buffer layer,
By dispersing metal nanoparticles having a particle diameter in a range of 2 to 50 nm to cover 10% or less of the surface of the lower transparent electrode layer, the light absorption layer contacts local metal nanoparticles exposed on the surface of the passivation layer to form localized contacts. Tandem solar cell, characterized in that the gallium oxide passivation layer is a high-efficiency double-sided transmissive CIGS-based solar cell.
KR1020180024297A 2018-02-28 2018-02-28 Bifacial solar cell with gallium oxide passivation layer and manufacturing method for the solar cell, tandem solar cell and bipv module using the solar cell KR102009308B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180024297A KR102009308B1 (en) 2018-02-28 2018-02-28 Bifacial solar cell with gallium oxide passivation layer and manufacturing method for the solar cell, tandem solar cell and bipv module using the solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180024297A KR102009308B1 (en) 2018-02-28 2018-02-28 Bifacial solar cell with gallium oxide passivation layer and manufacturing method for the solar cell, tandem solar cell and bipv module using the solar cell

Publications (1)

Publication Number Publication Date
KR102009308B1 true KR102009308B1 (en) 2019-08-09

Family

ID=67613775

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180024297A KR102009308B1 (en) 2018-02-28 2018-02-28 Bifacial solar cell with gallium oxide passivation layer and manufacturing method for the solar cell, tandem solar cell and bipv module using the solar cell

Country Status (1)

Country Link
KR (1) KR102009308B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140114366A (en) * 2011-12-15 2014-09-26 다우 글로벌 테크놀로지스 엘엘씨 Method of forming optoelectronic device having a stabilized metal oxide layer
KR20150019132A (en) * 2013-08-12 2015-02-25 삼성전자주식회사 Light transmission type two sided solar cell
KR101497955B1 (en) 2013-07-25 2015-03-03 한국에너지기술연구원 Light transmitting back contact and solar cell using the same, and methods of manufacturing them
KR101778723B1 (en) * 2016-11-17 2017-09-25 한국에너지기술연구원 Manufacturing method for cigs base photovoltaic cell and cigs base photovoltaic cell
KR101825032B1 (en) * 2016-10-27 2018-02-05 한국에너지기술연구원 Chalcogenide solar cell and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140114366A (en) * 2011-12-15 2014-09-26 다우 글로벌 테크놀로지스 엘엘씨 Method of forming optoelectronic device having a stabilized metal oxide layer
KR101497955B1 (en) 2013-07-25 2015-03-03 한국에너지기술연구원 Light transmitting back contact and solar cell using the same, and methods of manufacturing them
KR20150019132A (en) * 2013-08-12 2015-02-25 삼성전자주식회사 Light transmission type two sided solar cell
KR101825032B1 (en) * 2016-10-27 2018-02-05 한국에너지기술연구원 Chalcogenide solar cell and method of manufacturing the same
KR101778723B1 (en) * 2016-11-17 2017-09-25 한국에너지기술연구원 Manufacturing method for cigs base photovoltaic cell and cigs base photovoltaic cell

Similar Documents

Publication Publication Date Title
US9583655B2 (en) Method of making photovoltaic device having high quantum efficiency
US20120138129A1 (en) Bifacial solar cell
US20090165845A1 (en) Back contact module for solar cell
US20130306130A1 (en) Solar module apparatus with edge reflection enhancement and method of making the same
CN111279492B (en) Solar cell, multi-junction solar cell, solar cell module, and solar power generation system
CN218831178U (en) Solar laminated cell, cell module and photovoltaic system
CN102097514B (en) Solar cell
US8536447B2 (en) Electrode of solar cell and fabricating method thereof
Iftiquar et al. Analysis of optical absorption and quantum efficiency due to light trapping in an–i–p type amorphous silicon solar cell with textured back reflector
US20170194525A1 (en) High power solar cell module
Patel et al. Field‐induced transparent electrode‐integrated transparent solar cells and heater for active energy windows: Broadband energy harvester
CN102082190B (en) Solar battery and manufacturing method thereof
US20120118364A1 (en) Solar cell
KR20190103706A (en) Bifacial solar cell with hole transport layer and manufacturing method for the solar cell, tandem solar cell and bipv module using the solar cell
CN219628267U (en) Solar laminated battery, battery assembly and photovoltaic system
KR101241514B1 (en) Solar cell apparatus and method of fabricating the same
US8440903B1 (en) Method and structure for forming module using a powder coating and thermal treatment process
Selmane et al. Effect of ZnO‐based TCO on the performance of a‐Si H (n)/a‐Si H (i)/c‐Si H (p)/Al BSF (p+)/Al heterojunction solar cells
KR102009308B1 (en) Bifacial solar cell with gallium oxide passivation layer and manufacturing method for the solar cell, tandem solar cell and bipv module using the solar cell
CN115602692A (en) Solar laminated cell, cell module and photovoltaic system
US8841546B2 (en) Paste and solar cell using the same
CN102593193A (en) Thin film solar cell and method for manufacturing the same
CN218831182U (en) Solar laminated cell, cell module and photovoltaic system
KR20200017007A (en) solar cell string and manufacturing method thereof
KR20150092616A (en) Solar cell module

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant