KR102000827B1 - Biomarkers for diagnosing diabetic retinopathy and uses thereof - Google Patents
Biomarkers for diagnosing diabetic retinopathy and uses thereof Download PDFInfo
- Publication number
- KR102000827B1 KR102000827B1 KR1020170098505A KR20170098505A KR102000827B1 KR 102000827 B1 KR102000827 B1 KR 102000827B1 KR 1020170098505 A KR1020170098505 A KR 1020170098505A KR 20170098505 A KR20170098505 A KR 20170098505A KR 102000827 B1 KR102000827 B1 KR 102000827B1
- Authority
- KR
- South Korea
- Prior art keywords
- diabetic
- glutamic acid
- diabetic retinopathy
- glutamine
- retinopathy
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/483—Physical analysis of biological material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/62—Detectors specially adapted therefor
- G01N30/72—Mass spectrometers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/88—Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/88—Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
- G01N2030/8809—Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
- G01N2030/8813—Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials
- G01N2030/8818—Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials involving amino acids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2500/00—Screening for compounds of potential therapeutic value
- G01N2500/04—Screening involving studying the effect of compounds C directly on molecule A (e.g. C are potential ligands for a receptor A, or potential substrates for an enzyme A)
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/04—Endocrine or metabolic disorders
- G01N2800/042—Disorders of carbohydrate metabolism, e.g. diabetes, glucose metabolism
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Pathology (AREA)
- Immunology (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- Urology & Nephrology (AREA)
- Molecular Biology (AREA)
- Hematology (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
본 발명은 당뇨병성망막증 진단용 바이오마커 및 이의 용도에 관한 것으로, 구체적으로 당뇨병 노인 환자 집단에 대한 임상 데이터 및 생체 샘플을 수집하여 당뇨병성망막증 표현형을 확인하고, 크로마토그래피/질량분석법을 이용하여 혈청 대사체를 프로파일링하여, 대사체 중 글루타민, 글루탐산 및 글루타민/글루탐산 비를 이용한 경우 당뇨병 환자에서 당뇨병성망막증 여부를 판별할 수 있음을 확인하였으므로, 상기 대사체 마커를 당뇨병성망막증 여부를 판단하는데 유용하게 이용할 수 있다.The present invention relates to a biomarker for the diagnosis of diabetic retinopathy and a use thereof. More particularly, the present invention relates to a method for diagnosing diabetic retinopathy by collecting clinical data and living body samples of a diabetic patient population and identifying diabetic retinopathy phenotype, It has been confirmed that diabetic retinopathy can be determined by using glutamine, glutamic acid, and glutamic acid / glutamic acid ratio in the metabolism, so that it is useful for determining whether the metabolic marker is diabetic retinopathy Can be used.
Description
본 발명은 당뇨병성망막증(diabetic retinopathy) 진단용 바이오마커 및 이의 용도에 관한 것이다.
The present invention relates to biomarkers for the diagnosis of diabetic retinopathy and uses thereof.
당뇨병의 이환 기간이 길어짐에 따라 전신의 다양한 합병증을 동반하게 되는데, 대표적인 당뇨합병증으로 심혈관계 질환, 당뇨병성신증, 당뇨신경병증, 당뇨망막병증이 발생하게 된다. 당뇨망막병증 (Diabetic Retinopathy, DR)은 당뇨 환자 에게서 당뇨 진단 10년 내에 60% 이상에서, 20년 내에 90% 이상에서 나타난다.
As the duration of the diabetes mellitus increases, various complications of the system become accompanied. Typical diabetic complications include cardiovascular disease, diabetic nephropathy, diabetic neuropathy, and diabetic retinopathy. Diabetic retinopathy (DR) occurs in more than 60% of diabetic patients within 10 years of diabetes diagnosis and more than 90% in 20 years.
당뇨병성망막증은 당뇨병의 미세혈관 합병증(microangiopathy)의 하나로 당뇨병의 진단에서 직접적으로 참조가 되는 만성 합병증이다. 당뇨병성망막증은 다른 만성 당뇨병 관련 합병증보다 고혈당증에 특이적인 것으로 잘 알려져 있으며, 망막혈관의 투과성 변화와 혈관 폐쇄, 허혈 변화(ischemia), 신생혈관 생성(neovascularization) 및 섬유혈관 증식(fibrovascular proliferation)을 보이는 것이 특징이다. Diabetic retinopathy is one of the microangiopathies of diabetes mellitus and is a chronic complication that is directly referred to in the diagnosis of diabetes mellitus. It is well known that diabetic retinopathy is more specific to hyperglycemia than other chronic diabetes-related complications. Diabetic retinopathy is characterized by changes in retinal blood vessel permeability, vascular occlusion, ischemia, neovascularization, and fibrovascular proliferation .
당뇨병성망막증은 진행 정도에 따라 초기의 비증식성 당뇨병성망막증(NPDR, non-proliferative diabetic retinopathy)과 후기의 증식성 당뇨병성망막증(PDR, proliferative diabetic retinopathy)으로 구분할 수 있다. NPDR은 망막 모세혈관의 폐쇄 및 투과성 변화 등으로 망막출혈, 미세혈관류(microaneurysm), 삼출물(exudate), 망막 부종(edema) 등이 나타나면서 조금씩 시력이 떨어지게 된다. 또한 황반부의 부종(DME, 당뇨황반부종)을 동반하게 되면 이 시기에서도 심각한 시력 저하를 보일 수 있다. PDR은 망막의 광범위한 혈관 폐쇄에 따르는 허혈 상태로 인해 신생혈관이 증식하는 단계이다. 이러한 증식은 망막에서 유리체로 진행되고 섬유혈관 증식이 일어 나 견인막에 의해 유리체출혈(vitreous hemorrhage)이나 망막이 원래 부착 부위에서 떨어지는 견인망막박리 (tractional retinal detachment), 신생혈관녹내장 등의 합병증이 발생해 실명이 진행되는 단계이다. Diabetic retinopathy can be divided into early non-proliferative diabetic retinopathy (NPDR) and later proliferative diabetic retinopathy (PDR) according to progression. NPDR is caused by retinal capillary obstruction and changes in permeability, resulting in retinal hemorrhage, microaneurysm, exudate, and edema. In addition, accompanying edema of the macula (DME, diabetic macular edema) can cause serious visual impairment even in this period. PDR is a stage in which new blood vessels multiply due to ischemic conditions following extensive vascular occlusion of the retina. This proliferation progresses to vitreous formation in the retina and fibrovascular proliferation occurs. However, complications such as vitreous hemorrhage, tractional retinal detachment, and neovascular glaucoma, This is the stage where the blind date is proceeding.
이러한 당뇨병성망막증이 일찍 발견되면 적절한 관리로 망막증의 진행 및 악화를 예방할 수 있지만, 그 상태가 적절하게 관리되지 않으면 심한 시력 상실이나 실명을 초래할 수 있다. 현재 당뇨병성망막증은 성인에게 실명의 주요 원인으로 여겨지고 있으며, 이러한 임상적 의의가 있음에도 불구하고, 다른 합병증에 비해 잘 진단되지 않는다. 한 연구에 따르면 한국에서 당뇨병성망막증 진단율은 36.3%로 다른 합병증보다 현저히 낮은 것으로 나타났다. 당뇨병성망막증의 진단율이 낮은 이유는 안저 카메라(fundus camera)와 같은 추가 장비와 숙련된 의료진을 필요로 하여 다른 검사와 비해 쉽게 수행하기 어렵기 때문이다.If such diabetic retinopathy is detected early, proper management can prevent the progression or worsening of retinopathy, but if it is not properly managed, severe vision loss or blindness can result. Currently, diabetic retinopathy is considered to be a major cause of blindness in adults and, despite these clinical implications, is not well diagnosed compared to other complications. According to one study, the diagnosis rate of diabetic retinopathy was 36.3% in Korea, which was significantly lower than other complications. The reason for the low diagnosis rate of diabetic retinopathy is that it requires additional equipment such as a fundus camera and skilled medical staff, which makes it difficult to perform easily compared with other tests.
이러한 현실을 개선하기 위해서는 진단 및 치료 예후 예측을 위한 바이오 마커를 선별하는 것이 필요하다. 현재까지 당뇨망막병증 연구는 유리체의 개별 단백질에 대한 생화학 및 분자생물학적 연구를 중심으로 주로 이루어지고 있다. 또한 당뇨망막병증의 단백질체 연구도 환자 유리체에서 단백질을 2-DE 및 Mass spcectrometry로 동정하는 유리체 단백질체의 Profiling(Discovery) 단계의 연구이다. 또한 이들 유리체 단백질들이 혈액에서 발현이 되는지 혹은 이들을 임상적인 바이오마커로 이용할 수 있는지에 대한 검증(validation) 연구는 거의 이루어지지 않은 상태이다. 이처럼 관련 분야에 대한 연구는 성공적이지 못하고, 당뇨병성망막증의 진단 및 치료 예후를 예측하기 위한 바이오마커에 대한 임상 연구도 거의 없는 실정이다.
