KR102000927B1 - An N-deoxyribosyl transferase mutant, and a method for producing nucleoside using the same - Google Patents

An N-deoxyribosyl transferase mutant, and a method for producing nucleoside using the same Download PDF

Info

Publication number
KR102000927B1
KR102000927B1 KR1020170127448A KR20170127448A KR102000927B1 KR 102000927 B1 KR102000927 B1 KR 102000927B1 KR 1020170127448 A KR1020170127448 A KR 1020170127448A KR 20170127448 A KR20170127448 A KR 20170127448A KR 102000927 B1 KR102000927 B1 KR 102000927B1
Authority
KR
South Korea
Prior art keywords
deoxy
mutant
deoxyribosyltransferase
microorganism
nucleoside
Prior art date
Application number
KR1020170127448A
Other languages
Korean (ko)
Other versions
KR20190037771A (en
Inventor
노갑수
김병균
최강현
Original Assignee
에스티팜 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스티팜 주식회사 filed Critical 에스티팜 주식회사
Priority to KR1020170127448A priority Critical patent/KR102000927B1/en
Priority to PCT/KR2018/003473 priority patent/WO2019066172A1/en
Publication of KR20190037771A publication Critical patent/KR20190037771A/en
Application granted granted Critical
Publication of KR102000927B1 publication Critical patent/KR102000927B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1077Pentosyltransferases (2.4.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/18Preparation of compounds containing saccharide radicals produced by the action of a glycosyl transferase, e.g. alpha-, beta- or gamma-cyclodextrins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/38Nucleosides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/02Pentosyltransferases (2.4.2)
    • C12Y204/02006Nucleoside deoxyribosyltransferase (2.4.2.6)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 N-데옥시리보실 트랜스퍼라아제 변이체, 상기 변이체를 코딩하는 폴리뉴클레오티드, 상기 폴리뉴클레오티드를 포함하는 벡터 및 미생물, 및 이를 이용한 뉴클레오시드의 제조방법에 관한 것이다. The present invention relates to a N-deoxyribosyltransferase mutant, a polynucleotide encoding the mutant, a vector containing the polynucleotide and a microorganism, and a method for producing a nucleoside using the polynucleotide.

Description

N-데옥시리보실 트랜스퍼라아제 변이체 및 이를 이용한 뉴클레오시드의 제조방법{An N-deoxyribosyl transferase mutant, and a method for producing nucleoside using the same} Deoxyribosyl transferase mutant, and a method for producing a nucleoside using the mutant N-deoxyribosyl transferase mutant, and a method for producing nucleoside using the same,

본 발명은 N-데옥시리보실 트랜스퍼라아제 변이체, 상기 변이체를 코딩하는 폴리뉴클레오티드, 상기 폴리뉴클레오티드를 포함하는 벡터 및 미생물, 및 이를 이용한 뉴클레오시드의 제조방법에 관한 것이다. The present invention relates to a N-deoxyribosyltransferase mutant, a polynucleotide encoding the mutant, a vector containing the polynucleotide and a microorganism, and a method for producing a nucleoside using the polynucleotide.

올리고뉴클레오티드 치료제는 생체 내에서 유전정보를 가지는 DNA 및 RNA와 직접 결합하여 질환과 관련된 단백질의 생성을 원천적으로 차단 (안티센스 약물)하거나, 단백질과 결합하는 앱타머, double strand로 작용하는 small-interferring RNA (siRNA), micro-RNA 및 안타고미르 (antagomir)와 전사인자 (transcription factor)에 결합하여 작용하는 Decoy, 면역 활성을 일으키는 CpG 올리고뉴클레오티드 등 다양한 기전을 갖는 약물로 개발되고 있다.The oligonucleotide therapeutic agent directly binds DNA or RNA having genetic information in vivo to block disease-related protein production (antisense drug), aptamer that binds protein, small-interferring RNA functioning as double strand such as siRNA, micro-RNA and antagomir, Decoy acting on transcription factors, and CpG oligonucleotides that cause immune activation.

이러한 올리고뉴클레오티드 치료제가 목적한 세포 내로 도입되어 활성을 나타내기 위해서는 다양한 핵산분해효소에 의한 빠른 분해를 포함하는 생체 내 조건에 저항할 수 있는 안정성의 증대가 필요하다. 이에 따라, 비 천연형 뉴클레오시드 (핵산의 구성요소인 염기 또는 당에 화학적 변형을 도입한 뉴클레오시드)를 이용하여 올리고뉴클레오시드의 안정성을 높이기 위한 다양한 연구가 진행되어왔다.In order for these oligonucleotide therapeutic agents to be introduced into desired cells and exhibit activity, it is necessary to increase the stability to resist in vivo conditions including rapid degradation by various nucleic acid degrading enzymes. Accordingly, various studies have been made to increase the stability of oligonucleosides by using an unnatural nucleoside (a nucleotide which is a component of nucleic acid or a nucleoside introducing a chemical modification into sugar).

특히, 2'-데옥시-2'-플루오로뉴클레오시드는 생체 내 핵산 분해효소에 대한 안정성이 우수하고, RNA duplexes 구조 형성 시 뉴클레오티드 개수 당 약 1.8℃의 결합온도 (melting temperature)가 상승하는 열역학적 결과가 확인된 바 있어 최근 올리고뉴클레오티드 치료제의 원료로 주목받는 물질이다. 2'-데옥시-2'-플루오로뉴클레오시드는 올리고 뉴클레오티드의 원료로서 지금까지 효소를 사용한 산업적 제조가 어려운 물질로 알려져 왔다. 현재까지 2'-데옥시-2'-플루오로뉴클레오시드의 생물전환을 이용한 효소적 제조방법은 두 가지 종류가 보고된 바 있다. 하나는 Lactobacillus reuteri 유래 N-데옥시리보실 트랜스퍼라아제를 사용하여 2'-플루오로-2' 데옥시뉴클레오시드에 대한 반응성을 확인하였으며, 다른 하나는 퓨린 포스포릴라아제 (purine phosphorylase) 및 피리미딘 포스포릴라아제 (pyrimidine phosphorylase)를 사용하여 생물전환을 이용한 효소적 제조방법이 알려져 있다. 그러나, 기존에 알려진 생물전환 공정은 다량의 효소 사용, 낮은 기질 농도 및 오랜 반응 시간 등 낮은 순도 및 수율을 나타내어 제조공정 상 어려움이 있었다. In particular, the 2'-deoxy-2'-fluoronucleosides are excellent in stability against in vivo nucleic acid degrading enzymes, and are thermodynamically stable with an increase in the melting temperature of about 1.8 ° C. per the number of nucleotides in the formation of the RNA duplexes The results have been confirmed and are recently attracting attention as a raw material for an oligonucleotide therapeutic agent. 2'-deoxy-2'-fluoro nucleoside has been known as an industrially difficult substance using an enzyme as a raw material of oligonucleotides so far. Up to now, two kinds of enzymatic production methods using biotransformation of 2'-deoxy-2'-fluoro nucleoside have been reported. One was confirmed by using N-deoxyribosyltransferase derived from Lactobacillus reuteri to react with 2'-fluoro-2 'deoxynucleoside, and the other was purine phosphorylase and An enzymatic preparation method using biotransformation using pyrimidine phosphorylase is known. However, the conventional bioconversion process has a difficulty in the manufacturing process because it shows low purity and yield such as a large amount of enzyme use, low substrate concentration and long reaction time.

또한, 효소 합성법은 비용이나 효율 면에서 2'-데옥시-2'-플루오로뉴클레오시드의 공업적 생산을 가능케 하는 방법이나, 화학합성법이나 가수분해법과는 달리 생물학적 촉매인 효소를 사용하는 만큼, 효소의 종류, 유래 및 아미노산 서열상의 미세한 차이, 플라스미드 컨스트럭트 (construct), 숙주균주, 유전자 발현을 위한 배양 조건 등의 차이에 따라 최종산물의 수율과 안정적 생산에 큰 차이를 보이는 문제가 있다. In addition, the enzyme synthesis method is a method which enables the industrial production of 2'-deoxy-2'-fluoro nucleoside in terms of cost and efficiency, but unlike a chemical synthesis method or a hydrolysis method, an enzyme which is a biological catalyst is used There is a problem in that the yield and stable production of the final product differ greatly depending on differences in the types of enzymes, differences in the origins and amino acid sequences, plasmid constructs, host strains, and culture conditions for gene expression .

따라서, 효율적이고 안정적인 2'-데옥시-2'-플루오로뉴클레오시드의 생산을 위해서는 활성이 강하고 안정적으로 발현하는 효소 유전자를 탐색함과 아울러, 이들 유전자가 안정적으로 발현될 수 있는 유전자 발현 시스템을 구축할 필요가 있다.Therefore, in order to produce an efficient and stable 2'-deoxy-2'-fluoro nucleoside, an enzyme gene having a strong activity and stable expression is searched, and a gene expression system capable of stably expressing these genes .

이러한 기술적 배경 하에서, 본 발명자들은 높은 활성을 갖는 신규의 N-데옥시리보실 트랜스퍼라아제를 개발하고자 예의 노력한 결과, 2'-데옥시-2'-플루오로뉴클레오시드에 높은 기질 반응성을 갖는 신규한 N-데옥시리보실 트랜스퍼라아제 변이체를 개발하고, 이러한 N-데옥시리보실 트랜스퍼라아제 변이체를 이용하여 고수율 및 고순도로 올리고뉴클레오시드를 생산할 수 있음을 확인함으로써 본 발명을 완성하였다.Under these technical backgrounds, the present inventors have made intensive efforts to develop novel N-deoxyribosyltransferases having high activity, and have found that they have high substrate reactivity to 2'-deoxy-2'-fluoronucleosides It was found that a novel N-deoxyribosyltransferase mutant can be produced and that an oligonucleoside can be produced with high yield and high purity using this N-deoxyribosyltransferase mutant Respectively.

본 발명의 하나의 목적은 당 전이 (transglycosylation) 활성 및 기질 반응성이 우수한 N-데옥시리보실 트랜스퍼라아제 변이체을 제공하는 것이다.One object of the present invention is to provide an N-deoxyribosyltransferase mutant having excellent transglycosylation activity and substrate reactivity.

본 발명의 다른 목적은 상기 변이체를 코딩하는 폴리뉴클레오티드, 상기 폴리뉴클레오티드를 포함하는 벡터, 상기 벡터가 도입된 미생물, 상기 미생물을 이용한 N-데옥시리보실 트랜스퍼라아제 변이체를 생산하는 방법을 제공하는 것이다.Another object of the present invention is to provide a polynucleotide encoding the mutant, a vector containing the polynucleotide, a microorganism into which the vector is introduced, and a method for producing an N-deoxyribosyltransferase mutant using the microorganism will be.

본 발명의 또 다른 목적은 상기 N-데옥시리보실 트랜스퍼라아제 변이체 또는 상기 변이체가 발현되어 있는 미생물을 이용하여 뉴클레오시드를 제조하는 방법을 제공하는 것이다.It is still another object of the present invention to provide a method for producing a nucleoside using the N-deoxyribosyltransferase mutant or a microorganism expressing the mutant.

이를 구체적으로 설명하면 다음과 같다. 한편, 본 발명에서 개시된 각각의 설명 및 실시형태는 각각의 다른 설명 및 실시 형태에도 적용될 수 있다. 즉, 본 발명에서 개시된 다양한 요소들의 모든 조합이 본 발명의 범주에 속한다. 또한, 하기 기술된 구체적인 서술에 의하여 본 발명의 범주가 제한된다고 볼 수 없다.This will be described in detail as follows. On the other hand, each description and embodiment disclosed in the present invention can be applied to each other description and embodiment. That is, all combinations of various elements disclosed in the present invention fall within the scope of the present invention. Further, the scope of the present invention is not limited by the detailed description described below.

상기의 목적을 달성하기 위한 본 발명의 하나의 양태는, 서열번호 2의 아미노산 서열에서 59번째 루신(Leucine)이 글루타민(Glutamine)으로 치환된 L59Q 변이를 포함하는 N-데옥시리보실 트랜스퍼라아제 (nucleoside deoxyribosyl transferase; NDT) 변이체를 제공한다.One aspect of the present invention for attaining the above object is to provide a method for producing an N-deoxyribosyltransferase comprising the L59Q mutation in which the 59th leucine in the amino acid sequence of SEQ ID NO: 2 is substituted with glutamine (nucleoside deoxyribosyl transferase (NDT) variant.

본 발명의 N-데옥시리보실 트랜스퍼라아제 변이체는 2'-데옥시-2'-플루오로리보스의 전달 (transfer) 또는 당 전이 (transglycosylation) 반응을 매우 효율적으로 촉매하는 활성을 나타내며, 기존에 알려진 N-데옥시리보실 트랜스퍼라아제와 비교하여 높은 활성 및 기질 반응성을 나타내는 특징이 있다.The N-deoxyribosyltransferase mutant of the present invention exhibits an activity of highly efficiently catalyzing the transfer or transglycosylation reaction of 2'-deoxy-2'-fluororibos, There is a characteristic of exhibiting high activity and substrate reactivity compared to the known N-deoxyribosyltransferase.

상기 N-데옥시리보실 트랜스퍼라아제 변이체는 2'-데옥시-2'-플루오로뉴클레오시드 (2'-Deoxy-2'-fluoronucleoside)에 대한 기질 반응성이 증가되어 있는 것일 수 있고, 상기 2'-데옥시-2'-플루오로뉴클레오시드는 2'-데옥시-2'-플루오로우리딘 (2'-Deoxy-2'-fluorouridine)일 수 있으며, 이에 제한되지 않는다. The N-deoxyribosyltransferase mutant may have an increased substrate reactivity to 2'-Deoxy-2'-fluoronucleoside, The 2'-deoxy-2'-fluoro nucleoside may be, but is not limited to, 2'-Deoxy-2'-fluorouridine.

상기 서열번호 2의 아미노산 서열을 갖는 N-데옥시리보실 트랜스퍼라아제는 락토바실러스 델부르에키 (Lactobacillus delbrueckii)에서 유래한 것일 수 있다. 상기 NDT 변이체는 서열번호 2에서 59번째 아미노산인 루신(L)이 글루타민(Q)으로 치환된 것일 수 있으며, 구체적으로 서열번호 10의 아미노산 서열을 가질 수 있다.The N-deoxyribosyltransferase having the amino acid sequence of SEQ ID NO: 2 was obtained from Lactobacillus strain < RTI ID = 0.0 > delbrueckii . < / RTI > The NDT mutant may have the amino acid sequence of SEQ ID NO: 10, in which leucine (L), which is the 59th amino acid in SEQ ID NO: 2, is substituted with glutamine (Q).

본 발명에서 용어, "N-데옥시리보실 트랜스퍼라아제 (NDT)"는 트란스-N-데옥시리보실라제 (trans-N-deoxyribosylase)로도 불리는 효소로서 락토바실러스 헬베티쿠스 (Lactobacillus helveticus) 균주에서 처음 발견되었고 (Biochem. J. 50: 383-397, 1952년), DRTase I 및 II의 두 종류의 동위효소가 알려져 있다. 이 중 DRTase I은 두 퓨린 (purine) 사이에서 데옥시리보스의 전달 (transfer) 반응을 촉매하고, DRTase II는 퓨린 간, 피리미딘 (pyrimidine) 간 또는 퓨린과 피리미딘 간 데옥시리보스의 전달 반응을 촉매한다. 락토바실러스 레이크만니 (Lactobacillus leichmannii) DRTase II는 이러한 전달 반응뿐만 아니라, 수용체 염기 (acceptor base)가 없을 경우 뉴클레오시드를 염기와 데옥시리보오스로 가수분해하는 활성도 가지고 있다. L. helveticus 또는 L. leichmannii 균주 유래의 DRTase II 효소는 수용체 염기에 대한 낮은 특이성 (specificity)과 당 전이 반응 시 베타-아노머 (β-anomer)만을 생성하는 입체 특이성 (stereospecificity)을 가지고 있어, 많은 항바이러스 (antiviral) 혹은 항암 뉴클레오시드 아날로그 합성에 이들 두 균주의 crude extract가 많이 사용되고 있다.The term "N-deoxyribosyltransferase (NDT)" in the present invention refers to an enzyme also called trans-N-deoxyribosylase, which is a strain of Lactobacillus helveticus (Biochem. J. 50: 383-397, 1952), two isotopes of DRTase I and II are known. Among them, DRTase I catalyzes the transfer reaction of deoxyribose between two purines and DRTase II catalyzes the transfer of purine, pyrimidine or purine and pyrimidine deoxyribose Catalyzed. Lactobacillus leichmannii DRTase II has the activity of hydrolyzing the nucleoside to base and deoxyribose in the absence of the acceptor base, as well as this transfer reaction. The DRTase II enzyme derived from L. helveticus or L. leichmannii strain has low specificity for the receptor base and stereospecificity for producing only the β-anomer in the sugar transfer reaction, Crude extracts of these two strains are widely used for analog synthesis of antiviral or anticancer nucleosides.

본 발명의 일 구현예로서, 상기 서열번호 2의 아미노산 서열에서 L59Q 변이를 포함하는 NDT 변이체는 서열번호 10의 아미노산 서열을 포함하는 변이체일 수 있다.In one embodiment of the present invention, the NDT variant comprising the L59Q mutation in the amino acid sequence of SEQ ID NO: 2 may be a mutant comprising the amino acid sequence of SEQ ID NO: 10.

본 발명의 구체적인 일 실시예에서는, 서열번호 1의 뉴클레오티드 서열을 포함하는 NDT 유전자를 주형으로 하여 실수유발 (Error prone) PCR법에 의한 NDT 무작위 돌연변이 (random mutation) 균주 라이브러리를 확보하였으며, 이들로부터 2'-데옥시-2'-플루오로우리딘 (2'-Deoxy-2'-Fluorouridine; 2FDU)를 이용한 기질 특이성 스크리닝을 통해 선별된 본 발명의 변이체는 서열번호 2의 아미노산 서열을 갖는 NDT 대비 높은 활성 및 기질 반응성을 나타내는 것을 확인하였다 (실시예 3 및 실시예 4). In one specific embodiment of the present invention, NDT random mutation strain library was obtained by error prone PCR using the NDT gene containing the nucleotide sequence of SEQ ID NO: 1 as a template, The variants of the present invention screened through substrate specificity screening with 2'-Deoxy-2'-Fluorouridine (2FDU) are higher than NDT with the amino acid sequence of SEQ ID NO: 2 Activity and substrate reactivity (Examples 3 and 4).

본 발명은 다른 양태로서, 상기 NDT 변이체를 코딩하는 폴리뉴클레오티드, 상기 폴리뉴클레오티드를 포함하는 재조합벡터, 상기 재조합벡터가 도입된 미생물, 및 상기 미생물을 이용한 NDT 변이체의 생산방법을 제공한다.In another aspect, the present invention provides a polynucleotide encoding the NDT variant, a recombinant vector comprising the polynucleotide, a microorganism into which the recombinant vector is introduced, and a method for producing the NDT mutant using the microorganism.

상기 NDT 변이체는 상기에서 설명한 바와 같다.The NDT mutant is as described above.

본 명세서에서 사용되는 용어, "폴리뉴클레오티드"는 DNA (gDNA 및 cDNA) 및 RNA 분자를 포괄적으로 포함하는 의미를 가지며, 폴리뉴클레오티드에서 기본 구성단위인 뉴클레오티드는 자연의 뉴클레오티드뿐만 아니라, 당 또는 염기 부위가 변형된 유사체 (analogue)도 포함한다 (Scheit, Nucleotide Analogs, John Wiley, New York(1980); Uhlman 및 Peyman, Chemical Reviews, (1990) 90:543-584). 상기 폴리뉴클레오티드는 분리된 폴리뉴클레오티드일 수 있다. As used herein, the term "polynucleotide" has the meaning inclusive of DNA (gDNA and cDNA) and RNA molecules, and in the polynucleotide, the nucleotide which is a basic constituent unit is not only a natural nucleotide, Also included are modified analogues (Scheit, Nucleotide Analogs, John Wiley, New York (1980); Uhlman and Peyman, Chemical Reviews, (1990) 90: 543-584). The polynucleotide may be an isolated polynucleotide.

상기 NDT 변이체를 코딩하는 폴리뉴클레오티드는 락토바실러스 델부르에키 (Lactobacillus delbrueckii)에서 유래한 것일 수 있다. 본 발명의 NDT 변이체를 코딩하는 폴리뉴클레오티드의 서열은 변형될 수 있으며, 상기 변형은 뉴클레오티드의 추가, 결실, 또는 비보존적 치환 또는 보존적 치환을 포함한다.The polynucleotide encoding the NDT variant may be derived from Lactobacillus delbrueckii . The sequence of a polynucleotide encoding an NDT variant of the present invention may be modified, and the modification includes addition, deletion, or non-conservative substitution or conservative substitution of nucleotides.

본 발명의 폴리뉴클레오티드는 상기한 뉴클레오티드 서열에 대하여 실질적인 동일성을 나타내는 뉴클레오티드 서열도 포함하는 것으로 해석된다. 상기의 실질적인 동일성은, 상기한 본 발명의 뉴클레오티드 서열과 임의의 다른 서열을 최대한 대응되도록 얼라인하고, 당 업계에서 통상적으로 이용되는 알고리즘을 이용하여 얼라인 된 서열을 분석한 경우에, 최소 80%의 상동성, 구체적으로 최소 90%의 상동성, 보다 구체적으로는 최소 95%의 상동성을 나타내는 뉴클레오티드 서열을 의미한다. The polynucleotides of the present invention are also interpreted to include nucleotide sequences that exhibit substantial identity to the nucleotide sequences described above. The above substantial identity is determined by aligning the nucleotide sequence of the present invention with any other sequence as much as possible and analyzing the aligned sequence using algorithms commonly used in the art, , Specifically at least 90% homology, more specifically at least 95% homology.

본 발명의 일 구현예로서, 상기 서열번호 2의 아미노산 서열에서 59번째 루신이 글루타민으로 치환된 서열번호 10의 아미노산 서열을 포함하는 NDT 변이체는 서열번호 9의 뉴클레오티드 서열에 의해 코딩되는 것일 수 있다. In one embodiment of the present invention, the NDT variant comprising the amino acid sequence of SEQ ID NO: 10 in which the 59th leucine in the amino acid sequence of SEQ ID NO: 2 is replaced with glutamine may be encoded by the nucleotide sequence of SEQ ID NO:

본 명세서에서 사용되는 용어, "벡터"는 숙주세포에서 목적 유전자를 발현시키기 위한 수단으로 플라스미드 벡터; 코즈미드 벡터; 그리고 박테리오파아지 벡터, 아데노바이러스 벡터, 레트로바이러스 벡터 및 아데노-연관 바이러스 벡터 같은 바이러스 벡터 등을 포함하며, 구체적으로 본 출원인에 의해 제작되어 한국미생물보존센터 (Korea culture center of microorganisms, KCCM)에 기탁된 pFRPT (기탁번호: KCCM-10320)일 수 있으나, 이에 제한되지 않는다.As used herein, the term "vector" refers to a plasmid vector as a means for expressing a gene of interest in a host cell; Cosmeptide vector; And viral vectors such as a bacteriophage vector, an adenovirus vector, a retrovirus vector, and an adeno-associated viral vector, and specifically, a virus vector prepared by the present applicant and deposited in the Korea Culture Center of Microorganisms (KCCM) pFRPT (Accession No .: KCCM-10320).

본 발명의 벡터에서 NDT 변이체를 코딩하는 폴리뉴클레오티드는 프로모터와 작동가능하게 연결 (operatively linked)된 것일 수 있다.A polynucleotide encoding an NDT variant in the vector of the present invention may be operatively linked to a promoter.