To improve this reality, it is necessary to select biomarkers to predict diagnosis and prognosis. To date, studies on diabetic retinopathy have been focused mainly on biochemical and molecular biology studies of individual proteins in the vitreous. In addition, the proteomic study of diabetic retinopathy is a study of the Profiling (Discovery) phase of vitreous protein bodies that identify proteins in the patient's vitreous with 2-DE and mass spectrometry. In addition, validation studies have not been conducted to determine whether these vitelline proteins are expressed in blood or can be used as clinical biomarkers. Thus, there is little research on biomarkers to predict the prognosis and diagnosis of diabetic retinopathy.
이에, 본 발명자들은 당뇨병성망막증의 진단 및 치료 예후를 예측하기 위한 바이오마커를 개발하기 위해 노력한 결과, 당뇨병 노인 환자 집단에 대한 임상 데이터 및 생체 샘플을 수집하여 당뇨병성망막증 표현형을 확인하고, 크로마토그래피/질량분석법을 이용하여 혈청 내 대사체를 프로파일링하여, 대사체 중 글루타민(glutamine) 및 글루탐산(glutamic aicd)이 당뇨병성망막증을 갖는 당뇨병 환자에 대한 정확한 바이오마커임을 확인함으로써, 본 발명을 완성하였다.
Accordingly, the present inventors have made efforts to develop a biomarker for predicting the diagnosis and therapeutic prognosis of diabetic retinopathy. As a result, clinical data and biological samples of a diabetic elderly patient group were collected to identify diabetic retinopathy phenotype, / Mass spectrometry to confirm that glutamine and glutamic acid in the metabolites are accurate biomarkers for diabetic patients with diabetic retinopathy, thereby completing the present invention .
본 발명의 목적은 실험군으로서 당뇨병 피검개체로부터 분리된 시료에서 대사체의 수준을 측정하고 당뇨합병증을 갖지 않는 당뇨병 대조군 개체와 비교하는 단계를 포함하는, 당뇨합병증 여부를 판단하기 위한 정보제공방법을 제공하는 것이다.The object of the present invention is to provide an information providing method for determining whether or not diabetic complications are present, comprising the step of measuring the level of a metabolite in a sample separated from a diabetic subject and comparing the diabetic subject with a diabetic control subject having no diabetic complication .
또한, 본 발명의 목적은 글루타민 및 글루탐산으로 이루어진 군으로부터 선택된 어느 하나 이상의 대사체에 대한 검출 제제를 포함하는 당뇨합병증 여부 판단용 조성물을 제공하는 것이다.
It is another object of the present invention to provide a composition for detecting diabetic complications including a detection agent for at least one metabolite selected from the group consisting of glutamine and glutamic acid.
상기 목적을 달성하기 위하여, 본 발명은 실험군으로서 당뇨병 피검개체로부터 분리된 시료에서 대사체의 수준을 측정하고 당뇨합병증을 갖지 않는 당뇨병 대조군 개체와 비교하는 단계를 포함하는, 당뇨합병증 여부를 판단하기 위한 정보제공방법을 제공한다.In order to achieve the above object, the present invention provides a method for diagnosing diabetic complications, comprising the steps of measuring the level of a metabolite in a sample isolated from a diabetic subject and comparing the diabetic subject with a diabetic control subject having no diabetic complication Provide information providing method.
또한, 본 발명은 글루타민 및 글루탐산으로 이루어진 군으로부터 선택된 어느 하나 이상의 대사체에 대한 검출 제제를 포함하는 당뇨합병증 여부 판단용 조성물을 제공한다.
In addition, the present invention provides a composition for determining the complication of diabetes comprising a detection agent for any one or more metabolites selected from the group consisting of glutamine and glutamic acid.
본 발명은 당뇨병 노인 환자 집단에 대한 임상 데이터 및 생체 샘플을 수집하여 당뇨병성망막증 표현형을 확인하고, 크로마토그래피/질량분석법을 이용하여 혈청 내 대사체를 프로파일링하여, 대사체 중 글루타민, 글루탐산 및 글루타민/글루탐산 비를 이용하여 당뇨병성망막증을 갖는 당뇨병 환자를 구별할 수 있음을 확인함으로써, 상기 대사체 마커를 당뇨병성망막증 여부를 판단하는데 유용하게 이용할 수 있다.
The present invention relates to a method for diagnosing a diabetic retinopathy phenotype by collecting clinical data and biological samples of a diabetic elderly patient group and profiling the metabolites in serum using chromatography / mass spectrometry to determine whether glutamine, glutamic acid and glutamine / Glutamic acid ratio of the diabetic retinopathy can be distinguished from diabetic patients having diabetic retinopathy, the metabolic marker can be used to judge whether diabetic retinopathy is present or not.
도 1은 본 발명의 임상시험 진행 과정을 모식화한 도이다.
도 2a는 GC-TOF-MS 분석 데이터를 이용한 OPLS-DA(orthogonal partial least squares discriminant analysis) 스코어 플롯을 나타낸 도이다:
CON: 비-당뇨병 대조군;
no DR: 당뇨병성망막증(diabetic retinopathy)을 갖지 않는 당뇨병 군; 및
DR: 당뇨병성망막증을 갖는 당뇨병 군.
도 2b는 UPLC-Q-TOF-MS 분석 데이터를 이용한 OPLS-DA 스코어 플롯을 나타낸 도이다.
도 3a는 당뇨병성망막증을 갖지 않는 당뇨병 군 및 당뇨병성망막증을 갖는 당뇨병 군 간 글루타민(glutamine) 및 글루탐산(glutamic acid), 또는 이들의 조합에 대한 ROC 곡선을 나타낸 도이다.
도 3b는 당뇨병성망막증을 갖지 않는 당뇨병 군 및 당뇨병성망막증을 갖는 당뇨병 군 간 글루타민/글루탐산 비율의 ROC 곡선을 나타낸 도이다.Fig. 1 is a schematic diagram of a clinical trial process of the present invention. Fig.
2a shows an orthogonal partial least squares discriminant analysis (OPLS-DA) score plot using GC-TOF-MS analysis data:
CON: non-diabetic control;
no DR: diabetic group without diabetic retinopathy; And
DR: Diabetic group with diabetic retinopathy.
FIG. 2B is a diagram illustrating an OPLS-DA score plot using UPLC-Q-TOF-MS analysis data.
FIG. 3A shows ROC curves for diabetic group without diabetic retinopathy and diabetic group glutamine and glutamic acid with diabetic retinopathy or a combination thereof.
FIG. 3B is a graph showing the ROC curve of the glutamine / glutamic acid ratio between the diabetic group having no diabetic retinopathy and the diabetic group having diabetic retinopathy.
이하 본 발명을 상세히 설명한다.
Hereinafter, the present invention will be described in detail.
본 발명은 실험군으로서 당뇨병 피검개체로부터 분리된 시료에서 대사체의 수준을 측정하고 당뇨합병증을 갖지 않는 당뇨병 대조군 개체와 비교하는 단계를 포함하는, 당뇨합병증 여부를 판단하기 위한 정보제공방법을 제공한다.The present invention provides a method for providing information for determining diabetic complication, comprising the step of measuring the level of a metabolite in a sample isolated from a diabetic subject and comparing the diabetic subject with a diabetic control subject having no diabetic complication.
본 발명에서, 상기 시료는 혈액, 혈장, 혈청, 뇨, 눈물, 침, 객담, 비분비물, 기관지 분비물, 기관지 세척액, 폐분비물, 또는 폐포 세척액일 수 있고, 보다 구체적으로 혈청일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the sample may be blood, plasma, serum, urine, tears, saliva, sputum, secretion, bronchial secretion, bronchial washing solution, pulmonary secretion, or alveolar lavage solution. More specifically, It is not.
본 발명에서, 상기 "대사체"는 생체 기원의 시료로부터 수득한 대사물질을 말하며, 상기 대사체는 구체적으로 글루타민(glutamine) 또는 글루탐산(glutamic acid)인 것이 바람직하다.In the present invention, the term "metabolite" refers to a metabolite obtained from a sample of biological origin, and the metabolite is preferably glutamine or glutamic acid.
본 발명에서, 상기 "대사체의 수준"은 대사체의 농도 또는 대사체의 양을 말하며, 상기 대사체의 수준은 예를 들어 크로마토그래피/질량분석법, 광흡수분석법 및 발광분광분석법으로 측정할 수 있으나, 이에 제한되지 않고 당업계에서 통상적으로 사용되는 모든 정량법을 사용할 수 있다. 또한, 상기 크로마토그래피/질량분석법은 예를 들어 UPLC-Q-TOF-MS(ultra-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry) 또는 GC-TOF-MS(gas chromatography/time-of-flight mass spectrometry)일 수 있다.In the present invention, the above-mentioned "level of metabolite" refers to the concentration of the metabolite or the amount of the metabolite, and the level of the metabolite can be measured by, for example, chromatography / mass spectrometry, However, the present invention is not limited thereto, and any quantitative method commonly used in the art can be used. In addition, the chromatography / mass spectrometry may be performed using, for example, ultra-performance liquid chromatography-quadrupole (UPLC-Q-TOF-MS) or gas chromatography / time- flight mass spectrometry.
본 발명의 대사체는 UPLC 또는 GC에서 각 성분들이 분리되며 Q-TOF-MS 또는 TOF-MS를 거쳐 얻어진 정보를 이용하여 정확한 분자량 정보뿐만 아니라 구조 정보(elmental composition)을 통해 구성 성분을 확인할 수 있다.The metabolites of the present invention can be identified by using not only the accurate molecular weight information but also the elmental composition by using the information obtained through the Q-TOF-MS or TOF-MS since each component is separated by UPLC or GC .
본 발명에서, 상기 당뇨합병증은 당뇨병성망막증(diabetic retinopathy), 당뇨병성 백내장(diabetic cataract) 또는 당뇨병성신증(diabetic nephropathy)일 수 있다.In the present invention, the diabetic complication may be diabetic retinopathy, diabetic cataract, or diabetic nephropathy.
본 발명은, 상기 당뇨병 피검개체로부터 분리된 시료에서 당뇨합병증을 갖지 않는 당뇨병 대조군 개체와 비교하여 글루타민의 수준이 높은 경우 당뇨합병증에 걸렸거나 걸릴 위험성이 높은 것으로 판단하는 것이 바람직하다. 보다 구체적으로 글루타민의 수준이 당뇨합병증을 갖지 않는 당뇨병 대조군 개체와 비교하여 10% 이상 높은 경우 당뇨합병증에 걸렸거나 걸릴 위험성이 높은 것으로 판단하는 것이 바람직하고, 보다 더 구체적으로 글루타민의 수준이 당뇨합병증을 갖지 않는 당뇨병 대조군 개체와 비교하여 20% 이상 높은 경우 당뇨합병증에 걸렸거나 걸릴 위험성이 높은 것으로 판단하는 것이 바람직하나, 이에 한정되는 것은 아니다.In the present invention, it is preferable that the sample separated from the diabetic subject is judged to have a high risk of being or suffering from diabetic complication when the level of glutamine is high as compared with the diabetic control subject having no diabetic complication. More specifically, when the level of glutamine is higher than 10% of the diabetic control subjects not having diabetic complications, it is preferable to judge that the risk of diabetic complications is high or high. More specifically, It is preferable to judge that the diabetic complication is high or the risk of diabetic complication is high, but the present invention is not limited thereto.
또한, 상기 당뇨병 피검개체로부터 분리된 시료에서 당뇨합병증을 갖지 않는 당뇨병 대조군 개체와 비교하여 글루탐산의 수준이 낮은 경우 당뇨합병증에 걸렸거나 걸릴 위험성이 높은 것으로 판단하는 것이 바람직하다. 보다 구체적으로 글루탐산의 수준이 당뇨합병증을 갖지 않는 당뇨병 대조군 개체와 비교하여 10% 이상 낮은 경우 당뇨합병증에 걸렸거나 걸릴 위험성이 높은 것으로 판단하는 것이 바람직하고, 보다 더 구체적으로 글루탐산의 수준이 당뇨합병증을 갖지 않는 당뇨병 대조군 개체와 비교하여 20% 이상 높은 경우 당뇨합병증에 걸렸거나 걸릴 위험성이 높은 것으로 판단하는 것이 바람직하나, 이에 한정되는 것은 아니다.In addition, it is preferable that a sample separated from the diabetic subject is judged to have a high risk of being or suffering from diabetic complications when the level of glutamic acid is low as compared to a diabetic control subject having no diabetic complication. More specifically, it is preferable that the level of glutamic acid is 10% or more lower than that of a diabetic control group not having diabetic complications, and it is preferable that the level of glutamate is high in the risk of diabetic complication or taking. More specifically, It is preferable to judge that the diabetic complication is high or the risk of diabetic complication is high, but the present invention is not limited thereto.
또한, 상기 당뇨병 피검개체로부터 분리된 시료에서 당뇨합병증을 갖지 않는 당뇨병 대조군 개체와 비교하여 글루타민/글루탐산 비율이 높은 경우 당뇨합병증에 걸렸거나 걸릴 위험성이 높은 것으로 판단하는 것을 특징으로 하는, 당뇨합병증 여부를 판단하는 것이 바람직하다.
The present invention also provides a method for diagnosing diabetes mellitus, comprising the steps of: (a) detecting a diabetic complication or a diabetic complication; It is preferable to judge.
본 발명의 구체적인 실시예에서, 본 발명자들은 당뇨병 노인 환자 집단에 대한 임상 데이터 및 생체 샘플을 수집하여 당뇨병성망막증 표현형을 확인하고, 크로마토그래피/질량분석법을 이용하여 혈청 대사체를 프로파일링하였다.In a specific embodiment of the present invention we have collected clinical and biosamples of a diabetic elderly patient population to identify diabetic retinopathy phenotype and profile serum metabolites using chromatography / mass spectrometry.
또한, 당뇨병성망막증을 갖는 당뇨병 군과 당뇨병성망막증을 갖지 않는 당뇨병 군을 비교하여, 당뇨병성망막증을 갖지 않는 당뇨병 군보다 당뇨병성망막증을 갖는 당뇨병 군에서 혈청 대사체 중 글루타민의 농도가 유의적으로 높고, 글루탐산의 농도가 유의적으로 낮으며, 글루타민/글루탐산 비가 유의적으로 높은 것을 확인하여, 글루타민, 글루탐산 및 글루타민/글루탐산 비율을 이용하여 당뇨병 환자에서 당뇨병성망막증 여부를 구별할 수 있음을 확인하였으므로, 상기 대사체 마커를 당뇨병성망막증을 포함한 당뇨합병증 여부를 판단하는데 유용하게 이용할 수 있다.
In addition, comparing the diabetic group with diabetic retinopathy and the diabetic group without diabetic retinopathy, the concentration of glutamine in the serum metabolite was significantly higher in the diabetic group with diabetic retinopathy than in the group without diabetic retinopathy Glutamic acid and glutamic acid were significantly higher than those of diabetic patients, and it was confirmed that diabetic retinopathy can be discriminated in diabetic patients by using glutamine, glutamic acid and glutamic acid / glutamic acid ratio , The metabolic marker can be usefully used for determining diabetic complications including diabetic retinopathy.
또한, 본 발명은 글루타민 및 글루탐산으로 이루어진 군으로부터 선택된 어느 하나 이상의 대사체에 대한 검출 제제를 포함하는 당뇨합병증 여부 판단용 조성물을 제공한다.In addition, the present invention provides a composition for determining the complication of diabetes comprising a detection agent for any one or more metabolites selected from the group consisting of glutamine and glutamic acid.
본 발명에서, 상기 "검출 제제"는 당뇨병 환자로부터 분리된 생체 시료로부터 글루타민 또는 글루탐산을 정량적으로 검출하기 위한 제제를 의미하며, 상기 제제는 특별히 제한되는 것은 아니며, 상기 대사체를 정량화할 수 있는 시약 또는 화학 물질일 수 있다.In the present invention, the "detection agent" means a preparation for quantitatively detecting glutamine or glutamic acid from a biological sample separated from a diabetic patient. The preparation is not particularly limited, and a reagent capable of quantifying the metabolite Or a chemical.
본 발명에서, 상기 당뇨합병증은 당뇨병성망막증, 당뇨병성 백내장 또는 당뇨병성신증일 수 있다.In the present invention, the diabetic complication may be diabetic retinopathy, diabetic cataract or diabetic nephropathy.
본 발명에서, 상기 글루타민의 수준이 당뇨병 피검개체로부터 분리된 시료에서 당뇨합병증을 갖지 않는 당뇨병 대조군 개체와 비교하여 높은 경우 당뇨합병증에 걸렸거나 걸릴 위험성이 높은 것으로 판단하는 것이 바람직하다. In the present invention, when the level of glutamine is higher than that of a diabetic control subject having no diabetic complication in a sample separated from a subject to be diabetic, it is preferable that the subject is judged to have a high risk of suffering or suffering from diabetic complications.
또한, 상기 글루탐산의 수준이 당뇨병 피검개체로부터 분리된 시료에서 당뇨합병증을 갖지 않는 당뇨병 대조군 개체와 비교하여 낮은 경우 당뇨합병증에 걸렸거나 걸릴 위험성이 높은 것으로 판단하는 것이 바람직하다.In addition, it is preferable to determine that the level of glutamic acid in the sample separated from the diabetic subject is lower than the diabetic control subject not having diabetic complication, and that the risk of diabetic complication is high or high.
또한, 상기 글루타민/글루탐산 비율이 당뇨병 피검개체로부터 분리된 시료에서 당뇨합병증을 갖지 않는 당뇨병 대조군 개체와 비교하여 높은 경우 당뇨합병증에 걸렸거나 걸릴 위험성이 높은 것으로 판단하는 것이 바람직하다.
In addition, it is preferable that the sample in which the glutamine / glutamic acid ratio is separated from the diabetic subject is higher than the diabetic control subject not having diabetic complication, and the risk of diabetic complication is high or high.