본 명세서에서 사용되는 용어, "작동가능하게 연결된"은 핵산 발현조절서열 (예컨대, 프로모터, 시그널 서열, 또는 전사조절인자 결합 위치의 어레이)과 다른 핵산 서열사이의 기능적인 결합을 의미하며, 이에 의해 상기 조절서열은 상기 다른 핵산 서열의 전사 및/또는 해독을 조절하게 된다.As used herein, the term "operably linked" means a functional linkage between a nucleic acid expression control sequence (e.g., an array of promoter, signal sequence, or transcription factor binding site) and another nucleic acid sequence, The regulatory sequence regulates transcription and / or translation of the different nucleic acid sequences.

본 발명의 재조합 벡터 시스템은 당업계에 공지된 다양한 방법을 통해 구축될 수 있으며, 이에 대한 구체적인 방법은 Sambrook et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press(2001)에 개시되어 있으며, 이 문헌은 본 명세서에 참조로서 삽입된다.The recombinant vector system of the present invention can be constructed through various methods known in the art, and specific methods for this are disclosed in Sambrook et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press (2001) , Which is incorporated herein by reference.

본 발명의 벡터는 전형적으로 클로닝을 위한 벡터 또는 발현을 위한 벡터로서 구축될 수 있다. 또한, 본 발명의 벡터는 원핵세포 또는 진핵세포를 숙주로 하여 구축될 수 있다.The vector of the present invention can typically be constructed as a vector for cloning or as a vector for expression. In addition, the vector of the present invention can be constructed by using prokaryotic cells or eukaryotic cells as hosts.

예를 들어, 본 발명의 벡터가 발현 벡터이고, 원핵세포를 숙주로 하는 경우에는, 전사를 진행시킬 수 있는 강력한 프로모터 (예컨대, tac 프로모터, lac 프로모터, lacUV5 프로모터, lpp 프로모터, pLλ 프로모터, pRλ 프로모터, rac5 프로모터, amp 프로모터, recA 프로모터, SP6 프로모터, trp 프로모터 및 T7 프로모터 등), 해독의 개시를 위한 라이보좀 결합 자리 및 전사/해독 종결 서열을 포함하는 것이 일반적이다. 숙주세포로서 E. coli (예컨대, HB101, BL21, DH5α 등)가 이용되는 경우, E. coli 트립토판 생합성 경로의 프로모터 및 오퍼레이터 부위 (Yanofsky, C., J. Bacteriol., (1984) 158:1018-1024) 그리고 파아지 λ의 좌향 프로모터 (pLλ 프로모터, Herskowitz, I. and Hagen, D., Ann. Rev. Genet., (1980) 14:399-445)가 조절부위로서 이용될 수 있다. 숙주세포로서 바실러스 균이 이용되는 경우, 바실러스 츄린겐시스의 독소단백질 유전자의 프로모터 (Appl. Environ. Microbiol. (1998) 64:3932-3938; Mol. Gen. Genet. (1996) 250:734-741) 또는 바실러스균에서 발현 가능한 어떠한 프로모터라도 조절부위로 이용될 수 있다.For example, when the vector of the present invention is an expression vector and a prokaryotic cell is used as a host, a strong promoter capable of promoting transcription (such as a tac promoter, lac promoter, lacUV5 promoter, lpp promoter, pL 貫 promoter, , rac5 promoter, amp promoter, recA promoter, SP6 promoter, trp promoter, and T7 promoter), a ribosome binding site for initiation of decoding, and a transcription / translation termination sequence. The promoter and operator site of the E. coli tryptophan biosynthetic pathway (Yanofsky, C., J. Bacteriol., (1984) 158: 1018-8), when E. coli (e.g. HB101, BL21, 1024) and the left promoter of phage lambda (pL? Promoter, Herskowitz, I. and Hagen, D., Ann. Rev. Genet., (1980) 14: 399-445). When a Bacillus bacterium is used as a host cell, the promoter of the toxin protein gene of Bacillus subtilis (Appl. Environ. Microbiol. (1998) 64: 3932-3938; Mol. Gen. Genet. (1996) 250: 734-741 ) Or any promoter capable of expressing in Bacillus may be used as a regulatory region.

한편, 본 발명의 재조합 벡터는 당 업계에서 종종 사용되는 플라스미드 (예: pCL, pSC101, pGV1106, pACYC177, ColE1, pKT230, pME290, pBR322, pUC8/9, pUC6, pBD9, pHC79, pIJ61, pLAFR1, pHV14, pGEX 시리즈, pET 시리즈 및 pUC19 등), 파지(예: λgt4·λB, λ-Charon, λΔz1 및 M13 등) 또는 바이러스 (예: SV40 등)를 조작하여 제작될 수 있다. 예컨대, 본 발명의 재조합 벡터는 대장균용 발현 벡터, 구체적으로 pFRPT (대한민국 등록특허 제10-0449639호) 발현벡터를 조작하여 제작할 수 있으나, 이에 제한되는 것은 아니다.Meanwhile, the recombinant vector of the present invention can be prepared by using a plasmid (for example, pCL, pSC101, pGV1106, pACYC177, ColE1, pKT230, pME290, pBR322, pUC8 / 9, pUC6, pBD9, pHC79, pIJ61, pLAFR1, pGEX series, pET series, pUC19, etc.), phage (e.g., λgt4 · λB, λ-Charon, λΔz1 and M13) or viruses (eg SV40 and the like). For example, the recombinant vector of the present invention can be produced by manipulating an expression vector for E. coli, specifically, pFRPT (Korean Patent Registration No. 10-0449639), but is not limited thereto.

한편, 본 발명의 벡터가 발현 벡터이고, 진핵세포를 숙주로 하는 경우에는, 포유동물 세포의 지놈으로부터 유래된 프로모터 (예: 메탈로티오닌 프로모터, β-액틴 프로모터, 사람 헤모글로빈 프로모터 및 사람 근육 크레아틴 프로모터) 또는 포유동물 바이러스로부터 유래된 프로모터 (예: 아데노바이러스 후기 프로모터, 백시니아 바이러스 7.5K 프로모터, SV40 프로모터, 사이토메갈로바이러스 (CMV) 프로모터, HSV의 tk 프로모터, 마우스 유방종양 바이러스 (MMTV) 프로모터, HIV의 LTR 프로모터, 몰로니 바이러스의 프로모터 엡스타인바 바이러스 (EBV)의 프로모터 및 로우스 사코마 바이러스 (RSV)의 프로모터)가 이용될 수 있으며, 전사 종결 서열로서 폴리아데닐화 서열을 일반적으로 갖는다.On the other hand, when the vector of the present invention is an expression vector and a eukaryotic cell is used as a host, a promoter derived from a genome of a mammalian cell such as a metallothionine promoter, a beta -actin promoter, a human hemoglobin promoter, Promoter), or a mammalian virus (e.g., adenovirus late promoter, vaccinia virus 7.5K promoter, SV40 promoter, cytomegalovirus (CMV) promoter, HSV tk promoter, mouse breast tumor virus (MMTV) promoter, The LTR promoter of HIV, the promoter of Moloney virus promoter Epstein bar virus (EBV) and the promoter of rosacekoma virus (RSV)), and generally has a polyadenylation sequence as a transcription termination sequence.

한편, 본 발명의 재조합 벡터는 선택표지로서 당업계에서 통상적으로 이용되는 항생제 내성 유전자를 포함하며, 예를 들어 암피실린, 겐타마이신, 카베니실린, 클로람페니콜, 스트렙토마이신, 카나마이신, 게네티신, 네오마이신 및 테트라사이클린에 대한 내성 유전자를 포함할 수 있다.On the other hand, the recombinant vector of the present invention includes an antibiotic resistance gene commonly used in the art as a selection marker, for example, ampicillin, gentamycin, carbenicillin, chloramphenicol, streptomycin, kanamycin, And resistance genes for tetracycline.

본 발명의 벡터를 안정되면서 연속적으로 클로닝 및 발현시킬 수 있는 미생물은 당업계에 공지된 어떠한 미생물도 이용할 수 있으며, 예컨대, 에스케리치아 콜라이 (Escherichia coli), 바실러스 서브틸리스 및 바실러스 츄린겐시스와 같은 바실러스 속 균주, 스트렙토마이세스 (Streptomyces), 슈도모나스 (Pseudomonas)(예를 들면, 슈도모나스 푸티다 (Pseudomonas putida)), 프로테우스 미라빌리스 (Proteus mirabilis) 또는 스타필로코쿠스 (Staphylococcus)(예를 들면, 스타필로코쿠스 카르노수스 (Staphylocus carnosus))와 같은 원핵 숙주세포를 포함하나, 이에 제한되는 것은 아니다.The microorganism capable of continuously cloning and expressing the vector of the present invention in a stable manner can be any microorganism known in the art. For example, Escherichia coli , Bacillus subtilis and Bacillus turginensis such as Bacillus sp, Streptomyces (Streptomyces), Pseudomonas (Pseudomonas) (e.g., Pseudomonas footage is (Pseudomonas putida)), Proteus Mira Billy's (Proteus mirabilis) or Staphylococcus (Staphylococcus) (e.g. , Staphylococcus ( Staphylocus carnosus ), and the like).

상기 벡터의 적합한 진핵세포 미생물은 아스페르길러스 속 (Aspergillus species)과 같은 진균, 피치아 파스토리스 (Pichia pastoris), 사카로마이세스 세르비시아 (Saccharomyces cerevisiae), 쉬조사카로마세스 (Schizosaccharomyces) 및 뉴로스포라 크라사 (Neurospora crassa)와 같은 효모, 그 밖의 하등 진핵세포, 곤충-유래 세포와 같은 고등 진핵생물의 세포, 그리고 식물 또는 포유동물로부터 유래한 세포를 이용할 수 있다.Suitable eukaryotic microbes of said vector include fungi such as Aspergillus species , fungi such as Pichia pastoris), Saccharomyces with my access Servigroup Asia (Saccharomyces cerevisiae), Iasi survey car Rome Seth (Schizosaccharomyces) and Neuro Castello La yeast, such as Chrysler Corporation (Neurospora crassa), or other lower eukaryotic cells, insect-high, such as cells derived from Eukaryotic cells, and cells derived from plants or mammals.

본 발명의 일 구현예로서, 재조합 벡터가 도입되는 미생물은 에스케리치아 콜라이 (Escherichia coli), 예컨대 E . coli DH5α, JM109 일 수 있으며, 구체적으로 E. coli DH5α일 수 있다.In one embodiment of the present invention, the microorganism into which the recombinant vector is introduced is Escherichia coli E. coli , e . coli DH5 [alpha], JM109, and may specifically be E. coli DH5 [alpha].

본 발명에서, 미생물로의 "형질전환" 및/또는 "형질감염"은 폴리뉴클레오티드를 유기체, 세포, 조직 또는 기관에 도입하는 어떤 방법도 포함되며, 당 분야에서 공지된 바와 같이 미생물에 따라 적합한 표준 기술을 선택하여 수행할 수 있다. 상기와 같은 방법에는 전기충격유전자전달법 (electroporation), 원형질 융합, 인산칼슘 (CaPO4) 침전, 염화칼슘 (CaCl2) 침전, 실리콘 카바이드 섬유를 이용한 교반, 아그로 박테리아 매개된 형질전환, PEG, 덱스트란 설페이트, 리포펙타민 및 건조/억제 매개된 형질전환 방법 등이 포함되나, 이로 제한되지 않는다.In the present invention, "transformation" and / or "transfection" to a microorganism includes any method of introducing the polynucleotide into an organism, cell, tissue or organ, Technology can be selected and performed. Such methods include electroporation, protoplast fusion, calcium phosphate (CaPO 4 ) precipitation, calcium chloride (CaCl 2 ) precipitation, agitation with silicon carbide fibers, Agrobacterium mediated transformation, PEG, dextran Sulfate, lipofectamine, and dry / inhibition-mediated transformation methods, and the like.

본 발명의 일 구현예로서, 서열번호 10의 아미노산 서열을 갖는 NDT 변이체를 코딩하는 폴리뉴클레오티드를 포함하는 미생물은 당 전이 (transglycosylation) 반응을 촉매하는 활성 또는 2'-데옥시-2'-플루오로뉴클레오시드에 대한 기질 반응성이 증가되어 있는 것일 수 있으며, 뉴클레오시드의 염기 및 당 부분 사이에 N-글루코시드 결합을 촉매하는 활성이 증가된 것일 수 있다. 상기 폴리뉴클레오티드는 서열번호 9의 뉴클레오티드 서열을 포함할 수 있다. In one embodiment of the present invention, a microorganism comprising a polynucleotide encoding an NDT variant having the amino acid sequence of SEQ ID NO: 10 is activated or catalyzed by a transglycosylation reaction or a 2'-deoxy-2'-fluoro The substrate reactivity to the nucleoside may be increased and the activity to catalyze the N-glucoside bond between the base and the sugar moiety of the nucleoside may be increased. The polynucleotide may comprise the nucleotide sequence of SEQ ID NO: 9.

본 발명은 상기 미생물을 이용한 NDT 변이체를 생산하는 방법을 제공한다. 구체적으로, 상기 생산방법은 (a) 본 발명의 재조합 벡터로 형질전환된 미생물을 배양하는 단계; 및 (b) 상기 배양물로부터 N-데옥시리보실 트랜스퍼라아제 변이체를 회수하는 단계를 포함하는 N-데옥시리보실 트랜스퍼라아제 변이체의 제조방법일 수 있다.The present invention provides a method for producing an NDT variant using the microorganism. Specifically, the production method comprises the steps of: (a) culturing a microorganism transformed with the recombinant vector of the present invention; And (b) recovering the N-deoxyribosyltransferase mutant from the culture.

상기 NDT 변이체 제조에서 형질전환 된 미생물의 배양은 당업계에 알려진 적당한 배지와 배양조건에 따라 이루어질 수 있다. 이러한 배양과정은 당업자라면 선택되는 균주에 따라 용이하게 조정하여 사용할 수 있다. 이러한 다양한 배양 방법은 다양한 문헌 (예를 들면, James M. Lee, Biochemical Engineering, Prentice-Hall International Editions, 138-176)에 개시되어 있다. 세포 배양은, 세포의 성장방식에 따라 현탁배양과 부착배양, 배양방법에 따라 회분식, 유가식 및 연속배양식의 방법으로 구분된다. 배양에 사용되는 배지는 특정한 균주의 요구조건을 적절하게 만족시켜야 한다.The cultivation of the transformed microorganism in the NDT variant production can be carried out according to a suitable culture medium and culture conditions known in the art. Such a culturing process can be easily adjusted according to the strain selected by those skilled in the art. Such various culturing methods are disclosed in various publications (e.g., James M. Lee, Biochemical Engineering, Prentice-Hall International Editions, 138-176). Cell culture can be classified into batch, infusion, and continuous culture depending on the suspension culture, adhesion culture, and culture method according to the cell growth method. The medium used for the culture should suitably meet the requirements of the particular strain.

동물세포 배양에 있어, 상기 배지는 다양한 탄소원, 질소원 및 미량원소 성분을 포함한다. 사용될 수 있는 탄소원의 예는, 포도당, 자당, 유당, 과당, 말토오스, 전분 및 셀룰로오스와 같은 탄수화물, 대두유, 해바라기유, 피마자유 및 코코넛유와 같은 지방, 팔미트산, 스테아린산 및 리놀레산과 같은 지방산, 글라이세롤 및 에탄올과 같은 알코올, 그리고 아세트산과 같은 유기산을 포함할 수 있으며, 이들 탄소원은 단독 또는 조합되어 사용될 수 있다.In animal cell cultures, the medium comprises various carbon sources, nitrogen sources and trace element components. Examples of carbon sources that can be used include carbohydrates such as glucose, sucrose, lactose, fructose, maltose, starch and cellulose, fats such as soybean oil, sunflower oil, castor oil and coconut oil, fatty acids such as palmitic acid, stearic acid, and linoleic acid, Alcohols such as glycerol and ethanol, and organic acids such as acetic acid, and these carbon sources may be used singly or in combination.

본 발명에서 사용될 수 있는 질소원은, 예컨대 펩톤, 효모 추출물, 육즙, 맥아추출물, 옥수수 침지액 (CSL) 및 대두밀과 같은 유기 질소원 및 요소, 황산암모늄, 염화암모늄, 인산암모늄, 탄산암모늄 및 질산암모늄과 같은 무기 질소원을 포함할 수 있으며, 이들 질소원은 단독 또는 조합되어 사용될 수 있다. 상기 배지에는 인원으로서, 인산이수소칼륨, 인산수소이칼륨 및 대응되는 소듐-함유 염이 포함될 수 있다. 또한, 황산마그네슘 또는 황산철과 같은 금속염을 포함할 수 있다. 그 외에, 아미노산, 비타민, 및 적절한 전구체 등이 포함될 수 있다.Nitrogen sources that can be used in the present invention include, but are not limited to, organic nitrogen sources such as peptone, yeast extract, gravy, malt extract, corn steep liquor (CSL) and soybean wheat, and urea, ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate, And the like. These nitrogen sources may be used alone or in combination. The medium may include potassium dihydrogenphosphate, dipotassium hydrogenphosphate and the corresponding sodium-containing salts as a source. It may also include metal salts such as magnesium sulfate or iron sulfate. In addition, amino acids, vitamins, and suitable precursors and the like may be included.

배양 중에 수산화암모늄, 수산화칼륨, 암모니아, 인산 및 황산과 같은 화합물을 배양물에 적절한 방식으로 첨가하여, 배양물의 pH를 조정할 수 있다. 또한, 배양 중에는 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있다. 또한, 배양물의 호기상태를 유지하기 위하여, 배양물 내로 산소 또는 산소-함유 기체 (예, 공기)를 주입한다.During the culture, compounds such as ammonium hydroxide, potassium hydroxide, ammonia, phosphoric acid and sulfuric acid can be added to the culture in an appropriate manner to adjust the pH of the culture. In addition, foaming can be suppressed by using a defoaming agent such as fatty acid polyglycol ester during the culture. In addition, oxygen or an oxygen-containing gas (e.g., air) is injected into the culture to maintain the aerobic state of the culture.

형질전환된 미생물을 배양하여 수득한 NDT 변이체는 정제하지 않은 상태로 사용될 수 있으며 추가로 다양한 통상의 방법, 예를 들면 투석, 염 침전 및 크로마토그래피 등을 이용하여 고순도로 정제하여 사용될 수 있다. The NDT mutant obtained by culturing the transformed microorganism can be used in an unpurified state and can be further purified and used in high purity by various conventional methods such as dialysis, salt precipitation and chromatography.

본 발명은 또 다른 양태로서, 본 발명의 NDT 변이체 또는 상기 변이체가 발현되어 있는 미생물을 이용하여 염기 공여체 및 당잔기 공여체 사이에 N-글루코시드 결합을 형성시켜 뉴클레오시드를 제조하는 방법을 제공한다.In another aspect, the present invention provides a method for producing a nucleoside by forming an N-glucoside bond between a donor and a donor of a sugar residue using a NDT mutant of the present invention or a microorganism expressing the mutant .

상기 뉴클레오시드의 제조방법은 NDT 변이체를 발현하는 미생물을 이용하여 염기 공여체 및 당잔기 공여체를 반응시킴으로써 염기 공여체의 염기부분과 당잔기 공여체의 당부분 사이에 N-글루코시드 결합을 형성시켜 뉴클레오시드를 제조하는 방법일 수 있다.The nucleoside preparation method comprises reacting a base donor and a sugar residue donor using a microorganism expressing an NDT variant to form an N-glucoside bond between the base portion of the base donor and the sugar portion of the sugar residue donor, Lt; RTI ID = 0.0 > a < / RTI >

상기 NDT 변이체 및 이를 발현하는 미생물은 상기에서 설명한 바와 같다.The NDT mutant and the microorganism expressing the NDT mutant are as described above.

본 명세서에서 사용되는 용어, "염기 공여체"는 뉴클레오시드의 N-글루코시드 결합 반응에 염기를 공급하는 물질을 지칭한다. 본 발명에서 사용되는 염기 공여체는 목적으로 하는 뉴클레오시드에 따라 적절히 선택될 수 있으며, NDT의 작용에 의하여 당잔기 공여체의 당부분과 N-글루코시드 결합을 형성할 수 있는 복소환 (heterocyclic) 염기 또는 그 유도체일 수 있으며, 이에 제한되지 않는다. As used herein, the term "base donor" refers to a material that provides a base for the N-glucoside binding reaction of a nucleoside. The base donor used in the present invention may be appropriately selected according to the objective nucleoside, and may be a heterocyclic base capable of forming N-glucoside bond with a sugar moiety of the sugar residue donor by the action of NDT But is not limited thereto.

상기 복소환 염기는 퓨린 및 그의 유도체, 피리미딘 및 그의 유도체, 트리아졸 및 그 유도체, 이미다졸, 및 그 유도체, 데아자퓨린 (deazapurine) 및 그의 유도체, 아자퓨린 및 그의 유도체, 아자피리미딘 및 그의 유도체 또는 피리딘 및 유도체 등일 수 있으며, 복소환 염기 그 자체는 물론 복소환 염기를 갖는 뉴클레오시드일 수 있다.Wherein the heterocyclic base is selected from the group consisting of purine and derivatives thereof, pyrimidine and derivatives thereof, triazole and derivatives thereof, imidazole and derivatives thereof, deazapurine and derivatives thereof, azapurine and derivatives thereof, Derivatives or pyridine and derivatives thereof, and the heterocyclic base itself may be a nucleoside having a heterocyclic base as well.