또한, 본 발명은 In addition,
(a) 당뇨합병증을 갖는 개체에 피검물질을 처리하는 단계; (a) treating the subject with diabetes complications;
(b) 상기 단계 (a)의 피검물질을 처리한 개체로부터 분리된 시료에서 무처리 대조군과 비교하여 글루타민의 수준을 감소시키거나, 글루탐산의 수준을 증가시키는 물질을 선별하는 단계를 포함하는, 당뇨합병증 예방 또는 치료제의 스크리닝 방법을 제공한다.(b) reducing the level of glutamine or increasing the level of glutamic acid in a sample isolated from the subject treated with the test substance of step (a) as compared to the untreated control, Thereby providing a method of preventing or treating complications.
본 발명의 방법에 있어서, 상기 단계 (a)의 피검물질은, 펩티드, 단백질, 비펩티드성 화합물, 활성 화합물, 발효 생산물, 세포 추출액, 식물 추출액, 동물조직 추출액 및 혈장으로 이루어진 군으로부터 선택되는 어느 하나인 것이 바람직하나 이에 한정되지 않는다.In the method of the present invention, the substance to be tested in step (a) is selected from the group consisting of peptides, proteins, non-peptide compounds, active compounds, fermentation products, cell extracts, plant extracts, animal tissue extracts and plasma But it is not limited thereto.
본 발명의 방법에 있어서, 상기 단계 (b)의 글루타민 수준 또는 글루탐산 수준은 예를 들어 크로마토그래피/질량분석법, 광흡수분석법 및 발광분광분석법으로 측정할 수 있으나, 이에 제한되지 않고 당업계에서 통상적으로 사용되는 모든 정량법을 사용할 수 있다. 또한, 상기 크로마토그래피/질량분석법은 예를 들어 UPLC-Q-TOF-MS(ultra-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry) 또는 GC-TOF-MS(gas chromatography/time-of-flight mass spectrometry)일 수 있다.In the method of the present invention, the glutamine level or the glutamate level of the step (b) can be measured by, for example, chromatography / mass spectrometry, light absorption assay and emission spectroscopy, Any quantitative method used can be used. In addition, the chromatography / mass spectrometry may be performed using, for example, ultra-performance liquid chromatography-quadrupole (UPLC-Q-TOF-MS) or gas chromatography / time- flight mass spectrometry.
또한, 상기 단계 (b)에서 상기 단계 (a)의 피검물질을 처리한 개체로부터 분리된 시료에서 무처리 대조군과 비교하여 글루타민/글루탐산 비를 감소시키는 물질을 선별하는 단계를 추가적으로 포함할 수 있다.In addition, the step (b) may further include the step of selecting a substance that decreases the glutamine / glutamic acid ratio in the sample isolated from the subject treated with the test substance in step (a) as compared with the untreated control group.
본 발명의 방법에 있어서, 상기 당뇨합병증은 당뇨병성망막증, 당뇨병성 백내장 또는 당뇨병성신증일 수 있다.
In the method of the present invention, said diabetic complication can be diabetic retinopathy, diabetic cataract or diabetic nephropathy.
이하 본 발명을 실시예 및 실험예에 의해 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to Examples and Experimental Examples.
단, 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예 및 실험예에 한정되는 것은 아니다.
However, the following Examples and Experimental Examples are merely illustrative of the present invention, and the present invention is not limited to the following Examples and Experimental Examples.
<< 실시예Example 1> 피험자 및 임상시험 디자인 1> Subject and clinical trial design
임상시험은 2014년 9월부터 2015년 6월까지 수집한 전향코흐트연구(prospective cohort study) 등록자의 기본적인 특징을 이용한, 인체자원중앙은행(National Biobank) 프로젝트의 일부분으로 수행되었다. 본 코흐트의 피험자는 15년 이상 제2형 당뇨병을 앓고 있는 환자였다.Clinical trials were conducted as part of the National Biobank project, using the basic features of the registrant's prospective cohort study from September 2014 to June 2015. Bonch's subjects were patients with type 2 diabetes for more than 15 years.
상기 피험자의 임상 정보는 대한당뇨병학회(Korean Diabetes Association)에 의해 승인된 다기관 임상 데이터 등록 표준화 방법에 기초하여 등록되었고, 생물정보(biospecimens)는 한국인체자원중앙은행(National Biobank of Korea)의 가이드라인에 따라 수집하였다.The clinical information of the subject was registered based on the multicenter clinical data registration standardization method approved by the Korean Diabetes Association and the biospecimens were registered in accordance with the guidelines of the National Biobank of Korea Lt; / RTI >
또한, 임상시험을 위하여 경희대학교 병원의 임상시험심사위원회(Institutional review board)의 승인을 받았다(IRB No. KMC IRB 1428-04). 모든 피험자로부터 서면 동의를 얻었다. 또한, 임상시험 정보는 세계보건기구의 ICTRP(International Clinical Trials Registry Platform)와 연계된 한국 국가서비스인 임상연구정보서비스(http://cris.nih.go.kr)에서 제공하였다(CRIS, No. KCT0001269).
In addition, for clinical trials, the institutional review board of Kyung Hee University Hospital (IRB No. KMC IRB 1428-04) has been approved. Written consent was obtained from all subjects. In addition, clinical trial information was provided from the Clinical Research Information Service (http://cris.nih.go.kr), a Korean national service linked to the International Clinical Trials Registry Platform (ICTRP) of the World Health Organization. KCT0001269).
<< 실시예Example 2> 당뇨병성망막증((Diabetic retinopathy) 표현형 분석 2> Phenotypic analysis of diabetic retinopathy (Diabetic retinopathy)
상기 <실시예 1>의 피험자 각각의 당뇨병성망막증(Diabetic retinopathy; DR) 증상은 색안경 사진(color fundus photography)(FF 540 Plus; Carl Zeiss Meditech, Jena, Germany) 및 광학단층촬영(optical coherence tomography)(HD-OCT; Carl Zeiss Meditech, Dublin, CA, USA)을 통해 평가하였다. ETDRS(Early Treatment Diabetic Retinopathy Study) 기준에 따라, DR을 3가지 범주로 분류하였다: DR을 갖지 않는 비-DR(no DR), 비-증식성 DR(non-proliferative diabetic retinopathy; NPDR) 또는 증식성 DR을 갖는 증식성 DR(proliferative diabetic retinopathy; PDR). 2명 이상의 안과 의사가 시험 결과를 기초로 DR 상태를 분류하였다. 의사 간 불일치가 발생하는 경우 다시 이미지를 검토하여 최종 해석에 도달하였다.
Diabetic retinopathy (DR) symptoms of each of the subjects of Example 1 were evaluated by color fundus photography (FF 540 Plus; Carl Zeiss Meditech, Jena, Germany) and optical coherence tomography (HD-OCT; Carl Zeiss Meditech, Dublin, CA, USA). According to the ETDRS criteria, DR is classified into three categories: non-DR (no DR), non-proliferative diabetic retinopathy (NPDR) without DR or proliferative Proliferative diabetic retinopathy (PDR) with DR. Two or more ophthalmologists classified the DR status based on the test results. When there was a discrepancy between the doctors, the image was reviewed again and the final interpretation was reached.
<< 실시예Example 3> 임상시험 결과에 대한 통계 분석 3> Statistical analysis of clinical trial results
오랜 기간 제2형 당뇨병을 앓으면서도 망막병증을 가지지 않은 피험자의 특징을 파악하는 데 초점을 맞춰, DR 환자 및 비-DR 환자의 임상 특성을 비교하였다. 임상 자료의 검증과 통계 분석은 통계학자에 의해 독립적으로 수행되었다. 환자의 DR 유무에 관계없이 평균, 비율(proportions), 분산(dirtributions)를 비교하였다. 초기 분석 후, DR과 유사한 임상 특성을 갖는 성향점수매칭(propensity score matching; PSM)을 통해 케이스 및 대조군 세트(case and control set)를 선별하였고, 상기와 동일한 샘플을 대사체학 연구에 사용하였다. 모든 통계 분석을 위해 SAS 소프트웨어(버전 9.3, SAS Institute Inc., Cary, NC, USA)를 사용하였다.
The clinical characteristics of DR patients and non-DR patients were compared with those of patients with long-term diabetes mellitus, focusing on the characteristics of subjects who did not have retinopathy. Clinical data validation and statistical analysis were performed independently by statisticians. The mean, proportions, and dirtributions were compared regardless of patient's DR. After initial analysis, cases and control sets were selected through Propensity Score Matching (PSM) with similar clinical characteristics to DR, and the same samples as above were used for metabolic studies. SAS software (version 9.3, SAS Institute Inc., Cary, NC, USA) was used for all statistical analyzes.
<< 실시예Example 4> 혈청 샘플을 이용한 4> Serum samples were used 대사체학Metabolism 연구 Research
<4-1> 샘플 준비<4-1> Sample Preparation
연령이 일치하는 비-당뇨병 군을 대사체학 연구의 대조군으로 이용하였다. 대사체는 200 ㎕의 혈장에서 추출하였다. 600 ㎕ 메탄올 용액 및 10 ㎕ 내부 표준 용액(물 중 2-클로로페닐알라닌(2-chlorophenylalanine) 1 mg/㎖)을 혈청에 첨가하고, 5분 동안 초음파분쇄기로 균질화하였다. 균질화 후, 현탁액을 60분 동안 -20℃에서 유지한 다음 12,000 rpm, 4℃에서 10분 동안 원심분리하였다. 상층액을 0.2-㎛ PTFE(polytetrafluoroethylene) 필터로 여과하고 고속진공농축기(Modulspin 31; Biotron, South Korea)를 이용하여 건조하였다. 건조한 추출물은 UPLC-Q-TOF-MS(ultra-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry) 분석을 위해 250 ㎕ 메탄올로 재용해하고, 100 ㎕ 샘플을 GC-TOF-MS(gas chromatography/time-of-flight mass spectrometry) 분석을 위해 진공 하에 건조하였다.
Age matched non - diabetic subjects were used as controls in the study of metabolomics. Metabolites were extracted from 200 Pl of plasma. 600 [mu] l of methanol solution and 10 [mu] l of internal standard solution (1-mg / ml of 2-chlorophenylalanine in water) were added to the serum and homogenized for 5 minutes with an ultrasonic grinder. After homogenization, the suspension was kept at -20 占 폚 for 60 minutes and then centrifuged at 12,000 rpm, 4 占 폚 for 10 minutes. The supernatant was filtered through a 0.2-μm PTFE (polytetrafluoroethylene) filter and dried using a high-speed vacuum concentrator (Modulspin 31; Biotron, South Korea). The dried extract was redissolved in 250 μl methanol for UPLC-Q-TOF-MS analysis and 100 μl samples were analyzed by GC-TOF-MS (gas chromatography / time-of-flight mass spectrometry).
<4-2> <4-2> GCGC -- TOFTOF -MS 분석-MS analysis
GC-TOF-MS 분석을 위하여, 상기 실시예 <4-1>에서 건조한 샘플을 50 ㎕ 메톡시아민 염산염(methoxyamine hydrochloride)(피리미딘 중 20 mg/㎖)을 이용하여 90분 동안 30℃에서 옥심화(oximate)하고 50 ㎕ MSTFA(N-methyl-N-(trimethylsilyl) trifluoroacetamide)를 이용하여 30분 동안 37℃에서 실릴레이트화(silylate)하였다. GC-TOF-MS 분석은 Agilent 7693 auto-sampler (Agilent Technologies)가 결합되고 Pegasus® HT TOF MS system(LECO Corp., St. Joseph, MI, USA)이 장착된 Agilent 7890 gas chromatography system(Agilent Technologies, Palo Alto, CA, USA)을 이용하여 수행하였다. 컬럼은 Rtx-5MS 컬럼(i.d., 30 m × 0.25 mm, 0.25 ㎛ particle size; Restek Corp., Bellefonte, PA, USA)을 이용하였고, 운반 기체로 유량 1.5 ㎖/분의 헬륨을 이용하였다. 1 ㎕로 분주한 샘플을 splitless 모드로 GC에 주입하였다. 온도는 2분 동안 75℃로 유지한 후, 15℃/분으로 상승시켜 300℃가 되도록 한 후 3분 동안 유지하였다. 전면 유입구 및 이송라인(transfer line) 온도는 각각 250℃ 및 240℃로 하였다. 전자 이온화는 -70 eV에서 수행하였고, 데이터 수집을 위해 50-1000 m/z 범위에서 전체 스캐닝을 수행하였다.
For GC-TOF-MS analysis, the sample dried in Example <4-1> was dissolved in 50 μl methoxyamine hydrochloride (20 mg / ml in pyrimidine) for 90 minutes at 30 ° C, Was oximated and silylated at 37 ° C for 30 minutes using 50 μl MSTFA (N-methyl-N- (trimethylsilyl) trifluoroacetamide). GC-TOF-MS analysis was performed on an Agilent 7890 gas chromatography system (Agilent Technologies, St. Louis, MO, USA) coupled with Agilent 7693 auto-sampler (Agilent Technologies) and Pegasus ® HT TOF MS system Palo Alto, Calif., USA). The column was a Rtx-5MS column (id, 30 m × 0.25 mm, 0.25 μm particle size; Restek Corp., Bellefonte, PA, USA) and helium at a flow rate of 1.5 ml / min was used as the carrier gas. The sample, dispensed at 1 μl, was injected into the GC in a splitless mode. The temperature was maintained at 75 占 폚 for 2 minutes, then increased to 15 占 폚 / min to 300 占 폚 and maintained for 3 minutes. The front inlet and transfer line temperatures were 250 ° C and 240 ° C, respectively. Electron ionization was performed at -70 eV and full scanning was performed in the 50-1000 m / z range for data acquisition.
<4-3> <4-3> UPLCUPLC -Q--Q- TOFTOF -MS 분석-MS analysis
UPLC는 이성분 용매 전달 시스템, UV 검출기 및 자동 샘플러가 장착된 Waters ACQUITY UPLCTM system(Waters Corp., Milford, MA, USA)을 이용하여 수행하였다. 크로마토그래피 분리는 Waters ACQUITY BEH C18 컬럼(i.d., 100 mm × 2.1 mm, 1.7 ㎛ particle size; Waters Corp.)를 이용하여 수행하였고 주입부피는 5 ㎕로 하였다. 상기 컬럼 온도는 37℃로 설정하였고 유량은 0.3 ㎖/분으로 하였다. 이동상은 물 중 0.1% v/v 포름산(A) 및 아세토나이트릴(acetonitril) 중 0.1% v/v 포름산(B)으로 구성되었다. 초기 조건은 1분 동안 5% B로 하였고, 9분에 걸쳐 100% B로 선형 증가하였다. 총 수행시간은 초기 조건에서 컬럼을 재-평형화하는 것을 포함하여 14분이었다. MS의 경우, Waters Q-TOF Premier (Micromass MS Technologies, Manchester, UK)를 100-1000 m/z 범위에서 음이온 모드로 작동시켰다. 소스 온도(source temperature)는 100℃로 설정하였고, 충돌에너지는 10 eV로 설정하였으며, 충돌가스 유량은 0.3 ㎖/분으로 하였다. 또한, 탈용매 가스는 300℃ 온도에서 650 L/h로 설정하였다. 모세관 전압 및 샘플 콘(cone) 전압은 각각 2.5 kV 및 50 V로 설정하였다. 질량 분광계로 V 모드를 이용하였고, 0.2 s의 스캔 축적으로 센트로이드 모드(centroid mode)에서 데이터를 수집하였다. 류신 엔케팔린(leucine encephalin)을 독립적인 LockSpray 간섭에 의한 reference lock mass (m/z 554.2615)로 이용하였다.
UPLC was performed using a Waters ACQUITY UPLC ™ system (Waters Corp., Milford, Mass., USA) equipped with a two-component solvent delivery system, UV detector and automatic sampler. Chromatographic separation was performed using a Waters ACQUITY BEH C18 column (id, 100 mm × 2.1 mm, 1.7 μm particle size; Waters Corp.) and the injection volume was 5 μL. The column temperature was set at 37 占 폚 and the flow rate was set at 0.3 ml / min. The mobile phase consisted of 0.1% v / v formic acid (A) in water and 0.1% v / v formic acid (B) in acetonitrile. Initial conditions were 5% B for 1 min and linear increase to 100% B over 9 min. The total run time was 14 minutes, including re-equilibrating the column under initial conditions. For MS, Waters Q-TOF Premier (Micromass MS Technologies, Manchester, UK) was operated in negative ion mode at 100-1000 m / z range. The source temperature was set at 100 占 폚, the collision energy was set at 10 eV, and the collision gas flow rate was 0.3 ml / min. The desolvation gas was set at 650 L / h at a temperature of 300 캜. The capillary voltage and the sample cone voltage were set at 2.5 kV and 50 V, respectively. The V mode was used with a mass spectrometer and data were collected in a centroid mode with a scan accumulation of 0.2 s. Leucine encephalin was used as reference lock mass ( m / z 554.2615) by independent LockSpray interference.
<4-4> <4-4> 대사체학Metabolism 연구를 위한 데이터 가공 및 다변량 통계분석 Data processing and multivariate statistical analysis for research
상기 실시예 <4-2>에 기재된 방법으로 GC-TOF-MS 분석을 수행한 후 LECO Chroma TOFTM 소프트웨어(version 4.44, LECO Corp.)를 이용하여 GC-TOF-MS 데이터를 획득하여 전처리하고, NetCDF format (*.cdf)으로 변환하였다. 또한, 상기 실시예 <4-3>에 기재된 방법으로 UPLC-Q-TOF-MS 분석을 수행한 후, 미가공 데이터를 MassLynx software (version 4.1, Waters Corp.)를 이용하여 획득하였다. 미가공 데이터 파일은 MassLynx DataBridge software (version 4.1, Waters Corp.)를 이용하여 NetCDF format (*.cdf)으로 변환하였다. 변환 후, 피크 검출, 머무름 시간(retention time) 보정 및 정렬(alignment)은 Metalign software package (http://www.metalign.nl)를 이용하여 처리하였다. 결과 데이터는 Microsoft Excel 파일로 저장하였다. 다변량 통계 분석(Multivariate statistical analysis)은 SIMCA-P+ (version 12.0; Umetrics, Umea, Sweden)을 이용하여 수행하였다. 데이터 세트는 자동으로 단위 분산 스케일링 되었고, 열 기준으로 평균 중심화 되었다. 각각의 데이터 세트를 비교하기 위하여 OPLS-DA(orthogonal partial least squares-discriminant analysis)를 수행하였다. OPLS-DA의 VIP(variable importance to projection) 값에 기초하여 변수를 선택하였다. 통계학적으로 유의적인 차이는 PASW Statistics 18 software (SPSS Inc., Chicago, IL, USA)를 이용하여 ANOVA 분석, Student's t-test 및 Duncan's multiple range tests에 의해 검증되었다. ROC(Receiver operating characteristic), 및 곡선 및 로지스틱 회귀 분석은 Medcalc software (version 14.8.1; Medcalc Software, Mariakerke, Belgium)을 이용하여 획득하였다.