구체적으로, 퓨린 염기의 1', 2', 6' 또는 8'의 1 또는 2 이상의 위치에 치환기 (예컨대, 아미노기, 치환아미노기, 수산기, 옥소기, 메르캅토기, 아실기, 알킬기, 치환알킬기, 알콕시기, 할로겐원자 등)을 갖는 퓨린 유도체, 예를 들면 아데닌, 구아닌, 히포크산틴, 크산틴, 6-메르캅토류린, 6-티오구아닌, N-알킬 또는 아실아데닐, 2-알콕시 아데닌, 2-티오아데닌, 2,6-디아미노퓨린 등;Specifically, a substituent (for example, an amino group, a substituted amino group, a hydroxyl group, an oxo group, a mercapto group, an acyl group, an alkyl group, a substituted alkyl group, Alkoxyl groups such as adenine, guanine, hypoxanthine, xanthine, 6-mercaptopyrin, 6-thioguanine, N-alkyl or acyladenyl, 2-alkoxyadenine , 2-thioadenine, 2,6-diaminopurine and the like;

피리미딘의 2', 4' 또는 5'의 1 또는 2 이상의 위치에 전기와 마찬가지의 치환기를 갖는 피리미딘 유도체, 예를 들면, 시토신, 우라실, 티민, 5-할로게노우라실 (5-플루오로우라실, 5-요오도 우라실 등), 5-할로게노 시토신 (5-플루오로 시토신 등), 5-트리할로게노메틸 우라실 (5-트리플루오로메틸 우라실 등), 2-티오시토신, 4-티오우라실, N-아실시토신, 5-할로게노비닐 우라실 등; Pyrimidine derivatives having substituents similar to those described above at one or two or more positions of 2 ', 4' or 5 'of pyrimidine, such as cytosine, uracil, thymine, 5-halogenothrulose (5-fluorouracil , 5-iodoacyl, etc.), 5-halogenothiocin (such as 5-fluorocytosine), 5-trihalogenomethyluracil (such as 5-trifluoromethyluracil) Uracil, N-acyl cytosine, 5-halogenovinyl uracil, and the like;

1,2,4-트리아졸의 3'에 치환기를 갖는 1,2,4-트리아졸 유도체, 예를 들면, 1,3,4-트리아졸-3-카르복스아미드 1,2,4-트리아졸-3-카르복시산, 1,2,4-트리아졸-3-카르복시산 알킬에스테르 등; 1,2,4-triazole derivatives having a substituent at the 3 'position of 1,2,4-triazole such as 1,3,4-triazole-3-carboxamide 1,2,4-triazole 3-carboxylic acid, 1,2,4-triazole-3-carboxylic acid alkyl ester, and the like;

이미다졸의 4' 및 5'에 치환기를 갖는 이미다졸 유도체, 예를 들면 5-아미노-4-이미다졸 카르복스아미드, 4-카르바모일-이미다졸-5-올레이트, 벤즈이미다졸 등; Imidazole derivatives having substituents at 4 ' and 5 ' of imidazole, such as 5-amino-4-imidazolecarboxamide, 4-carbamoyl-imidazol-5-olate, benzimidazole and the like;

퓨린의 1', 3' 또는 7'에 있어서 데아자퓨린 유도체, 예를 들면 1-데아자아데닌, 3-데아자아데닌, 3-데아자구아닌, 7-데아자아데닌, 7-데아자구아닌 또는 이들에게 전기퓨린 유도체와 마찬가지의 치환기를 갖는 화합물 등;Deazapurine derivatives such as 1-deaza adenine, 3-deaza adenine, 3-deaza guanine, 7-deaza adenine, 7-deazaguanine or 7-deaza- Compounds having substituents similar to those of the electrophilic derivatives;

8-아자아데닌, 7-데아자-8-아자히포크산틴 (아조퓨린올) 등의 아자퓨린 유도체; Azaporidine derivatives such as 8-azaadenine, 7-deaza-8-azahepoxatin (azopurinol);

5-아자티민, 5-아자시토닌, 6-아자우라실 등의 아자피리미딘 유도체; 또는Azapyrimidine derivatives such as 5-azathimine, 5-azasitonin, 6-azauracil and the like; or

3-데아자우라실, 니코틴산, 니코틴산아미드 등의 피리딘 유도체 등일 수 있다. Pyridine derivatives such as 3-deazaiacyl, nicotinic acid, nicotinic acid amide and the like.

구체적으로 아데닌, 2,6-디아미노퓨린 (Diaminopurine), 또는 시토신 (Cytosine) 일 수 있다.Specifically, it may be adenine, 2,6-diaminopurine, or cytosine.

본 명세서에서 사용되는 용어, "당잔기 공여체"는 뉴클레오시드의 N-글루코시드 결합 반응에 당잔기를 공급하는 물질을 지칭한다. 본 발명에서 사용되는 당잔기 공여체는 목적으로 하는 뉴클레오시드에 따라 적절히 선택될 수 있으며, NDT의 작용에 의하여 염기 공여체의 염기부분과 N-글루코시드 결합을 형성할 수 있는 복소환 (heterocyclic) 리보오스 화합물 또는 데옥시리보오스 화합물일 수 있으며, 이에 제한되지 않는다. As used herein, the term "sugar residue donor" refers to a substance that feeds a sugar residue to the N-glucoside binding reaction of a nucleoside. The sugar residue donor used in the present invention may be appropriately selected according to the objective nucleoside and may be a heterocyclic ribose capable of forming N-glucoside bond with the base portion of the base donor by the action of NDT Compound, or deoxyribose compound, but is not limited thereto.

상기 당잔기 공여체는 리보오스 화합물로서 이노신, 구아노신, 우리딘, 리보프라노실 티민 등의 리보뉴클레오시드 및 리보오스-1-인산; 또는 The sugar residue donor may be a ribose compound such as a ribonucleoside such as inosine, guanosine, uridine, ribofuranosyl thymine, and ribose-1-phosphate; or

데옥시리보오스 화합물로서 2'-데옥시이노신, 2'-데옥시구아노신, 2'-데옥시우리딘, 티미딘, 2',3'-디데옥시이노신, 2',3'-디옥시구아노신, 2',3'-디데옥시우리딘, 3'-데옥시 티미딘 등의 데옥시뉴클레오시드 및 2-데옥시 리보오스-1-인산, 2,3-디데옥시 리보오스-1-인산 등 일 수 있다. Examples of deoxyribose compounds include 2'-deoxyinosine, 2'-deoxyguanosine, 2'-deoxyuridine, thymidine, 2 ', 3'-dideoxyinosine, 2' Deoxyribose-1-phosphate, 2,3-dideoxyribose-1-phosphate and the like, such as deoxyuridine, deoxyuridine, deoxyuridine, deoxyuridine, deoxyuridine, Lt; / RTI >

구체적으로 티미딘 (Thymidine), 2'-데옥시우리딘 (2'-deoxyuridine), 2'-데옥시-2'-플루오로우리딘 (2'-deoxy-2'-fluorouridine) 일 수 있다.Specifically, it may be thymidine, 2'-deoxyuridine, 2'-deoxy-2'-fluorouridine.

본 발명의 일 구현예로서, 뉴클레오시드의 제조방법은 본 발명의 N-데옥시리보실 트랜스퍼라아제 변이체를 2'-데옥시-2'-플루오로우리딘 및 아데닌에 처리하여 2'-데옥시-2'-플루오로아데노신을 제조하는 단계를 포함하는 2'-데옥시-2'-플루오로아데노신의 제조 방법일 수 있다.As an embodiment of the present invention, a method for producing a nucleoside comprises treating the N-deoxyribosyltransferase mutant of the present invention with 2'-deoxy-2'-fluorouridine and adenine, Deoxy-2'-fluoroadenosine, which comprises the step of preparing 2'-deoxy-2'-fluoroadenosine.

위 2'-데옥시-2'-플루오로아데노신의 제조 방법은 온도 조건 45 ℃ 내지 55 ℃, 바람직하게 48 ℃ 내지 52 ℃, 보다 바람직하게 약 50 ℃에서 수행될 수 있다. 위 2'-데옥시-2'-플루오로아데노신의 제조 방법은 pH 조건 5.8 내지 6.8, 바람직하게 6.1 내지 6.5, 보다 바람직하게 약 6.3에서 수행될 수 있다. 위 데옥시-2'-플루오로아데노신의 제조 방법은 기질 농도 조건으로 2FDA의 기질 농도 1.6 내지 2.4 M, 바람직하게 1.8 내지 2.2 M, 보다 바람직하게 약 2.0 M 이다. 위 데옥시-2'-플루오로아데노신의 제조 방법은 효소 투입량 조건으로 투입되는 건조균체의 농도는 50 내지 150 g/L, 바람직하게 80 내지 120 g/L, 보다 바람직하게 약 100 g/L 이다.The method for producing the above 2'-deoxy-2'-fluoroadenosine can be carried out under the temperature condition of 45 ° C to 55 ° C, preferably 48 ° C to 52 ° C, more preferably about 50 ° C. The preparation of the above 2'-deoxy-2'-fluoroadenosine can be carried out at pH conditions of 5.8 to 6.8, preferably 6.1 to 6.5, more preferably about 6.3. The method for preparing deoxy-2'-fluoroadenosine has a substrate concentration of 1.6 to 2.4 M, preferably 1.8 to 2.2 M, more preferably about 2.0 M, as the substrate concentration conditions. In the method for preparing deoxy-2'-fluoroadenosine, the concentration of the dried cells to be fed under the enzyme input conditions is 50 to 150 g / L, preferably 80 to 120 g / L, more preferably about 100 g / L .

본 발명의 2'-데옥시-2'-플루오로아데노신의 제조 방법은 효소전환이 이루어진 후 불순물인 효소와 우라실을 제거하기 위한 정제 공정을 더 포함할 수 있다. 위 정제 공정은 정제수 및 MeOH 하에 여과하는 단계; 및 여과된 여과 여액을 pH 7 내지 8로 중화하는 단계를 포함한다. 정제수 및 MeOH은 2FDU 투입량에 대비하여 정제수는 1.5 내지 3.5 배, 바람직하게 2.5 배, MeOH는 9.5 내지 11.5 배, 바람직하게 10.5 배일 수 있다. 위 정제 공정 후 추가로 2FDA의 결정화 단계를 더 포함할 수도 있다. The process for preparing 2'-deoxy-2'-fluoroadenosine of the present invention may further comprise a purification process for removing impurities enzymes and uracil after the enzyme is converted. The above purification process comprises filtering under purified water and MeOH; And neutralizing the filtered filtrate to a pH of 7 to 8. Purified water and MeOH may be 1.5 to 3.5 times, preferably 2.5 times, and MeOH may be 9.5 to 11.5 times, preferably 10.5 times, of purified water in comparison to 2FDU doses. It may further include a crystallization step of 2FDA after the purification process.

본 발명의 구체적인 일 실시예에서는, 2'-데옥시-2'-플루오로우리딘 및 아데닌을 출발물질로 본 발명의 NDT 변이체 발현 균주 (E. coli E206)를 이용하여 2'-데옥시-2'-플루오로아데노신을 제조하였으며, 고순도의 2'-데옥시-2'-플루오로아데노신을 고효율로 생산할 수 있음을 확인하였다(실시예 5).In one specific embodiment of the present invention, 2'-deoxy-2'-fluoro-uridine and adenine are used as the starting material, using the NDT variant expression strain ( E. coli E206) 2'-fluoroadenosine was prepared, and it was confirmed that high purity 2'-deoxy-2'-fluoroadenosine can be produced with high efficiency (Example 5).

본 발명의 다른 구현예로서, 뉴클레오시드의 제조방법은 본 발명의 N-데옥시리보실 트랜스퍼라아제 변이체를 2'-데옥시-2'-플루오로우리딘 및 2,6-디아미노퓨린에 처리하여 2'-데옥시-2'-플루오로-2,6-디아미노퓨린을 제조하는 단계; 및 상기 2'-데옥시-2'-플루오로-2,6-디아미노퓨린에 락토코쿠스 락티스 유래 아데노신 디아미나아제를 처리하여 2'-데옥시-2'-플루오로구아노신을 제조하는 단계;를 포함하는 2'-데옥시-2'-플루오로구아노신의 제조 방법일 수 있다.In another embodiment of the present invention, a method for producing a nucleoside comprises contacting an N-deoxyribosyltransferase mutant of the present invention with 2'-deoxy-2'-fluorouridine and 2,6-diaminopurine To produce 2'-deoxy-2'-fluoro-2,6-diaminopurine; And 2'-deoxy-2'-fluoro-2,6-diaminopurine was treated with adenosine deaminase derived from lactococcus lactis to prepare 2'-deoxy-2'-fluoroguanosine 2'-deoxy-2'-fluoro-guanosine.

위 2'-데옥시-2'-플루오로구아노신의 제조 방법은 온도 조건 45 ℃ 내지 55 ℃, 바람직하게 48 ℃ 내지 52 ℃, 보다 바람직하게 약 50 ℃에서 수행될 수 있다. 위 2'-데옥시-2'-플루오로구아노신의 제조 방법은 pH 조건 5.5 내지 6.5, 바람직하게 5.8 내지 6.3, 보다 바람직하게 약 6.0에서 수행될 수 있다. 위 데옥시-2'-플루오로구아노신의 제조 방법은 기질 농도 조건으로 2FDU의 기질 농도 1.4 내지 1.8 M, 바람직하게 1.5 내지 1.7 M, 보다 바람직하게 약 1.6 M 이며, 기질을 분할하여 투입할 수 있다. 위 데옥시-2'-플루오로구아노신의 제조 방법은 효소 투입량 조건으로 투입되는 건조균체의 양은 2FDU 에 대해 1.5 내지 2.5 배, 바람직하게 약 2.0 배이며, 건조균체를 분할하여 투여할 수 있다. The method for producing the above 2'-deoxy-2'-fluoroguanosine can be carried out under the temperature condition of 45 ° C to 55 ° C, preferably 48 ° C to 52 ° C, more preferably about 50 ° C. The method of preparing the above 2'-deoxy-2'-fluoroguanosine can be carried out under pH conditions of 5.5 to 6.5, preferably 5.8 to 6.3, more preferably about 6.0. The method for preparing deoxy-2'-fluoro-guanosine is a substrate concentration of 1.4 to 1.8 M, preferably 1.5 to 1.7 M, and more preferably about 1.6 M, of 2FDU as a substrate concentration condition, . In the method for producing deoxy-2'-fluoro-guanosine, the amount of the dried cells injected under the enzyme loading conditions is 1.5 to 2.5 times, preferably about 2.0 times the 2FDU, and the dried cells can be divided and administered.

본 발명의 2'-데옥시-2'-플루오로구아노신의 제조 방법은 효소전환이 이루어진 후 불순물인 효소와 URA를 제거하기 위한 정제 공정을 더 포함할 수 있다. 위 정제 공정은 정제수 및 MeOH 하에 적어도 1회 이상 여과하는 단계; 및 여과된 여과 여액을 pH 7 내지 8로 중화하는 단계를 포함한다. 위 정제 공정 후 추가로 2FDG의 결정화 단계를 더 포함할 수도 있다. The method for preparing 2'-deoxy-2'-fluoro-guanosine of the present invention may further include a purification step for removing an enzyme and URA which are impurities after the enzyme is converted. Wherein the purification process comprises: at least one filtration under purified water and MeOH; And neutralizing the filtered filtrate to a pH of 7 to 8. And may further include a crystallization step of 2FDG after the purification process.

본 발명의 구체적인 일 실시예에서는, 2'-데옥시-2'-플루오로우리딘 및 2,6-디아미노퓨린을 기질로 N-데옥시리보실 트랜스퍼라아제 변이체 발현 균주 (E. coli E206)를 이용하여 2'-데옥시-2'-플루오로-2,6-디아미노퓨린으로 1차 전환 후, 아데노신 디아미나아제를 이용하여 2'-데옥시-2'-플루오로구아노신을 제조하였으며, 고순도의 2'-데옥시-2'-플루오로구아노신을 고효율로 생산할 수 있음을 확인하였다(실시예 6).In one specific embodiment of the present invention, 2'-deoxy-2'-fluorouridine and 2,6-diaminopurine are used as a substrate to express N-deoxyribosyltransferase mutant ( E. coli E206) was used for primary conversion to 2'-deoxy-2'-fluoro-2,6-diaminopurine, adenosine deaminase was used to convert 2'-deoxy-2'-fluoroguanosine , And it was confirmed that high purity 2'-deoxy-2'-fluoroguanosine can be produced with high efficiency (Example 6).

본 발명의 또 다른 구현예로서, 뉴클레오시드의 제조방법은 본 발명의 N-데옥시리보실 트랜스퍼라아제 변이체를 2'-데옥시-2'-플루오로우리딘 및 아데닌에 처리하여 2'-데옥시-2'-플루오로아데노신을 제조하는 단계; 및 상기 2'-데옥시-2'-플루오로아데노신에 락토코쿠스 락티스 유래 아데노신 디아미나아제를 처리하여 2'-데옥시-2'-플루오로이노신을 제조하는 단계;를 포함하는 2'-데옥시-2'-플루오로이노신의 제조 방법일 수 있다.In another embodiment of the present invention, a method for producing a nucleoside comprises treating the N-deoxyribosyltransferase variant of the present invention with 2'-deoxy-2'-fluorouridine and adenine to produce 2 ' - < / RTI >deoxy-2'-fluoroadenosine; And 2'-deoxy-2'-fluoroadenosine to produce 2'-deoxy-2'-fluoroinosine by treating adenosine deaminase derived from lactococcus lactis. -Deoxy-2 ' -fluoroinosine. ≪ / RTI >

본 발명의 구체적인 일 실시예에서는, 2'-데옥시-2'-플루오로아데노신을 기질로 N-데옥시리보실 트랜스퍼라아제 변이체 발현 균주 (E. coli E206)를 이용하여 2'-데옥시-2'-플루오로이노신을 제조하였으며, 고순도 및 고효율로 2'-데옥시-2'-플루오로이노신을 생산할 수 있음을 확인하였다(실시예 7).In one specific embodiment of the present invention, 2'-deoxy-2'-fluoroadenosine is used as a substrate to express N-deoxyribosyltransferase mutant ( E. coli E206) was used to prepare 2'-deoxy-2'-fluoroinosine, and it was confirmed that 2'-deoxy-2'-fluoroinosine could be produced with high purity and high efficiency (Example 7).

본 발명의 NDT 변이체 또는 상기 변이체가 발현되어 있는 미생물을 이용한 제조방법은 고순도 및 고수율로 다양한 뉴클레오시드를 대량생산할 수 있다. The NDT mutant of the present invention or the production method using the microorganism expressing the mutant can mass-produce various nucleosides with high purity and high yield.

본 발명의 N-데옥시리보실 트랜스퍼라아제 변이체는 기존의 N-데옥시리보실 트랜스퍼라아제에 비해 비 천연형 뉴클레오시드(2'-fluoro) 기질에 대해 높은 활성을 나타내어 고수율 및 고순도로 다양한 뉴클레오시드를 생산할 수 있다.The N-deoxyribosyltransferase mutant of the present invention exhibits high activity against a non-natural type 2'-fluoro substrate compared with the conventional N-deoxyribosyltransferase, and has high yield and high purity To produce various nucleosides.

도 1은 본 발명에 따른 2'-데옥시-2'-플루오로아데노신 (2'-Deoxy-2'-fluoroadenosine)의 제조 과정을 나타낸 것이다.
도 2는 본 발명에 따른 2'-데옥시-2'-플루오로구아노신 (2'-Deoxy-2'-fluoroguanosine)의 제조 과정을 나타낸 것이다.
도 3은 본 발명에 따른 2'-데옥시-2'-플루오로구아노신의 전환율을 나타낸다.
도 4는 본 발명에 따른 2'-데옥시-2'-플루오로구아노신의 2차 결정화 후 HPLC 분석 결과를 나타낸다.
1 shows a process for preparing 2'-Deoxy-2'-fluoroadenosine according to the present invention.
2 shows a process for preparing 2'-Deoxy-2'-fluoroguanosine according to the present invention.
3 shows the conversion of 2'-deoxy-2'-fluoroguanosine according to the present invention.
4 shows the results of HPLC analysis of the secondary crystallization of 2'-deoxy-2'-fluoroguanosine according to the present invention.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these embodiments are only for describing the present invention in more detail and that the scope of the present invention is not limited by these embodiments in accordance with the gist of the present invention .

실시예Example 1. 실수유발 ( 1. Mistake inducing ( ErrorError proneprone ) ) PCR법에PCR method 의한  by NDTNDT 유전자의 무작위 돌연변이 유발 Random mutation of the gene

본 출원인이 기존 보유하고 있는 Lactobacillus delbrueckii KCCM35470 유래 N-데옥시리보실트랜스퍼라아제 (nucleoside deoxyribosyl transferase; NDT) 유전자는 총 474 bp의 크기를 갖는 유전자 (서열번호 1)로, 서열번호 2의 아미노산 서열을 갖는 NDT를 코딩한다. 상기 NDT는 천연형 뉴클레오시드 대비 비 천연형 뉴클레오시드의 활성이 매우 낮거나 활성을 나타내지 않아 뉴클레오시드의 효소적 생산방법에 이용하기에는 어려움이 있었다.The present inventors have found that the existing Lactobacillus The nucleoside deoxyribosyl transferase (NDT) gene derived from delbrueckii KCCM35470 is a gene having a total size of 474 bp (SEQ ID NO: 1) and encodes NDT having the amino acid sequence of SEQ ID NO: 2. Since the NDT has a very low activity or no activity of the unnatural nucleoside compared to the natural nucleoside, it has been difficult to use the NDT in the enzymatic production method of the nucleoside.

이에, 본 출원인은 기존 NDT의 활성, 특히 2'-데옥시-2'-플루오로우리딘 (2'-Deoxy-2'-Fluorouridine; 2FDU)에 대한 반응성을 증가시키기 위해, 실수유발 PCR법을 이용하여 NDT 유전자의 무작위 돌연변이 유발 (random mutagenesis)을 수행하였다. 실수유발 PCR 법은 유전자를 증폭하는 polymerase 반응에 Error를 유도하여 프라이머 사이의 유전자 내에 무작위적으로 변이를 유도하는 방법이다. 일반적인 돌연변이 방법으로는 돌연변이 유발제 (mutagenic agent)를 사용하거나 UV 조사 등을 통한 random mutagenesis를 일으키는 방법과 특정 염기서열을 첨가, 제거, 변이 시키는 site direct mutagenesis가 있으나, 상기의 방법들은 NDT 유전자 외에 나머지 부분의 유전자의 변형을 일으키므로 NDT 유전자만을 변이시키기 위하여 실수유발 PCR 법을 선택하였다. Thus, Applicants have conducted real-time PCR to increase the reactivity of existing NDTs, particularly 2'-Deoxy-2'-Fluorouridine (2FDU) A random mutagenesis of the NDT gene was performed. Real-time PCR is a method of randomly inducing a mutation in a gene between primers by inducing an error in the polymerase reaction that amplifies the gene. Common mutagenesis methods include random mutagenesis using a mutagenic agent, UV irradiation, and site direct mutagenesis to add, remove, and mutate specific nucleotide sequences. However, Induced mutation of the NDT gene, the real - time PCR method was chosen.

pFRPT-NDT 유전자 (서열번호 3)을 주형으로 실수유발 PCR 돌연변이법을 수행하였으며, 실수유발 PCR을 수행하기 위한 프라이머 서열은 하기 표 1과 같다.The PCR mutagenesis was performed by using the pFRPT-NDT gene (SEQ ID NO: 3) as a template, and the primer sequences for real-time PCR were as shown in Table 1 below.

[표 1][Table 1]

Figure 112017096045983-pat00001
Figure 112017096045983-pat00001

pFRPT-NDT의 start codon 부위와 stop codon 부위에 각각 NdeIXbaI을 삽입하여 제작하였으며, Error prone PCR을 위한 반응액의 조성 및 PCR 조건은 하기 표 2와 같다. NdeI and XbaI were inserted at the start codon and stop codon sites of pFRPT-NDT, respectively. The composition of reaction solution and PCR conditions for error prone PCR are shown in Table 2 below.

[표 2][Table 2]

Figure 112017096045983-pat00002
Figure 112017096045983-pat00002

실수유발 PCR 반응액 내 MnSO4 및 dNTP의 농도를 조절하여 Error 빈도를 조절하였다. 본 실시예에서 사용한 조건은 1000 bp 당 5.8개 유전자의 변형이 일어나는 조건으로, NDT 유전자의 경우 2 ~ 3개의 뉴클레오티드에 변형이 일어나도록 설계하였으며, Clontech사의 Diversify PCR Random Mutagenesis Kit (cat no. 630703, Clontech, www.clontech.com)을 사용하여 실수유발 PCR을 수행하였다.Realization of MnSO 4 in PCR reaction solution And the concentration of dNTP was controlled to control the frequency of errors. The condition used in this example was designed to cause the deformation of 5.8 genes per 1000 bp. In the case of the NDT gene, the modification was designed to occur at 2 to 3 nucleotides, and the Diversify PCR Random Mutagenesis Kit (Cat No. 630703, Real-time PCR was performed using Clontech, www.clontech.com).