GC-TOF-MS analysis was performed by the method described in Example <4-2>, and GC-TOF-MS data was obtained using LECO Chroma TOF ™ software (version 4.44, LECO Corp.) NetCDF format (* .cdf). After UPLC-Q-TOF-MS analysis was performed by the method described in Example <4-3>, raw data was obtained using MassLynx software (version 4.1, Waters Corp.). The raw data files were converted to NetCDF format (* .cdf) using MassLynx DataBridge software (version 4.1, Waters Corp.). After conversion, peak detection, retention time correction, and alignment were performed using the Metalign software package ( http://www.metalign.nl ). The resulting data was saved as a Microsoft Excel file. Multivariate statistical analysis was performed using SIMCA-P + (version 12.0; Umetrics, Umea, Sweden). The data sets were automatically variably scaled and centered on an average by column basis. Orthogonal partial least squares-discriminant analysis (OPLS-DA) was performed to compare each data set. The variable was selected based on the variable importance to projection (VIP) value of the OPLS-DA. Statistical significance was verified by ANOVA analysis, Student's t-test, and Duncan's multiple range tests using
<< 실험예Experimental Example 1> 1> PSMPSM 에 따른 피험자의 임상 특성 확인Clinical characteristics of subjects according to
도 1에 나타낸 모식도와 같이 상기 <실시예 1>에 기재된 방법으로 모집한 220명의 피험자 중 동의를 얻은 198명의 피험자로부터 임상 데이터 및 샘플을 수집하였다. 동의 후 15명의 피검자가 동의를 철회하여, 총 183명의 피검자를 대상으로 안과 검사를 수행하였다(도 1). 임상시험 참여자의 평균 연령은 66.8 세, 당뇨병의 평균 기간은 22.6년, 남성은 49.7%였다. 안과 검사를 받은 총 183명의 임상시험 참여자 중 124명(67.8 %)이 DR(diabetic retinopathy)로 진단받았으며, 이 중 72명 (39.3 %)이 NPDR(non-proliferative diabetic retinopathy)이 있었고, 52명(28.4 %)이 PDR(proliferative diabetic retinopathy)이었다. 또한, 다양한 요인에서 통계적으로 유의한 차이를 확인하였다. 따라서 PSM을 시행한 결과를 기초로 하여 하기 표 1에 나타낸 바와 같이 DR의 유무를 제외하고 임상 특성에 유의한 차이가 없는 32쌍의 환자와 대조군을 선정하였다 (표 1). 또한, 상기 환자에 대해 대사체학 연구를 수행하였다.
As shown in the schematic diagram of FIG. 1, clinical data and samples were collected from 198 subjects whose consent was obtained among 220 subjects collected by the method described in Example 1 above. After the consent, 15 subjects withdrew consent and performed ophthalmologic examinations for a total of 183 subjects (Fig. 1). The average age of participants in the study was 66.8 years, the mean duration of diabetes was 22.6 years, and that of males was 49.7%. Of the 183 participants who underwent ophthalmologic examination, 124 (67.8%) were diagnosed with diabetic retinopathy (DR), 72 of whom (39.3%) had non-proliferative diabetic retinopathy (NPDR) 28.4%) were PDR (proliferative diabetic retinopathy). In addition, statistically significant differences in various factors were confirmed. Based on the results of PSM, 32 pairs of patients with no significant difference in clinical characteristics except for the presence of DR and control group were selected as shown in Table 1 (Table 1). In addition, the patient was subjected to metabolic studies.
* Paried sample t- test 또는 McNemar test에 의한 것으로, 평균±SD 또는 n(%)로 나타냄.* Paried sample t-test or McNemar test, expressed as mean ± SD or n (%).
* DM: diabets mellitus; BMI: body mass index; LDL: Low density lipoprotein; HDL: high density lipoprotein; BUN: blood urea nitrogen; AST: aspartate aminotransferase; ALT: alanine aminotransferase; GGT: gamma-glutamyl transferase; ALP: alkaline phosphatase; CAG: coronary angiography; DPP: dipeptidylpeptidase; 및 SGLT: sodium-glucose transporter
* DM: diabets mellitus; BMI: body mass index; LDL: Low density lipoprotein; HDL: high density lipoprotein; BUN: blood urea nitrogen; AST: aspartate aminotransferase; ALT: alanine aminotransferase; GGT: gamma-glutamyl transferase; ALP: alkaline phosphatase; CAG: coronary angiography; DPP: dipeptidylpeptidase; And SGLT: sodium-glucose transporter
<< 실험예Experimental Example 2> DR 유무에 따른 다변량 통계분석 결과 확인 2> The results of multivariate statistical analysis according to presence or absence of DR
비-당뇨병 대조군과 DR을 갖지 않는 비-DR 당뇨병 피험자, NPDR 또는 PDR을 갖는 당뇨병 피험자 간에 유의적으로 구별되는 대사체를 DR의 바이오마커로 이용할 수 있는지 알아보기 위하여, 상기 <실시예 4>에 기재된 방법으로 혈청 샘플을 이용하여 GC-TOF-MS 및 UPLC-Q-TOF-MS 분석을 수행하였다. 그 다음, GC-TOF-MS를 위한 39,154 질량 스펙트럼 변수 및 UPLC-Q-TOF-MS를 위한 6,185 질량 스펙트럼 변수를 이용하여 다변량 통계분석법으로 OPLS-DA를 수행하였다.In order to investigate whether a non-DR diabetic subject without a non-diabetic control group and a diabetic subject having a NPDR or PDR can use a metabolite significantly different from that of DR as a biomarker of DR, GC-TOF-MS and UPLC-Q-TOF-MS analyzes were performed using serum samples as described. Then, OPLS-DA was performed by multivariate statistical analysis using a 39,154 mass spectral parameter for GC-TOF-MS and a 6,185 mass spectral parameter for UPLC-Q-TOF-MS.
그 결과, 도 2a에 나타낸 바와 같이, GC-TOF-MS 데이터 세트에 대하여 OPLS-DA를 수행한 결과 R2X(cum) = 0.214, R2Y(cum) = 0.977 및 Q2 (cum) = 0.449로 비-당뇨병 대조군(CON), 비-DR 당뇨병 군(no DR) 및 DR을 갖는 당뇨병 군(DR) 세 그룹 모두가 명확히 구분되었다. 상기 값은 모델의 적합성과 예측 정확도를 나타낸다. 또한, 교차 검증(cross-validation) 분석으로 p-값 = 2.25e-18을 확인하였다(도 2a).As a result, as shown in Figure 2a, GC-TOF-MS results of the OPLS-DA with respect to the data set R 2 X (cum) = 0.214 , R 2 Y (cum) = 0.977 , and Q 2 (cum) = 0.449, the three groups of non-diabetic control (CON), non-DR diabetic group (no DR) and diabetic group (DR) with DR were clearly distinguished. These values represent the fitness and predictive accuracy of the model. Also, p-value = 2.25e- 18 was confirmed by cross-validation analysis (Fig. 2a).
또한, 도 2b에 나타낸 바와 같이, UPLC-Q-TOF-MS 데이터 세트의 OPLS-DA에서도 유사한 분포 패턴이 관찰되었다. 즉, R2X(cum) = 0.145, R2Y(cum) = 0.933, Q2 (cum) = 0.497로 비-당뇨병 대조군(CON), 비-DR 당뇨병 군(no DR) 및 DR을 갖는 당뇨병 군(DR) 세 그룹이 명확히 구별됨을 확인하였다. 또한, 교차 검증(cross-validation) 분석으로 p-값 = 1.64e-26을 확인하였다(도 2b).
Also, as shown in FIG. 2B, a similar distribution pattern was observed in the OPLS-DA of the UPLC-Q-TOF-MS data set. That is, R 2 X (cum) = 0.145, R 2 Y (cum) = 0.933, Q 2 (cum) = 0.497 to the non-diabetic control group (CON), -DR non-diabetic group having diabetes (no DR) and the DR (DR) three groups were clearly distinguished. In addition, a p-value = 1.64e -26 was confirmed by cross-validation analysis (FIG. 2B).
<< 실험예Experimental Example 3> DR 진단을 위한 3> for DR diagnosis 바이오마커Biomarker 확인 Confirm
상기 <실험예 2>의 다변량 통계분석 결과를 바탕으로 DR 유무에 따른 구별을 담당하는 대사체를 선별하기 위하여, OPLS-DA의 VIP값 > 0.7을 이용하였다. VIP값은 생물학적 상태가 다른 대사체의 상관 관계를 반영하는 잠재적인 바이오마커 후보를 검출하는 데 중요한 매개 변수이다. 또한 통계적 유의성을 평가하기 위해 일원 분산 분석(one-way ANOVA)에서 유도된 p <0.05를 적용하였다. 선별된 대사체는 상업 표준 화합물 및 NIST (National Institutes of Standard and Technology) 라이브러리, Human Metabolome Database (HMDB, http://www.hmdb.ca/) 및 Wiley 8를 포함한 다양한 데이터베이스와 MS 단편 패턴을 비교하여 확인하였다. 이들 대사체의 상세한 정보는 하기 표 2 및 표 3에 나타내었다. 하기 표 2의 결과는 GC-TOF-MS 분석을 통해 획득하였고, 하기 표 3의 결과는 UPLC-Q-TOF-MS 분석을 통해 획득하였다. 또한, 비-당뇨병 대조군(CON), 비-DR 당뇨병 군(no DR) 및 DR을 갖는 당뇨병 군(DR) 간 대사체의 상대적인 양의 차이는 배수 변화로 전환하여 나타내었다.
Based on the results of the multivariate statistical analysis of the <Experimental Example 2>, the VIP value of OPLS-DA> 0.7 was used in order to select the metabolites responsible for the discrimination based on the presence or absence of DR. The VIP value is an important parameter for detecting potential biomarker candidates that reflect the correlation of metabolites with other biological states. In addition, p <0.05 derived from one-way ANOVA was applied to assess statistical significance. The selected metabolites are compared with various database and MS fragment patterns including commercial standard compounds, NIST (National Institute of Standards and Technology) library, Human Metabolome Database (HMDB, http://www.hmdb.ca/) and Wiley 8 Respectively. Details of these metabolites are shown in Tables 2 and 3 below. The results in Table 2 below were obtained by GC-TOF-MS analysis and the results in Table 3 were obtained by UPLC-Q-TOF-MS analysis. In addition, the relative amounts of metabolites in the non-diabetic control (CON), non-DR diabetic (no DR) and diabetic (DR)
그 결과, 상기 표 2 및 표 3에 나타낸 바와 같이, 7 개의 아미노산, 6 개의 유기 화합물, 7개의 탄수화물, 11개의 리소포스파티딜콜린 (lysophosphatidylcholines, lysoPCs)을 포함한 총 31 개의 대사체가 비-당뇨병 대조군 대비 비-DR 당뇨병 군에서 유의하게 차이를 보이는 대사체임을 확인하였다. 또한, 31개의 대사체 중 일부 아미노산은 비-당뇨병 대조군과 비교하여 비-DR 당뇨병 군에서 통계학적으로 유의적인 증가 및 감소를 보임을 확인하였다. 보다 구체적으로 비-DR 당뇨병 군에서는 아스파라긴(Asparagine) (2.30 배), 글루타민(glutamine) (2.83 배)이 유의적으로 현저히 증가하였고, 아스파르트산(aspartic acid) (0.46배), 글루탐산(glutamic acid)(0.25 배)이 유의적으로 현저히 감소하는 것을 확인하였다. 특히, DR을 갖는 당뇨병 군과 비-DR 당뇨병 군 간 글루타민 양의 배수 변화가 1.19배로 DR을 갖는 당뇨병 군에서 글루타민이 유의적으로 현저히 증가하였고, 글루탐산 양의 배수 변화가 0.72배로 DR을 갖는 당뇨병 군에서 글루탐산이 유의적으로 현저히 감소하는 것을 확인하였다.As a result, as shown in Tables 2 and 3, a total of 31 metabolites including 7 amino acids, 6 organic compounds, 7 carbohydrates and 11 lysophosphatidylcholines (lysoPCs) were compared with non-diabetic control group, DR diabetic group. In addition, it was confirmed that some amino acids in 31 metabolites showed a statistically significant increase and decrease in the non-DR diabetic group as compared with the non-diabetic control group. More specifically, asparagine (2.30-fold) and glutamine (2.83-fold) significantly increased in the non-DR diabetic group, while aspartic acid (0.46-fold), glutamic acid (0.25 times) significantly decreased. In particular, glutamine significantly increased in the diabetic group with a DR of 1.19 times the change in the amount of glutamine between the diabetic group with DR and non-DR diabetic group, and diabetic group with diabetic change of 0.72 times the amount of glutamic acid , And that glutamic acid was significantly decreased in the control group.
또한, 상기 표 2 및 표 3에 나타낸 바와 같이 DR을 갖는 당뇨병 군과 비-DR 당뇨병 간 유의적인 배수 변화를 보이는 글루타민 및 글루탐산, 글루타민/글루탐산 비율에 대하여 상기 <실시예 4>에 기재된 방법으로 ROC 곡선을 획득하였다.As shown in Tables 2 and 3, the ratio of glutamine, glutamic acid, and glutamic acid / glutamic acid, which show a significant drainage change between diabetic and non-DR diabetics with DR, was measured by the method described in Example 4 Curve.
그 결과, 상기 표 2 및 표 3, 도 3a 및 도 3b에 나타낸 바와 같이, DR을 갖는 당뇨병 군과 비-DR 당뇨병 군 간 글루타민 및 글루탐산의 AUC 값은 각각 0.671, 0.656으로 다른 대사체의 AUC 값과 비교하여 가장 높게 나타나므로, 글루타민 및 글루탐산의 양을 비교하여 비-DR 당뇨병 환자 및 DR을 갖는 당뇨병 환자를 구별할 수 있음을 확인하였다. 또한, 글루타민 및 글루탐산을 조합할 경우 AUC 값이 0.739로 DR을 갖는 당뇨병 군과 비-DR 당뇨병 군을 구별할 수 있는 능력이 향상됨을 확인하였다.
As a result, as shown in Tables 2 and 3 and FIGS. 3A and 3B, the AUC values of glutamine and glutamic acid between diabetic group with DR and non-DR diabetic group were 0.671 and 0.656, respectively, , It was confirmed that the amount of glutamine and glutamic acid could be compared to distinguish between non-DR diabetic patients and diabetic patients having DR. In addition, when glutamine and glutamic acid were combined, the AUC value was found to be 0.739, indicating that the ability to distinguish between diabetic and non-DR diabetic groups with DR was improved.
<< 실험예Experimental Example 4> DR 진단을 위한 4> for DR diagnosis 바이오마커로서As a biomarker 글루타민 및 글루탐산 확인 Identification of glutamine and glutamic acid
상기 <실험예 3>의 결과를 바탕으로, 대사체 중 글루타민 및 글루탐산, 이들의 비율을 DR 진단을 위한 바이오마커로 이용할 수 있는지 알아보기 위하여, 상기 <실시예 4>에 기재된 방법으로 비-당뇨병 대조군(CON), 비-DR 당뇨병 군(No DR) 및 DR을 갖는 당뇨병 군(DR)의 혈청 샘플을 이용하여 GC-TOF-MS 분석을 통해 비-당뇨병 대조군 대비 비-DR 당뇨병 군에서 유의적인 차이를 나타낸 아스파라긴, 아스파르트산, 글루타민 및 글루탐산의 평균 농도를 정량하고, 글루타민/글루탐산 비율을 확인하였다.Based on the results of the above Experimental Example 3, in order to examine whether the ratio of glutamine and glutamic acid in the metabolites can be used as a biomarker for DR diagnosis, non-diabetes mellitus The GC-TOF-MS analysis was performed using serum samples from the control (CON), non-DR diabetic (No DR) and diabetic (DR) The average concentrations of asparagine, aspartic acid, glutamine, and glutamic acid showing differences were quantified and the glutamine / glutamic acid ratio was confirmed.
그 결과, 하기 표 4에 나타낸 바와 같이, 비-당뇨병 대조군에 비해 비-DR 당뇨병 군에서 혈청 내 아스파라긴 및 아스파르트산의 유의적인 차이가 없는 반면, 글루탐산 및 글루타민의 경우 비-당뇨병 대조군과 비교하여 비-DR 당뇨병 군 및 DR 당뇨병 군에서 현저한 차이가 있음을 확인하였다. 특히, 상기 <실험예 3>의 결과에서 비-DR 당뇨병 군 및 DR을 갖는 당뇨병 군 간 유의적인 배수 변화를 보인 글루탐산의 경우 비-DR 당뇨병 군과 비교하여 DR을 갖는 당뇨병 군의 혈청 내에서 높게 나타나고, 글루탐산의 경우 낮게 나타나는 것을 확인하였다. 또한, 비-DR 당뇨병 군 및 DR을 갖는 당뇨병 군 간 글루타민/글루탐산 비율을 계산하여 비교한 결과, 비-DR 당뇨병 군에 비하여 DR 당뇨병 군에서 글루타민/글루탐산 비율이 약 1.5배 이상 높게 나타나는 것을 확인하였다. As a result, as shown in the following Table 4, there was no significant difference in serum asparagine and aspartic acid in the non-DR diabetic group compared to the non-diabetic control group, while in the case of glutamic acid and glutamine, There was a significant difference in the DR diabetic group and the DR diabetic group. In particular, the results of the above <Experiment 3> show that glutamic acid, which showed a significant drainage change between the non-DR diabetic group and the diabetic group with DR, was higher in the serum of the diabetic group having DR compared to the non-DR diabetic group And that of glutamic acid was low. In addition, the ratio of glutamine / glutamic acid in the non-DR diabetic group and the diabetic group having DR was calculated and compared, and it was confirmed that the ratio of glutamine / glutamic acid was about 1.5 times higher in the DR diabetic group than in the non-DR diabetic group .