다음으로, PCR 반응 후 아가로스 겔 전기영동을 이용하여 증폭된 484 bp의 PCR 산물을 확인한 후 추출하였고, 추출된 PCR 산물을 제한효소 XbaINdeI을 사용하여 절단하였다. 제한효소로 절단된 PCR 산물을 삽입할 벡터는 본 출원인에 의해 제작된 pFRPT-PUNP (purine nucleoside phosphorylase) (서열번호 6)을 활용하여 제작하였으며, pFRPT-PUNP를 제한효소 XbaINdeI을 사용하여 절단한 후 PUNP 유전자를 제거한 벡터를 CIAP (Calf Intestinal Alkaline Phosphatase)를 처리하여 self ligation을 방지하였다. 절단한 유전자와 벡터는 T4 리가아제를 이용하여 PCR 산물과 벡터의 라이게이션 (ligation)을 수행하였고, 이러한 생성물을 pFRPT-mNDT로 명명하였다. Gene pulser를 사용하여 pFRPT-mNDT를 E. coli DH5α에 형질전환 후 1 mL의 fresh SOC 배지를 투입하고 1시간 동안 37 ℃에서 배양하였다. 배양액은 카나마이신 (kanamycin)이 포함된 LB 한천평판배지에 도말한 후 37 ℃에서 20시간 추가 배양하였다.Next, 484 bp PCR product amplified by agarose gel electrophoresis was confirmed after PCR reaction, and the extracted PCR product was digested with restriction enzymes XbaI and NdeI . The vector to be inserted with the restriction enzyme digested PCR product was constructed using pFRPT-PUNP (purine nucleoside phosphorylase) (SEQ ID NO: 6) prepared by the applicant and pFRPT-PUNP was digested with restriction enzymes XbaI and NdeI The vector with the PUNP gene removed was treated with CIAP (Calf Intestinal Alkaline Phosphatase) to prevent self ligation. The truncated gene and vector were ligated with PCR products and vectors using T4 ligase, and this product was named pFRPT-mNDT. Using Gene pulser, pFRPT-mNDT was transformed into E. coli DH5α, and 1 mL of fresh SOC medium was added and cultured at 37 ° C for 1 hour. The culture broth was plated on LB agar plate medium containing kanamycin and then further cultured at 37 ° C for 20 hours.

실시예Example 2. 무작위 돌연변이 검증 2. Random Mutation Verification

NDT random mutagenesis 라이브러리를 제작하기 위해 먼저 형질전환된 콜로니의 검증이 필요하다. 콜로니 중 pFRPT-mNDT가 정상적으로 삽입된 콜로니를 분리하기 위해 PCR 스크리닝을 다음과 같이 수행하였으며, PCR 스크리닝을 위한 프라이머 서열은 하기 표 3과 같다.In order to construct the NDT random mutagenesis library, it is first necessary to verify the transformed colonies. In order to isolate colonies in which pFRPT-mNDT was normally inserted in the colonies, PCR screening was performed as follows, and primer sequences for PCR screening were as shown in Table 3 below.

[표 3] [Table 3]

Figure 112017096045983-pat00003
Figure 112017096045983-pat00003

PCR 프라이머는 pFRPT의 RBS (ribosome binding site) 부위와 MCS (multi cloning site)의 염기서열을 이용하여 설계하였으며, PCR 스크리닝은 TAKARA사의 SapphireAmp Fast PCR Master Mix (cat no. RR350A, TAKARA, www.takara.co.kr)를 이용하여 하기 표 4의 방법에 따라 수행하였다.The PCR primers were designed using the RBS (ribosome binding site) region of the pFRPT and the base sequence of MCS (multi cloning site). PCR screening was performed using SapphireAmp Fast PCR Master Mix (Cat No. RR350A, TAKARA, co.) was performed according to the method shown in Table 4 below.

[표 4][Table 4]

Figure 112017096045983-pat00004
Figure 112017096045983-pat00004

상기 표 4의 조건으로 PCR을 수행한 결과, 50개의 콜로니 중 20 ~ 30개의 콜로니는 정상 돌연변이로 확인되었으며, 나머지 콜로니 대부분은 satellite였고, 2 ~ 3개의 콜로니는 pFRPT-NDT (PCR band size : 720 bp)로 확인되었다. PCR was performed under the conditions shown in Table 4. As a result, 20 to 30 colonies of 50 colonies were found to be normal mutations, and most of the remaining colonies were satellite, and 2 to 3 colonies were PCR ptRPT-NDT bp).

pFRPT-mNDT의 반복적인 형질전환 및 PCR 스크리닝을 통해 총 214개의 돌연변이를 확보하였고, 그 중 10개의 콜로니를 무작위로 선별하여 플라스미드를 추출한 후 바이오닉스사 (www.bionicsro.co.kr)에 염기서열 해독을 의뢰하였다. A total of 214 mutants were obtained through repetitive transformation and PCR screening of pFRPT-mNDT. Among them, 10 colonies were randomly selected to extract the plasmid, and then the plasmid was extracted from Bionics (www.bionicsro.co.kr) .

그 결과, 9개의 돌연변이는 1개의 뉴클레오티드가 변형되었고, 1개의 돌연변이는 3개의 뉴클레오티드가 변형됨을 확인할 수 있었으나, 이 중 2개의 돌연변이는 stop codon이 생성되었고, 4개의 돌연변이는 아미노산의 변화가 없어 총 10개의 돌연변이 중 4개의 돌연변이만이 계획대로 아미노산이 변형된 pFRPT-mNDT를 보유하는 것으로 확인되었다. 따라서 총 214개의 돌연변이 중 40%인 80 ~ 90개의 콜로니가 정상적인 pFRPT-mNDT를 보유할 것으로 추정된다.As a result, it was confirmed that nine mutants were modified in one nucleotide, and one mutation was modified in three nucleotides. Two mutants generated a stop codon, four mutants had no amino acid changes, Of the 10 mutations, only four mutations were found to have the amino acid-modified pFRPT-mNDT as planned. Thus, 80-90 colonies, 40% of 214 mutations, are expected to have normal pFRPT-mNDT.

실시예Example 3.  3. NDTNDT 무작위 돌연변이로부터 활성이  Active from random mutations 증가된Increased NDTNDT 변이체의Mutant 스크리닝 Screening

상기 실시예 2에서 확보한 총 214개의 돌연변이 균주를 카나마이신이 포함된 20 mL LB에 각각 4시간 동안 배양한 후 1M IPTG (Isopropyl β-D-1-thiogalactopyranoside)를 20 uL씩 무균적으로 투입 후 20시간 동안 추가 배양하였다. 배양액은 원심분리 후 0.5 mL 정제수에 현탁하여 반응용 라이브러리를 완성하였으며, 돌연변이 라이브러리를 이용한 2FDU 기질 특이적 우수활성 균주의 1차 스크리닝을 위한 반응조건은 하기 표 5와 같다.A total of 214 mutant strains obtained in Example 2 were cultured in 20 mL of LB containing kanamycin for 4 hours, and 20 μL of 1 M IPTG (isopropyl β-D-1-thiogalactopyranoside) Lt; / RTI > The culture broth was centrifuged and suspended in 0.5 mL of purified water to complete the reaction library. The reaction conditions for the first screening of 2FDU substrate-specific highly active strains using the mutagen library are shown in Table 5 below.

[표 5][Table 5]

Figure 112017096045983-pat00005
Figure 112017096045983-pat00005

상기 총 214종의 돌연변이와 함께 대조군 (control) 반응으로 돌연변이가 일어나지 않은 pFRPT-NDT/DH5α를 반응에 투입하였고, 이를 기준으로 돌연변이의 활성을 분석하였다.A total of 214 mutants were transfected with pFRPT-NDT / DH5α, which was not mutated in the control reaction, and the activity of the mutant was analyzed based on this.

2FDA의 전환율은 다음과 같이 계산하였다.The conversion rate of 2FDA was calculated as follows.

* * 2FDA2FDA 반응 전환율 = { Reaction conversion = { 2FDA2FDA (mole) x 100}/({ (mole) x 100} / ({ 2FDA2FDA (mole) +  (mole) + 2FDU2FDU (mole)} (mole)}

그 결과, 대조군 대비 전환율이 20% 이상 향상된 균주들을 선별하였고 이로로부터 가장 높은 작용효과를 나타낸 플라스미드를 prep한 후 서열분석을 진행하여 NDT의 유전자 및 아미노산 서열의 변화를 확인하였다.As a result, strains having a conversion ratio of 20% or more were selected, and the plasmid showing the highest action effect was selected from the results. Sequence analysis was performed to confirm changes in the gene and amino acid sequence of NDT.

[표 6][Table 6]

Figure 112017096045983-pat00006
Figure 112017096045983-pat00006

[표 7][Table 7]

Figure 112017096045983-pat00007
Figure 112017096045983-pat00007

1차 스크리닝 선별 균주 중 가장 높은 효과를 보였던 C71를 이용하여 2'-데옥시-2'-플루오로-2,6-디아미노퓨린리보사이드 (2'-Deoxy-2'-fluoro-2,6-diaminopurineriboside; 2FDDAP) 반응을 수행하였다. C71, the most effective screening strain among the primary screening strains, was used to detect 2'-deoxy-2'-fluoro-2,6-diaminopurine riboside -diaminopurineriboside (2FDDAP).

2FDDAP의 전환율은 다음과 같이 계산하였다.The conversion rate of 2FDDAP was calculated as follows.

* * 2FDDAP2FDDAP 반응 전환율 = { Reaction conversion = { 2FDDAP2FDDAP ( ( molemole ) x 100}/({) x 100} / ({ 2FDDAP2FDDAP ( ( molemole ) + ) + 2FDU2FDU (mole)} (mole)}

실제 산업적 생산이 가능한 최소 기질 농도인 0.2 M의 조건에서 스크리닝을 수행하였다. 아미노산의 변화가 일어난 4종의 pFRPT-mNDT를 E. coli JM109로 형질전환하였고, 반응액의 구체적인 조성 및 조건은 하기 표 8과 같으며, 그 결과를 표 9에 나타내었다.Screening was performed at a minimum substrate concentration of 0.2 M, which is capable of actual industrial production. Four kinds of pFRPT-mNDT in which amino acid changes occurred were transformed with E. coli JM109. The specific composition and conditions of the reaction solution are shown in Table 8, and the results are shown in Table 9. [

[표 8][Table 8]

Figure 112017096045983-pat00008
Figure 112017096045983-pat00008

[표 9][Table 9]

Figure 112017096045983-pat00009
Figure 112017096045983-pat00009

2FDDAP 반응을 수행한 결과, 다양한 돌연변이들 중 59 Leu → Gln 변이를 가지는 C71이 2FDA 반응과 마찬가지로 가장 우수한 2FDU 기질 전환능력을 갖는 것을 확인하였고, 이를 pFRPT-FNDT/DH5α라고 명명하였다. FNDT의 유전정보를 분석한 결과 서열번호 9의 뉴클레오시드 서열을 가지며, 아미노산 서열을 분석한 결과 서열번호 10의 아미노산 서열을 갖는 것으로 확인되었다. As a result of 2FDDAP reaction, it was confirmed that C71 having 59 Leu → Gln mutation among various mutants had the best 2FDU substrate conversion ability as in 2FDA reaction, and named it pFRPT-FNDT / DH5α. Analysis of the genetic information of FNDT revealed that it had the nucleoside sequence of SEQ ID NO: 9 and analyzed the amino acid sequence to confirm that it had the amino acid sequence of SEQ ID NO: 10.

추가로 최적의 E. coli host 선택 및 효소 농도별 2FDDAP 반응의 차이를 확인하기 위해 상기 표 8의 반응액 조성으로 시간에 따른 전환율을 측정하였으며, 그 결과는 표 10과 같다.Further, in order to confirm the difference in the selection of the optimal E. coli host and the 2FDDAP reaction according to the enzyme concentration, the conversion rate over time was measured according to the composition of the reaction solution in Table 8, and the results are shown in Table 10.

[표 10][Table 10]

Figure 112017096045983-pat00010
Figure 112017096045983-pat00010

상기 표 10에서 확인되는 바와 같이, FNDT-DH5α가 42시간 반응 기준으로 2FDDAP 반응에 가장 우수한 활성을 나타냄을 확인하였다. 이에, FNDT의 최적 E. coli host는 DH5α로 결정하고, pFRPT-FNDT/DH5α를 E. coli E206으로 명명하였다. 또한, FNDT는 기존 NDT 대비 2FDU 기질에 대한 전환율이 현저히 증가(42시간 반응 기준 약 3.7배)되었음을 확인하였다. As shown in Table 10, it was confirmed that FNDT-DH5α showed the best activity for 2FDDAP reaction on the 42-hour reaction standard. Thus, the optimal E. coli host of FNDT was determined to be DH5α, and pFRPT-FNDT / DH5α was designated E. coli E206. In addition, FNDT confirmed that the conversion rate to 2FDU substrate was significantly increased (about 3.7 times as compared with the 42-hour reaction) compared to the conventional NDT.

실시예Example 4.  4. FNDTFNDT 균주의 활성 확인 Identification of the activity of the strain

기존 NDT가 도입된 균주인 pFRPT-NDT/JM109 및 상기 실시예 3의 pFRPT-FNDT/DH5α (E. coli E206)에 대한 역가분석을 수행하였다.A potency assay for pFRPT-NDT / JM109, which is an existing NDT-introduced strain, and pFRPT-FNDT / DH5? ( E. coli E206) of Example 3, was performed.

균주의 1 L 발효를 하기 표 11의 방법에 의해 실시하였고, 생산된 균체에 대해 표 12의 2FDA 반응을 이용하여 역가분석을 진행하였다. pFRPT-NDT/JM109 및 E. coli E206 5 set 배양 결과를 표 13에 나타내었다. The 1 L fermentation of the strain was carried out by the method of Table 11, and the potency was analyzed using the 2FDA reaction of Table 12 for the produced cells. The results of 5 sets of pFRPT-NDT / JM109 and E. coli E206 cultures are shown in Table 13.

[표 11] [Table 11]

Figure 112017096045983-pat00011
Figure 112017096045983-pat00011

[표 12][Table 12]

Figure 112017096045983-pat00012
Figure 112017096045983-pat00012

[표 13][Table 13]

Figure 112017096045983-pat00013
Figure 112017096045983-pat00013

표 13에서 확인되는 바와 같이, pFRPT-NDT/JM109 (E. coli E206) 습균체는 pFRPT-NDT/JM109 습균체 대비 현저히 향상된 활성 (약 290배)를 나타냄을 확인하였다.As can be seen in Table 13, pFRPT-NDT / JM109 (E. coli E206) cells showed significantly improved activity (about 290 times) compared to pFRPT-NDT / JM109 cells.

위 습균체를 2017년 08월 10일자로 한국미생물보존센터(Korean Culture Center of Microorganisms, KCCM)에 기탁하여 수탁번호 KCCM12092P를 부여받았다.The stomach cells were deposited with the Korean Culture Center of Microorganisms (KCCM) on Aug. 10, 2017, and received the accession number KCCM12092P.

실시예Example 5.  5. FNDT를FNDT 이용한 2'- The 2'- 데옥시Deoxy -2'--2'- 플루오로아데노신의Of fluoroadenosine 제조 Produce

2FDU 및 아데닌 (adenine; ADE)을 출발물질로 본 발명의 FNDT를 이용하여 2'-데옥시-2'-플루오로아데노신 (2′-Deoxy-2′-fluoroadenosine; 2FDA)를 제조하였다(도 1).2'-deoxy-2'-fluoroadenosine (2FDA) was prepared using the FNDT of the present invention as a starting material for 2FDU and adenine (ADE) ).

먼저, 18.0 kg의 2'-데옥시-2'-플루오로우리딘 (2.0 M)과 9.9 kg의 아데닌 (2.0 M)을 36 L의 정제수에 현탁한 후 3.6 kg E. coli E206 건조균체를 혼합하여 48 ~ 52 ℃, pH 6.1 ~ 6.5 조건에서 84 시간 반응을 진행하였다. 반응액을 HPLC로 분석한 결과, 2'-데옥시-2'-플루오로아데노신의 전환율은 97.6 %임을 확인하였다. First, 18.0 kg of 2'-deoxy-2'-fluorouridine (2.0 M) and 9.9 kg of adenine (2.0 M) were suspended in 36 L of purified water and 3.6 kg of E. coli E206-dried cells were mixed The reaction was carried out at 48 to 52 ° C and pH 6.1 to 6.5 for 84 hours. The reaction solution was analyzed by HPLC. As a result, it was confirmed that the conversion of 2'-deoxy-2'-fluoroadenosine was 97.6%.

반응 종료 후 45 L의 정제수와 189 L의 메틸알코올을 추가한 후 35% 염산을 사용하여 pH를 1.0 ~ 1.3으로 조절한 후 40 kg의 셀라이트 (celite)를 추가하고 여과하여 균체와 반응 중 생성되는 우라실 (uracil)을 여과물 형태로 제거하였다. 여과물에 잔존하는 2'-데옥시-2'-플루오로아데노신의 회수를 위하여 반응기에 여과물을 투입한 후 27 L의 정제수 및 63 L의 메틸알코올을 추가하고 35% 염산을 사용하여 pH를 1.0 ~ 1.3으로 조절한 후 여과하고, 여과 여액을 합하는 공정을 2회 반복 수행하였다.After completion of the reaction, 45 L of purified water and 189 L of methyl alcohol were added, and the pH was adjusted to 1.0-1.3 with 35% hydrochloric acid. Then, 40 kg of celite was added and filtered to produce Gt; uracil < / RTI > was removed in the form of a filtrate. To recover the 2'-deoxy-2'-fluoroadenosine remaining in the filtrate, 27 liters of purified water and 63 L of methyl alcohol were added to the reactor, and the pH was adjusted to 35% using hydrochloric acid 1.0 to 1.3, followed by filtration, and the filtration filtrate was combined twice.

균체와 우라실이 제거된 여과 여액에 0.36 kg의 Acid-charcoal을 투입하고 1시간 이상 교반한 후 여과를 하였다. 여과 여액은 반응기의 외부온도를 65 ℃ 이하로 유지하면서 총 액량이 63 ~ 81 L가 될 때까지 농축을 진행하였다. 농축이 종료된 후 126 L의 정제수를 투입 후 10N NaOH 수용액을 사용하여 pH 7.5 ~ 8.0으로 조절하였다.0.36 kg of Acid-charcoal was added to the filtered filtrate from which the cells and uracil were removed, stirred for 1 hour or more, and filtered. The filtrate was concentrated until the total liquid amount reached 63 ~ 81 L while maintaining the external temperature of the reactor at 65 캜 or below. After the concentration was finished, 126 L of purified water was added, and the pH was adjusted to 7.5 to 8.0 using a 10N NaOH aqueous solution.

pH 조절 후 반응기의 내부온도를 46 ~ 52 ℃로 승온한 후 1시간 이상 교반하고, 2시간 이상에 걸쳐 내부온도를 15 ~ 30 ℃로 서서히 냉각시켰다. 이 후 온도를 유지하면서 2시간 이상 추가 교반 후 여과하였고, 수득한 여과물을 외부온도 65 ℃ 이하의 조건에서 12시간 감압건조한 결과, 16.11 kg의 2'-데옥시-2'-플루오로아데노신을 회수하였으며 (표 14), 생산된 2FDA의 분석결과는 하기 표 15와 같다.After the pH was adjusted, the internal temperature of the reactor was raised to 46 ~ 52 캜 and stirred for 1 hour or longer. The internal temperature was gradually cooled to 15 ~ 30 캜 over 2 hours. The resulting filtrate was dried under reduced pressure at an external temperature of 65 DEG C or lower for 12 hours to obtain 16.11 kg of 2'-deoxy-2'-fluoroadenosine (Table 14), and the analysis results of 2FDA produced are shown in Table 15 below.

[표 14][Table 14]

Figure 112017096045983-pat00014
Figure 112017096045983-pat00014

[표 15][Table 15]

Figure 112017096045983-pat00015
Figure 112017096045983-pat00015

상기의 결과를 통해, 본 발명의 NDT 변이체 또는 이를 포함하는 균체를 이용하여 순도 99% 이상의 고순도 2'-데옥시-2'-플루오로아데노신을 약 90%의 무게수율로서 효과적으로 제조할 수 있음을 확인하였다.Based on the above results, it was found that high-purity 2'-deoxy-2'-fluoroadenosine having a purity of 99% or more can be effectively produced with a weight yield of about 90% by using the NDT mutant of the present invention or the cells containing the same Respectively.

실시예 6. FNDT를 이용한 2'-데옥시-2'-플루오로구아노신의 제조Example 6. Preparation of 2'-deoxy-2'-fluoroguanosine using FNDT

2FDU 및 2,6-디아미노퓨린 (2,6-Diaminopurine; DAP)을 기질로 FNDT를 이용하여 2'-데옥시-2'-플루오로-2,6-디아미노퓨린 (2'-Deoxy-2'-Fluoro-2,6-Diaminopurine; 2FDDAP)으로 1차 생물전환 시킨 다음, 본 출원인이 제작한 락토코쿠스 락티스 유래 아데노신 디아미나아제 (adenosine deaminase; 서열번호 11) 발현 균주 (pFRPT-LADD/JM109; 출원번호 제10-2016-0033414호)를 이용하여 2FDDAP를 2'-데옥시-2'-플루오로구아노신 (2'-Deoxy-2'-fluoroguanosine; 2FDG)로 전환시키는 반응을 수행하였으며(도 2), 후속 정제공정을 거쳐 2'-데옥시-2'-플루오로구아노신을 제조하였다.2FDU and 2,6-Diaminopurine (DAP) were used as substrates for 2'-deoxy-2'-fluoro-2,6-diaminopurine (2'-Deoxy- 2 '-Fluoro-2,6-Diaminopurine; 2FDDAP), and then transformed with the expression strain of adenosine deaminase (SEQ ID NO: 11) derived from lactococcus lactis (pFRPT-LADD (2'-Deoxy-2'-fluoroguanosine (2FDG)) using a method described in Japanese Patent Application Laid-Open No. 10-2016-0033414 (FIG. 2), followed by a subsequent purification step to produce 2'-deoxy-2'-fluoroguanosine.

먼저, 20.0 g의 2'-데옥시-2'-플루오로우리딘 (1.62 M)과 6.4 g의 2,6-디아미노퓨린 (0.85 M)을 50 mL의 정제수에 현탁한 후 30 g E. coli E206 습균체를 혼합하여 50 ℃, pH 6.0 조건에서 2'-데옥시-2'-플루오로-2,6-디아미노퓨린 전환 반응을 진행하였으며, 2FDDAP의 전환율은 다음과 같이 계산하였다.First, 20.0 g of 2'-deoxy-2'-fluorouridine (1.62 M) and 6.4 g of 2,6-diaminopurine (0.85 M) were suspended in 50 mL of purified water. deoxy-2'-fluoro-2,6-diaminopurine conversion reaction was carried out at 50 ° C and pH 6.0 under the condition of mixing E. coli E206 cells. The conversion of 2FDDAP was calculated as follows.

* * 2FDDAP2FDDAP 반응 전환율 = { Reaction conversion = { 2FDDAP2FDDAP (mole) X 100} / {(mole) X 100} / { 2FDU2FDU (mole) + 2FDDAP(mole)}(mole) + 2FDDAP (mole)}

2FDDAP의 40% 전환을 확인한 후 4.0 g의 2,6-디아미노퓨린 (0.53 M)을 추가 투입하고, 70% 전환을 확인한 후 2.4 g의 2,6-디아미노퓨린 (0.32 M)을 추가 투입하여 70% 전환을 확인하였다.After confirming 40% conversion of 2FDDAP, 4.0 g of 2,6-diaminopurine (0.53 M) was added additionally, and after addition of 2.4 g of 2,6-diaminopurine (0.32 M) And 70% conversion was confirmed.