따라서, 상기 <실험예 1> 내지 <실험예 4>의 결과를 통해 글루타민, 글루탐산 및 글루타민/글루탐산 비율을 당뇨병 환자에서 DR 여부를 판단하기 위한 바이오마커로 이용할 수 있음을 확인하였고, 글루타민, 글루탐산 및 글루타민/글루탐산 비율을 측정하여 당뇨병 환자 중 DR을 갖는 당뇨병 환자를 구별할 수 있음을 확인하였다.
Therefore, it was confirmed that the ratio of glutamine, glutamic acid, and glutamic acid / glutamic acid could be used as a biomarker for determining DR in diabetic patients, and glutamine, glutamic acid, Glutamine / glutamic acid ratio was measured to identify diabetic patients with DR among diabetic patients.
Metabolite
Claims (11)
Measuring levels of glutamine and glutamic acid in a sample isolated from a diabetic subject as an experimental group, and comparing the sample with a diabetic control subject not having diabetic retinopathy, wherein in the sample isolated from the diabetic subject, Diabetic retinopathy, which is judged to be at high risk for diabetic retinopathy or to be at risk of diabetic retinopathy when the glutamine level is low and glutamic acid level is low or glutamine / glutamic acid ratio is high as compared to diabetic control subjects not having retinopathy Information providing method.
The method according to claim 1, wherein the sample is selected from the group consisting of blood, plasma, serum, urine, tears, saliva, sputum, secretion, bronchial secretion, bronchial wash, lung secretion, A method of providing information to determine retinopathy.
The method according to claim 1, wherein the level of glutamine and glutamic acid is measured using at least one selected from the group consisting of chromatography / mass spectrometry, light absorption assay and emission spectrometry. Information providing method.
5. The method of claim 4, wherein the chromatography / mass spectrometry is performed using an ultra-performance liquid chromatography-quadrupole (UPLC-Q-TOF-MS) or a gas chromatography / time- -flight mass spectrometry). 2. The method according to claim 1, wherein the diabetic retinopathy is diabetic retinopathy.
(b) 상기 단계 (a)의 피검물질을 처리한 개체로부터 분리된 시료에서 무처리 대조군과 비교하여 글루타민의 수준을 감소시키거나, 글루탐산의 수준을 증가시키는 물질을 선별하는 단계를 포함하는, 당뇨병성망막증 예방 또는 치료제의 스크리닝 방법.
(a) treating the subject with diabetic retinopathy;
(b) reducing the level of glutamine or increasing the level of glutamic acid in a sample separated from the subject treated with the test substance of step (a) as compared to the untreated control, A method of screening for a prophylactic or therapeutic agent for retinopathy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170098505A KR102000827B1 (en) | 2017-08-03 | 2017-08-03 | Biomarkers for diagnosing diabetic retinopathy and uses thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170098505A KR102000827B1 (en) | 2017-08-03 | 2017-08-03 | Biomarkers for diagnosing diabetic retinopathy and uses thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20190014708A KR20190014708A (en) | 2019-02-13 |
KR102000827B1 true KR102000827B1 (en) | 2019-07-16 |
Family
ID=65366385
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020170098505A KR102000827B1 (en) | 2017-08-03 | 2017-08-03 | Biomarkers for diagnosing diabetic retinopathy and uses thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102000827B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021225371A1 (en) * | 2020-05-06 | 2021-11-11 | 건국대학교 산학협력단 | Biomarker in blood for macular edema and use thereof |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022145511A1 (en) * | 2020-12-29 | 2022-07-07 | 경상국립대학교병원 | Method for providing information for predicting diabetic cataract |
CN114236110A (en) * | 2021-12-22 | 2022-03-25 | 上海市第一人民医院 | Metabolic marker for early diagnosis of diabetic retinopathy and application thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101391506B1 (en) | 2011-07-14 | 2014-05-07 | 서울대학교산학협력단 | Marker For Diagnosing Diabetic Retinopathy and Use Thereof |
KR101893244B1 (en) | 2015-05-22 | 2018-08-30 | 가천대학교 산학협력단 | Novel Biomarker Indicative of Diabetes and Their Uses |
-
2017
- 2017-08-03 KR KR1020170098505A patent/KR102000827B1/en active IP Right Grant
Non-Patent Citations (5)
Title |
---|
J liu et al., Mol. Biosyst., Vol. 9, pp. 2645-2652.(2013.11.)* |
JY Kim et al., Journal of proteome research, Vol. 9, pp. 4368-4375.(2010.06.18.)* |
LK Mandal et al., Canadian Journal of Diabetes, Vol. 37.(2013.12.)* |
Rui Curi et al., Frontiers in Bioscience, Vol.12, pp. 344-357.(2007.01.01.)* |
Yu Xu-hui et al., Experimental Eye research, Vol. 89, pp. 967-971. (2009.08.20.)* |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021225371A1 (en) * | 2020-05-06 | 2021-11-11 | 건국대학교 산학협력단 | Biomarker in blood for macular edema and use thereof |
KR20210135777A (en) * | 2020-05-06 | 2021-11-16 | 건국대학교 산학협력단 | Biomarkers in blood for diabetic macular edema and uses thereof |
KR102334303B1 (en) * | 2020-05-06 | 2021-12-01 | 건국대학교 산학협력단 | Biomarkers in blood for diabetic macular edema and uses thereof |
Also Published As
Publication number | Publication date |
---|---|
KR20190014708A (en) | 2019-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dunlop et al. | Abnormalities of 5-hydroxytryptamine metabolism in irritable bowel syndrome | |
Ethen et al. | The proteome of central and peripheral retina with progression of age-related macular degeneration | |
KR102000827B1 (en) | Biomarkers for diagnosing diabetic retinopathy and uses thereof | |
Ruiz-Argüelles et al. | Metabolomic profile of insulin resistance in patients with multiple sclerosis is associated to the severity of the disease | |
Öhrfelt et al. | Screening for new biomarkers for subcortical vascular dementia and Alzheimer’s disease | |
Tang et al. | Metabolomic profiling of aqueous humor and plasma in primary open angle glaucoma patients points towards novel diagnostic and therapeutic strategy | |
JP2011515680A (en) | Biomarkers and assays for diabetes | |
Riaz et al. | Effect of high dose thiamine on the levels of urinary protein biomarkers in diabetes mellitus type 2 | |
Wu et al. | Association between hyperhomocysteinemia and stroke with atherosclerosis and small artery occlusion depends on homocysteine metabolism-related vitamin levels in Chinese patients with normal renal function | |
CN110220987B (en) | Application of bile acid combined marker in preparation of detection reagent or detection object for predicting or diagnosing diabetes | |
Yu et al. | Prevalence of diabetes, prediabetes, and associated factors in an adult Chinese population: baseline of a prediabetes cohort study | |
CN109991342A (en) | A kind of biomarker, detection reagent and purposes diagnosed or prevent diabetic retinopathy | |
Weger et al. | The role of hyperhomocysteinemia and methylenetetrahydrofolate reductase (MTHFR) C677T mutation in patients with retinal artery occlusion | |
AU2023270246A1 (en) | Method for the diagnosis of cystic fibrosis | |
Kasturi et al. | Two‐vs one‐hour glucose tolerance testing: Predicting prediabetes in adolescent girls with obesity | |
Di et al. | Lipoprotein (a) as a marker for predicting the presence and severity of coronary artery disease in untreated Chinese patients undergoing coronary angiography | |
Park et al. | Neutrophil gelatinase-associated lipocalin as a predictor of acute kidney injury in patients during treatment with colistimethate sodium | |
KR102377089B1 (en) | Diagnostic test kit for diagnosing prediabetes and a method for diagnosing prediabetes | |
Deng et al. | Relationship between Serum Osteocalcin and Carotid Atherosclerosis in Middle‐Aged Men in China: A Cross‐Sectional Study | |
KR102334303B1 (en) | Biomarkers in blood for diabetic macular edema and uses thereof | |
KR101764323B1 (en) | Diagnostic test kit for diagnosing diabetus mellitus and a method for diagnosing diabetus mellitus using serum metabollites | |
Toson et al. | Noninvasive estimation of liver fibrosis in biopsy-proven hepatitis C virus-infected patients: angiogenic fibrogenic link | |
CN114755313B (en) | Acute kidney injury marker comprising urine nad+ metabolite | |
Shankar et al. | Positive association between plasma homocysteine level and chronic kidney disease | |
Nakano et al. | Effect of pioglitazone on various parameters of insulin resistance including lipoprotein subclass according to particle size by a gel-permeation high-performance liquid chromatography in newly diagnosed patients with type 2 diabetes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
X701 | Decision to grant (after re-examination) | ||
GRNT | Written decision to grant |