그 다음, 70%의 2'-데옥시-2'-플루오로-2,6-디아미노퓨린으로의 전환을 확인한 후, 0.1 g의 pFRPT-LADD/JM109 습균체를 투입하여 탈아민화 (deamination) 반응을 진행하였다. 50% 초산 수용액을 사용하여 반응 중 pH를 6.0으로 유지하였고, 최종 80% 전환을 확인한 후 추가로 10 g E. coli E206 습균체를 투입하여 반응을 계속 진행하였다. 2'-데옥시-2'-플루오로-2,6-디아미노퓨린 반응과 2'-데옥시-2'-플루오로구아노신 반응은 one-pot으로 진행되었으며, 2FDG 전환율은 다음과 같이 계산하였다.Then, after conversion of 70% to 2'-deoxy-2'-fluoro-2,6-diaminopurine was confirmed, deamination was carried out by adding 0.1 g of pFRPT-LADD / JM109 cells, The reaction proceeded. The pH was maintained at 6.0 during the reaction using a 50% aqueous solution of acetic acid. After the final 80% conversion was confirmed, further 10 g of E. coli E206 cells were added to continue the reaction. The 2'-deoxy-2'-fluoro-2,6-diaminopurine reaction and the 2'-deoxy-2'-fluoroguanosine reaction proceeded as one-pot, and the 2FDG conversion was calculated as Respectively.

* * 2FDG2FDG 반응 전환율 = { Reaction conversion = { 2FDG2FDG (mole) X 100} / {(mole) X 100} / { 2FDU2FDU (mole) + (mole) + 2FDDAP2FDDAP (mole) + 2FDG(mole)}(mole) + 2FDG (mole)}

최종 141 시간 후 반응액을 HPLC로 분석한 결과, 2'-데옥시-2'-플루오로구아노신의 전환율은 97.5 %임을 확인하였다(도 3). After the final 141 hours, the reaction solution was analyzed by HPLC. As a result, it was confirmed that the conversion of 2'-deoxy-2'-fluoroguanosine was 97.5% (FIG. 3).

반응 종료 후 260 mL의 정제수 및 330 mL의 메틸알코올을 추가한 후 35% 염산을 사용하여 pH를 1.3으로 조절한 후 20 g의 셀라이트 (celite)를 추가하고 여과하여 균체와 반응 중 생성되는 우라실 (uracil)을 여과물 형태로 제거하였다. 여과물에 잔존하는 2'-데옥시-2'-플루오로구아노신의 회수를 위하여 여과물에 80 mL의 정제수 및 80 mL의 메틸알코올을 추가하고 35% 염산을 사용하여 pH를 1.3으로 조절한 후 여과하고, 여과 여액을 합하였다.After completion of the reaction, 260 mL of purified water and 330 mL of methyl alcohol were added, and the pH was adjusted to 1.3 using 35% hydrochloric acid. Then, 20 g of celite was added and filtered to remove the uracil (uracil) was removed in the form of a filtrate. To recover the remaining 2'-deoxy-2'-fluoroguanosine in the filtrate, 80 mL of purified water and 80 mL of methyl alcohol were added to the filtrate, the pH was adjusted to 1.3 using 35% hydrochloric acid Filtered, and the filtrate was combined.

균체와 우라실이 제거된 여과 여액을 10N NaOH 수용액을 사용하여 pH를 7.5로 조절하고, 70 ℃조건에서 2시간 동안 교반하였다. 3시간 이상에 걸쳐 0 ~ 5 ℃로 냉각 후 온도를 유지하면서 3시간 이상 교반한 다음 여과하여 30.87 g의 wet crude cake을 회수하였다.The filtrate, from which the cells and uracil were removed, was adjusted to pH 7.5 with a 10N NaOH aqueous solution and stirred at 70 ° C for 2 hours. After cooling to 0 ~ 5 ℃ over 3 hours, stirring was continued for 3 hours while maintaining the temperature, and 30.87 g of wet crude cake was recovered by filtration.

상기 crude cake에 300 mL의 정제수를 투입하고 10N NaOH를 사용하여 pH 10.5로 조절하고 75 ℃로 승온한 후 1시간 동안 교반하였다. 2 g의 Basic-charcoal을 투입하고 1시간 이상 추가 교반한 후 여과하였다.300 mL of purified water was added to the crude cake, the pH was adjusted to 10.5 using 10N NaOH, the temperature was raised to 75 ° C, and the mixture was stirred for 1 hour. 2 g of Basic-charcoal was added and further stirred for 1 hour and then filtered.

상기 여과 여액을 50% 초산 수용액을 사용하여 pH 7.5로 조절한 후 75 ℃로 승온하여 약 3시간 교반하고, 3시간 이상에 걸쳐 0 ~ 5 ℃까지 서냉 후 온도를 유지하면서 3시간 이상 교반하였다. 공정물을 여과하고 수득한 여과물을 건조한 결과, 16.52 g (무게수율 82.6%), 수분 7.16%, HPLC 순도 99.42%의 2'-데옥시-2'-플루오로구아노신을 회수 하였다(도 4).The filtrate was adjusted to pH 7.5 with a 50% acetic acid aqueous solution, and then heated to 75 ° C, stirred for about 3 hours, slowly cooled to 0 to 5 ° C over 3 hours, and stirred for 3 hours or more while maintaining the temperature. The process product was filtered and the obtained filtrate was dried to obtain 2'-deoxy-2'-fluoroguanosine having 16.52 g (weight yield 82.6%), moisture 7.16% and HPLC purity 99.42% .

본 실시예의 결과를 통해, 본 발명의 NDT 변이체 균주를 이용하여 고 순도의 2'-데옥시-2'-플루오로구아노신를 고 수율로 제조할 수 있음을 확인하였다.From the results of this Example, it was confirmed that high-purity 2'-deoxy-2'-fluoroguanosine can be produced at a high yield by using the NDT mutant strain of the present invention.

실시예 7. 2'-데옥시-2'-플루오로이노신의 제조Example 7. Preparation of 2'-deoxy-2'-fluoroinosine

상기 실시예 5에서 수득한 2FDA를 기질로 본 출원인이 제작한 락토코쿠스 락티스 유래 아데노신 디아미나아제 (adenosine deaminase; LADD) 발현 균주 (pFRPT-LADD/JM109; 출원번호 제10-2016-0033414호)를 이용하여 2'-데옥시-2'-플루오로이노신 (2'-Deoxy-2'-fluoroinosine)을 제조하였다.The adenosine deaminase (LADD) -expressing strain (pFRPT-LADD / JM109) produced by the present applicant with the 2FDA obtained in the above Example 5 as a substrate was treated with 10 μg / ) Was used to prepare 2'-Deoxy-2'-fluoroinosine.

먼저, 36.7 g의 2FDA (1.36 M)을 100 ml의 정제수에 현탁한 후 0.1 g pFRPT-LADD/JM109 습균체를 혼합하여 40 ℃, pH 7.0 ~ 8.0 조건에서 1.5시간 진탕교반하였다. 반응액을 HPLC로 분석한 결과, 2FDA가 2'-데옥시-2'-플루오로이노신으로 100% 전환되었음을 확인하였다.First, 36.7 g of 2FDA (1.36 M) was suspended in 100 ml of purified water, and 0.1 g of pFRPT-LADD / JM109 cells were mixed and agitated for 1.5 hours at 40 ° C and pH 7.0 to 8.0. The reaction solution was analyzed by HPLC and it was confirmed that 2FDA was converted to 2'-deoxy-2'-fluoroinosine by 100%.

반응 종료 후 300 ml의 정제수를 추가한 후 10N NaOH 수용액을 사용하여 pH를 12.0 ~ 12.5로 조절한 후 균체를 여과하여 제거하였다. 균체 제거여액에 35% 염산을 사용하여 중화한 후 3시간 이상 0 ~ 5 ℃를 유지하며 교반 후 여과하여 55 ℃에서 12시간 진공 건조하였다.After the completion of the reaction, 300 ml of purified water was added, and the pH was adjusted to 12.0 to 12.5 with 10 N NaOH aqueous solution, and the cells were removed by filtration. The filtrate was neutralized with 35% hydrochloric acid and kept at 0 ~ 5 ℃ for more than 3 hours. After stirring, it was filtered and vacuum dried at 55 ℃ for 12 hours.

그 결과, 100.0%의 HPLC 순도를 갖는 2'-데옥시-2'-플루오로이노신 27 g을 수득하였으며, 출발물질인 2'-데옥시-2'-플루오로아데닌 투입량 기준 무게수율은 73.6 %, 몰 수율은 73.3 %임을 확인하였다. As a result, 27 g of 2'-deoxy-2'-fluoroinosine having an HPLC purity of 100.0% was obtained. The weight yield based on the starting amount of 2'-deoxy-2'-fluoroadenine as a starting material was 73.6% , And the molar yield was 73.3%.

상기와 같은 결과들로부터 본 발명의 NDT 변이체 (FNDT)는 높은 활성, 특히 2'-데옥시-2'-플루오로뉴클레오시드에 대한 우수한 기질 특이성을 나타내며, 이를 이용하여 고순도 및 고수율로 뉴클레오시드 화합물을 제조할 수 있음을 확인하였다. From the above results, the NDT variant (FNDT) of the present invention shows excellent substrate specificity for high activity, especially 2'-deoxy-2'-fluoro nucleoside, It was confirmed that it was possible to prepare a compound of the present invention.

이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the same is by way of illustration and example only and is not to be construed as limiting the scope of the present invention. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

한국미생물보존센터Korea Microorganism Conservation Center KCCM12092PKCCM12092P 2017081020170810

<110> ST Pharm Co., Ltd. <120> An N-deoxyribosyl transferase mutant, and a method for producing nucleoside using the same <130> P17-093-STP <160> 11 <170> KoPatentIn 3.0 <210> 1 <211> 474 <212> DNA <213> Lactobacillus delbrueckii <400> 1 atgcctaaga aaacgatcta cttcggtgcc ggctggttca ctgaccgcca aaacaaagcc 60 tacaaggaag ccatggaagc cctcaaggaa aacccaacga ttgacctgga aaacagctac 120 gttcccctgg acaaccagta caagggtatc cgggttgatg aacacccgga atacctgcat 180 gacaaggttt gggctacggc cacctacaac aacgacttga acgggatcaa gaccaacgac 240 atcatgctgg gtgtctacat ccctgacgaa gaagacgtcg gcctgggcat ggaactgggt 300 tacgccttga gccaaggcaa gtacgtcctt ttggtcatcc cggacgaaga ctacggcaag 360 ccgatcaacc tcatgagctg gggcgtcagc gacaacgtga tcaagatgag ccagctgaag 420 gacttcaact tcaacaagcc gcgcttcgac ttctacgagg gtgccgttta ttaa 474 <210> 2 <211> 157 <212> PRT <213> Lactobacillus delbrueckii <400> 2 Met Pro Lys Lys Thr Ile Tyr Phe Gly Ala Gly Trp Phe Thr Asp Arg 1 5 10 15 Gln Asn Lys Ala Tyr Lys Glu Ala Met Glu Ala Leu Lys Glu Asn Pro 20 25 30 Thr Ile Asp Leu Glu Asn Ser Tyr Val Pro Leu Asp Asn Gln Tyr Lys 35 40 45 Gly Ile Arg Val Asp Glu His Pro Glu Tyr Leu His Asp Lys Val Trp 50 55 60 Ala Thr Ala Thr Tyr Asn Asn Asp Leu Asn Gly Ile Lys Thr Asn Asp 65 70 75 80 Ile Met Leu Gly Val Tyr Ile Pro Asp Glu Glu Asp Val Gly Leu Gly 85 90 95 Met Glu Leu Gly Tyr Ala Leu Ser Gln Gly Lys Tyr Val Leu Leu Val 100 105 110 Ile Pro Asp Glu Asp Tyr Gly Lys Pro Ile Asn Leu Met Ser Trp Gly 115 120 125 Val Ser Asp Asn Val Ile Lys Met Ser Gln Leu Lys Asp Phe Asn Phe 130 135 140 Asn Lys Pro Arg Phe Asp Phe Tyr Glu Gly Ala Val Tyr 145 150 155 <210> 3 <211> 6986 <212> DNA <213> Artificial Sequence <220> <223> pFRPT-NDT <400> 3 agatcccatg cctaagaaaa cgatctactt cggtgccggc tggttcactg accgccaaaa 60 caaagcctac aaggaagcca tggaagccct caaggaaaac ccaacgattg acctggaaaa 120 cagctacgtt cccctggaca accagtacaa gggtatccgg gttgatgaac acccggaata 180 cctgcatgac aaggtttggg ctacggccac ctacaacaac gacttgaacg ggatcaagac 240 caacgacatc atgctgggtg tctacatccc tgacgaagaa gacgtcggcc tgggcatgga 300 actgggttac gccttgagcc aaggcaagta cgtccttttg gtcatcccgg acgaagacta 360 cggcaagccg atcaacctca tgagctgggg cgtcagcgac aacgtgatca agatgagcca 420 gctgaaggac ttcaacttca acaagccgcg cttcgacttc tacgagggtg ccgtttatta 480 agggcagatc tttaacgcgg ccgcctctga tcgagataac agagtgttcc tgcaggttgt 540 gcccttcacc acctatatat gaggtgacct cgaaaccgtt ggtcaggcgt acgcggcaaa 600 gcttctgttt tggcggatga gagaagattt tcagcctgat acagattaaa tcagaacgca 660 gaagcggtct gataaaacag aatttgcctg gcggcagtag cgcggtggtc ccacctgacc 720 ccatgccgaa ctcagaagtg aaacgccgta gcgccgatgg tagtgtgggg tctccccatg 780 cgagagtagg gaactgccag gcatcaaata aaacgaaagg ctcagtcgaa agactgggcc 840 tttcgtttta tctgttgttt gtcggtgaac gctctcctga gtaggacaaa tccgccggga 900 gcggatttga acgttgcgaa gcaacggccc ggagggtggc gggcaggacg cccgccataa 960 actgccaggc atcaaattaa gcagaaggcc atcctgacgg atggcctttt tgcgtttcta 1020 caaactcttt tgtttatttt tctaaataca ttcaaatatg tatccgctca tgagacaata 1080 accctgataa atgcttcaat aatattgaaa aaggaagagt atgagtattc aacatttccg 1140 tgtcgccctt attccctttt ttgcggcatt ttgccttcct gtttttgctc acccagaaac 1200 gctggtgaaa gtaaaagatg ctgaagatca gttgggtgca cgagtgggtt acatcgaact 1260 ggatctcaac agcggtaaga tccttgagag ttttcgcccc gaagaacgtt ttccaatgat 1320 gagcactttt aaagttctgc tatgtggcgc ggtattatcc cgtgtttcga gcaccaccac 1380 caccaccact gagatccggc tgctaacaaa gcccgaaagg aagctgagtt ggctgctgcc 1440 accgctgagc aataactagc ataacccctt ggggcctcta aacgggtctt gaggggtttt 1500 ttgctgaaag gaggaactat atccggattg gcgaatggga cgcgccctgt agcggcgcat 1560 taagcgcggc gggtgtggtg gttacgcgca gcgtgaccgc tacacttgcc agcgccctag 1620 cgcccgctcc tttcgctttc ttcccttcct ttctcgccac gttcgccggc tttccccgtc 1680 aagctctaaa tcgggggctc cctttagggt tccgatttag tgctttacgg cacctcgacc 1740 ccaaaaaact tgattagggt gatggttcac gtagtgggcc atcgccctga tagacggttt 1800 ttcgcccttt gacgttggag tccacgttct ttaatagtgg actcttgttc caaactggaa 1860 caacactcaa ccctatctcg gtctattctt ttgatttata agggattttg ccgatttcgg 1920 cctattggtt aaaaaatgag ctgatttaac aaaaatttaa cgcgaatttt aacaaaatat 1980 taacgtttac aatttcaggt ggcacttttc ggggaaatgt gcgcggaacc cctatttgtt 2040 tatttttcta aatacattca aatatgtatc cgctcatgaa ttaattctta gaaaaactca 2100 tcgagcatca aatgaaactg caatttattc atatcaggat tatcaatacc atatttttga 2160 aaaagccgtt tctgtaatga aggagaaaac tcaccgaggc agttccatag gatggcaaga 2220 tcctggtatc ggtctgcgat tccgactcgt ccaacatcaa tacaacctat taatttcccc 2280 tcgtcaaaaa taaggttatc aagtgagaaa tcaccatgag tgacgactga atccggtgag 2340 aatggcaaaa gtttatgcat ttctttccag acttgttcaa caggccagcc attacgctcg 2400 tcatcaaaat cactcgcatc aaccaaaccg ttattcattc gtgattgcgc ctgagcgaga 2460 cgaaatacgc gatcgctgtt aaaaggacaa ttacaaacag gaatcgaatg caaccggcgc 2520 aggaacactg ccagcgcatc aacaatattt tcacctgaat caggatattc ttctaatacc 2580 tggaatgctg ttttcccggg gatcgcagtg gtgagtaacc atgcatcatc aggagtacgg 2640 ataaaatgct tgatggtcgg aagaggcata aattccgtca gccagtttag tctgaccatc 2700 tcatctgtaa catcattggc aacgctacct ttgccatgtt tcagaaacaa ctctggcgca 2760 tcgggcttcc catacaatcg atagattgtc gcacctgatt gcccgacatt atcgcgagcc 2820 catttatacc catataaatc agcatccatg ttggaattta atcgcggcct agagcaagac 2880 gtttcccgtt gaatatggct cataacaccc cttgtattac tgtttatgta agcagacagt 2940 tttattgttc atgaccaaaa tcccttaacg tgagttttcg ttccactgag cgtcagaccc 3000 cgtagaaaag atcaaaggat cttcttgaga tccttttttt ctgcgcgtaa tctgctgctt 3060 gcaaacaaaa aaaccaccgc taccagcggt ggtttgtttg ccggatcaag agctaccaac 3120 tctttttccg aaggtaactg gcttcagcag agcgcagata ccaaatactg tccttctagt 3180 gtagccgtag ttaggccacc acttcaagaa ctctgtagca ccgcctacat acctcgctct 3240 gctaatcctg ttaccagtgg ctgctgccag tggcgataag tcgtgtctta ccgggttgga 3300 ctcaagacga tagttaccgg ataaggcgca gcggtcgggc tgaacggggg gttcgtgcac 3360 acagcccagc ttggagcgaa cgacctacac cgaactgaga tacctacagc gtgagctatg 3420 agaaagcgcc acgcttcccg aagggagaaa ggcggacagg tatccggtaa gcggcagggt 3480 cggaacagga gagcgcacga gggagcttcc agggggaaac gcctggtatc tttatagtcc 3540 tgtcgggttt cgccacctct gacttgagcg tcgatttttg tgatgctcgt caggggggcg 3600 gagcctatgg aaaaacgcca gcaacgcggc ctttttacgg ttcctggcct tttgctggcc 3660 ttttgctcac atgttctttc ctgcgttatc ccctgattct gtggataacc gtattaccgc 3720 ctttgagtga gctgataccg ctcgccgcag ccgaacgacc gagcgcagcg agtcagtgag 3780 cgaggaagcg gaagagcgcc tgatgcggta ttttctcctt acgcatctgt gcggtatttc 3840 acaccgcata tatggtgcac tctcagtaca atctgctctg atgccgcata gttaagccag 3900 tatacactcc gctatcgcta cgtgactggg tcatggctgc gccccgacac ccgccaacac 3960 ccgctgacgc gccctgacgg gcttgtctgc tcccggcatc cgcttacaga caagctgtga 4020 ccgtctccgg gagctgcatg tgtcagaggt tttcaccgtc atcaccgaaa cgcgcgaggc 4080 agctgcggta aagctcatca gcgtggtcgt gaagcgattc acagatgtct gcctgttcat 4140 ccgcgtccag ctcgttgagt ttctccagaa gcgttaatgt ctggcttctg ataaagcggg 4200 ccatgttaag ggcggttttt tcctgtttgg tcactgatgc ctccgtgtaa gggggatttc 4260 tgttcatggg ggtaatgata ccgatgaaac gagagaggat gctcacgata cgggttactg 4320 atgatgaaca tgcccggtta ctggaacgtt gtgagggtaa acaactggcg gtatggatgc 4380 ggcgggacca gagaaaaatc actcagggtc aatgccagcg cttcgttaat acagatgtag 4440 gtgttccaca gggtagccag cagcatcctg cgatgcagat ccggaacata atggtgcagg 4500 gcgctgactt ccgcgtttcc agactttacg aaacacggaa accgaagacc attcatgttg 4560 ttgctcaggt cgcagacgtt ttgcagcagc agtcgcttca cgttcgctcg cgtatcggtg 4620 attcattctg ctaaccagta aggcaacccc gccagcctag ccgggtcctc aacgacagga 4680 gcacgatcat gcctgaaatg agctgttgac aattaatcat cggctcgtat aatgtgtgga 4740 attgtgagcg gataacaatt tcacacagga aacagaattc atgttcgaac aacgcgtaaa 4800 ttctgacgta ctgaccgttt ctaccgttaa ctctcaggat caggtaaccc aaaaacccct 4860 gcgtgactcg gttaaacagg cactgaagaa ctattttgct caactgaatg gtcaggatgt 4920 gaatgacctc tatgagctgg tactggctga agtagaacag cccctgttgg acatggtgat 4980 gcaatacacc cgtggtaacc agacccgtgc tgcgctgatg atgggcatca accgtggtac 5040 gctgcgtaaa aaattgaaaa aatacggcat gaactaagct gcacccgtgg ggccgccatg 5100 ccggcgataa tggcctgctt ctcgccgaaa cgtttggtgg cgggaccagt gacgaaggct 5160 tgagcgaggg cgtgcaagat tccgaatacc gcaagcgaca ggccgatcat cgtcgcgctc 5220 cagcgaaagc ggtcctcgcc gaaaatgacc cagagcgctg ccggcacctg tcctacgagt 5280 tgcatgataa agaagacagt cataagtgcg gcgacgatag tcatgccccg cgcccaccgg 5340 aaggagctga ctgggttgaa ggctctcaag ggcatcggtc gagatcccgg tgcctaatga 5400 gtgagctaac ttacattaat tgcgttgcgc tcactgcccg ctttccagtc gggaaacctg 5460 tcgtgccagc tgcattaatg aatcggccaa cgcgcgggga gaggcggttt gcgtattggg 5520 cgccagggtg gtttttcttt tcaccagtga gacgggcaac agctgattgc ccttcaccgc 5580 ctggccctga gagagttgca gcaagcggtc cacgctggtt tgccccagca ggcgaaaatc 5640 ctgtttgatg gtggttaacg gcgggatata acatgagctg tcttcggtat cgtcgtatcc 5700 cactaccgag atgtccgcac caacgcgcag cccggactcg gtaatggcgc gcattgcgcc 5760 cagcgccatc tgatcgttgg caaccagcat cgcagtggga acgatgccct cattcagcat 5820 ttgcatggtt tgttgaaaac cggacatggc actccagtcg ccttcccgtt ccgctatcgg 5880 ctgaatttga ttgcgagtga gatatttatg ccagccagcc agacgcagac gcgccgagac 5940 agaacttaat gggcccgcta acagcgcgat ttgctggtga cccaatgcga ccagatgctc 6000 cacgcccagt cgcgtaccgt cttcatggga gaaaataata ctgttgatgg gtgtctggtc 6060 agagacatca agaaataacg ccggaacatt agtgcaggca gcttccacag caatggcatc 6120 ctggtcatcc agcggatagt taatgatcag cccactgacg cgttgcgcga gaagattgtg 6180 caccgccgct ttacaggctt cgacgccgct tcgttctacc atcgacacca ccacgctggc 6240 acccagttga tcggcgcgag atttaatcgc cgcgacaatt tgcgacggcg cgtgcagggc 6300 cagactggag gtggcaacgc caatcagcaa cgactgtttg cccgccagtt gttgtgccac 6360 gcggttggga atgtaattca gctccgccat cgccgcttcc actttttccc gcgttttcgc 6420 agaaacgtgg ctggcctggt tcaccacgcg ggaaacggtc tgataagaga caccggcata 6480 ctctgcgaca tcgtataacg ttactggttt cacattcacc accctgaatt gactctcttc 6540 cgggcgctat catgccatac cgcgaaaggt tttgcgccat tcgatggtgt ccgggatctc 6600 gacgctctcc cttatgcgac tcctgcatta ggaagcagcc cagtagtagg ttgaggccgt 6660 tgagcaccgc cgccgcaagg aatggtgcta gaggatcccc agatcgatct cgatcccgcg 6720 aaataaatgc tgaacaatta ttgcccgttt tacagcgtta cggcttcgaa acgctcgaaa 6780 aactggcagt tttaggctga tttggttgaa tgttgcgcgg tcagaaaatt attttaaatt 6840 tcctcttgtc aattaatcat ccggctcgta taatgcgcgg aattgtgtga gcggataaca 6900 attcccacca tttaacttta agaaggagat atacatatga aagaaaccgc tgctgctaaa 6960 ttcgaacgcc agcacatgga cagccc 6986 <210> 4 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> NDT forward primer <400> 4 gatcatatgc ctaagaaaac gatc 24 <210> 5 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> NDT reverse primer <400> 5 cgttctagat ctgcccttaa taaa 24 <210> 6 <211> 7143 <212> DNA <213> Artificial Sequence <220> <223> pFRPT-PUNP(purine nucleoside phosphorylase) <400> 6 tatgccgagt gacaagcctc accaccacca ccaccaccac caccaccact cctctgacga 60 cgacgacaag gatccgatga gcgttcatat tggtgcaaaa gaacacgaga ttgcagataa 120 aattttgctt ccaggagatc cacttcgcgc aaaatatatc gctgaaacgt ttttagaggg 180 agctacttgc tataatcaag ttcgcggtat gttaggattt acaggtacat ataaaggcca 240 tcgtatttcc gttcaaggaa caggtatggg tgtaccatct atttctattt atattacaga 300 acttatgcaa agctacaacg ttcaaacatt aattcgcgtc ggaacatgtg gtgctattca 360 aaaagatgta aaagttcgtg atgtcatttt agcgatgaca tcgtcaaccg attcccaaat 420 gaatcgcatg acgttcggag gaattgatta cgctccgaca gctaactttg acttgttaaa 480 aacagcgtac gaaattggaa aagaaaaagg attacaacta aaagttggca gtgtatttac 540 agctgatatg ttttataatg aaaatgcaca atttgaaaaa ctggcacgat acggtgtact 600 ggctgtagag atggaaacaa cagcgcttta tacattagcc gctaaatttg gcagaaaagc 660 attatcggta ttaacagtaa gcgatcacat tttaacaggg gaagagacaa cggctgaaga 720 gcgccaaaca acatttaacg aaatgatcga agtcgctctt gaaacagcga ttcgccaata 780 atctagagct tgcggccgca ctcgacaagc ttctgttttg gcggatgaga gaagattttc 840 agcctgatac agattaaatc agaacgcaga agcggtctga taaaacagaa tttgcctggc 900 ggcagtagcg cggtggtccc acctgacccc atgccgaact cagaagtgaa acgccgtagc 960 gccgatggta gtgtggggtc tccccatgcg agagtaggga actgccaggc atcaaataaa 1020 acgaaaggct cagtcgaaag actgggcctt tcgttttatc tgttgtttgt cggtgaacgc 1080 tctcctgagt aggacaaatc cgccgggagc ggatttgaac gttgcgaagc aacggcccgg 1140 agggtggcgg gcaggacgcc cgccataaac tgccaggcat caaattaagc agaaggccat 1200 cctgacggat ggcctttttg cgtttctaca aactcttttg tttatttttc taaatacatt 1260 caaatatgta tccgctcatg agacaataac cctgataaat gcttcaataa tattgaaaaa 1320 ggaagagtat gagtattcaa catttccgtg tcgcccttat tccctttttt gcggcatttt 1380 gccttcctgt ttttgctcac ccagaaacgc tggtgaaagt aaaagatgct gaagatcagt 1440 tgggtgcacg agtgggttac atcgaactgg atctcaacag cggtaagatc cttgagagtt 1500 ttcgccccga agaacgtttt ccaatgatga gcacttttaa agttctgcta tgtggcgcgg 1560 tattatcccg tgtttcgagc accaccacca ccaccactga gatccggctg ctaacaaagc 1620 ccgaaaggaa gctgagttgg ctgctgccac cgctgagcaa taactagcat aaccccttgg 1680 ggcctctaaa cgggtcttga ggggtttttt gctgaaagga ggaactatat ccggattggc 1740 gaatgggacg cgccctgtag cggcgcatta agcgcggcgg gtgtggtggt tacgcgcagc 1800 gtgaccgcta cacttgccag cgccctagcg cccgctcctt tcgctttctt cccttccttt 1860 ctcgccacgt tcgccggctt tccccgtcaa gctctaaatc gggggctccc tttagggttc 1920 cgatttagtg ctttacggca cctcgacccc aaaaaacttg attagggtga tggttcacgt 1980 agtgggccat cgccctgata gacggttttt cgccctttga cgttggagtc cacgttcttt 2040 aatagtggac tcttgttcca aactggaaca acactcaacc ctatctcggt ctattctttt 2100 gatttataag ggattttgcc gatttcggcc tattggttaa aaaatgagct gatttaacaa 2160 aaatttaacg cgaattttaa caaaatatta acgtttacaa tttcaggtgg cacttttcgg 2220 ggaaatgtgc gcggaacccc tatttgttta tttttctaaa tacattcaaa tatgtatccg 2280 ctcatgaatt aattcttaga aaaactcatc gagcatcaaa tgaaactgca atttattcat 2340 atcaggatta tcaataccat atttttgaaa aagccgtttc tgtaatgaag gagaaaactc 2400 accgaggcag ttccatagga tggcaagatc ctggtatcgg tctgcgattc cgactcgtcc 2460 aacatcaata caacctatta atttcccctc gtcaaaaata aggttatcaa gtgagaaatc 2520 accatgagtg acgactgaat ccggtgagaa tggcaaaagt ttatgcattt ctttccagac 2580 ttgttcaaca ggccagccat tacgctcgtc atcaaaatca ctcgcatcaa ccaaaccgtt 2640 attcattcgt gattgcgcct gagcgagacg aaatacgcga tcgctgttaa aaggacaatt 2700 acaaacagga atcgaatgca accggcgcag gaacactgcc agcgcatcaa caatattttc 2760 acctgaatca ggatattctt ctaatacctg gaatgctgtt ttcccgggga tcgcagtggt 2820 gagtaaccat gcatcatcag gagtacggat aaaatgcttg atggtcggaa gaggcataaa 2880 ttccgtcagc cagtttagtc tgaccatctc atctgtaaca tcattggcaa cgctaccttt 2940 gccatgtttc agaaacaact ctggcgcatc gggcttccca tacaatcgat agattgtcgc 3000 acctgattgc ccgacattat cgcgagccca tttataccca tataaatcag catccatgtt 3060 ggaatttaat cgcggcctag agcaagacgt ttcccgttga atatggctca taacacccct 3120 tgtattactg tttatgtaag cagacagttt tattgttcat gaccaaaatc ccttaacgtg 3180 agttttcgtt ccactgagcg tcagaccccg tagaaaagat caaaggatct tcttgagatc 3240 ctttttttct gcgcgtaatc tgctgcttgc aaacaaaaaa accaccgcta ccagcggtgg 3300 tttgtttgcc ggatcaagag ctaccaactc tttttccgaa ggtaactggc ttcagcagag 3360 cgcagatacc aaatactgtc cttctagtgt agccgtagtt aggccaccac ttcaagaact 3420 ctgtagcacc gcctacatac ctcgctctgc taatcctgtt accagtggct gctgccagtg 3480 gcgataagtc gtgtcttacc gggttggact caagacgata gttaccggat aaggcgcagc 3540 ggtcgggctg aacggggggt tcgtgcacac agcccagctt ggagcgaacg acctacaccg 3600 aactgagata cctacagcgt gagctatgag aaagcgccac gcttcccgaa gggagaaagg 3660 cggacaggta tccggtaagc ggcagggtcg gaacaggaga gcgcacgagg gagcttccag 3720 ggggaaacgc ctggtatctt tatagtcctg tcgggtttcg ccacctctga cttgagcgtc 3780 gatttttgtg atgctcgtca ggggggcgga gcctatggaa aaacgccagc aacgcggcct 3840 ttttacggtt cctggccttt tgctggcctt ttgctcacat gttctttcct gcgttatccc 3900 ctgattctgt ggataaccgt attaccgcct ttgagtgagc tgataccgct cgccgcagcc 3960 gaacgaccga gcgcagcgag tcagtgagcg aggaagcgga agagcgcctg atgcggtatt 4020 ttctccttac gcatctgtgc ggtatttcac accgcatata tggtgcactc tcagtacaat 4080 ctgctctgat gccgcatagt taagccagta tacactccgc tatcgctacg tgactgggtc 4140 atggctgcgc cccgacaccc gccaacaccc gctgacgcgc cctgacgggc ttgtctgctc 4200 ccggcatccg cttacagaca agctgtgacc gtctccggga gctgcatgtg tcagaggttt 4260 tcaccgtcat caccgaaacg cgcgaggcag ctgcggtaaa gctcatcagc gtggtcgtga 4320 agcgattcac agatgtctgc ctgttcatcc gcgtccagct cgttgagttt ctccagaagc 4380 gttaatgtct ggcttctgat aaagcgggcc atgttaaggg cggttttttc ctgtttggtc 4440 actgatgcct ccgtgtaagg gggatttctg ttcatggggg taatgatacc gatgaaacga 4500 gagaggatgc tcacgatacg ggttactgat gatgaacatg cccggttact ggaacgttgt 4560 gagggtaaac aactggcggt atggatgcgg cgggaccaga gaaaaatcac tcagggtcaa 4620 tgccagcgct tcgttaatac agatgtaggt gttccacagg gtagccagca gcatcctgcg 4680 atgcagatcc ggaacataat ggtgcagggc gctgacttcc gcgtttccag actttacgaa 4740 acacggaaac cgaagaccat tcatgttgtt gctcaggtcg cagacgtttt gcagcagcag 4800 tcgcttcacg ttcgctcgcg tatcggtgat tcattctgct aaccagtaag gcaaccccgc 4860 cagcctagcc gggtcctcaa cgacaggagc acgatcatgc ctgaaatgag ctgttgacaa 4920 ttaatcatcg gctcgtataa tgtgtggaat tgtgagcgga taacaatttc acacaggaaa 4980 cagaattcat gttcgaacaa cgcgtaaatt ctgacgtact gaccgtttct accgttaact 5040 ctcaggatca ggtaacccaa aaacccctgc gtgactcggt taaacaggca ctgaagaact 5100 attttgctca actgaatggt caggatgtga atgacctcta tgagctggta ctggctgaag 5160 tagaacagcc cctgttggac atggtgatgc aatacacccg tggtaaccag acccgtgctg 5220 cgctgatgat gggcatcaac cgtggtacgc tgcgtaaaaa attgaaaaaa tacggcatga 5280 actaagctgc acccgtgggg ccgccatgcc ggcgataatg gcctgcttct cgccgaaacg 5340 tttggtggcg ggaccagtga cgaaggcttg agcgagggcg tgcaagattc cgaataccgc 5400 aagcgacagg ccgatcatcg tcgcgctcca gcgaaagcgg tcctcgccga aaatgaccca 5460 gagcgctgcc ggcacctgtc ctacgagttg catgataaag aagacagtca taagtgcggc 5520 gacgatagtc atgccccgcg cccaccggaa ggagctgact gggttgaagg ctctcaaggg 5580 catcggtcga gatcccggtg cctaatgagt gagctaactt acattaattg cgttgcgctc 5640 actgcccgct ttccagtcgg gaaacctgtc gtgccagctg cattaatgaa tcggccaacg 5700 cgcggggaga ggcggtttgc gtattgggcg ccagggtggt ttttcttttc accagtgaga 5760 cgggcaacag ctgattgccc ttcaccgcct ggccctgaga gagttgcagc aagcggtcca 5820 cgctggtttg ccccagcagg cgaaaatcct gtttgatggt ggttaacggc gggatataac 5880 atgagctgtc ttcggtatcg tcgtatccca ctaccgagat gtccgcacca acgcgcagcc 5940 cggactcggt aatggcgcgc attgcgccca gcgccatctg atcgttggca accagcatcg 6000 cagtgggaac gatgccctca ttcagcattt gcatggtttg ttgaaaaccg gacatggcac 6060 tccagtcgcc ttcccgttcc gctatcggct gaatttgatt gcgagtgaga tatttatgcc 6120 agccagccag acgcagacgc gccgagacag aacttaatgg gcccgctaac agcgcgattt 6180 gctggtgacc caatgcgacc agatgctcca cgcccagtcg cgtaccgtct tcatgggaga 6240 aaataatact gttgatgggt gtctggtcag agacatcaag aaataacgcc ggaacattag 6300 tgcaggcagc ttccacagca atggcatcct ggtcatccag cggatagtta atgatcagcc 6360 cactgacgcg ttgcgcgaga agattgtgca ccgccgcttt acaggcttcg acgccgcttc 6420 gttctaccat cgacaccacc acgctggcac ccagttgatc ggcgcgagat ttaatcgccg 6480 cgacaatttg cgacggcgcg tgcagggcca gactggaggt ggcaacgcca atcagcaacg 6540 actgtttgcc cgccagttgt tgtgccacgc ggttgggaat gtaattcagc tccgccatcg 6600 ccgcttccac tttttcccgc gttttcgcag aaacgtggct ggcctggttc accacgcggg 6660 aaacggtctg ataagagaca ccggcatact ctgcgacatc gtataacgtt actggtttca 6720 cattcaccac cctgaattga ctctcttccg ggcgctatca tgccataccg cgaaaggttt 6780 tgcgccattc gatggtgtcc gggatctcga cgctctccct tatgcgactc ctgcattagg 6840 aagcagccca gtagtaggtt gaggccgttg agcaccgccg ccgcaaggaa tggtgctaga 6900 ggatccccag atcgatctcg atcccgcgaa ataaatgctg aacaattatt gcccgtttta 6960 cagcgttacg gcttcgaaac gctcgaaaaa ctggcagttt taggctgatt tggttgaatg 7020 ttgcgcggtc agaaaattat tttaaatttc ctcttgtcaa ttaatcatcc ggctcgtata 7080 atgcgcggaa ttgtgtgagc ggataacaat tcccaccatt taactttaag aaggagatat 7140 aca 7143 <210> 7 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> pFRPT forward primer <400> 7 gagcggataa caattcccac c 21 <210> 8 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> pFRPT reverse primer <400> 8 tctcatccgc caaaacagaa g 21 <210> 9 <211> 474 <212> DNA <213> Artificial Sequence <220> <223> 2'-Deoxy-2'-fluoronucleoside specific N-deoxyribosyltransferase <400> 9 atgcctaaga aaacgatcta cttcggtgcc ggctggttca ctgaccgcca aaacaaagcc 60 tacaaggaag ccatggaagc cctcaaggaa aacccaacga ttgacctgga aaacagctac 120 gttcccctgg acaaccagta caagggtatc cgggttgatg aacacccgga ataccagcat 180 gacaaggttt gggctacggc cacctacaac aacgacttga acgggatcaa gaccaacgac 240 atcatgctgg gtgtctacat ccctgacgaa gaagacgtcg gcctgggcat ggaactgggt 300 tacgccttga gccaaggcaa gtacgtcctt ttggtcatcc cggacgaaga ctacggcaag 360 ccgatcaacc tcatgagctg gggcgtcagc gacaacgtga tcaagatgag ccagctgaag 420 gacttcaact tcaacaagcc gcgcttcgac ttctacgagg gtgccgttta ttaa 474 <210> 10 <211> 157 <212> PRT <213> Artificial Sequence <220> <223> 2'-Deoxy-2'-fluoronucleoside specific N-deoxyribosyltransferase <400> 10 Met Pro Lys Lys Thr Ile Tyr Phe Gly Ala Gly Trp Phe Thr Asp Arg 1 5 10 15 Gln Asn Lys Ala Tyr Lys Glu Ala Met Glu Ala Leu Lys Glu Asn Pro 20 25 30 Thr Ile Asp Leu Glu Asn Ser Tyr Val Pro Leu Asp Asn Gln Tyr Lys 35 40 45 Gly Ile Arg Val Asp Glu His Pro Glu Tyr Gln His Asp Lys Val Trp 50 55 60 Ala Thr Ala Thr Tyr Asn Asn Asp Leu Asn Gly Ile Lys Thr Asn Asp 65 70 75 80 Ile Met Leu Gly Val Tyr Ile Pro Asp Glu Glu Asp Val Gly Leu Gly 85 90 95 Met Glu Leu Gly Tyr Ala Leu Ser Gln Gly Lys Tyr Val Leu Leu Val 100 105 110 Ile Pro Asp Glu Asp Tyr Gly Lys Pro Ile Asn Leu Met Ser Trp Gly 115 120 125 Val Ser Asp Asn Val Ile Lys Met Ser Gln Leu Lys Asp Phe Asn Phe 130 135 140 Asn Lys Pro Arg Phe Asp Phe Tyr Glu Gly Ala Val Tyr 145 150 155 <210> 11 <211> 352 <212> PRT <213> Artificial Sequence <220> <223> Adenosine deaminase derived from Lactococcus lactis <400> 11 Met Lys Lys Lys Arg Glu Lys Leu Val Leu Lys Ser Glu Ile Ile Ala 1 5 10 15 Gln Met Pro Lys Val Glu Leu His Cys His Leu Asp Gly Ser Leu Ser 20 25 30 Leu Ser Val Ile Lys Glu Leu Ala Lys Asn Ala Gly Ile His Met Thr 35 40 45 Met Ser Asp Glu Glu Ile Leu Glu Lys Ala Gln Ala Pro Glu Asn Thr 50 55 60 Lys Asn Leu Leu Glu Tyr Leu Gln Arg Phe Asp Phe Val Leu Pro Leu 65 70 75 80 Leu Gln Thr Tyr Lys Asn Leu Glu Leu Ala Ala Tyr Asp Val Val Arg 85 90 95 Gln Ala Ala Asn Asp Asn Ile Lys Tyr Ile Glu Ile Arg Phe Ala Pro 100 105 110 Ser Gln His Leu Leu Glu Asn Leu Thr Leu Glu Glu Ala Val Glu Ala 115 120 125 Val Ile Ala Gly Leu Ser Arg Ala Glu Asn Asp Phe Asp Ile Arg Ala 130 135 140 Asn Ala Leu Val Cys Gly Leu Lys Gln Glu Pro Ile Gln Lys Leu Gln 145 150 155 160 Lys Leu Leu Pro Leu Phe Asp Lys Ile Pro Asp Glu His Leu Val Gly 165 170 175 Phe Asp Met Ala Gly Asp Glu Leu Asn Tyr Pro Gln Glu Lys Phe Val 180 185 190 Asp Leu Ile His Asp Ile Lys Ile Lys Gly Val Asn Val Thr Leu His 195 200 205 Ala Gly Glu Cys Pro Ala Cys Glu Lys Asn Ile Leu Asp Ser Ile Ala 210 215 220 Met Gly Ala Ser Arg Ile Gly His Gly Ile Met Thr Lys Asn Leu Ser 225 230 235 240 Glu Ala Glu Gln Lys Met Met Ile Glu Lys Gln Ile Val Leu Glu Met 245 250 255 Ala Pro Thr Ser Asn Phe Gln Thr Lys Ala Val Thr Glu Leu Ala Gln 260 265 270 Tyr Pro Phe Lys Glu Leu Tyr Asp Lys Gly Ile His Val Thr Leu Asn 275 280 285 Thr Asp Asn Arg Met Val Ser Ala Thr Asn Leu Ser Lys Glu Tyr Glu 290 295 300 Lys Ile Ser Ala Trp Tyr Pro Asp Phe Ser Leu Ser Asp Phe Glu Lys 305 310 315 320 Ile Asn His Tyr Ala Ile Asp Gly Ala Phe Ile Gly Gln Glu Glu Lys 325 330 335 Glu Glu Leu His Gln Arg Phe Thr Lys Glu Tyr Lys Lys Ile Ser Glu 340 345 350 &Lt; 110 > ST Pharm Co., Ltd. An N-deoxyribosyl transferase mutant, and a method for producing          nucleoside using the same <130> P17-093-STP <160> 11 <170> KoPatentin 3.0 <210> 1 <211> 474 <212> DNA <213> Lactobacillus delbrueckii <400> 1 atgcctaaga aaacgatcta cttcggtgcc ggctggttca ctgaccgcca aaacaaagcc 60 tacaaggaag ccatggaagc cctcaaggaa aacccaacga ttgacctgga aaacagctac 120 gttcccctgg acaaccagta caagggtatc cgggttgatg aacacccgga atacctgcat 180 gacaaggttt gggctacggc cacctacaac aacgacttga acgggatcaa gaccaacgac 240 atcatgctgg gtgtctacat ccctgacgaa gaagacgtcg gcctgggcat ggaactgggt 300 tacgccttga gccaaggcaa gtacgtcctt ttggtcatcc cggacgaaga ctacggcaag 360 ccgatcaacc tcatgagctg gggcgtcagc gacaacgtga tcaagatgag ccagctgaag 420 gacttcaact tcaacaagcc gcgcttcgac ttctacgagg gtgccgttta ttaa 474 <210> 2 <211> 157 <212> PRT <213> Lactobacillus delbrueckii <400> 2 Met Pro Lys Lys Thr Ile Tyr Phe Gly Ala Gly Trp Phe Thr Asp Arg   1 5 10 15 Gln Asn Lys Ala Tyr Lys Glu Ala Met Glu Ala Leu Lys Glu Asn Pro              20 25 30 Thr Ile Asp Leu Glu Asn Ser Tyr Val Pro Leu Asp Asn Gln Tyr Lys          35 40 45 Gly Ile Arg Val Asp Glu His Pro Glu Tyr Leu His Asp Lys Val Trp      50 55 60 Ala Thr Ala Thr Tyr Asn Asn Asp Leu Asn Gly Ile Lys Thr Asn Asp  65 70 75 80 Ile Met Leu Gly Val Tyr Ile Pro Asp Glu Glu Asp Val Gly Leu Gly                  85 90 95 Met Glu Leu Gly Tyr Ala Leu Ser Gln Gly Lys Tyr Val Leu Leu Val             100 105 110 Ile Pro Asp Glu Asp Tyr Gly Lys Pro Ile Asn Leu Met Ser Trp Gly         115 120 125 Val Ser Asp Asn Val Ile Lys Met Ser Gln Leu Lys Asp Phe Asn Phe     130 135 140 Asn Lys Pro Arg Phe Asp Phe Tyr Glu Gly Ala Val Tyr 145 150 155 <210> 3 <211> 6986 <212> DNA <213> Artificial Sequence <220> <223> pFRPT-NDT <400> 3 agatcccatg cctaagaaaa cgatctactt cggtgccggc tggttcactg accgccaaaa 60 caaagcctac aaggaagcca tggaagccct caaggaaaac ccaacgattg acctggaaaa 120 cagctacgtt cccctggaca accagtacaa gggtatccgg gttgatgaac acccggaata 180 cctgcatgac aaggtttggg ctacggccac ctacaacaac gacttgaacg ggatcaagac 240 caacgacatc atgctgggtg tctacatccc tgacgaagaa gacgtcggcc tgggcatgga 300 actgggttac gccttgagcc aaggcaagta cgtccttttg gtcatcccgg acgaagacta 360 cggcaagccg atcaacctca tgagctgggg cgtcagcgac aacgtgatca agatgagcca 420 gctgaaggac ttcaacttca acaagccgcg cttcgacttc tacgagggtg ccgtttatta 480 agggcagatc tttaacgcgg ccgcctctga tcgagataac agagtgttcc tgcaggttgt 540 gcccttcacc acctatatat gaggtgacct cgaaaccgtt ggtcaggcgt acgcggcaaa 600 gcttctgttt tggcggatga gagaagattt tcagcctgat acagattaaa tcagaacgca 660 gaagcggtct gataaaacag aatttgcctg gcggcagtag cgcggtggtc ccacctgacc 720 ccatgccgaa ctcagaagtg aaacgccgta gcgccgatgg tagtgtgggg tctccccatg 780 cgagagtagg gaactgccag gcatcaaata aaacgaaagg ctcagtcgaa agactgggcc 840 tttcgtttta tctgttgttt gtcggtgaac gctctcctga gtaggacaaa tccgccggga 900 gcggatttga acgttgcgaa gcaacggccc ggagggtggc gggcaggacg cccgccataa 960 actgccaggc atcaaattaa gcagaaggcc atcctgacgg atggcctttt tgcgtttcta 1020 caaactcttt tgtttatttt tctaaataca ttcaaatatg tatccgctca tgagacaata 1080 accctgataa atgcttcaat aatattgaaa aaggaagagt atgagtattc aacatttccg 1140 tgtcgccctt attccctttt ttgcggcatt ttgccttcct gtttttgctc acccagaaac 1200 gctggtgaaa gtaaaagatg ctgaagatca gttgggtgca cgagtgggtt acatcgaact 1260 ggatctcaac agcggtaaga tccttgagag ttttcgcccc gaagaacgtt ttccaatgat 1320 gagcactttt aaagttctgc tatgtggcgc ggtattatcc cgtgtttcga gcaccaccac 1380 caccaccact gagatccggc tgctaacaaa gcccgaaagg aagctgagtt ggctgctgcc 1440 accgctgagc aataactagc ataacccctt ggggcctcta aacgggtctt gaggggtttt 1500 ttgctgaaag gaggaactat atccggattg gcgaatggga cgcgccctgt agcggcgcat 1560 taagcgcggc gggtgtggtg gttacgcgca gcgtgaccgc tacacttgcc agcgccctag 1620 cgcccgctcc tttcgctttc ttcccttcct ttctcgccac gttcgccggc tttccccgtc 1680 aagctctaaa tcgggggctc cctttagggt tccgatttag tgctttacgg cacctcgacc 1740 ccaaaaaact tgattagggt gatggttcac gtagtgggcc atcgccctga tagacggttt 1800 ttcgcccttt gacgttggag tccacgttct ttaatagtgg actcttgttc caaactggaa 1860 caacactcaa ccctatctcg gtctattctt ttgatttata agggattttg ccgatttcgg 1920 cctattggtt aaaaaatgag ctgatttaac aaaaatttaa cgcgaatttt aacaaaatat 1980 taacgtttac aatttcaggt ggcacttttc ggggaaatgt gcgcggaacc cctatttgtt 2040 tatttttcta aatacattca aatatgtatc cgctcatgaa ttaattctta gaaaaactca 2100 tcgagcatca aatgaaactg caatttattc atatcaggat tatcaatacc atatttttga 2160 aaaagccgtt tctgtaatga aggagaaaac tcaccgaggc agttccatag gatggcaaga 2220 tcctggtatc ggtctgcgat tccgactcgt ccaacatcaa tacaacctat taatttcccc 2280 tcgtcaaaaa taaggttatc aagtgagaaa tcaccatgag tgacgactga atccggtgag 2340 aatggcaaaa gtttatgcat ttctttccag acttgttcaa caggccagcc attacgctcg 2400 tcatcaaaat cactcgcatc aaccaaaccg ttattcattc gtgattgcgc ctgagcgaga 2460 cgaaatacgc gatcgctgtt aaaaggacaa ttacaaacag gaatcgaatg caaccggcgc 2520 aggaacactg ccagcgcatc aacaatattt tcacctgaat caggatattc ttctaatacc 2580 tggaatgctg ttttcccggg gatcgcagtg gtgagtaacc atgcatcatc aggagtacgg 2640 ataaaatgct tgatggtcgg aagaggcata aattccgtca gccagtttag tctgaccatc 2700 tcatctgtaa catcattggc aacgctacct ttgccatgtt tcagaaacaa ctctggcgca 2760 tcgggcttcc catacaatcg atagattgtc gcacctgatt gcccgacatt atcgcgagcc 2820 catttatacc catataaatc agcatccatg ttggaattta atcgcggcct agagcaagac 2880 gtttcccgtt gaatatggct cataacaccc cttgtattac tgtttatgta agcagacagt 2940 tttattgttc atgaccaaaa tcccttaacg tgagttttcg ttccactgag cgtcagaccc 3000 cgtagaaaag atcaaaggat cttcttgaga tccttttttt ctgcgcgtaa tctgctgctt 3060 gcaaacaaaa aaaccaccgc taccagcggt ggtttgtttg ccggatcaag agctaccaac 3120 tctttttccg aaggtaactg gcttcagcag agcgcagata ccaaatactg tccttctagt 3180 gtagccgtag ttaggccacc acttcaagaa ctctgtagca ccgcctacat acctcgctct 3240 gctaatcctg ttaccagtgg ctgctgccag tggcgataag tcgtgtctta ccgggttgga 3300 ctcaagacga tagttaccgg ataaggcgca gcggtcgggc tgaacggggg gttcgtgcac 3360 acagcccagc ttggagcgaa cgacctacac cgaactgaga tacctacagc gtgagctatg 3420 agaaagcgcc acgcttcccg aagggagaaa ggcggacagg tatccggtaa gcggcagggt 3480 cggaacagga gagcgcacga gggagcttcc agggggaaac gcctggtatc tttatagtcc 3540 tgtcgggttt cgccacctct gacttgagcg tcgatttttg tgatgctcgt caggggggcg 3600 gagcctatgg aaaaacgcca gcaacgcggc ctttttacgg ttcctggcct tttgctggcc 3660 ttttgctcac atgttctttc ctgcgttatc ccctgattct gtggataacc gtattaccgc 3720 ctttgagtga gctgataccg ctcgccgcag ccgaacgacc gagcgcagcg agtcagtgag 3780 cgaggaagcg gaagagcgcc tgatgcggta ttttctcctt acgcatctgt gcggtatttc 3840 acaccgcata tatggtgcac tctcagtaca atctgctctg atgccgcata gttaagccag 3900 tatacactcc gctatcgcta cgtgactggg tcatggctgc gccccgacac ccgccaacac 3960 ccgctgacgc gccctgacgg gcttgtctgc tcccggcatc cgcttacaga caagctgtga 4020 ccgtctccgg gagctgcatg tgtcagaggt tttcaccgtc atcaccgaaa cgcgcgaggc 4080 agctgcggta aagctcatca gcgtggtcgt gaagcgattc acagatgtct gcctgttcat 4140 ccgcgtccag ctcgttgagt ttctccagaa gcgttaatgt ctggcttctg ataaagcggg 4200 ccatgttaag ggcggttttt tcctgtttgg tcactgatgc ctccgtgtaa gggggatttc 4260 tgttcatggg ggtaatgata ccgatgaaac gagagaggat gctcacgata cgggttactg 4320 atgatgaaca tgcccggtta ctggaacgtt gtgagggtaa acaactggcg gtatggatgc 4380 ggcgggacca gagaaaaatc actcagggtc aatgccagcg cttcgttaat acagatgtag 4440 gtgttccccg gggtagccag cagcatcctg cgatgcagat ccggaacata atggtgcagg 4500 gcgctgactt ccgcgtttcc agactttacg aaacacggaa accgaagacc attcatgttg 4560 ttgctcaggt cgcagacgtt ttgcagcagc agtcgcttca cgttcgctcg cgtatcggtg 4620 attcattctg ctaaccagta aggcaacccc gccagcctag ccgggtcctc aacgacagga 4680 gcacgatcat gcctgaaatg agctgttgac aattaatcat cggctcgtat aatgtgtgga 4740 attgtgagcg gataacaatt tcacacagga aacagaattc atgttcgaac aacgcgtaaa 4800 ttctgacgta ctgaccgttt ctaccgttaa ctctcaggat caggtaaccc aaaaacccct 4860 gcgtgactcg gttaaacagg cactgaagaa ctattttgct caactgaatg gtcaggatgt 4920 gaatgacctc tatgagctgg tactggctga agtagaacag cccctgttgg acatggtgat 4980 gcaatacacc cgtggtaacc agacccgtgc tgcgctgatg atgggcatca accgtggtac 5040 gctgcgtaaa aaattgaaaa aatacggcat gaactaagct gcacccgtgg ggccgccatg 5100 ccggcgataa tggcctgctt ctcgccgaaa cgtttggtgg cgggaccagt gacgaaggct 5160 tgagcgaggg cgtgcaagat tccgaatacc gcaagcgaca ggccgatcat cgtcgcgctc 5220 cagcgaaagc ggtcctcgcc gaaaatgacc cagagcgctg ccggcacctg tcctacgagt 5280 tgcatgataa agaagacagt cataagtgcg gcgacgatag tcatgccccg cgcccaccgg 5340 aaggagctga ctgggttgaa ggctctcaag ggcatcggtc gagatcccgg tgcctaatga 5400 gtgagctaac ttacattaat tgcgttgcgc tcactgcccg ctttccagtc gggaaacctg 5460 tcgtgccagc tgcattaatg aatcggccaa cgcgcgggga gaggcggttt gcgtattggg 5520 cgccagggtg gtttttcttt tcaccagtga gacgggcaac agctgattgc ccttcaccgc 5580 ctggccctga gagagttgca gcaagcggtc cacgctggtt tgccccagca ggcgaaaatc 5640 ctgtttgatg gtggttaacg gcgggatata acatgagctg tcttcggtat cgtcgtatcc 5700 cactaccgag atgtccgcac caacgcgcag cccggactcg gtaatggcgc gcattgcgcc 5760 cagcgccatc tgatcgttgg caaccagcat cgcagtggga acgatgccct cattcagcat 5820 ttgcatggtt tgttgaaaac cggacatggc actccagtcg ccttcccgtt ccgctatcgg 5880 ctgaatttga ttgcgagtga gatatttatg ccagccagcc agacgcagac gcgccgagac 5940 agaacttaat gggcccgcta acagcgcgat ttgctggtga cccaatgcga ccagatgctc 6000 ccgcccagt cgcgtaccgt cttcatggga gaaaataata ctgttgatgg gtgtctggtc 6060 agagacatca agaaataacg ccggaacatt agtgcaggca gcttccacag caatggcatc 6120 ctggtcatcc agcggatagt taatgatcag cccactgacg cgttgcgcga gaagattgtg 6180 caccgccgct ttacaggctt cgacgccgct tcgttctacc atcgacacca ccacgctggc 6240 acccagttga tcggcgcgag atttaatcgc cgcgacaatt tgcgacggcg cgtgcagggc 6300 cagactggag gtggcaacgc caatcagcaa cgactgtttg cccgccagtt gttgtgccac 6360 gcggttggga atgtaattca gctccgccat cgccgcttcc actttttccc gcgttttcgc 6420 agaaacgtgg ctggcctggt tcaccacgcg ggaaacggtc tgataagaga caccggcata 6480 ctctgcgaca tcgtataacg ttactggttt cacattcacc accctgaatt gactctcttc 6540 cgggcgctat catgccatac cgcgaaaggt tttgcgccat tcgatggtgt ccgggatctc 6600 gcgctctcc cttatgcgac tcctgcatta ggaagcagcc cagtagtagg ttgaggccgt 6660 tgagcaccgc cgccgcaagg aatggtgcta gaggatcccc agatcgatct cgatcccgcg 6720 aaataaatgc tgaacaatta ttgcccgttt tacagcgtta cggcttcgaa acgctcgaaa 6780 aactggcagt tttaggctga tttggttgaa tgttgcgcgg tcagaaaatt attttaaatt 6840 tcctcttgtc aattaatcat ccggctcgta taatgcgcgg aattgtgtga gcggataaca 6900 attcccacca tttaacttta agaaggagat atacatatga aagaaaccgc tgctgctaaa 6960 ttcgaacgcc agcacatgga cagccc 6986 <210> 4 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> NDT forward primer <400> 4 gatcatatgc ctaagaaaac gatc 24 <210> 5 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> NDT reverse primer <400> 5 cgttctagat ctgcccttaa taaa 24 <210> 6 <211> 7143 <212> DNA <213> Artificial Sequence <220> Purification of pFRPT-PUNP (purine nucleoside phosphorylase) <400> 6 tatgccgagt gacaagcctc accaccacca ccaccaccac caccaccact cctctgacga 60 cgacgacaag gatccgatga gcgttcatat tggtgcaaaa gaacacgaga ttgcagataa 120 aattttgctt ccaggagatc cacttcgcgc aaaatatatc gctgaaacgt ttttagaggg 180 agctacttgc tataatcaag ttcgcggtat gttaggattt acaggtacat ataaaggcca 240 tcgtatttcc gttcaaggaa caggtatggg tgtaccatct atttctattt atattacaga 300 acttatgcaa agctacaacg ttcaaacatt aattcgcgtc ggaacatgtg gtgctattca 360 aaaagatgta aaagttcgtg atgtcatttt agcgatgaca tcgtcaaccg attcccaaat 420 gaatcgcatg acgttcggag gaattgatta cgctccgaca gctaactttg acttgttaaa 480 aacagcgtac gaaattggaa aagaaaaagg attacaacta aaagttggca gtgtatttac 540 agctgatatg ttttataatg aaaatgcaca atttgaaaaa ctggcacgat acggtgtact 600 ggctgtagag atggaaacaa cagcgcttta tacattagcc gctaaatttg gcagaaaagc 660 attatcggta ttaacagtaa gcgatcacat tttaacaggg gaagagacaa cggctgaaga 720 gcgccaaaca acatttaacg aaatgatcga agtcgctctt gaaacagcga ttcgccaata 780 atctagagct tgcggccgca ctcgacaagc ttctgttttg gcggatgaga gaagattttc 840 agcctgatac agattaaatc agaacgcaga agcggtctga taaaacagaa tttgcctggc 900 ggcagtagcg cggtggtccc acctgacccc atgccgaact cagaagtgaa acgccgtagc 960 gccgatggta gtgtggggtc tccccatgcg agagtaggga actgccaggc atcaaataaa 1020 acgaaaggct cagtcgaaag actgggcctt tcgttttatc tgttgtttgt cggtgaacgc 1080 tctcctgagt aggacaaatc cgccgggagc ggatttgaac gttgcgaagc aacggcccgg 1140 agggtggcgg gcaggacgcc cgccataaac tgccaggcat caaattaagc agaaggccat 1200 cctgacggat ggcctttttg cgtttctaca aactcttttg tttatttttc taaatacatt 1260 caaatatgta tccgctcatg agacaataac cctgataaat gcttcaataa tattgaaaaa 1320 ggaagagtat gagtattcaa catttccgtg tcgcccttat tccctttttt gcggcatttt 1380 gccttcctgt ttttgctcac ccagaaacgc tggtgaaagt aaaagatgct gaagatcagt 1440 tgggtgcacg agtgggttac atcgaactgg atctcaacag cggtaagatc cttgagagtt 1500 ttcgccccga agaacgtttt ccaatgatga gcacttttaa agttctgcta tgtggcgcgg 1560 tattatcccg tgtttcgagc accaccacca ccaccactga gatccggctg ctaacaaagc 1620 ccgaaaggaa gctgagttgg ctgctgccac cgctgagcaa taactagcat aaccccttgg 1680 ggcctctaaa cgggtcttga ggggtttttt gctgaaagga ggaactatat ccggattggc 1740 gaatgggacg cgccctgtag cggcgcatta agcgcggcgg gtgtggtggt tacgcgcagc 1800 gtgaccgcta cacttgccag cgccctagcg cccgctcctt tcgctttctt cccttccttt 1860 ctcgccacgt tcgccggctt tccccgtcaa gctctaaatc gggggctccc tttagggttc 1920 cgatttagtg ctttacggca cctcgacccc aaaaaacttg attagggtga tggttcacgt 1980 agtgggccat cgccctgata gacggttttt cgccctttga cgttggagtc cacgttcttt 2040 aatagtggac tcttgttcca aactggaaca acactcaacc ctatctcggt ctattctttt 2100 gatttataag ggattttgcc gatttcggcc tattggttaa aaaatgagct gatttaacaa 2160 aaatttaacg cgaattttaa caaaatatta acgtttacaa tttcaggtgg cacttttcgg 2220 ggaaatgtgc gcggaacccc tatttgttta tttttctaaa tacattcaaa tatgtatccg 2280 ctcatgaatt aattcttaga aaaactcatc gagcatcaaa tgaaactgca atttattcat 2340 atcaggatta tcaataccat atttttgaaa aagccgtttc tgtaatgaag gagaaaactc 2400 accgaggcag ttccatagga tggcaagatc ctggtatcgg tctgcgattc cgactcgtcc 2460 aacatcaata caacctatta atttcccctc gtcaaaaata aggttatcaa gtgagaaatc 2520 accatgagtg acgactgaat ccggtgagaa tggcaaaagt ttatgcattt ctttccagac 2580 ttgttcaaca ggccagccat tacgctcgtc atcaaaatca ctcgcatcaa ccaaaccgtt 2640 attcattcgt gattgcgcct gagcgagacg aaatacgcga tcgctgttaa aaggacaatt 2700 acaaacagga atcgaatgca accggcgcag gaacactgcc agcgcatcaa caatattttc 2760 acctgaatca ggatattctt ctaatacctg gaatgctgtt ttcccgggga tcgcagtggt 2820 gagtaaccat gcatcatcag gagtacggat aaaatgcttg atggtcggaa gaggcataaa 2880 ttccgtcagc cagtttagtc tgaccatctc atctgtaaca tcattggcaa cgctaccttt 2940 gccatgtttc agaaacaact ctggcgcatc gggcttccca tacaatcgat agattgtcgc 3000 acctgattgc ccgacattat cgcgagccca tttataccca tataaatcag catccatgtt 3060 ggaatttaat cgcggcctag agcaagacgt ttcccgttga atatggctca taacacccct 3120 tgtattactg tttatgtaag cagacagttt tattgttcat gaccaaaatc ccttaacgtg 3180 agttttcgtt ccactgagcg tcagaccccg tagaaaagat caaaggatct tcttgagatc 3240 ctttttttct gcgcgtaatc tgctgcttgc aaacaaaaaa accaccgcta ccagcggtgg 3300 tttgtttgcc ggatcaagag ctaccaactc tttttccgaa ggtaactggc ttcagcagag 3360 cgcagatacc aaatactgtc cttctagtgt agccgtagtt aggccaccac ttcaagaact 3420 ctgtagcacc gcctacatac ctcgctctgc taatcctgtt accagtggct gctgccagtg 3480 gcgataagtc gtgtcttacc gggttggact caagacgata gttaccggat aaggcgcagc 3540 ggtcgggctg aacggggggt tcgtgcacac agcccagctt ggagcgaacg acctacaccg 3600 aactgagata cctacagcgt gagctatgag aaagcgccac gcttcccgaa gggagaaagg 3660 cggacaggta tccggtaagc ggcagggtcg gaacaggaga gcgcacgagg gagcttccag 3720 ggggaaacgc ctggtatctt tatagtcctg tcgggtttcg ccacctctga cttgagcgtc 3780 gatttttgtg atgctcgtca ggggggcgga gcctatggaa aaacgccagc aacgcggcct 3840 ttttacggtt cctggccttt tgctggcctt ttgctcacat gttctttcct gcgttatccc 3900 ctgattctgt ggataaccgt attaccgcct ttgagtgagc tgataccgct cgccgcagcc 3960 gaacgaccga gcgcagcgag tcagtgagcg aggaagcgga agagcgcctg atgcggtatt 4020 ttctccttac gcatctgtgc ggtatttcac accgcatata tggtgcactc tcagtacaat 4080 ctgctctgat gccgcatagt taagccagta tacactccgc tatcgctacg tgactgggtc 4140 atggctgcgc cccgacaccc gccaacaccc gctgacgcgc cctgacgggc ttgtctgctc 4200 ccggcatccg cttacagaca agctgtgacc gtctccggga gctgcatgtg tcagaggttt 4260 tcaccgtcat caccgaaacg cgcgaggcag ctgcggtaaa gctcatcagc gtggtcgtga 4320 agcgattcac agatgtctgc ctgttcatcc gcgtccagct cgttgagttt ctccagaagc 4380 gttaatgtct ggcttctgat aaagcgggcc atgttaaggg cggttttttc ctgtttggtc 4440 actgatgcct ccgtgtaagg gggatttctg ttcatggggg taatgatacc gatgaaacga 4500 gagaggatgc tcacgatacg ggttactgat gatgaacatg cccggttact ggaacgttgt 4560 gagggtaaac aactggcggt atggatgcgg cgggaccaga gaaaaatcac tcagggtcaa 4620 tgccagcgct tcgttaatac agatgtaggt gttccacagg gtagccagca gcatcctgcg 4680 atgcagatcc ggaacataat ggtgcagggc gctgacttcc gcgtttccag actttacgaa 4740 acacggaaac cgaagaccat tcatgttgtt gctcaggtcg cagacgtttt gcagcagcag 4800 tcgcttcacg ttcgctcgcg tatcggtgat tcattctgct aaccagtaag gcaaccccgc 4860 cgcctagcc gggtcctcaa cgacaggagc acgatcatgc ctgaaatgag ctgttgacaa 4920 ttaatcatcg gctcgtataa tgtgtggaat tgtgagcgga taacaatttc acacaggaaa 4980 cagaattcat gttcgaacaa cgcgtaaatt ctgacgtact gaccgtttct accgttaact 5040 ctcaggatca ggtaacccaa aaacccctgc gtgactcggt taaacaggca ctgaagaact 5100 attttgctca actgaatggt caggatgtga atgacctcta tgagctggta ctggctgaag 5160 tagaacagcc cctgttggac atggtgatgc aatacacccg tggtaaccag acccgtgctg 5220 cgctgatgat gggcatcaac cgtggtacgc tgcgtaaaaa attgaaaaaa tacggcatga 5280 actaagctgc acccgtgggg ccgccatgcc ggcgataatg gcctgcttct cgccgaaacg 5340 tttggtggcg ggaccagtga cgaaggcttg agcgagggcg tgcaagattc cgaataccgc 5400 aagcgacagg ccgatcatcg tcgcgctcca gcgaaagcgg tcctcgccga aaatgaccca 5460 gagcgctgcc ggcacctgtc ctacgagttg catgataaag aagacagtca taagtgcggc 5520 gacgatagtc atgccccgcg cccaccggaa ggagctgact gggttgaagg ctctcaaggg 5580 catcggtcga gatcccggtg cctaatgagt gagctaactt acattaattg cgttgcgctc 5640 actgcccgct ttccagtcgg gaaacctgtc gtgccagctg cattaatgaa tcggccaacg 5700 cgcggggaga ggcggtttgc gtattgggcg ccagggtggt ttttcttttc accagtgaga 5760 cgggcaacag ctgattgccc ttcaccgcct ggccctgaga gagttgcagc aagcggtcca 5820 cgctggtttg ccccagcagg cgaaaatcct gtttgatggt ggttaacggc gggatataac 5880 atgagctgtc ttcggtatcg tcgtatccca ctaccgagat gtccgcacca acgcgcagcc 5940 cggactcggt aatggcgcgc attgcgccca gcgccatctg atcgttggca accagcatcg 6000 cagtgggaac gatgccctca ttcagcattt gcatggtttg ttgaaaaccg gacatggcac 6060 tccagtcgcc ttcccgttcc gctatcggct gaatttgatt gcgagtgaga tatttatgcc 6120 agccagccag acgcagacgc gccgagacag aacttaatgg gcccgctaac agcgcgattt 6180 gctggtgacc caatgcgacc agatgctcca cgcccagtcg cgtaccgtct tcatgggaga 6240 aaataatact gttgatgggt gtctggtcag agacatcaag aaataacgcc ggaacattag 6300 tgcaggcagc ttccacagca atggcatcct ggtcatccag cggatagtta atgatcagcc 6360 cactgacgcg ttgcgcgaga agattgtgca ccgccgcttt acaggcttcg acgccgcttc 6420 gttctaccat cgacaccacc acgctggcac ccagttgatc ggcgcgagat ttaatcgccg 6480 cgacaatttg cgacggcgcg tgcagggcca gactggaggt ggcaacgcca atcagcaacg 6540 actgtttgcc cgccagttgt tgtgccacgc ggttgggaat gtaattcagc tccgccatcg 6600 ccgcttccac tttttcccgc gttttcgcag aaacgtggct ggcctggttc accacgcggg 6660 aaacggtctg ataagagaca ccggcatact ctgcgacatc gtataacgtt actggtttca 6720 cattcaccac cctgaattga ctctcttccg ggcgctatca tgccataccg cgaaaggttt 6780 tgcgccattc gatggtgtcc gggatctcga cgctctccct tatgcgactc ctgcattagg 6840 aagcagccca gtagtaggtt gaggccgttg agcaccgccg ccgcaaggaa tggtgctaga 6900 ggatccccag atcgatctcg atcccgcgaa ataaatgctg aacaattatt gcccgtttta 6960 cagcgttacg gcttcgaaac gctcgaaaaa ctggcagttt taggctgatt tggttgaatg 7020 ttgcgcggtc agaaaattat tttaaatttc ctcttgtcaa ttaatcatcc ggctcgtata 7080 atgcgcggaa ttgtgtgagc ggataacaat tcccaccatt taactttaag aaggagatat 7140 aca 7143 <210> 7 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> pFRPT forward primer <400> 7 gagcggataa caattcccac c 21 <210> 8 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> pFRPT reverse primer <400> 8 tctcatccgc caaaacagaa g 21 <210> 9 <211> 474 <212> DNA <213> Artificial Sequence <220> 2'-Deoxy-2'-fluoronucleoside specific N-deoxyribosyltransferase <400> 9 atgcctaaga aaacgatcta cttcggtgcc ggctggttca ctgaccgcca aaacaaagcc 60 tacaaggaag ccatggaagc cctcaaggaa aacccaacga ttgacctgga aaacagctac 120 gttcccctgg acaaccagta caagggtatc cgggttgatg aacacccgga ataccagcat 180 gacaaggttt gggctacggc cacctacaac aacgacttga acgggatcaa gaccaacgac 240 atcatgctgg gtgtctacat ccctgacgaa gaagacgtcg gcctgggcat ggaactgggt 300 tacgccttga gccaaggcaa gtacgtcctt ttggtcatcc cggacgaaga ctacggcaag 360 ccgatcaacc tcatgagctg gggcgtcagc gacaacgtga tcaagatgag ccagctgaag 420 gacttcaact tcaacaagcc gcgcttcgac ttctacgagg gtgccgttta ttaa 474 <210> 10 <211> 157 <212> PRT <213> Artificial Sequence <220> 2'-Deoxy-2'-fluoronucleoside specific N-deoxyribosyltransferase <400> 10 Met Pro Lys Lys Thr Ile Tyr Phe Gly Ala Gly Trp Phe Thr Asp Arg   1 5 10 15 Gln Asn Lys Ala Tyr Lys Glu Ala Met Glu Ala Leu Lys Glu Asn Pro              20 25 30 Thr Ile Asp Leu Glu Asn Ser Tyr Val Pro Leu Asp Asn Gln Tyr Lys          35 40 45 Gly Ile Arg Val Asp Glu His Pro Glu Tyr Gln His Asp Lys Val Trp      50 55 60 Ala Thr Ala Thr Tyr Asn Asn Asp Leu Asn Gly Ile Lys Thr Asn Asp  65 70 75 80 Ile Met Leu Gly Val Tyr Ile Pro Asp Glu Glu Asp Val Gly Leu Gly                  85 90 95 Met Glu Leu Gly Tyr Ala Leu Ser Gln Gly Lys Tyr Val Leu Leu Val             100 105 110 Ile Pro Asp Glu Asp Tyr Gly Lys Pro Ile Asn Leu Met Ser Trp Gly         115 120 125 Val Ser Asp Asn Val Ile Lys Met Ser Gln Leu Lys Asp Phe Asn Phe     130 135 140 Asn Lys Pro Arg Phe Asp Phe Tyr Glu Gly Ala Val Tyr 145 150 155 <210> 11 <211> 352 <212> PRT <213> Artificial Sequence <220> &Lt; 223 > Adenosine deaminase derived from Lactococcus lactis <400> 11 Met Lys Lys Lys Arg Glu Lys Leu Val Leu Lys Ser Glu Ile Ile Ala   1 5 10 15 Gln Met Pro Lys Val Glu Leu His Cys His Leu Asp Gly Ser Leu Ser              20 25 30 Leu Ser Val Ile Lys Glu Leu Ala Lys Asn Ala Gly Ile His Met Thr          35 40 45 Met Ser Asp Glu Glu Ile Leu Glu Lys Ala Gln Ala Pro Glu Asn Thr      50 55 60 Lys Asn Leu Leu Glu Tyr Leu Gln Arg Phe Asp Phe Val Leu Pro Leu  65 70 75 80 Leu Gln Thr Tyr Lys Asn Leu Glu Leu Ala Ala Tyr Asp Val Val Arg                  85 90 95 Gln Ala Ala Asn Asp Asn Ile Lys Tyr Ile Glu Ile Arg Phe Ala Pro             100 105 110 Ser Gln His Leu Leu Glu Asn Leu Thr Leu Glu Glu Ala Val Glu Ala         115 120 125 Val Ile Ala Gly Leu Ser Arg Ala Glu Asn Asp Phe Asp Ile Arg Ala     130 135 140 Asn Ala Leu Val Cys Gly Leu Lys Gln Glu Pro Ile Gln Lys Leu Gln 145 150 155 160 Lys Leu Leu Pro Leu Phe Asp Lys Ile Pro Asp Glu His Leu Val Gly                 165 170 175 Phe Asp Met Ala Gly Asp Glu Leu Asn Tyr Pro Gln Glu Lys Phe Val             180 185 190 Asp Leu Ile His Asp Ile Lys Ile Lys Gly Val Asn Val Thr Leu His         195 200 205 Ala Gly Glu Cys Pro Ala Cys Glu Lys Asn Ile Leu Asp Ser Ile Ala     210 215 220 Met Gly Ala Ser Arg Ile Gly His Gly Ile Met Thr Lys Asn Leu Ser 225 230 235 240 Glu Ala Glu Gln Lys Met Met Ile Glu Lys Gln Ile Val Leu Glu Met                 245 250 255 Ala Pro Thr Ser Asn Phe Gln Thr Lys Ala Val Thr Glu Leu Ala Gln             260 265 270 Tyr Pro Phe Lys Glu Leu Tyr Asp Lys Gly Ile His Val Thr Leu Asn         275 280 285 Thr Asp Asn Arg Met Val Ser Ala Thr Asn Leu Ser Lys Glu Tyr Glu     290 295 300 Lys Ile Ser Ala Trp Tyr Pro Asp Phe Ser Leu Ser Asp Phe Glu Lys 305 310 315 320 Ile Asn His Tyr Ala Ile Asp Gly Ala Phe Ile Gly Gln Glu Glu Lys                 325 330 335 Glu Glu Leu His Gln Arg Phe Thr Lys Glu Tyr Lys Lys Ile Ser Glu             340 345 350

Claims (18)

서열번호 2의 아미노산 서열에서 59번째 루신(Leucine)이 글루타민(Glutamine)으로 치환된 L59Q 변이로 특징되며, 2'-데옥시-2'-플루오로뉴클레오시드 (2'-Deoxy-2'-fluoronucleoside)에 대한 기질 반응성이 야생형 대비 증가되어 있는 것인 N-데옥시리보실 트랜스퍼라아제 변이체.The 5'-deoxy-2'-fluoro-nucleoside is characterized by the L59Q mutation in which the 59th leucine in the amino acid sequence of SEQ ID NO: 2 is replaced by glutamine. N-deoxyribosyltransferase variant wherein the substrate reactivity to fluoronucleoside is increased relative to the wild-type. 제1항에 있어서, 상기 변이체는 당 전이 (transglycosylation) 반응을 촉매하는 활성을 갖는 것인 N-데옥시리보실 트랜스퍼라아제 변이체.2. The N-deoxyribosyltransferase mutant according to claim 1, wherein said mutant has an activity of catalyzing a transglycosylation reaction. 삭제delete 제1항에 있어서, 상기 2'-데옥시-2'-플루오로뉴클레오시드는 2'-데옥시-2'-플루오로우리딘 (2'-Deoxy-2'-fluorouridine)인 N-데옥시리보실 트랜스퍼라아제 변이체.The method of claim 1, wherein the 2'-deoxy-2'-fluoro nucleoside is selected from the group consisting of 2'-Deoxy-2'-fluorouridine, N-deoxy Ribosyltransferase mutant. 제1항의 N-데옥시리보실 트랜스퍼라아제 변이체를 코딩하는 폴리뉴클레오티드.A polynucleotide encoding the N-deoxyribosyltransferase variant of claim 1. 제5항에 있어서, 상기 폴리뉴클레오티드는 서열번호 9의 뉴클레오티드 서열을 포함하는 것인 폴리뉴클레오티드. 6. The polynucleotide of claim 5, wherein the polynucleotide comprises the nucleotide sequence of SEQ ID NO: 제5항의 폴리뉴클레오티드가 조절 서열과 작동가능하게 연결된 재조합 벡터.A recombinant vector operatively linked to a regulatory sequence of the polynucleotide of claim 5. 제7항의 재조합 벡터가 도입된 미생물.A microorganism into which the recombinant vector of claim 7 is introduced. 제8항에 있어서, 상기 미생물은 E. coli DH5α인 미생물.9. The microorganism according to claim 8, wherein the microorganism is E. coli DH5 ?. 제9항에 있어서, 상기 미생물은 기탁번호 KCCM12092P인 미생물.10. The microorganism according to claim 9, wherein the microorganism is KCCM12092P. 제8항 내지 제10항 중 어느 한 항에 있어서, 상기 미생물은 당 전이 (transglycosylation) 반응을 촉매하는 활성을 갖는 것인 미생물.11. The microorganism according to any one of claims 8 to 10, wherein the microorganism has an activity of catalyzing a transglycosylation reaction. 제1항의 N-데옥시리보실 트랜스퍼라아제 변이체 또는 상기 변이체가 발현되어 있는 미생물을 이용하여 염기 공여체와 당잔기 공여체 사이에 N-글루코시드 결합을 형성시켜 뉴클레오시드를 제조하는 방법.A method for producing a nucleoside by forming an N-glucoside bond between a base donor and a sugar residue donor using the N-deoxyribosyltransferase mutant of claim 1 or a microorganism expressing the mutant. 제12항에 있어서, 상기 염기 공여체는 아데닌, 구아닌, 히포크산틴, 크산틴, 6-메르캅토류린, 6-티오구아닌, N-알킬 또는 아실 아데닐, 2-알콕시 아데닌, 2-티오아데닌, 2,6-디아미노퓨린, 시토신, 우라실, 티민, 5-할로게노우라실, 5-할로게노 시토신, 5-트리할로게노메틸 우라실, 2-티오시토신, 4-티오우라실, N-아실시토신, 5-할로게노비닐 우라실, 1,3,4-트리아졸-3-카르복스아미드 1,2,4-트리아졸-3-카르복시산, 1,2,4-트리아졸-3-카르복시산 알킬에스테르, 5-아미노-4-이미다졸 카르복스아미드, 4-카르바모일-이미다졸-5-올레이트, 벤즈이미다졸, 1-데아자아데닌, 3-데아자아데닌, 3-데아자구아닌, 7-데아자아데닌, 7-데아자구아닌, 8-아자아데닌, 7-데아자-8-아자히포크산틴, 5-아자티민, 5-아자시토닌, 6-아자우라실, 3-데아자우라실, 니코틴산 및 니코틴산아미드로 구성된 그룹으로부터 선택되는 어느 하나이며,
상기 당잔기 공여체는 이노신, 구아노신, 우리딘, 리보프라노실 티민, 리보오스-1-인산, 2'-데옥시이노신, 2'-데옥시구아노신, 2'-데옥시우리딘, 티미딘, 2',3'-디데옥시이노신, 2',3'-디옥시구아노신, 2',3'-디데옥시우리딘, 3'-데옥시 티미딘, 2-데옥시 리보오스-1-인산 및 2,3-디데옥시 리보오스-1-인산으로 구성된 그룹으로부터 선택되는 어느 하나인, 뉴클레오시드를 제조하는 방법.
13. The method of claim 12, wherein the base donor is selected from the group consisting of adenine, guanine, hypoxanthine, xanthine, 6-mercaptoulinine, 6-thioguanine, N-alkyl or acyladenyl, 2-alkoxyadenine, , 2-thiocytosine, 4-thiouracil, N-acylcytosine, 5-thioguanidine, , 5-halogenovinyluracil, 1,3,4-triazole-3-carboxamide 1,2,4-triazole-3-carboxylic acid, 1,2,4- Imidazol-5-olate, benzimidazole, 1-deazaadenine, 3-deazaadenine, 3-deazaguanine, 7- But are not limited to, deazaadenine, deazaadenine, 7-deazaguanine, 8-azaadenine, 7-deaza-8-azaspiroxan, 5- azathiamine, 5- azasitonin, 6- azauracil, 3- deazauracil, And nicotinic acid amide And any one selected from the group,
Wherein the sugar residue donor is selected from the group consisting of inosine, guanosine, uridine, ribofuranosyl thymine, ribose-1-phosphate, 2'-deoxyinosine, 2'- deoxyguanosine, 2'-deoxyuridine, thymidine, 2 ', 3'-dideoxyinosine, 2', 3'-dioxyguanosine, 2 ', 3'-dideoxyuridine, 3'-deoxythymidine, 2-deoxyribose- 2,3-dideoxyribose-1-phosphate. &Lt; / RTI &gt;
제13항에 있어서, 상기 염기 공여체는 아데닌, 2,6-디아미노퓨린 (Diaminopurine) 또는 시토신 (Cytosine)인, 뉴클레오시드를 제조하는 방법.14. The method of claim 13, wherein the base donor is adenine, 2,6-diaminopurine or cytosine. 제13항에 있어서, 상기 당잔기 공여체는 티미딘 (Thymidine), 2'-데옥시우리딘 (2'-deoxyuridine) 또는 2'-데옥시-2'-플루오로우리딘 (2'-deoxy-2'-fluorouridine)인, 뉴클레오시드를 제조하는 방법.14. The method of claim 13, wherein the sugar residue donor is selected from the group consisting of Thymidine, 2'-deoxyuridine, or 2'-deoxy- 2'-fluorouridine. &Lt; / RTI &gt; 제1항의 N-데옥시리보실 트랜스퍼라아제 변이체를 2'-데옥시-2'-플루오로우리딘 및 아데닌에 처리하여 2'-데옥시-2'-플루오로아데노신을 제조하는 단계를 포함하는 2'-데옥시-2'-플루오로아데노신의 제조 방법.Deoxy-2'-fluoroadenosine is produced by treating the N-deoxyribosyltransferase mutant of claim 1 with 2'-deoxy-2'-fluorouridine and adenine Deoxy-2'-fluoroadenosine. &Lt; / RTI &gt; 제1항의 N-데옥시리보실 트랜스퍼라아제 변이체를 2'-데옥시-2'-플루오로우리딘 및 2,6-디아미노퓨린에 처리하여 2'-데옥시-2'-플루오로-2,6-디아미노퓨린을 제조하는 단계; 및
상기 2'-데옥시-2'-플루오로-2,6-디아미노퓨린에 락토코쿠스 락티스 유래 아데노신 디아미나아제를 처리하여 2'-데옥시-2'-플루오로구아노신을 제조하는 단계;를 포함하는 2'-데옥시-2'-플루오로구아노신의 제조 방법.
The N-deoxyribosyltransferase mutant of claim 1 is treated with 2'-deoxy-2'-fluorouridine and 2,6-diaminopurine to produce 2'-deoxy-2'-fluoro- Preparing 2,6-diaminopurine; And
2-deoxy-2'-fluoro-2,6-diaminopurine is treated with adenosine deaminase derived from lactococcus lactis to prepare 2'-deoxy-2'-fluoroguanosine &Lt; RTI ID = 0.0 &gt;2'-deoxy-2'-fluoroguanosine.&Lt; / RTI &gt;
제1항의 N-데옥시리보실 트랜스퍼라아제 변이체를 2'-데옥시-2'-플루오로우리딘 및 아데닌에 처리하여 2'-데옥시-2'-플루오로아데노신을 제조하는 단계; 및
상기 2'-데옥시-2'-플루오로아데노신에 락토코쿠스 락티스 유래 아데노신 디아미나아제를 처리하여 2'-데옥시-2'-플루오로이노신을 제조하는 단계;를 포함하는 2'-데옥시-2'-플루오로이노신의 제조 방법.
Preparing 2'-deoxy-2'-fluoroadenosine by treating the N-deoxyribosyltransferase mutant of claim 1 with 2'-deoxy-2'-fluorouridine and adenine; And
2'-deoxy-2'-fluoroadenosine to produce 2'-deoxy-2'-fluoroinosine by treating the 2'-deoxy-2'-fluoroadenosine with adenosine deaminase derived from lactococcus lactis. Deoxy-2'-fluoroinosine.
KR1020170127448A 2017-09-29 2017-09-29 An N-deoxyribosyl transferase mutant, and a method for producing nucleoside using the same KR102000927B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020170127448A KR102000927B1 (en) 2017-09-29 2017-09-29 An N-deoxyribosyl transferase mutant, and a method for producing nucleoside using the same
PCT/KR2018/003473 WO2019066172A1 (en) 2017-09-29 2018-03-23 N-deoxyribosyl transferase mutant and nucleoside preparing method using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170127448A KR102000927B1 (en) 2017-09-29 2017-09-29 An N-deoxyribosyl transferase mutant, and a method for producing nucleoside using the same

Publications (2)

Publication Number Publication Date
KR20190037771A KR20190037771A (en) 2019-04-08
KR102000927B1 true KR102000927B1 (en) 2019-07-17

Family

ID=65902553

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170127448A KR102000927B1 (en) 2017-09-29 2017-09-29 An N-deoxyribosyl transferase mutant, and a method for producing nucleoside using the same

Country Status (2)

Country Link
KR (1) KR102000927B1 (en)
WO (1) WO2019066172A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110819604B (en) * 2019-12-05 2021-07-27 上海兆维科技发展有限公司 Deoxyribotransferase mutant and application thereof
CN114099530B (en) * 2021-12-01 2023-03-21 四川大学 New application of 2-amino-2 '-fluoro-2' -deoxyadenosine
CN115044637B (en) * 2022-08-15 2022-11-15 常熟药明康德新药开发有限公司 Biocatalytic preparation method of beta-D-arabinosylguanosine analog
CN115109814B (en) * 2022-08-26 2022-11-29 常熟药明康德新药开发有限公司 Method for preparing 2 '-deoxy-2' -fluoro-beta-D-arabinoside adenosine analogue
CN115725535B (en) * 2022-11-30 2023-06-06 杭州珲益生物科技有限公司 N-deoxyribotransferase and application thereof in preparation of deoxynucleosides

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080064646A1 (en) 2004-03-30 2008-03-13 Institut Pasteur Lactobacillus Fermentum N-Desoxyribosyl Transferases and the Use Thereof for Enzymatic Synthesis of 2', 3' - Didesoxynucleosides and 2',3'- Didehydro-2',3'- Didesoxynucleosides

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100847348B1 (en) * 2007-01-09 2008-07-21 아이디비켐(주) Improved enzymatic production of deoxyguanosine
CN105754899B (en) * 2016-04-08 2019-06-21 南京工业大学 A kind of N- deoxyribose transferase, encoding gene and its superior strain and application

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080064646A1 (en) 2004-03-30 2008-03-13 Institut Pasteur Lactobacillus Fermentum N-Desoxyribosyl Transferases and the Use Thereof for Enzymatic Synthesis of 2', 3' - Didesoxynucleosides and 2',3'- Didehydro-2',3'- Didesoxynucleosides

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FERNANDEZ-LUCAS, JESUS 등, Applied and Environmental Microbiology, 76권, 5호, 페이지 1462-1470(2010)
NCBI Genbank no. WP_035184009.1 (2015.03.22.)

Also Published As

Publication number Publication date
KR20190037771A (en) 2019-04-08
WO2019066172A1 (en) 2019-04-04

Similar Documents

Publication Publication Date Title
KR102000927B1 (en) An N-deoxyribosyl transferase mutant, and a method for producing nucleoside using the same
US20220372565A1 (en) Dna vaccines
CN107532210B (en) Method for DNA synthesis
JP2606777B2 (en) DNA sequencing
Lin et al. (A) BC excinuclease: the Escherichia coli nucleotide excision repair enzyme
CA2732212C (en) Dna mini-circles and uses thereof
US20050164213A1 (en) Isothermal amplification of DNA
DK2768848T3 (en) METHODS AND PROCEDURES FOR EXPRESSION AND SECRETARY OF PEPTIDES AND PROTEINS
CN107580503B (en) Combination of a bactericidal agent with a lysosome-philic basifying agent for the treatment of bacterial infections
CN111304141B (en) Recombinant escherichia coli for producing N-acetyl-5-hydroxytryptamine and construction method and application thereof
CN116083398B (en) Isolated Cas13 proteins and uses thereof
Brede et al. Nucleotide sequence and expression analysis of the Acetobacter xylinum uridine diphosphoglucose pyrophosphorylase gene
KR20220142502A (en) Muscle-specific nucleic acid regulatory elements and methods and uses thereof
KR102282778B1 (en) Recombinant microorganisms and methods of use thereof
US20220213538A1 (en) Methods and Compositions for Isothermal DNA Amplification
ES2355650T3 (en) THERMOSTABLE DNA POLYMERASE OF ABP ARCHES AMPULLAVIRUS AND ITS APPLICATIONS.
KR20200083488A (en) Enantioselective enzyme sulfoxide of chiral aryl sulfide
CN1912127B (en) Colibacillus expression carrier and its application
CN1912130B (en) Two-step enzyme method for preparing 7-aminocephalosporanic acid
KR102683284B1 (en) Combination of a bactericide and a lysosomal alkalinizing agent for the treatment of bacterial infections
KR20220093189A (en) Modular cell-free protein expression vectors to accelerate biological design in cells
KR20220037964A (en) Gene therapy vector with minimizing recombination, recombinant retrovirus comprising the vector and pharmaceutical composition for preventing or treating cancer comprising the recombinant retrovirus
CN116323924A (en) Gene therapy vector with minimized recombination occurrence, recombinant retrovirus containing the vector, and pharmaceutical composition containing the recombinant retrovirus for preventing or treating cancer
AU2005203180A1 (en) Isothermal Amplification of DNA
KR20170085357A (en) Expression vector and knock in or knock out vector

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant