KR101999899B1 - Novel benzopyranyl tetracycle compound and pharmaceutical composition having excellent anti-inflammatory effect comprising the same - Google Patents

Novel benzopyranyl tetracycle compound and pharmaceutical composition having excellent anti-inflammatory effect comprising the same Download PDF

Info

Publication number
KR101999899B1
KR101999899B1 KR1020170136702A KR20170136702A KR101999899B1 KR 101999899 B1 KR101999899 B1 KR 101999899B1 KR 1020170136702 A KR1020170136702 A KR 1020170136702A KR 20170136702 A KR20170136702 A KR 20170136702A KR 101999899 B1 KR101999899 B1 KR 101999899B1
Authority
KR
South Korea
Prior art keywords
compound
compounds
nmr
inflammatory
mhz
Prior art date
Application number
KR1020170136702A
Other languages
Korean (ko)
Other versions
KR20190044366A (en
Inventor
박승범
조완상
구자영
Original Assignee
(주)스파크바이오파마
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)스파크바이오파마, 서울대학교산학협력단 filed Critical (주)스파크바이오파마
Priority to KR1020170136702A priority Critical patent/KR101999899B1/en
Publication of KR20190044366A publication Critical patent/KR20190044366A/en
Application granted granted Critical
Publication of KR101999899B1 publication Critical patent/KR101999899B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/12Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains three hetero rings
    • C07D491/14Ortho-condensed systems
    • C07D491/147Ortho-condensed systems the condensed system containing one ring with oxygen as ring hetero atom and two rings with nitrogen as ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/50Pyridazines; Hydrogenated pyridazines
    • A61K31/5025Pyridazines; Hydrogenated pyridazines ortho- or peri-condensed with heterocyclic ring systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 신규한 하기 화학식3(2j) 또는 5(2l)의 화합물, 및 이를 포함하는 우수한 항염증 효과를 갖는 약학적 조성물에 관한 것이다. 상기 화합물들은 염증 유발 인자인 HMGB1 단백질이 핵에서 세포질로 이동되는 것을 저해함으로써 우수한 염증 억제 효과를 가지며, 특히 패혈증 등에 대한 우수한 치료 효과 또는 예방 효과를 갖는다.
[화학식 3]

Figure 112017103861517-pat00054

[화학식 5]
Figure 112017103861517-pat00055
The present invention relates to novel compounds of the following formula (3j) or (5) (2l), and pharmaceutical compositions having excellent antiinflammatory effects comprising the same. These compounds inhibit the migration of the HMGB1 protein, which is an inflammation-inducing factor, from the nucleus to the cytoplasm, thereby having an excellent inflammation-inhibiting effect, and particularly, an excellent therapeutic or preventive effect against sepsis.
(3)
Figure 112017103861517-pat00054

[Chemical Formula 5]
Figure 112017103861517-pat00055

Description

신규한 벤조피라닐 테트라사이클 화합물, 및 이를 포함하는 우수한 항염증 효과를 갖는 약학적 조성물{Novel benzopyranyl tetracycle compound and pharmaceutical composition having excellent anti-inflammatory effect comprising the same} TECHNICAL FIELD The present invention relates to novel benzopyranyl tetracycline compounds, and pharmaceutical compositions having excellent anti-inflammatory effects,

본 발명은 벤조피란을 중심구조로 갖는 신규한 화합물, 이의 용도 및 이를 포함하는 약학적 조성물에 관한 것이다. 구체적으로는 신규한 벤조피라닐 테트라사이클 화합물, 및 이를 포함하는 우수한 항염증 효과를 갖는 약학적 조성물에 관한 것이다.The present invention relates to a novel compound having benzopyran as a central structure, its use and a pharmaceutical composition containing the same. Specifically, the present invention relates to a novel benzopyranyl tetracycline compound, and a pharmaceutical composition having excellent antiinflammatory effect containing the same.

염증(inflammation)이란 외부 감염원(박테리아, 곰팡이, 바이러스, 다양한 종류의 알레르기 유발물질)의 침입에 의하여 형성되는 농양의 병리적 상태를 뜻한다. 구체적으로, 외부 세균이 특정 조직에 침입하여 증식을 하게 되면 생체의 백혈구가 이를 인지하여 증식된 외부 세균을 활발히 공격하게 되는데, 이 과정 중 발생하는 백혈구의 사해가 균에 의하여 침입받은 조직에 축적됨과 동시에 백혈구에 의하여 사멸된 침입균의 세포 파괴물이 침입받은 조직 내로 융해되어 농양이 형성된다. 염증에 의한 농양의 치료는 소염작용을 통하여 촉진될 수 있는데, 소염작용이란 항균제를 이용하여 침입균의 증식을 억제하거나 농양 중에 축적된 이물질들을 탐식하는 대식세포(macrophage)를 활성화하여 상기 이물질들을 소화 및 배설하는 대식세포의 기능을 항진시키는 등의 염증 치료 촉진작용이다. 일반적으로 염증반응은 생체의 세포나 조직에 기질적 변화를 가져오는 침습으로 인한 손상을 수복 및 재생하기 위한 생체방어 반응과정이고, 이 반응과정에는 국소의 혈관, 체액의 각종 조직세포 및 면역세포 등이 작용한다. 정상적으로 외부 침입균에 의하여 유도되는 염증반응은 생체를 보호하기 위한 이러한 방어 메커니즘은 생존에 필수적이다. 그러나, 시간적 또는 공간적으로 부적합한 염증성 반응은 자가면역 질환, 천식 또는 죽상경화증 같은 명백히 백혈구 성분에 의한 것 뿐만 아니라 관절염 또는 알츠하이머 질환 같은 전통적으로 백혈구와 관련되지 않는다고 여겨지는 질환을 포함하여, 넓은 범위의 질병에 큰 역할을 한다. 이러한 염증 질환에서 백혈구는 항체가 숙주 단백질을 부주의하게 인지하는 자가면역반응, 또는 영구 세포 사멸체, 세포 외 콜레스테롤 침착물, 또는 폐 안의 입자상 물질과 같은 축적된 조직 손상과 같은 부적합한 촉발에 의해 조직으로 모여들게 된다. 이와 같은 질병은 모여든 백혈구가 촉발자를 처리할 수 없고, 예를 들면, 백혈구는 자가 항원을 발현하는 모든 숙주 세포를 제거 또는 사멸하거나 또는 그 세포에 대해 지나치게 큰 입자들을 함입시킬 수 없다. 따라서 종종 만성화되고 계속해서 염증성 사이토카인을 방출하여 추가의 백혈구를 불필요한 장소로 보내 만성 염증이 된다. 이와 같은 염증반응을 통해, 동맥경화, 비만, 인슐린저항성, 류마티스 관절염, 사구체 신염, 암 진행 등과 같은 만성 진행성 질환이 발생하며, 노화의 진행에서도 주된 역할을 한다고 보고된 바 있다.Inflammation refers to the pathological condition of abscesses formed by the infiltration of external infectious agents (bacteria, fungi, viruses, various allergens). Specifically, when foreign bacteria invade a specific tissue and proliferate, the leukocyte of the living body recognizes it and actively attacks the propagated external bacteria. The death of leukocyte during this process is accumulated in the invaded tissue At the same time, the cell debris of invading microorganisms killed by leukocytes melts into the invading tissues and abscess forms. The treatment of abscess due to inflammation can be promoted by the anti-inflammatory action. The anti-inflammatory action is to inhibit the growth of invading microorganisms by using an antibacterial agent or to activate the macrophage that digests foreign substances accumulated in the abscess, And enhancing the function of excretory macrophages. Generally, an inflammatory reaction is a biological defense reaction process for repairing and regenerating damage caused by an invasion that causes a fundamental change in a cell or tissue of a living body. In the reaction process, localized blood vessels, various tissue cells of body fluids, Lt; / RTI > Normally, the inflammatory response induced by external invading bacteria is essential for survival as this defensive mechanism to protect the living body. However, temporally or spatially inadequate inflammatory responses may be caused by a wide range of diseases, including diseases that are apparently not associated with leukocytes such as arthritis or Alzheimer ' s disease, as well as by obvious leukocyte components such as autoimmune diseases, asthma or atherosclerosis . In these inflammatory diseases, leukocytes can be formed into tissues by an autoimmune response in which antibodies inadvertently recognize host proteins, or by improper triggering, such as persistent cell killing, extracellular cholesterol deposits, or accumulated tissue damage such as particulate matter in the lung Gathered. Such diseases are not able to treat the astringent white blood cells, for example, white blood cells can not remove or kill all the host cells expressing the autoantigen, or can not contain excessively large particles for the cells. Thus, it is often chronic and continues to release inflammatory cytokines, leading to additional leukocytes in unnecessary locations, leading to chronic inflammation. Such inflammatory reactions have been reported to cause chronic progressive diseases such as arteriosclerosis, obesity, insulin resistance, rheumatoid arthritis, glomerulonephritis, and cancer progression and play a major role in the progress of aging.

한편, 패혈증(sepsis)은 미생물 감염으로 인한 전신성 염증반응 증후군으로서, 중증 패혈증 또는 패혈성 쇼크로 진행될 수 있다. 또한, 패혈증의 병태 생리학에서 저 관류, 저혈압 및 장기 기능 장애와 관련이 있을 때 중증 패혈증으로 불리며, 이는 미국 중환자실 환자의 약 10%에서 발생한다. Sepsis, on the other hand, is a systemic inflammatory response syndrome due to microbial infection, which can progress to severe sepsis or septic shock. It is also referred to as severe sepsis when it is associated with low perfusion, hypotension, and organ dysfunction in the pathophysiology of sepsis, which occurs in about 10% of patients in the US intensive care unit.

패혈증에 대한 수많은 치료법이 발전해 왔지만, 중증 패혈증의 사망률은 거의 20%에 달하며, 미국의 중증 패혈증 환자의 연간 병원 건강 관리 비용은 모든 질병 중에서 가장 높으며 약 200억 달러에 이른다.Although many therapies for sepsis have been developed, the mortality rate for severe sepsis is nearly 20%, and annual hospital health care costs for patients with severe sepsis in the United States are the highest of all diseases and reach about $ 20 billion.

패혈증 치료제 발견의 가장 큰 장애물은 환자들 사이의 다양한 병인으로, 패혈증의 이종 형태는 병원성 유기체와 감염 부위에 따라 다르기 때문에, 패혈증 발병 기전의 다양한 특성으로 인해 연구자들은 전신 염증 반응에 근거한 패혈증 진행의 분자 메커니즘을 연구하게 되었다.The major obstacle to the discovery of sepsis treatments is the diverse pathogenesis among patients. Because the heterogeneous forms of sepsis depend on pathogenic organisms and sites of infection, due to the diverse nature of the pathogenesis of sepsis, Mechanism.

종래 항생제를 이용한 패혈증 치료법이나, 임상적 주요 특성인 초기 패혈증의 염증계 과활성화를 바탕으로 패혈증의 치료를 위하여 염증반응을 매개하거나 촉진하는 TNF-α, IL-6, 및 IL-1과 같은 매개체를 억제하려는 수많은 시도가 있으나 현재까지 환자의 생존율을 크게 개선하지 못하고 있는 실정이다.Previous methods for treating sepsis using antibiotics, mediators such as TNF-α, IL-6, and IL-1, which mediate or promote the inflammatory response for the treatment of sepsis based on the inflammatory system and activation of early clinical sepsis There are many attempts to suppress the survival rate of the patients until now, but the situation is not much.

패혈증은 면역 반응이 과도하게 활성화될 때 발생하며, 불균형한 사이토카인 생성과 관련된 난치성 염증 반응을 포함하며, 염증성 사이토카인 캐스케이드(cascade)는 전신 쇼크를 초래한다.Sepsis occurs when the immune response becomes overactive and involves a refractory inflammatory response associated with unbalanced cytokine production, and an inflammatory cytokine cascade results in systemic shock.

또한, 종양 괴사 인자(TNF)-α 및 인터루킨(IL)-1β는 패혈증과 관련된 두 가지 주요 염증성 사이토카인이며, 이들의 분비는 전신성 염증 반응 동안 양성 반응에 의해 조절된다.In addition, tumor necrosis factor (TNF) -α and interleukin (IL) -1β are two major inflammatory cytokines associated with sepsis, and their secretion is regulated by positive reactions during systemic inflammatory responses.

분비된 사이토카인이 전신에서 순환할 때 상당량의 사이토카인이 생성되어 패혈성 쇼크 및 이차성 다발성 장기 기능 장애를 일으킨다. 따라서, 이들 사이토카인의 생산을 길항하는 치료적 접근법이 패혈증의 치료에 사용되어왔다.Significant amounts of cytokines are produced when secreted cytokines circulate throughout the body, resulting in septic shock and secondary multiple organ dysfunction. Thus, a therapeutic approach to antagonize the production of these cytokines has been used in the treatment of sepsis.

예를 들어, 항-TNF-α 항체에 대한 대규모 임상시험이 수행되었으나, TNF-α와 IL-1β의 생성이 전신 염증의 초기 단계에서 나타나기 때문에 병인의 초기 단계를 억제하지 않고 증가된 사이토카인 생산을 역전시키는 것이 어렵고, 지속적인 염증 자극은 항-TNF-α 항체로 치료 한 후 예기치 않게 TNF-α 수치를 회복시켜 개발이 중단되었다.For example, large-scale clinical trials of anti-TNF- [alpha] antibodies have been performed, but the production of TNF- [alpha] and IL-1 [beta] is present in the early stages of systemic inflammation, And persistent inflammatory stimuli were uneventfully restored after treatment with anti-TNF- [alpha] antibodies and development was discontinued.

한편, HMGB1(High Mobility Group Box 1)은 상시 발현되는 핵단백질로서, 조직 손상이 일어나는 괴저 세포 및 주변 세포로부터 분비된다. 세포 외 HMGB1에 대한 수용체(receptor)는 한가지 이상 존재하며, 수용체 시그널링은 세포 분열 및 세포 이동을 유발하고, 염증을 활성화하며, 면역반응을 개시한다. HMGB1를 분비하는 세포로는 단구세포(monocyte), 대식세포(macrophage), 인간탯줄정맥내피세포(Human umbilical vein endothelial cell; HUVEC)가 있으며, HMGB1가 활성화되고 분비되면 중증 혈관염증, 패혈증 등을 일으키고, 사망에까지 이르게 된다.On the other hand, HMGB1 (High Mobility Group Box 1) is a nuclear protein that is constantly expressed and secreted from ganglion cells and peripheral cells in which tissue damage occurs. There is more than one receptor for extracellular HMGB1, and receptor signaling induces cell division and cell migration, activates inflammation, and initiates an immune response. HMGB1-secreting cells include monocytes, macrophages, and human umbilical vein endothelial cells (HUVECs). When HMGB1 is activated and secreted, it causes severe vascular inflammation and sepsis , Leading to death.

HMGB1은 RAGE(Receptor for Advanced Glycation End products) 또는 패턴인식수용체(TLR2, TLR4)에 결합하여 내피세포 상의 부착(adhesion) 분자(VCAM-1, ICAM-1, E-selectin)의 발현을 유도한다. 내피세포에서의 염증반응은 HMGB1에 의해 개시되어, TNF, IL-6의 분비를 증가시키고, NF-kB, ERK-1, ERK-2의 인산화를 유도한다.HMGB1 induces the expression of adhesion molecules (VCAM-1, ICAM-1, E-selectin) on endothelial cells by binding to RAGE (receptor for advanced glycation end products) or pattern recognition receptors (TLR2 and TLR4). The inflammatory response in endothelial cells is initiated by HMGB1, which increases the secretion of TNF, IL-6 and induces phosphorylation of NF-kB, ERK-1 and ERK-2.

패혈증 환자의 혈청에서 HMGB1이 검출되고, 나쁜 예후를 가진 환자에서 HMGB1의 혈청 수준이 매우 증가된다는 것이 알려져 있다. 또한, 중증 패혈증 환자의 혈장에서 HMGB1의 농도가 증가하면 사망할 가능성이 높다는 것이 알려져 있다. 따라서, HMGB1은 패혈증이나 다른 혈관염증질환의 예방 또는 치료를 위한 타겟 분자이다.It is known that HMGB1 is detected in the serum of sepsis patients and the serum level of HMGB1 is greatly increased in patients with bad prognosis. It is also known that increased plasma HMGB1 levels in patients with severe sepsis are likely to die. Thus, HMGB1 is the target molecule for the prevention or treatment of sepsis or other vascular inflammatory diseases.

HMGB1은 염증반응의 매개체로 밝혀졌으며, 손상된 세포가 괴사로 소멸하면 HMGB1이 세포 외 환경으로 방출되어 인접한 세포에 손상을 경고한다. 대식세포와 같은 면역 세포에서, HMGB1은 전신 염증 반응 동안 전 염증성 사이토카인(pro-inflammatory cytokine)으로서 활발히 분비된다.HMGB1 has been shown to mediate the inflammatory response, and when the damaged cells are destroyed by necrosis, HMGB1 is released into the extracellular environment and warns of damage to adjacent cells. In immune cells such as macrophages, HMGB1 is actively secreted as a pro-inflammatory cytokine during the systemic inflammatory response.

이전 논문에서, 분비된 HMGB1이 다른 전 염증성 사이토카인의 생산을 조절하는데 중요한 역할을 하고, HMGB1 분비의 억제가 패혈증 연구 분야에서 사용되는 cecal ligation and puncture (CLP) 마우스 모델에서 패혈증의 병인을 성공적으로 개선한다는 것이 보고되었다(Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 296-301).In previous reports, secreted HMGB1 plays an important role in regulating the production of other proinflammatory cytokines, and inhibition of HMGB1 secretion has been shown to be successful in the pathogenesis of sepsis in cecal ligation and puncture (CLP) mouse models used in the field of sepsis ( Proc. Natl. Acad. Sci . USA 2004, 101, 296-301).

즉, CLP 마우스 모델에서 상주 세균이 존재하는 기관인 맹장에 외과 수술을 시행함으로 확립되며, 맹장을 붙이고 바늘로 끝 부분을 찔러서 복강 내 순화계 쪽으로 다균 오염을 유도하여 독소 혈증을 유발시킨다. 이 작용은 이후에 전신 염증 반응, 즉 패혈증을 유발시키며, 패혈증에서 HMGB1의 역할에 대해 이전 연구자들은 anti-HMGB1 항체가 HMGB1의 방출을 억제함으로써 CLP 마우스의 치사률을 감소시켰다고 보고하였다.In the CLP mouse model, it is established by performing surgical operations on the cecum, an organ in which the bacteria reside. The cecum is stuck and the tip is pierced with a needle to induce multinuclear contamination to the intraperitoneal system. This action subsequently leads to systemic inflammation, ie, sepsis. Previous researchers on the role of HMGB1 in sepsis have reported that the anti-HMGB1 antibody reduced the mortality of CLP mice by inhibiting the release of HMGB1.

또한, 알려진 자가포식 모듈레이터인 (-)-epigallocatechin-3-gallate (EGCG)는 cytosolic HMGB1의 분해를 유발하여, lipopolysaccharide (LPS)로 유도된 HMGB1의 방출을 예방함으로써 자가포식 과정을 촉진시키는 것이 연구되어 왔다.In addition, the known self-modulating (-) - epigallocatechin-3-gallate (EGCG) modulator has been investigated to induce the degradation of cytosolic HMGB1, thereby promoting autophagic processes by preventing lipopolysaccharide (LPS) come.

본 발명자들은 pDOS(Diversity-Oriented Synthesis) 기반 약제 유사 화합물 라이브러리를 스크리닝하여, BV-2 microglia-like cell의 활성화를 억제하는 신규한 하기 화합물, inflachromene(ICM, 1d)을 발견하였다(한국 특허 제10-1645942호).The present inventors have found a novel compound, inflachromene (ICM, 1d), which inhibits the activation of BV-2 microglia-like cells by screening a pDOS (Diversity-Oriented Synthesis) -1645942).

Figure 112017103861517-pat00001
Figure 112017103861517-pat00001

(화합물 ICM(1d))(Compound ICM (1d))

2차원 겔 전기영동의 형광 차를 이용하여 표적 식별에 대한 노력을 기울인 결과, 상기 화합물 ICM(1d)의 표적 단백질로 HMGB1 및 HMGB2를 밝혀냈고, 생화학적 및 생물 물리학적 연구 결과, 화합물 ICM(1d)은 마이크로글리아(microglia)에서 HMGB1 및 HMGB2의 분비를 억제한다는 것을 확인하였다.HMM1 and HMGB2 were identified as the target proteins of the compound ICM (1d). As a result of biochemical and biophysical studies, the compounds ICM (1d ) Inhibited the secretion of HMGB1 and HMGB2 in microglia.

이에, 본 발명자들은 상기 화합물 ICM(1d)의 치환기를 변형하여 유사한 화합물인 수많은 후보 화합물을 합성한 후, 구조-활성 상관관계 연구에 기초하여, 화합물 ICM(1d)과 비교하여 월등히 우수한 염증억제 효과를 나타내는 신규한 화합물들을 발견하여 본 발명에 이르게 되었다.Therefore, the present inventors modified the substituent of the compound ICM (1d) to synthesize a number of candidate compounds, which are similar compounds, and then, based on the structure-activity correlation study, ≪ / RTI > to the present invention.

본 발명자들은 후보 화합물들을 이용하여 염증억제 효과를 검토하고, 특히 염증을 유발하는 HMGB1 단백질의 이동 및 분비 억제 작용을 확인하였다. 구체적으로, CLP 마우스 모델에 대해 화합물 ICM(1d) 및 후보 화합물들을 생체 내 투여한 후 생존율 등을 측정함으로써 본 발명을 완성하였다.The present inventors examined the inflammation inhibitory effect using the candidate compounds, and confirmed the migration and secretion inhibitory action of HMGB1 protein which induces inflammation in particular. Specifically, the present invention has been accomplished by measuring the survival rate and the like after in vivo administration of the compound ICM (1d) and the candidate compounds to the CLP mouse model.

또한, 본 발명자들은 HMGB1 방출 조절이 패혈증에 대한 예방 또는 치료에 유망한 전략임을 확인함으로써, 패혈증에 대한 우수한 치료 효과를 갖는 신규한 화합물들을 제공한다.In addition, the present inventors have found that controlling HMGB1 release is a promising strategy for prevention or treatment of sepsis, thereby providing novel compounds having an excellent therapeutic effect on sepsis.

본 발명은 체계적인 구조-활성 상관관계 연구에 기초로 하여, 체내에서 우수한 효과를 나타내는 신규한 화합물을 제공한다.The present invention provides novel compounds which show excellent effects in the body based on systematic structure-activity correlation studies.

상기 신규한 화합물은 염증 억제 효과의 신규한 용도를 제공한다.The novel compounds provide novel uses for the anti-inflammatory effect.

특히, 상기 신규한 화합물은 패혈증을 치료 또는 예방하는 용도를 제공한다. In particular, the novel compounds provide an application for treating or preventing sepsis.

특히, 상기 신규한 화합물들은 염증반응의 후반부에서 작용하는 HMGB1 단백질을 억제함으로써, 기존의 치료제에 비하여 항염증 효과, 특히 패혈증 치료 효과가 우수하다. Particularly, the novel compounds inhibit the HMGB1 protein acting in the latter half of the inflammatory reaction, so that the anti-inflammatory effect, especially the sepsis treatment effect, is superior to the existing therapeutic agents.

먼저 본 발명자들은 하기 화학식 I의 화합물, 또는 이의 약제학적으로 허용가능한 염을 제공한다.First, the present inventors provide a compound of the formula (I), or a pharmaceutically acceptable salt thereof.

[화학식 1][Chemical Formula 1]

Figure 112017103861517-pat00002
Figure 112017103861517-pat00002

상기 화학식 1에서, In Formula 1,

상기 R은 치환되거나 치환되지 않은 C1-8 알킬; 치환되거나 치환되지 않은 C1-8 알콕시; 치환되거나 치환되지 않은 C1-8 다이알콕시; 치환되거나 치환되지 않은 C1-8 알킬카르보닐; 메일렌다이옥시 및 에틸렌다이옥시 중에서 선택된다.R is optionally substituted C 1-8 alkyl; Substituted or unsubstituted C 1-8 alkoxy; Substituted or unsubstituted C 1-8 dialkoxy; Substituted or unsubstituted C 1-8 alkylcarbonyl; Lt; RTI ID = 0.0 &

바람직하게는 상기 화학식 1로 표시되는 화합물은 하기 화학식 2(화합물 2i) 내지 화학식 5(화합물 2l) 로 표시되는 화합물일 수 있다. Preferably, the compound represented by Formula 1 may be a compound represented by Formula 2 (2i) to 5 (Formula 2l).

Figure 112017103861517-pat00003
Figure 112017103861517-pat00003

가장 바람직하게는, 상기 화학식 1로 표시되는 화합물은 상기 화학식 3(화합물 2j) 또는 화학식 5(화합물 2l)로 표시되는 화합물이다. Most preferably, the compound represented by Formula 1 is a compound represented by Formula 3 (compound 2j) or Formula 5 (compound 2l).

또한, 본 발명자들은 화학식 3 또는 화학식 5로 표시되는 화합물을 포함하는 염증 억제 효과를 갖는 약제학적 조성물을 제공한다.Further, the present inventors provide a pharmaceutical composition having an inflammation-inhibiting effect comprising a compound represented by the general formula (3) or (5).

또한, 본 발명자들은 화학식 3 또는 화학식 5로 표시되는 화합물을 포함하는 패혈증의 치료 및 예방용 약제학적 조성물을 제공한다.The present invention also provides a pharmaceutical composition for treating and preventing sepsis comprising the compound represented by the general formula (3) or (5).

본 발명의 신규한 화합물들은 HMGB1 단백질이 핵에서 세포질로 이동 및 세포 외로 분비되는 것을 억제함으로써 염증 반응을 차단할 수 있다. 특히, HMGB1 단백질은 염증반응의 후반부에서 작용하기 때문에, HMGB1 단백질의 이동 및 분비를 억제하는 본 발명의 신규한 화합물들은 조기 처치를 받지 않은 환자들에게도 효과를 나타낼 수 있는 우수한 치료제로 사용될 수 있다.The novel compounds of the present invention can block the inflammatory response by inhibiting the HMGB1 protein from being transferred from the nucleus to the cytoplasm and secreted out of the cell. In particular, since the HMGB1 protein acts in the latter half of the inflammatory reaction, the novel compounds of the present invention that inhibit the migration and secretion of HMGB1 protein can be used as an excellent therapeutic agent that can be effective even in patients who have not undergone early treatment.

또한, 본 발명의 신규한 화합물들은 IL-6의 분비를 감소시키고, 환자의 생존율을 증가시킴으로써, 우수한 염증 관련 질환의 치료제로 사용될 수 있다.In addition, the novel compounds of the present invention can be used as therapeutic agents for excellent inflammation-related diseases, by decreasing the secretion of IL-6 and increasing the survival rate of the patient.

본 발명의 신규한 화합물들은 우수한 용해도, 안정성 및 PK 데이터 등의 약동학적 특성을 가짐으로써, 향후 의약품으로 제제화하기 용이한 장점을 갖는다.The novel compounds of the present invention have pharmacokinetic properties such as excellent solubility, stability and PK data, and thus have advantages of being easily formulated into pharmaceuticals in the future.

도 1은 화합물 1d의 염증반응 억제 경로를 나타낸다.
도 2는 대조군 및 화합물 1d 투여군에서 CLP 마우스 모델의 생존율을 나타낸다.
도 3은 CLP 마우스 모델에서 대조군(A) 및 화합물 1d 투여군(B)의 마우스 혈청 IL-6수치를 나타낸다.
도 4는 화합물 1d(A), 테트라하이드로피리다진 고리의 이중 결합을 제거한 화합물(B) 및 상기 이중결합이 이동된 화합물(C)의 NO 방출 억제율을 나타낸다.
도 5는 화합물 1d, 및 화합물 2i 내지 2l로 전처리한 후, HMGB1의 세포 면역 형광 이미지를 나타낸다.
도 6은 화합물 1d, 및 화합물 2i 내지 2l로 전처리 한 후, IL-6 방출의 억제 효과를 확인하기 위한 웨스턴 블록 분석 결과를 나타낸다.
도 7은 HMGB1의 리간드로서 화합물 1d, 2j 및 2l의 결합 에너지(A), 바인딩 모드(B) 및 HMGB1의 결합 공동에서 인접한 아미노산과의 상호 작용(C)을 나타낸다.
도 8는 Raw264.7세포에서 화합물 1d, 2j 및 2l로 각각 전처리 한 후, p38, JNK 및 ERK의 인산화(p)에 대한 웨스턴 블롯 분석 결과(A) 및 화합물 처리 후의 p38, JNK 및 ERK의 인산화 수준의 정량화 수치(B)를 나타낸다.
도 9은 Raw264.7 세포에서 화합물 1d, 및 2j 및 2l로 각각 전처리 한 후, 500 ng / mL LPS 처리한 세포 NF-κB p65 면역 형광 이미지를 나타낸다.
도 10은 대조군 및 화합물 1d, 2j 및 2l로 각각 처리한 CLP 마우스의 생존율을 나타낸다.
도 11는 혈청 IL-6 (A), 화합물 1d(B), 화합물 2j(C) 및 화합물 2l(D)로 각각 처리된 마우스의 IL-6 수치를 나타낸다.
Figure 1 shows the inflammatory response inhibitory pathway of compound 1d.
Figure 2 shows the survival rate of the CLP mouse model in the control and compound 1d treated groups.
Figure 3 shows mouse serum IL-6 levels of control (A) and compound 1d treated group (B) in a CLP mouse model.
Fig. 4 shows the inhibition rate of NO emission of the compound 1d (A), the compound (B) in which the double bond of the tetrahydropyridazine ring is removed, and the compound (C) in which the double bond is transferred.
Figure 5 shows the cytopathological fluorescence image of HMGB1 after pretreatment with compound 1d and compounds 2i to 2l.
Figure 6 shows Western bloc analysis results to confirm the inhibitory effect of IL-6 release after pretreatment with compound 1d and compounds 2i to 2l.
Figure 7 shows the binding energy (A) of compounds 1d, 2j and 2l as a ligand of HMGB1, the binding mode (B) and the interaction (C) with adjacent amino acids in the binding cavity of HMGB1.
8 shows the result of Western blot analysis (A) on the phosphorylation (p) of p38, JNK and ERK after pre-treatment with compounds 1d, 2j and 2l in Raw264.7 cells, (B). ≪ / RTI >
Fig. 9 shows a cell NF-κB p65 immunofluorescence image obtained by pretreating compounds 1d and 2j and 2l in Raw264.7 cells, respectively, and then treating with 500 ng / ml LPS.
Fig. 10 shows the survival rate of CLP mice treated with the control group and compounds 1d, 2j and 2l, respectively.
Figure 11 shows the IL-6 levels of mice treated with serum IL-6 (A), compound 1d (B), compound 2j (C) and compound 21 (D), respectively.

본 발명자들은 CLP 마우스 모델에서 HMGB1 단백질을 억제하는 화합물인 화합물 1d가 패혈증 발병 기전을 효과적으로 개선한다는 것을 발견하였으며, 화합물 1d와 유사한 후보 화합물들을 합성하였다.The present inventors have found that Compound 1d, a compound that inhibits the HMGB1 protein in the CLP mouse model, effectively improves the pathogenesis of sepsis, and synthesized candidate compounds similar to Compound 1d.

상기 화합물들 중에서 월등하게 우수한 염증 억제 효과를 갖는 화합물들을 선별하였다. 결과적으로, 본 발명자들은 구조-활성 상관관계 연구와 생물학적 평가 실험들에 기초하여, 가장 우수한 염증 억제 효과를 갖는 신규한 화합물들을 발명하였다.Among these compounds, compounds having a superior anti-inflammatory effect were selected. As a result, the present inventors have invented novel compounds having the best anti-inflammatory effect, based on structure-activity correlation studies and biological evaluation experiments.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 하기 화학식 1로 표시되는 화합물 또는 이의 약제학적으로 허용가능한 염을 제공한다.The present invention provides a compound represented by the following formula (I) or a pharmaceutically acceptable salt thereof.

[화학식 1][Chemical Formula 1]

Figure 112017103861517-pat00004
Figure 112017103861517-pat00004

상기 화학식 1에서, In Formula 1,

상기 R은 치환되거나 치환되지 않은 C1-8 알킬; 치환되거나 치환되지 않은 C1-8 알콕시; 치환되거나 치환되지 않은 C1-8 다이알콕시; 치환되거나 치환되지 않은 C1-8 알킬카르보닐; 메일렌다이옥시 및 에틸렌다이옥시 중에서 선택된다.R is optionally substituted C 1-8 alkyl; Substituted or unsubstituted C 1-8 alkoxy; Substituted or unsubstituted C 1-8 dialkoxy; Substituted or unsubstituted C 1-8 alkylcarbonyl; Lt; RTI ID = 0.0 &

가장 바람직하게 본 발명은 하기 화학식 3으로 표시되는 화합물 또는 하기 화학식 5로 표시되는 화합물, 또는 이들의 약제학적으로 허용가능한 염을 제공한다.Most preferably, the present invention provides a compound represented by the following formula (3) or a compound represented by the following formula (5), or a pharmaceutically acceptable salt thereof.

[화학식 3](3)

Figure 112017103861517-pat00005
Figure 112017103861517-pat00005

[화학식 5][Chemical Formula 5]

Figure 112017103861517-pat00006
Figure 112017103861517-pat00006

상기 신규한 화학식 3 또는 5로 표시되는 화합물을 포함하는 염증 억제 효과를 갖는 약제학적 조성물을 제공한다.There is provided a pharmaceutical composition having an anti-inflammatory effect comprising the novel compound represented by the above-mentioned general formula (3) or (5).

상기 염증 억제 효과는 염증 유발인자인 HMGB1단백질에 작용하여 항염증 효과를 나타내는 것을 특징으로 한다.The inflammation-inhibiting effect is characterized by exhibiting an anti-inflammatory effect by acting on HMGB1 protein, an inflammation-inducing factor.

구체적으로 상기 화합물이 HMGB1 단백질의 인산화 또는 아세틸화를 저해함으로써 HMGB1 단백질이 핵에서 세포질로 이동하는 것을 억제하여 결과적으로 HMGB1 단백질이 세포 외로 분비되는 것을 억제한다.Specifically, the compound inhibits the phosphorylation or acetylation of the HMGB1 protein, thereby inhibiting the migration of the HMGB1 protein from the nucleus to the cytoplasm and consequently inhibiting the secretion of the HMGB1 protein into the cell.

염증반응은 생체의 세포나 조직에 기질적 변화를 가져오는 침습으로 인한 손상을 수복 및 재생하기 위한 생체방어 반응 과정이고, 이 반응과정에는 국소의 혈관, 체액의 각종 조직세포 및 면역세포 등이 작용한다. 정상적으로 외부 침입균에 의하여 유도되는 염증반응은 생체를 보호하기 위한 방어 시스템인 반면, 비정상으로 과도한 염증 반응이 유도되면 다양한 질환들이 나타나게 되는데, 이러한 질환들로 위염, 대장염, 류마티스 관절염, 신장염, 간염, 췌장염, 패혈증, 발작, 암, 다발성경화증, 알츠하이머병, 파킨슨병, 헌팅턴병 등의 만성질환 및 뇌졸중, 뇌외상 등의 급성 뇌손상과 같은 신경염증 관련 질환 등이 알려져 있으며, 특히 패혈증, 발작, 암은 HMGB가 영향을 주는 것으로 알려져 있다.The inflammatory reaction is a biological defense reaction process for restoring and regenerating damage caused by invasion that causes a fundamental change in the cell or tissue of a living body. In this reaction process, localized blood vessels, various tissue cells of body fluids, do. Normally, the inflammatory reaction induced by external invading bacteria is a defense system to protect the living body. On the other hand, when abnormally excessive inflammatory reaction is induced, various diseases appear. Such diseases include gastritis, colitis, rheumatoid arthritis, Chronic diseases such as pancreatitis, septicemia, seizures, cancer, multiple sclerosis, Alzheimer's disease, Parkinson's disease, Huntington's disease and neuroinflammatory diseases such as acute brain injury such as stroke and brain trauma are known. Especially, sepsis, seizure, HMGB is known to affect.

따라서, 신규한 화학식 3 또는 화학식 5로 표시되는 화합물을 포함하는 약학적 조성물은 패혈증, 위염, 대장염, 류마티스 관절염, 신장염, 간염, 췌장염, 패혈증, 발작, 다발성경화증, 알츠하이머병, 파킨슨병, 헌팅턴병, 근위축성 측색 경화증(루게릭병), 뇌졸중, 뇌외상(trauma), 척수손상 및 암으로 이루어진 군으로부터 1종 이상 선택되는 염증 관련 질환에 대하여 항염증 용도로 사용될 수 있다.Accordingly, the pharmaceutical composition comprising the novel compound represented by the general formula (3) or (5) is useful as a pharmaceutical composition for preventing or treating sepsis, gastritis, colitis, rheumatoid arthritis, nephritis, hepatitis, pancreatitis, sepsis, seizure, multiple sclerosis, Alzheimer's disease, Parkinson's disease, Huntington's disease, Related diseases selected from the group consisting of amyotrophic lateral sclerosis (ALS), stroke, trauma, spinal cord injury, and cancer.

특히, 신규한 화학식 3 또는 화학식 5로 표시되는 화합물을 포함하는 약학적 조성물은 패혈증을 치료 또는 예방하는 효과를 갖는다.In particular, the pharmaceutical composition comprising the novel compound represented by the general formula (3) or (5) has an effect of treating or preventing sepsis.

본 발명은 신규한 화학식 3 또는 화학식 5로 표시되는 화합물을 포함하는 염증 억제 효과를 갖는 약학적 조성물에 관한 것이다.The present invention relates to a novel pharmaceutical composition having an anti-inflammatory effect comprising a compound represented by the general formula (3) or (5).

또한, 본 발명은 신규한 화학식 3 또는 화학식 5로 표시되는 화합물을 포함하는 패혈증 치료 또는 예방용 약학적 조성물에 관한 것이다.The present invention also relates to a pharmaceutical composition for treating or preventing sepsis comprising the novel compound represented by the general formula (3) or (5).

화합물 1a 내지 1j의 제조Preparation of compounds 1a to 1j

화합물 1a 내지 1j를 하기 반응식 1에 따라 합성하였다.Compounds 1a to 1j were synthesized according to Reaction Scheme 1 below.

[반응식 1] [Reaction Scheme 1]

Figure 112017103861517-pat00007
Figure 112017103861517-pat00007

a) 단계에서는 적절한 R1, R2, R3 작용기를 가지는 히드록시아세토페논을 에탄올(EtOH) 용매 하에 케톤, 피롤리딘을 첨가하고 환류하였다.In step a), hydroxyacetophenone having appropriate R 1 , R 2 , R 3 functional groups was added with ketone and pyrrolidine in ethanol (EtOH) solvent and refluxed.

b) 단계에서는 EtOAc/CHCl3/MeOH 혼합용매 하에 CuBr2를 첨가하고 환류하였다.b) In step it was refluxing and the addition of CuBr2 under EtOAc / CHCl 3 / MeOH solvent mixture.

c) 단계에서는 EtOH 용매 하에 NaBH4를 첨가하고 40℃에서 반응시켰다.In step c), NaBH 4 was added in EtOH solvent and reacted at 40 ° C.

d) 단계에서는 톨루엔 용매 하에 p-TsOH을 첨가하고 70℃에서 반응시켰다.In step d), p-TsOH was added in a toluene solvent, and the reaction was carried out at 70 ° C.

e) 단계에서는 EtOH/톨루엔/H2O의 혼합용매 하에 비닐 보론산 디부틸 에스테르, Na2CO3, Pd(PPh3)4를 첨가하여 70℃에서 반응시켰다.In step e), dibutyl vinylboronic acid ester, Na 2 CO 3 , and Pd (PPh 3 ) 4 were added in a mixed solvent of EtOH / toluene / H 2 O and the reaction was carried out at 70 ° C.

f) 단계에서는 톨루엔 용매하에 페닐트리아졸린디온을 첨가하여 실온에서 반응시켰다.In step f), phenyltriazolindione was added in a toluene solvent, and the reaction was allowed to proceed at room temperature.

상기 제조방법에 있어서, R2 또는 R3 작용기가 OH기 인 경우 (1d, 1h, 1i, 1j), d)단계 전에 이를 트리이소프로필실릴 보호기로 보호하는 것이 바람직하며, 이를 f)단계 직후에 THF 용매 하에서 불산-피리딘 혼합물로 탈보호화시켜 최종 화합물을 얻었다.In the above production method, it is preferable to protect the R 2 or R 3 functional group with an OH group (1d, 1h, 1i, 1j) with a triisopropylsilyl protecting group before the step d) The title compound was deprotected with a mixture of hydrofluoric acid and pyridine in THF solvent to obtain the final compound.

R2 작용기가 N-methylamino 기 인 경우 (1b), e) 단계 이전에 Boc 보호기로 보호하는 것이 바람직하며, f) 단계 직후에 디클로로메탄 용매하에서 트리플루오로 아세트산으로 탈보호화하여 최종 화합물을 얻었다.When R 2 functional group is an N-methylamino group (1b), it is preferable to protect with a Boc protecting group before step e), and after f), the compound is deprotected with trifluoroacetic acid in a dichloromethane solvent to obtain the final compound.

R4 작용기가 N-프로필-4'-피페리딜이거나 (1i) N-아세틸-4'-피페리딜인 (1j) 경우, a) 단계에서 Boc보호기로 보호된 N-Boc-피페리딘온을 케톤으로 사용한 후에 b)~f) 단계를 진행하게 되며, R2 작용기에 대한 탈보호화 이전에 디클로로메탄 용매 하에서 트리플루오로아세트산으로 Boc 보호기를 먼저 탈보호화시킨 후 디클로로에탄 용매 하에서 프로피오알데히드와 트리아세톡시보로하이드라이드를 사용하여 환원성 아미노화 반응을 보내거나 (1i), 디클로로메탄 용매 하에서 아세트산 무수물과 디이소프로필에틸아민 염기를 사용한 아세틸화 반응을 보내어 (1j) 최종 화합물을 얻었다.When the R 4 functional group is N-propyl-4'-piperidyl or (1i) N-acetyl-4'-piperidyl (1j), N-Boc-piperidinone protected with a Boc protecting group After the boc protecting group is first deblocked with trifluoroacetic acid in a dichloromethane solvent prior to deprotonation with respect to the R 2 functional group, the biphenyltetracarboxylic acid is deprotected with propioldehyde (1i) was subjected to a reductive amination reaction using triacetoxyborohydride or an acetylation reaction (1j) using acetic anhydride and diisopropylethylamine base in a dichloromethane solvent to give a final compound.

하기 표 1은 상기 반응식을 통해 제조된 화합물 1a 내지 1j의 구조, 분자량, MS 분석값 및 NMR을 나타낸다.Table 1 below shows the structures, molecular weights, MS analysis values and NMR of the compounds 1a to 1j prepared through the above reaction schemes.

화합물compound 구조rescue 분자량Molecular Weight MS 분석값MS analysis value
(분자량 +H(Molecular weight + H ++ ))
NMRNMR
1a1a

Figure 112017103861517-pat00008
Figure 112017103861517-pat00008
361.40361.40 361.1429 [M]+ 361.1429 [M] < + & 1H-NMR (500 MHz, CDCl3): d 7.64 (d, J = 7.5 Hz, 2H), 7.53 (t, J = 7.5 Hz, 2H), 7.42 (t, J = 7.5 Hz, 1H), 7.22 (t, J = 7.5 Hz, 1H), 7.06 (d, J = 7.5 Hz, 1H), 6.96 (t, J = 7.5 Hz, 1H), 6.90 (d, J = 8.0 Hz, 1H), 5.80 (t, J = 2.5 Hz, 1H), 5.73(s, 1H), 4.30 (dd, J = 16.5 and 5.0 Hz, 1H), 4.11 (dt, J = 16.5 and 2.5 Hz, 1H), 1.62 (s, 3H), 1.57 (s, 3H); 13C-NMR (125 MHz, CDCl3): d153.8, 153.4, 151.6, 138.2, 131.4, 129.4, 129.3, 128.5, 125.6, 124.3, 123.5, 121.9, 118.2, 112.9, 79.4, 50.7, 44.3, 28.2, 27.2 1 H-NMR (500 MHz, CDCl 3): d 7.64 (d, J = 7.5 Hz, 2H), 7.53 (t, J = 7.5 Hz, 2H), 7.42 (t, J = 7.5 Hz, 1H), 7.22 (t, J = 7.5 Hz, 1H), 7.06 (d, J = 7.5 Hz, 1H), 6.96 (t, J = 7.5 Hz, 1H), 6.90 (d, J = 8.0 Hz, 1H), 5.80 (t , J = 2.5 Hz, 1H) , 5.73 (s, 1H), 4.30 (dd, J = 16.5 and 5.0 Hz, 1H), 4.11 (dt, J = 16.5 and 2.5 Hz, 1H), 1.62 (s, 3H) , ≪ / RTI > 1.57 (s, 3H); 13 C-NMR (125 MHz, CDCl 3): d153.8, 153.4, 151.6, 138.2, 131.4, 129.4, 129.3, 128.5, 125.6, 124.3, 123.5, 121.9, 118.2, 112.9, 79.4, 50.7, 44.3, 28.2, 27.2 1b1b
Figure 112017103861517-pat00009
Figure 112017103861517-pat00009
390.44390.44 391.09391.09 1H-NMR (500 MHz, CDCl3): d 7.64 (d, J = 7.5 Hz, 2H), 7.53 (t, J = 7.5 Hz, 2H), 7.43 (t, J = 7.5 Hz, 1H), 7.05 (t, J = 7.5 Hz, 1H), 6.85 (dd, J = 8.5 and 2.0 Hz, 1H), 6.81 (d, J = 2.0 Hz, 1H), 5.85 (t, J = 2.5 Hz, 1H), 5.73 (s, 1H), 4.30 (dd, J = 14.0 and 3.5 Hz, 1H), 4.10 (dt, J = 14.0 and 2.5 Hz, 1H), 3.22 (s, 3H), 1.62 (s, 3H), 1.60 (s, 3H), 1.46 (s, 9H) 1 H-NMR (500 MHz, CDCl 3): d 7.64 (d, J = 7.5 Hz, 2H), 7.53 (t, J = 7.5 Hz, 2H), 7.43 (t, J = 7.5 Hz, 1H), 7.05 (t, J = 7.5 Hz, 1H), 6.85 (dd, J = 8.5 and 2.0 Hz, 1H), 6.81 (d, J = 2.0 Hz, 1H), 5.85 (t, J = 2.5 Hz, 1H), 5.73 (s, 1H), 4.30 (dd, J = 14.0 and 3.5 Hz, 1H), 4.10 (dt, J = 14.0 and 2.5 Hz, 1H) s, 3H), 1.46 (s, 9H)
1c1c
Figure 112017103861517-pat00010
Figure 112017103861517-pat00010
379.39379.39 380.1409380.1409 1H-NMR (500 MHz, CDCl3): d 7.62 (d, J = 7.5 Hz, 2H), 7.52 (t, J = 7.5 Hz, 2H), 7.45 (t, J = 7.5 Hz, 1H), 7.07 (t, J = 8.0 Hz, 1H), 6.66 (td, J = 8.5 and 2.5 Hz, 1H), 6.60 (dd, J = 8.5 and 2.5 Hz, 1H), 5.86 (t, J = 2.5 Hz, 1H), 5.70 (s, 1H), 4.30 (dd, J = 16.5 and 5.0 Hz, 1H), 4.11 (dt, J = 16.5 and 2.5 Hz, 1H), 1.60 (s, 3H), 1.59 (s, 3H); 13C-NMR (125 MHz, CDCl3): d 164.5, 162.5, 154.7, 153.9, 151.7, 137.2, 131.4, 129.5, 128.6, 125.6, 125.2(d), 119.6(d), 113.7, 108.8(d), 105.6(d), 79.7, 50.3, 44.4, 27.9, 27.0 1 H-NMR (500 MHz, CDCl 3): d 7.62 (d, J = 7.5 Hz, 2H), 7.52 (t, J = 7.5 Hz, 2H), 7.45 (t, J = 7.5 Hz, 1H), 7.07 (t, J = 8.0 Hz, 1H), 6.66 (td, J = 8.5 and 2.5 Hz, 1H), 6.60 (dd, J = 8.5 and 2.5 Hz, 1H), 5.86 (t, J = 2.5 Hz, 1H) , 5.70 (s, 1H), 4.30 (dd, J = 16.5 and 5.0 Hz, 1H), 4.11 (dt, J = 16.5 and 2.5 Hz, 1H), 1.60 (s, 3H), 1.59 13 C-NMR (125 MHz, CDCl 3): d 164.5, 162.5, 154.7, 153.9, 151.7, 137.2, 131.4, 129.5, 128.6, 125.6, 125.2 (d), 119.6 (d), 113.7, 108.8 (d), 105.6 (d), 79.7, 50.3, 44.4, 27.9, 27.0
1d1d
Figure 112017103861517-pat00011
Figure 112017103861517-pat00011
377.40377.40 377.1380 [M]+ 377.1380 [M] < + & 1H-NMR (500 MHz, acetone-d 6): d 8.47 (br.s., 1H), 7.65 (d, J = 7.5 Hz, 2H), 7.53 (t, J= 7.5 Hz, 2H), 7.43 (t, J = 7.5 Hz, 1H), 6.98 (d, J = 8.5 Hz, 1H), 6.44 (dd, J = 8.5 and 2.5 Hz, 1H), 6.35 (d, J = 2.5 Hz, 1H), 6.02 (t, J= 2.5 Hz, 1H), 5.64 (s, 1 H), 4.25 (dd, J = 16.5 and 5.0 Hz, 1 H), 4.14 (dt, J = 16.5 and 2.5 Hz, 1 H), 1.61 (s, 3H), 1.57 (s, 3H); 13C-NMR (125 MHz, acetone-d 6): d 159.2, 155.3, 155.0, 152.2, 138.0, 133.0, 129.6, 128.7, 126.7, 125.6, 116.3, 114.6, 109.4, 105.3, 79.8, 50.6, 45.2, 27.8, 27.2 1 H-NMR (500 MHz, acetone- d 6): d 8.47 (br.s., 1H), 7.65 (d, J = 7.5 Hz, 2H), 7.53 (t, J = 7.5 Hz, 2H), 7.43 (t, J = 7.5 Hz, 1H), 6.98 (d, J = 8.5 Hz, 1H), 6.44 (dd, J = 8.5 and 2.5 Hz, 1H), 6.35 (d, J = 2.5 Hz, 1H), 6.02 (t, J = 2.5 Hz, 1H), 5.64 (s, 1 H), 4.25 (dd, J = 16.5 and 5.0 Hz, 1 H), 4.14 (dt, J = 16.5 and 2.5 Hz, 1 H), 1.61 (s, 3 H), 1.57 (s, 3 H); 13 C-NMR (125 MHz, acetone- d 6): d 159.2, 155.3, 155.0, 152.2, 138.0, 133.0, 129.6, 128.7, 126.7, 125.6, 116.3, 114.6, 109.4, 105.3, 79.8, 50.6, 45.2, 27.8 , 27.2
1e1e
Figure 112017103861517-pat00012
Figure 112017103861517-pat00012
391.43391.43 391.16
[M]+
391.16
[M] +
1H-NMR (500 MHz, CDCl3): d 7.63 (d, J = 7.5 Hz, 2H), 7.53 (t, J = 7.5 Hz, 2H), 7.43 (t, J = 7.5 Hz, 1H), 7.05 (d, J = 8.5 Hz, 1H), 6.52 (dd, J = 8.5 and 3.0 Hz, 1H), 6.45 (d, J = 3.0 Hz, 1H), 5.86 (t, J = 2.0 Hz, 1H), 5.74 (s, 1H), 4.31 (dd, J = 16.0 and 5.0 Hz, 1H), 4.12 (dt, J = 16.0 and 2.5 Hz, 1H), 3.77 (s, 3H), 1.62 (s, 3H), 1.61 (s, 3H); 13C-NMR (125 MHz, CDCl3): d161.0, 154.5, 154.1, 151.7, 137.5, 131.5, 129.5, 128.5, 125.7, 124.9, 115.7, 113.1, 108.0, 103.3, 79.0, 55.6, 50.3, 44.5, 27.7, 27.0 1 H-NMR (500 MHz, CDCl 3): d 7.63 (d, J = 7.5 Hz, 2H), 7.53 (t, J = 7.5 Hz, 2H), 7.43 (t, J = 7.5 Hz, 1H), 7.05 (d, J = 8.5 Hz, 1H), 6.52 (dd, J = 8.5 and 3.0 Hz, 1H), 6.45 (d, J = 3.0 Hz, 1H), 5.86 (t, J = 2.0 Hz, 1H), 5.74 (d, J = 16.0 and 5.0 Hz, 1H), 4.12 (dt, J = 16.0 and 2.5 Hz, 1H), 3.77 (s, 3H), 1.62 s, 3H); 13 C-NMR (125 MHz, CDCl 3 ): d 161.0, 154.5, 154.1, 151.7, 137.5, 131.5, 129.5, 128.5, 125.7, 124.9, 115.7, 113.1, 108.0, 103.3, 79.0, 55.6, 50.3, 27.7, 27.0
1f1f
Figure 112017103861517-pat00013
Figure 112017103861517-pat00013
391.43391.43 392.10392.10 1H-NMR (500 MHz, CDCl3): d 7.64 (d, J = 7.0 Hz, 2H), 7.53 (t, J = 7.0 Hz, 2H), 7.43 (t, J = 7.0 Hz, 1H), 6.86 (d, J = 8.0 Hz, 1H), 6.77 (d, J = 8.0 Hz, 1H), 6.61 (s, 1H), 5.76 (q, J = 2.5 Hz, 1H), 5.67 (s, 1H), 4.30 (dd, J = 16.5 and 5.0 Hz, 1H), 4.13 (dd, J = 16.5 and 2.5 Hz, 1H), 3,74 (s, 3H), 1.53 (s, 3H), 1.42 (s, 3H); 13C-NMR (125 MHz, CDCl3): d154.9, 153.6, 151.6, 147.1, 139.3, 131.4, 129.4, 128.5, 126.1, 125.6, 119.0, 114.1, 112.6, 109.1, 79.6, 55.9, 51.2, 44.1, 28.4, 27.3 1 H-NMR (500 MHz, CDCl 3): d 7.64 (d, J = 7.0 Hz, 2H), 7.53 (t, J = 7.0 Hz, 2H), 7.43 (t, J = 7.0 Hz, 1H), 6.86 (d, J = 8.0 Hz, 1H), 6.77 (d, J = 8.0 Hz, 1H), 6.61 (s, 1H), 5.76 (q, J = 2.5 Hz, 1H), 5.67 (s, 1H), 4.30 (dd, J = 16.5 and 5.0 Hz, 1H), 4.13 (dd, J = 16.5 and 2.5 Hz, 1H), 3.74 (s, 3H), 1.53 (s, 3H), 1.42 (s, 3H); 13 C-NMR (125 MHz, CDCl 3): d154.9, 153.6, 151.6, 147.1, 139.3, 131.4, 129.4, 128.5, 126.1, 125.6, 119.0, 114.1, 112.6, 109.1, 79.6, 55.9, 51.2, 44.1, 28.4, 27.3
1g1g
Figure 112017103861517-pat00014
Figure 112017103861517-pat00014
421.45421.45 422.11422.11 1H-NMR (500 MHz, CDCl3): d 7.60 (d, J = 7.5 Hz, 2H), 7.53 (t, J = 7.5 Hz, 2H), 7.43 (t, J = 7.5 Hz, 1H), 6.76 (s, 1H), 6.46 (s, 1H), 5.88 (t, J = 2.5 Hz, 1H), 5.74 (s, 1H), 4.32 (dd, J = 16.5 and 5.0 Hz, 1H), 4.13 (dt, J = 16.5 and 2.5 Hz, 1H), 3.83 (s, 3H), 3.78 (s, 3H), 1.61 (s, 3H), 1.59 (s, 3H) 1 H-NMR (500 MHz, CDCl 3): d 7.60 (d, J = 7.5 Hz, 2H), 7.53 (t, J = 7.5 Hz, 2H), 7.43 (t, J = 7.5 Hz, 1H), 6.76 (s, 1H), 6.46 ( s, 1H), 5.88 (t, J = 2.5 Hz, 1H), 5.74 (s, 1H), 4.32 (dd, J = 16.5 and 5.0 Hz, 1H), 4.13 (dt, J = 16.5 and 2.5 Hz, 1H ), 3.83 (s, 3H), 3.78 (s, 3H), 1.61 (s, 3H), 1.59 (s, 3H)
1h1h
Figure 112017103861517-pat00015
Figure 112017103861517-pat00015
407.43407.43 408.11408.11 1H-NMR (500 MHz, CDCl3): d 7.62 (d, J = 7.5 Hz, 2H), 7.52 (t, J = 8.0 Hz, 2H), 7.41 (t, J = 7.5 Hz, 1H), 6.58 (d, J = 9.0 Hz, 1H), 6.53 (d, J = 8.5 Hz, 1H), 5.84 (t, J = 2.5 Hz, 1H), 5.73 (s, 1H), 5.44 (br.s, 1H), 4.31 (dd, J = 16.5 and 5.0 Hz, 1H), 4.09 (dt, J = 16.5 and 2.5 Hz, 1H), 3.86 (s, 3H), 1.65 (s, 3H), 1.63 (s, 3H); 13C-NMR (125 MHz, CDCl3): d154.0, 151.7, 147.5, 140.7, 138.0, 135.3, 131.4, 129.5, 128.6, 125.7, 117.9, 113.6, 113.4, 105.0, 80.4, 56.5, 50.4, 44.5, 28.0, 27.3 1 H-NMR (500 MHz, CDCl 3): d 7.62 (d, J = 7.5 Hz, 2H), 7.52 (t, J = 8.0 Hz, 2H), 7.41 (t, J = 7.5 Hz, 1H), 6.58 (d, J = 9.0 Hz, 1H), 6.53 (d, J = 8.5 Hz, 1H), 5.84 (t, J = 2.5 Hz, 1H) , 4.31 (dd, J = 16.5 and 5.0 Hz, 1H), 4.09 (dt, J = 16.5 and 2.5 Hz, 1H), 3.86 (s, 3H), 1.65 (s, 3H), 1.63 (s, 3H); 13 C-NMR (125 MHz, CDCl 3): d154.0, 151.7, 147.5, 140.7, 138.0, 135.3, 131.4, 129.5, 128.6, 125.7, 117.9, 113.6, 113.4, 105.0, 80.4, 56.5, 50.4, 44.5, 28.0, 27.3
1i1i
Figure 112017103861517-pat00016
Figure 112017103861517-pat00016
460.53460.53 460.91460.91 1H-NMR (500 MHz, CDCl3): d 7.62 (d, J = 8.5 Hz, 2H), 7.52 (t, J = 7.5 Hz, 2H), 7.44 (t, J = 7.5 Hz, 1H), 6.93 (t, J = 9.0 Hz, 1H), 6.53 (dd, J = 8.5 and 2.0 Hz, 1H), 6.46 (d, J = 2.0 Hz, 1H), 5.92 (t, J = 2.5 Hz, 1H), 5.61 (s, 1H), 4.30 (dd, J = 16.5 and 5.0 Hz, 1H), 4.11 (dt, J = 16.5 and 2.5 Hz, 1H), 3.12 (q, J = 7.5 Hz, 2H), 2.92-2.89 (m, 2H), 2.34-3.39 (m, 2H), 2.18-2.03 (m, 2H), 1.87-1.78 (m, 2H), 1.37-1.32 (m, 2H), 1.23 (q, J = 7.5 Hz, 3H), 1.08 (d, J = 7.5Hz, 18H), 1.01 (t, J = 7.5 Hz, 3H) 1 H-NMR (500 MHz, CDCl 3): d 7.62 (d, J = 8.5 Hz, 2H), 7.52 (t, J = 7.5 Hz, 2H), 7.44 (t, J = 7.5 Hz, 1H), 6.93 (t, J = 9.0 Hz, 1H), 6.53 (dd, J = 8.5 and 2.0 Hz, 1H), 6.46 (d, J = 2.0 Hz, 1H), 5.92 (t, J = 2.5 Hz, 1H), 5.61 (s, 1H), 4.30 ( dd, J = 16.5 and 5.0 Hz, 1H), 4.11 (dt, J = 16.5 and 2.5 Hz, 1H), 3.12 (q, J = 7.5 Hz, 2H), 2.92-2.89 ( 2H), 1.23 (q, J = 7.5 Hz, 2H), 2.34-3.39 (m, 2H), 2.18-2.03 (m, 2H), 1.87-1.78 3H), 1.08 (d, J = 7.5Hz, 18H), 1.01 (t, J = 7.5 Hz, 3H)
1j1j
Figure 112017103861517-pat00017
Figure 112017103861517-pat00017
460.49460.49 460.94460.94 1H-NMR (500 MHz, CDCl3): d 7.63 (d, J = 7.5 Hz, 2H), 7.53 (t, J = 7.5 Hz, 2H), 7.42 (t, J = 7.5 Hz, 1H), 6.95 (d, J = 8.0 Hz, 1H), 6.51 (dd, J = 8.5 and 2.0 Hz, 1H), 6.48 (d, J = 2.0 Hz, 1H), 5.80 (t, J = 2.0 Hz, 1H), 5.68 (s, 1H), 4.32 (dd, J = 16.5 and 5.0 Hz, 1H), 4.12 (d, J = 16.5 Hz, 1H), 3.46-3.37 (m, 2H), 3.35-3.18 (m, 2H), 2.17-2.13(m, 2H), 1.92-1.78 (m, 2H), 1.50 (s, 9H), 1.23 (q, J = 7.5 Hz, 3H), 1.08 (d, J = 7.5Hz, 18H) 1 H-NMR (500 MHz, CDCl 3): d 7.63 (d, J = 7.5 Hz, 2H), 7.53 (t, J = 7.5 Hz, 2H), 7.42 (t, J = 7.5 Hz, 1H), 6.95 (d, J = 8.0 Hz, 1H), 6.51 (dd, J = 8.5 and 2.0 Hz, 1H), 6.48 (d, J = 2.0 Hz, 1H), 5.80 (t, J = 2.0 Hz, 1H), 5.68 (d, J = 16.5 and 5.0 Hz, 1H), 4.12 (d, J = 16.5 Hz, 1H), 3.46-3.37 (m, 2H), 3.35-3.18 2.17-2.13 (m, 2H), 1.92-1.78 (m, 2H), 1.50 (s, 9H), 1.23 (q, J = 7.5 Hz, 3H), 1.08 (d, J = 7.5Hz, 18H)

화합물 2a 내지 2o의 제조Preparation of compounds 2a to 2o

화합물 2a 내지 2o를 하기 반응식 2에 따라 합성하였다.Compounds 2a to 2o were synthesized according to Reaction Scheme 2 below.

[반응식 2][Reaction Scheme 2]

Figure 112019035373432-pat00018
Figure 112019035373432-pat00018

상시 실시예 1에서 [반응식 1]의 a)~e)단계를 이용하여 제조된 다이엔 화합물을 시작으로, g)단계에서는 톨루엔/THF 혼합 용매 하에서 다양한 R 작용기를 가지는 트리아졸린디온 유도체를 첨가하여 반응시키고, h)단계에서는 THF 용매 하에서 불산-피리딘 혼합물로 OH 작용기를 탈보호화시켜 최종 화합물 2a 내지 2o를 얻었다.Starting from the diene compound prepared in step a) through e) of Scheme 1 in step 1), in step g), a triazole dione derivative having various R-functional groups was added in a toluene / THF mixed solvent In step h), the OH functional group is deblocked with a fluoric acid-pyridine mixture in a THF solvent to obtain the final compound 2a to 2o.

하기 표 2는 상기 반응식을 통해 제조된 화합물 2a 내지 2o 의 구조, 분자량, MS 분석값 및 NMR을 나타낸다.Table 2 shows the structure, molecular weight, MS analysis value and NMR of the compounds 2a to 2o prepared through the above reaction formula.

화합물compound 구조rescue 분자량Molecular Weight MS 분석값 MS analysis value
(분자량 +H+)(Molecular weight + H + )
NMRNMR
2a2a

Figure 112019035373432-pat00019
Figure 112019035373432-pat00019
315.33315.33 315.91315.91 1H-NMR (500 MHz, CDCl3): d 6.82 (d, J = 8.5 Hz, 1H), 6.46 (dd, J = 8.0 and 2.5 Hz, 1H), 6.41 (d, J = 2.5 Hz, 1H), 5.77 (t, J = 2.5 Hz, 1H), 5.61 (s, 1H), 4.21 (dd, J = 16.5 and 5.0 Hz, 1H), 3.96 (dt, J = 16.5 and 2.5 Hz, 1H), 3.23 (s, 3H), 1.57 (s, 3H), 1.56 (s, 3H), 1.23 (q, J = 7.5 Hz, 3H), 1.08 (d, J = 7.5Hz, 18H); 13C-NMR (125 MHz, CDCl3): d 157.3, 155.7, 154.2, 153.0, 137.9, 124.3, 116.6, 113.5, 112.9, 109.5, 79.0, 50.2, 44.3, 27.8, 27.1, 25.6, 18.1, 12.8. 1 H-NMR (500 MHz, CDCl 3): d 6.82 (d, J = 8.5 Hz, 1H), 6.46 (dd, J = 8.0 and 2.5 Hz, 1H), 6.41 (d, J = 2.5 Hz, 1H) , 5.77 (t, J = 2.5 Hz, 1H), 5.61 (s, 1H), 4.21 (dd, J = 16.5 and 5.0 Hz, 1H), 3.96 (dt, J = 16.5 and 2.5 Hz, 1H), 3.23 ( (s, 3H), 1.57 (s, 3H), 1.56 (s, 3H), 1.23 (q, J = 7.5 Hz, 3H), 1.08 (d, J = 7.5 Hz, 18H); 13 C-NMR (125 MHz, CDCl 3 ): d 157.3, 155.7, 154.2, 153.0, 137.9, 124.3, 116.6, 113.5, 112.9, 109.5, 79.0, 50.2, 44.3, 27.8, 27.1, 25.6, 18.1, 12.8. 2b2b
Figure 112019035373432-pat00020
Figure 112019035373432-pat00020
391.43391.43 391.01 [M]+ 391.01 [M] < + & gt ; 1H-NMR (500 MHz, CDCl3): d 7.48 (d, J = 8.0 Hz, 2H), 7.37-7.30 (m, 3H), 6.68 (d, J = 8.5 Hz, 1H), 6.38 (d, J = 2.0 Hz, 1H), 6.34 (dd, J = 8.5 and 2.0 Hz, 1H), 5.74 (t, J = 2.5 Hz, 1H), 5.56 (s, 1H), 4.82 (d, J = 4.5 Hz, 2H), 4.19 (dd, J = 16.5 and 5.0 Hz, 1H), 3.95 (dt, J = 16.5 and 2.5 Hz, 1H), 1.55 (s, 3H), 1.54 (s, 3H), 1.23 (q, J = 7.5 Hz, 3H), 1.10 (d, J = 7.5Hz, 18H). 1 H-NMR (500 MHz, CDCl 3): d 7.48 (d, J = 8.0 Hz, 2H), 7.37-7.30 (m, 3H), 6.68 (d, J = 8.5 Hz, 1H), 6.38 (d, J = 2.0 Hz, 1H), 6.34 (dd, J = 8.5 and 2.0 Hz, 1H), 5.74 (t, J = 2.5 Hz, 1H), 5.56 (s, 1H), 4.82 (d, J = 4.5 Hz, 2H), 4.19 (dd, J = 16.5 and 5.0 Hz, 1H), 3.95 (dt, J = 16.5 and 2.5 Hz, 1H), 1.55 (s, 3H), 1.54 (s, 3H), 1.23 (q, J = 7.5 Hz, 3H), 1.10 (d, J = 7.5 Hz, 18H).
2c2c
Figure 112019035373432-pat00021
Figure 112019035373432-pat00021
383.45383.45 384.01384.01 1H-NMR (500 MHz, CDCl3): d 6.75 (d, J = 8.5 Hz, 1H), 6.45 (dd, J = 8.5 and 2.5 Hz, 1H), 6.40 (d, J = 2.0 Hz, 1H), 5.73 (t, J = 2.5 Hz, 1H), 5.55 (s, 1H), 4.15 (dd, J = 16.0 and 5.0 Hz, 1H), 4.02 (tt, J = 10.0 and 3.0 Hz, 1H), 3.92 (dt, J = 16.0 and 2.5 Hz, 1H), 2.23 (t, J = 2.5 Hz, 2H), 1.90-1.83 (m, 6H), 1.71-1.67 (m, 2H), 1.56 (s, 3H), 1.53 (s, 3H), 1.23 (q, J = 7.5 Hz, 3H), 1.08 (d, J = 7.5Hz, 18H). 1 H-NMR (500 MHz, CDCl 3): d 6.75 (d, J = 8.5 Hz, 1H), 6.45 (dd, J = 8.5 and 2.5 Hz, 1H), 6.40 (d, J = 2.0 Hz, 1H) , 5.73 (t, J = 2.5 Hz, 1H), 5.55 (s, 1H), 4.15 (dd, J = 16.0 and 5.0 Hz, 1H), 4.02 (tt, J = 10.0 and 3.0 Hz, 1H), 3.92 ( (d, J = 16.0 and 2.5 Hz, 1H), 2.23 (t, J = 2.5 Hz, 2H), 1.90-1.83 (m, 6H), 1.71-1.67 (s, 3H), 1.23 (q, J = 7.5 Hz, 3H), 1.08 (d, J = 7.5 Hz, 18H).
2d2d
Figure 112019035373432-pat00022
Figure 112019035373432-pat00022
503.30503.30 503.86503.86 1H-NMR (500 MHz, CDCl3): d 8.02 (t, J = 8.0 Hz, 1H), 7.52 (d, J = 7.5 Hz, 1H), 7.42 (d, J = 7.5 Hz, 1H), 7.36 (t, J = 7.5 Hz, 1H), 6.97 (d, J = 8.5 Hz, 1H), 6.49 (dd, J = 8.5 and 2.0 Hz, 1H), 6.44 (d, J = 2.0 Hz, 1H), 5.83 (t, J = 2.5 Hz, 1H), 5.73 (s, 1H), 4.32 (dd, J = 16.5 and 5.0 Hz, 1H), 4.12 (dt, J = 16.5 and 2.5 Hz, 1H), 1.61 (s, 3H), 1.60 (s, 3H), 1.23 (q, J = 7.5 Hz, 3H), 1.08 (d, J = 7.5Hz, 18H) 1 H-NMR (500 MHz, CDCl 3): d 8.02 (t, J = 8.0 Hz, 1H), 7.52 (d, J = 7.5 Hz, 1H), 7.42 (d, J = 7.5 Hz, 1H), 7.36 (t, J = 7.5 Hz, 1H), 6.97 (d, J = 8.5 Hz, 1H), 6.49 (dd, J = 8.5 and 2.0 Hz, 1H), 6.44 (d, J = 2.0 Hz, 1H), 5.83 (t, J = 2.5 Hz, 1H), 5.73 (s, 1H), 4.32 (dd, J = 16.5 and 5.0 Hz, 1H), 4.12 (dt, J = 16.5 and 2.5 Hz, 1H), 1.61 (s, J = 7.5 Hz, 3H), 1.08 (d, J = 7.5 Hz, 18H)
2e2e
Figure 112019035373432-pat00023
Figure 112019035373432-pat00023
407.43407.43 408.2408.2 1H NMR (400 MHz, DMSO-d6 ): d 9.47 (s, 1H), 7.53 (t, J = 7.8 Hz, 1H), 7.41 (d, J = 8.0 Hz, 1H), 7.26 (d, J = 8.8 Hz, 1H), 7.11 (t, J = 7.6 Hz, 1H), 6.91 (d, J = 8.4 Hz, 1H), 6.38-6.42 (m, 1H), 6.27 (s, 1H), 5.93 (s, 1H), 5.58 (s, 1H), 4.02-4.24 (m, 2H), 3.88 (s, 3H), 1.55 (s, 3H), 1.51 (s, 3H) (more stable conformer); 13C NMR (100 MHz, DMSO-d6 ): δ 158.2, 158.2, 155.4, 154.0, 153.9, 151.4, 136.5, 131.2, 130.4, 123.7, 120.7, 119.4, 114.8, 112.5, 104.3, 104.2, 79.2, 56.0, 49.3, 44.1, 27.3, 26.8 1 H NMR (400 MHz, DMSO- d 6): d 9.47 (s, 1H), 7.53 (t, J = 7.8 Hz, 1H), 7.41 (d, J = 8.0 Hz, 1H), 7.26 (d, J = 8.8 Hz, 1H), 7.11 (t, J = 7.6 Hz, 1H), 6.91 (d, J = 8.4 Hz, 1H), 6.38-6.42 , 1.58 (s, 3H), 1.58 (s, 3H) (more stable conformal); 5.58 (s, 1H), 4.02-4.24 (m, 2H), 3.88 13 C NMR (100 MHz, DMSO- d 6): δ 158.2, 158.2, 155.4, 154.0, 153.9, 151.4, 136.5, 131.2, 130.4, 123.7, 120.7, 119.4, 114.8, 112.5, 104.3, 104.2, 79.2, 56.0, 49.3, 44.1, 27.3, 26.8
2f2f
Figure 112019035373432-pat00024
Figure 112019035373432-pat00024
407.43407.43 407.98407.98 1H-NMR (500 MHz, CDCl3): d7.43 (t, J = 8.0 Hz, 1H), 7.24 (d, J = 9.0 Hz, 1H), 7.20 (t, J = 2.0 Hz, 1H), 6.97 (dd, J = 8.5 and 2.5 Hz, 1H), 6.93 (d, J = 8.5 Hz, 1H), 6.48 (dd, J = 8.5 and 2.5 Hz, 1H), 6.44 (d, J = 2.0 Hz, 1H), 5.81 (t, J = 2.5 Hz, 1H), 5.70 (s, 1H), 4.31 (dd, J = 16.5 and 5.0 Hz, 1H), 4.10 (dt, J = 16.5 and 2.5 Hz, 1H), 3.87 (s, 3H), 1.60 (s, 3H), 1.59 (s, 3H), 1.23 (q, J = 7.5 Hz, 3H), 1.08 (d, J = 7.5Hz, 18H) 1 H-NMR (500 MHz, CDCl 3): d7.43 (t, J = 8.0 Hz, 1H), 7.24 (d, J = 9.0 Hz, 1H), 7.20 (t, J = 2.0 Hz, 1H), 6.97 (dd, J = 8.5 and 2.5 Hz, 1H), 6.93 (d, J = 8.5 Hz, 1H), 6.48 (dd, J = 8.5 and 2.5 Hz, 1H), 6.44 (d, J = 2.0 Hz, 1H J = 16.5 and 2.5 Hz, 1H), 3.81 (dd, J = 16.5 and 5.0 Hz, 1H), 5.81 (t, J = 2.5 Hz, 1H) (s, 3H), 1.60 ( s, 3H), 1.59 (s, 3H), 1.23 (q, J = 7.5 Hz, 3H), 1.08 (d, J = 7.5Hz, 18H)
2g2g
Figure 112019035373432-pat00025
Figure 112019035373432-pat00025
407.43407.43 407.92407.92 1H-NMR (500 MHz, CDCl3): d 7.51 (d, J = 10.0 Hz, 2H), 7.03 (d, J = 10.0 Hz, 2H), 6.91 (d, J = 8.0 Hz, 1H), 6.47 (dd, J = 8.5 and 2.0 Hz, 1H), 6.42 (d, J = 2.5 Hz, 1H), 5.80 (t, J = 2.5 Hz, 1H), 5.68 (s, 1H), 4.30 (dd, J = 16.5 and 5.0 Hz, 1H), 4.08 (dt, J = 16.5 and 2.5 Hz, 1H), 3.85 (s, 3H), 1.58 (s, 3H), 1.57 (s, 3H), 1.23 (q, J = 7.5 Hz, 3H), 1.08 (d, J = 7.5Hz, 18H). 1 H-NMR (500 MHz, CDCl 3): d 7.51 (d, J = 10.0 Hz, 2H), 7.03 (d, J = 10.0 Hz, 2H), 6.91 (d, J = 8.0 Hz, 1H), 6.47 (dd, J = 8.5 and 2.0 Hz, 1H), 6.42 (d, J = 2.5 Hz, 1H), 5.80 (t, J = 2.5 Hz, 1H), 5.68 (s, 1H), 4.30 (dd, J = (S, 3H), 1.57 (s, 3H), 1.23 (q, J = 7.5 Hz, 1H), 4.08 (dt, J = 16.5 and 2.5 Hz, Hz, 3H), 1.08 (d, J = 7.5 Hz, 18H).
2h2h
Figure 112019035373432-pat00026
Figure 112019035373432-pat00026
395.39395.39 393.82
[M-H]-
393.82
[MH] -
1H-NMR (500 MHz, CDCl3): d 7.62 (dt, J = 7.0 and 2.5 Hz, 2H), 7.20 (t, J = 8.5 Hz, 2H), 6.90 (d, J = 8.5 Hz, 1H), 6.47 (dd, J = 8.5 and 2.0 Hz, 1H), 6.43 (d, J = 2.0 Hz, 1H), 5.80 (t, J = 2.5 Hz, 1H), 5.68 (s, 1H), 4.29 (dd, J = 16.5 and 5.0 Hz, 1H), 4.09 (dt, J = 16.5 and 2.5 Hz, 1H), 1.59 (s, 3H), 1.57 (s, 3H), 1.23 (q, J = 7.5 Hz, 3H), 1.08 (d, J = 7.5Hz, 18H); 13C-NMR (125 MHz, CDCl3): d163.2, 161.2, 157.4, 154.2, 153.9, 151.6, 137.9, 127.6(d), 124.3, 116.6, 116.4, 113.6, 112.7, 109.6, 79.1, 50.5, 44.4, 27.9, 27.1, 18.1, 12.8. 1 H-NMR (500 MHz, CDCl 3): d 7.62 (dt, J = 7.0 and 2.5 Hz, 2H), 7.20 (t, J = 8.5 Hz, 2H), 6.90 (d, J = 8.5 Hz, 1H) , 6.47 (dd, J = 8.5 and 2.0 Hz, 1H), 6.43 (d, J = 2.0 Hz, 1H), 5.80 (t, J = 2.5 Hz, 1H), 5.68 (s, 1H), 4.29 (dd, J = 16.5 and 5.0 Hz, 1H ), 4.09 (dt, J = 16.5 and 2.5 Hz, 1H), 1.59 (s, 3H), 1.57 (s, 3H), 1.23 (q, J = 7.5 Hz, 3H), 1.08 (d, J = 7.5 Hz, 18 H); 13 C-NMR (125 MHz, CDCl 3): d163.2, 161.2, 157.4, 154.2, 153.9, 151.6, 137.9, 127.6 (d), 124.3, 116.6, 116.4, 113.6, 112.7, 109.6, 79.1, 50.5, 44.4 , 27.9, 27.1, 18.1, 12.8.
2i2i
Figure 112019035373432-pat00027
Figure 112019035373432-pat00027
391.43391.43 391.1535 [M]+ 391.1535 [M] < + & gt ; 1H-NMR (500 MHz, CDCl3): d 7.46 (d, J = 8.5 Hz, 2H), 7.31 (d, J = 8.5 Hz, 2H), 6.90 (d, J = 8.5 Hz, 1H), 6.36 (dd, J = 8.5 and 2.5 Hz, 1H), 6.33 (d, J = 2.5 Hz, 1H), 5.81 (t, J = 2.5 Hz, 1H), 5.68 (s, 1H), 5.44 (br.s, 1H), 4.29 (dd, J = 16.5 and 5.0 Hz, 1H), 4.08 (dt, J = 16.5 and 2.5 Hz, 1H), 2.40 (s, 3H), 1.57(s, 6H); 13C-NMR (125 MHz, CDCl3): d 157.3 154.2, 154.1, 151.8, 138.8 137.4, 130.0, 128.3, 125.7, 124.5, 115.3, 112.6, 109.1, 105.0, 78.9, 50.2, 44.3, 27.6, 26.8, 21.3 1 H-NMR (500 MHz, CDCl 3): d 7.46 (d, J = 8.5 Hz, 2H), 7.31 (d, J = 8.5 Hz, 2H), 6.90 (d, J = 8.5 Hz, 1H), 6.36 (dd, J = 8.5 and 2.5 Hz, 1H), 6.33 (d, J = 2.5 Hz, 1H), 5.81 (t, J = 2.5 Hz, 1H), 5.68 (s, 1H), 5.44 (br.s, 1H), 4.29 (dd, J = 16.5 and 5.0 Hz, 1H), 4.08 (dt, J = 16.5 and 2.5 Hz, 1H), 2.40 (s, 3H), 1.57 (s, 6H); 13 C-NMR (125 MHz, CDCl 3 ): d 157.3 154.2, 154.1, 151.8, 138.8 137.4, 130.0, 128.3, 125.7, 124.5, 115.3, 112.6, 109.1, 105.0, 78.9, 50.2, 44.3, 27.6,
2j2j
Figure 112019035373432-pat00028
Figure 112019035373432-pat00028
419.44419.44 420.1420.1 1H NMR (400 MHz, DMSO-d6 ): δ 9.47 (s, 1H), 8.13 (d, J = 8.0 Hz, 2H), 7.79 (d, J = 8.8 Hz, 2H), 6.87 (d, J = 8.4 Hz, 1H), 6.37 (dd, J = 8.8 Hz, 2.0 Hz, 1H), 6.25 (d, J = 1.6 Hz, 1H), 5.95 (s, 1H), 5.61 (s, 1H), 4.11-4.25 (m, 2H), 2.64 (s, 3H), 1.54 (s, 3H), 1.51 (s, 3H); 13C NMR (100 MHz, DMSO-d6 ): δ 197.2, 158.2, 153.8, 153.3, 150.5, 136.0, 135.8, 135.6, 128.9, 125.7, 124.5, 114.6, 113.6, 108.6, 104.1, 79.0, 49.3, 44.0, 27.4, 26.9, 26.8 1 H NMR (400 MHz, DMSO- d 6): δ 9.47 (s, 1H), 8.13 (d, J = 8.0 Hz, 2H), 7.79 (d, J = 8.8 Hz, 2H), 6.87 (d, J = 8.4 Hz, 1H), 6.37 (dd, J = 8.8 Hz, 2.0 Hz, 1H), 6.25 (d, J = 1.6 Hz, 1H), 5.95 (s, 1H), 5.61 (s, 1H), 4.11- 4.25 (m, 2H), 2.64 (s, 3H), 1.54 (s, 3H), 1.51 (s, 3H); 13 C NMR (100 MHz, DMSO- d 6): δ 197.2, 158.2, 153.8, 153.3, 150.5, 136.0, 135.8, 135.6, 128.9, 125.7, 124.5, 114.6, 113.6, 108.6, 104.1, 79.0, 49.3, 44.0, 27.4, 26.9, 26.8
2k2k
Figure 112019035373432-pat00029
Figure 112019035373432-pat00029
421.41421.41 422.1422.1 1H NMR (400 MHz, CDCl3): δ 7.00-7.04 (m, 2H), 6.83-6.92 (m, 2H), 6.31-6.36 (m, 2H), 6.07 (s, 1H), 6.02 (s, 2H), 5.78-5.81 (m, 1H), 5.66 (s, 1H), 4.24-4.30 (m, 1H), 4.04-4.10 (m, 1H), 1.78 (s, 6H); 13C NMR (100 MHz, CDCl3): δ 157.2, 154.3, 154.1, 151.8, 148.3, 147.9, 137.4, 124.6, 124.4, 120.1, 115.4, 112.7, 109.0, 108.6, 107.4, 105.0, 102.0, 78.9, 50.2, 44.3, 27.6, 26.9 1 H NMR (400 MHz, CDCl 3): δ 7.00-7.04 (m, 2H), 6.83-6.92 (m, 2H), 6.31-6.36 (m, 2H), 6.07 (s, 1H), 6.02 (s, 2H), 5.78-5.81 (m, IH), 5.66 (s, IH), 4.24-4.30 (m, IH), 4.04-4.10 (m, IH), 1.78 (s, 6H); 13 C NMR (100 MHz, CDCl 3): δ 157.2, 154.3, 154.1, 151.8, 148.3, 147.9, 137.4, 124.6, 124.4, 120.1, 115.4, 112.7, 109.0, 108.6, 107.4, 105.0, 102.0, 78.9, 50.2, 44.3, 27.6, 26.9
2l2l
Figure 112019035373432-pat00030
Figure 112019035373432-pat00030
437.45437.45 438.1438.1 1H NMR (400 MHz, DMSO-d6 ): δ 9.46 (s, 1H), 6.84 (d, J = 8.4 Hz, 1H), 6.77 (d, J = 2.4 Hz, 2H), 6.614 (s, 1H), 6.38 (dd, J = 8.0 Hz, 2.2 Hz, 1H), 6.25 (d, J = 2.4 Hz, 1H), 5.94 (s, 1H), 5.57 (s, 1H), 4.07-4.22 (m, 2H), 3.79 (s, 6H), 1.53 (s, 3H), 1.50 (s, 3H); 13C NMR (100 MHz, DMSO-d6 ): δ 160.4, 158.2, 153.8, 153.7, 150.8, 136.1, 133.0, 124.4, 114.6, 113.6, 108.6, 105.0, 79.0, 55.6, 55.5, 49.2, 44.0, 27.3, 26.7 1 H NMR (400 MHz, DMSO- d 6): δ 9.46 (s, 1H), 6.84 (d, J = 8.4 Hz, 1H), 6.77 (d, J = 2.4 Hz, 2H), 6.614 (s, 1H ), 6.38 (dd, J = 8.0 Hz, 2.2 Hz, 1H), 6.25 (d, J = 2.4 Hz, 1H), 5.94 ), 3.79 (s, 6 H), 1.53 (s, 3 H), 1.50 (s, 3 H); 13 C NMR (100 MHz, DMSO- d 6): δ 160.4, 158.2, 153.8, 153.7, 150.8, 136.1, 133.0, 124.4, 114.6, 113.6, 108.6, 105.0, 79.0, 55.6, 55.5, 49.2, 44.0, 27.3, 26.7
2m2m
Figure 112019035373432-pat00031
Figure 112019035373432-pat00031
445.12445.12 446.0446.0 1H NMR (400 MHz, DMSO-d6 ): δ 9.47 (brs, 1H), 7.95 (d, J = 8.4 Hz, 2H), 7.89 (d, J = 8.8 Hz, 2H), 6.88 (d, J = 8.8 Hz, 1H), 6.37 (dd, J = 8.4 Hz, 1.6 Hz, 1H), 6.25 (d, J = 2.0 Hz, 1H), 5.95 (s, 1H), 5.61 (s, 1H), 4.16-4.23 (m, 2H), 1.54 (s, 3H), 1.51 (s, 3H); 13C NMR (100 MHz, DMSO-d6 ): δ 158.2, 153.8, 153.2, 150.4, 130.9, 135.2, 126.4, 126.1, 124.5, 114.5, 113.5, 108.6, 104.1, 79.2, 79.0, 49.3, 44.0, 27.4, 26.8 1 H NMR (400 MHz, DMSO- d 6): δ 9.47 (brs, 1H), 7.95 (d, J = 8.4 Hz, 2H), 7.89 (d, J = 8.8 Hz, 2H), 6.88 (d, J = 8.8 Hz, 1H), 6.37 (dd, J = 8.4 Hz, 1.6 Hz, 1H), 6.25 (d, J = 2.0 Hz, 1H), 5.95 (s, 1H), 5.61 (s, 1H), 4.16- 4.23 (m, 2 H), 1.54 (s, 3 H), 1.51 (s, 3 H); 13 C NMR (100 MHz, DMSO- d 6): δ 158.2, 153.8, 153.2, 150.4, 130.9, 135.2, 126.4, 126.1, 124.5, 114.5, 113.5, 108.6, 104.1, 79.2, 79.0, 49.3, 44.0, 27.4, 26.8
2n2n
Figure 112019035373432-pat00032
Figure 112019035373432-pat00032
433.51433.51 433.96433.96 1H-NMR (500 MHz, CDCl3): d 7.53 (s, 4H), 6.91 (d, J = 8.5 Hz, 1H), 6.46 (dd, J = 8.5 and 2.5 Hz, 1H), 6.42 (d, J = 2.5 Hz, 1H), 5.80 (t, J = 2.5 Hz, 1H), 5.69 (s, 1H), 4.31 (dd, J = 16.5 and 5.0 Hz, 1H), 4.08 (dt, J =16.5 and 2.5 Hz, 1H), 1.59 (s, 3H), 1.57 (s, 3H), 1.35 (s, 9H), 1.23 (q, J = 7.5 Hz, 3H), 1.08 (d, J = 7.5Hz, 18H); 13C-NMR (125 MHz, CDCl3): d157.3, 154.2, 151.9, 151.6, 147.9, 128.7, 126.5, 125.3, 124.4, 116.5, 113.6, 112.8, 109.6, 79.1, 50.5, 44.5, 35.0, 31.5, 29.9, 27.9, 27.1, 18.1, 12.9 1 H-NMR (500 MHz, CDCl 3): d 7.53 (s, 4H), 6.91 (d, J = 8.5 Hz, 1H), 6.46 (dd, J = 8.5 and 2.5 Hz, 1H), 6.42 (d, J = 2.5 Hz, 1H), 5.80 (t, J = 2.5 Hz, 1H), 5.69 (s, 1H), 4.31 (dd, J = 16.5 and 5.0 Hz, 1H), 4.08 (dt, J = 16.5 and 2.5 Hz, 1H), 1.59 (s, 3H), 1.57 (s, 3H), 1.35 (s, 9H), 1.23 (q, J = 7.5 Hz, 3H), 1.08 (d, J = 7.5 Hz, 18H); 1 H NMR (125 MHz, CDCl 3 ): d 157 7.3, 154.2, 151.9, 151.6, 147.9, 128.7, 126.5, 125.3, 124.4, 116.5, 113.6, 112.8, 109.6, 79.1, 50.5, 44.5, 35.0, 31.5, 29.9, 27.9, 27.1, 18.1, 12.9
2o2o
Figure 112019035373432-pat00033
Figure 112019035373432-pat00033
433.51433.51 434.2434.2 1H NMR (400 MHz, CDCl3): δ 7.48 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 8.4 Hz, 2H), 6.88 (d, J = 8.0 Hz, 1H), 6.32-6.37 (m, 2H), 5.78-5.81 (m, 2H), 5.68 (s, 1H), 4.28 (dd, J = 16.4 Hz, 4.4 Hz, 1H), 4.05-4.10 (m, 1H), 2.65 (t, J = 7.6 Hz, 2H), 1.55-1.64 (m, 2H), 1.56 (s, 6H), 1.37 (sextet, J = 7.5 Hz, 2H), 0.94 (t, J = 7.2 Hz, 2H); 13C NMR (100 MHz, CDCl3) : δ 157.1, 154.3, 154.1, 151.8, 143.6, 137.5, 129.4, 128.6, 125.5, 124.7, 115.6, 112.8, 109.0, 105.0, 79.0, 50.2, 44.3, 35.5, 33.6, 27.6, 26.9, 22.4, 14.1 1 H NMR (400 MHz, CDCl 3): δ 7.48 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 8.4 Hz, 2H), 6.88 (d, J = 8.0 Hz, 1H), 6.32- (M, 2H), 5.68 (s, 1H), 4.28 (dd, J = 16.4 Hz, 4.4 Hz, 1H), 4.05-4.10 J = 7.6 Hz, 2H), 1.55-1.64 (m, 2H), 1.56 (s, 6H), 1.37 (sextet, J = 7.5 Hz, 2H), 0.94 (t, J = 7.2 Hz, 2H); 13.1 C NMR (100 MHz, CDCl 3 ):? 157.1, 154.3, 154.1, 151.8, 143.6, 137.5, 129.4, 128.6, 125.5, 124.7, 115.6, 112.8, 109.0, 105.0, 79.0, 50.2, 44.3, 35.5, 33.6, 27.6, 26.9, 22.4, 14.1

[시험예 1][Test Example 1]

CLP 마우스 모델에서 화합물 1d의 염증 억제 효과Inhibitory Effect of Compound 1d on CLP Mouse Model

병원균이 숙주 생물에 침투하면 급성 염증 반응이 체내에서 시작되며, 염증 반응을 매개하는 주요 면역 세포 중 하나인 대식세포는 병원체를 인식하여 활성화되며, HMGB, TNF-α 및 IL-6 등 다양한 염증성 사이토카인의 분비를 유도한다.When pathogens infiltrate into host organisms, acute inflammatory reactions begin in the body. Macrophages, one of the major immune cells mediating the inflammatory response, are recognized to be activated by pathogens, and various inflammatory cytokines such as HMGB, TNF-α and IL- Causes the secretion of cine.

도 1에 나타난 바와 같이, LPS(Lipopolysaccharides)를 인식하여 대식세포가 활성화된 후, HMGB는 핵에서 세포질로 이동하여 세포 외 환경으로 방출된다. 전 염증성 사이토카인은 다른 인접한 대식세포를 활성화시키고 면역 반응의 양성 피드백 메커니즘을 개시한다.As shown in FIG. 1, after recognizing LPS (lipopolysaccharides) and activating macrophages, HMGB migrates from the nucleus to the cytoplasm and is released into the extracellular environment. Proinflammatory cytokines activate other nearby macrophages and initiate a positive feedback mechanism of the immune response.

반면, 화합물 1d가 처리된 경우, 억제된 면역 반응을 보이는 것을 알 수 있다.On the other hand, when Compound 1d is treated, it can be seen that the inhibited immune response is exhibited.

CLP 마우스 모델에 9일 동안 10mg/kg의 1일 투여량으로 화합물 1d를 복강 내 투여한 후, CLP 마우스의 생존율을 도 2에 나타내었다. 대조군의 생존율과 비교하여 화합물 1d 투여군의 생존율이 유의하게 증가되는 것을 확인하였다.The survival rate of CLP mice after intraperitoneal administration of compound 1d at a daily dose of 10 mg / kg for 9 days in the CLP mouse model is shown in Fig. It was confirmed that the survival rate of the compound 1d-treated group was significantly increased compared with the survival rate of the control group.

또한, CLP 마우스 모델에 CLP 유도 1시간 전부터 시작하여 9일 동안 10mg/kg의 일일 투여량으로 화합물 1d를 투여한 후의 생존율과 IL-6 수치를 도 3에 나타내었다. 도 3에서 보는 바와 같이, 대조군과 비교하여 화합물 1d 투여군에서 생존 마우스의 IL-6 수치가 현저히 감소되는 것을 확인하였다. In addition, the survival rate and the IL-6 level of compound 1d administered at a daily dosage of 10 mg / kg for 9 days starting from 1 hour before CLP induction in the CLP mouse model are shown in FIG. As shown in FIG. 3, IL-6 levels in surviving mice were significantly reduced in the compound 1d-treated group as compared with the control group.

결국, IL-6수치가 생존율과 높은 상관 관계를 보임을 알 수 있다.In conclusion, IL-6 levels are highly correlated with survival rates.

[시험예 2][Test Example 2]

화합물 1a 내지 1j의 염증 억제 효과The inflammation-inhibiting effect of the compounds 1a to 1j

염증이 유도되면 산화질소(nitric oxide)의 분비가 증가하고, 염증 억제 물질을 처리하면 산화질소의 분비가 억제된다. 따라서 Raw264.7 세포에서 그리스 어세이(Griess assay)를 이용하여 염증 억제 평가를 위한 산화질소 분비를 측정하였다. When inflammation is induced, the secretion of nitric oxide increases, and the treatment of inflammation inhibitor suppresses nitric oxide secretion. Therefore, the Griess assay was used to measure nitric oxide release in Raw264.7 cells for evaluation of inhibition of inflammation.

Raw264.7 세포 배양Raw264.7 cell culture

Raw 264.7 대식 세포를 10% (v/v)의 소태아혈청(fetal bovine serum, FBS)과 1% (v/v)의 항생제와 항진균(antimycotic) 용액이 포함된 DMEM(Dulbecco Modified Eagle Medium) 배지에서 배양하였다. 상기 세포를 표준 세포 배양 조건(37 °C, 5% CO2, humidified atmosphere)의 100 mm cell culture dish에서 배양하였다.Raw 264.7 macrophages were cultured in DMEM (Dulbecco Modified Eagle Medium) medium containing 10% (v / v) fetal bovine serum (FBS) and 1% (v / v) antibiotic and antimycotic solution Lt; / RTI > The cells were cultured in 100 mm cell culture dishes under standard cell culture conditions (37 ° C, 5% CO2, humidified atmosphere).

그리스 어세이(Griess assay)Griess assay

N-(1-나프틸) 에틸렌디아민 디하이드로클로라이드(N-(1-naphthyl) ethylenediamine dihydrocholoride) 0.1% (m/v), 설파닐 아마이드(sulfanilamide) 1% (m/v), 인산 (85%), 탈이온수 5% (v/v)를 이용하여 Griess 분석 시약을 제조하였다. 0.1% (m / v), sulfanilamide 1% (m / v), phosphoric acid (85%), N- (1-naphthyl) ethylenediamine dihydrocholoride, ) And deionized water 5% (v / v).

Raw264.7 세포를 투명한 96-well 플레이트에 파종(seed)하고 1일 동안 배양하였다. 배지가 흡수된 후, 각각의 well을 무혈청의 DMEM배지로 2회 세척(wash)하고 무혈청 DMEM 배지를 다시 채웠다. 이후, 100 ng/mL LPS 및 각 화합물로 처리하고 24시간 동안 배양했다.Raw 264.7 cells were seeded on a clear 96-well plate and cultured for 1 day. After the medium was absorbed, each well was washed twice with serum-free DMEM medium and the serum-free DMEM medium was replenished. Thereafter, cells were treated with 100 ng / mL LPS and each compound and incubated for 24 hours.

배양 후, 상등액 배양 배지를 새로운 96 well 플레이트로 옮기고, 50 μL의 그리이스(Griess) 분석 시약과 혼합하였다. 배지 및 시약의 혼합물을 처리한 well을 실온에서 수 분간 배양하였고, 548 nm에서 흡광도를 측정하였다.  After incubation, the supernatant culture medium was transferred to a new 96-well plate and mixed with 50 μL of Griess assay reagent. The wells treated with the medium and reagent mixture were incubated at room temperature for several minutes and absorbance was measured at 548 nm.

실험의 대조군으로서 LPS 및 DMSO를 처리한 well(2개) 및 DMSO만을 처리한 well(2개)을 만들고 blank 값을 측정하였다. Blank 값은 10% FBS 및 1% 항생제 및 항진균제를 포함한 DMEM 배지 50 μL와 Griess 분석 시약을 혼합하여 측정하였다.As a control group, two wells treated with LPS and DMSO and two wells treated with DMSO were prepared and blank values were measured. Blank values were determined by mixing 50 μL of DMEM medium containing 10% FBS and 1% antibiotic and antifungal agent and Griess analysis reagent.

상기 실험은 최소 3회 독립적으로 수행되었다.The experiment was performed at least three times independently.

화합물 1a 내지 1j를 각각 처리한 경우, 대조군과 비교하여 산화질소 방출의 억제율(%)을 확인하였으며, 그 결과를 하기 표 3에 나타내었다.When the compounds 1a to 1j were each treated, the inhibition rate (%) of nitric oxide release was confirmed as compared with the control group, and the results are shown in Table 3 below.

Figure 112019035373432-pat00034
Figure 112019035373432-pat00034

상기 표 3에서 나타낸 바와 같이, 화합물 1d는 Raw264.7 세포에서 NO 방출을 87%까지 억제하는 것을 확인하였다.As shown in Table 3, it was confirmed that Compound 1d inhibited NO release by 87% in Raw264.7 cells.

벤조피라닐 코어 구조의 치환기 R1 내지 R3를 변형한 화합물 1a 내지 1h는, NO 방출에 대한 억제율이 87%인 화합물 1d에 비해 NO 방출에 대한 억제 효능이 감소되는 것을 알 수 있다.Compounds 1a to 1h, in which the substituents R1 to R3 of the benzopyranyl core structure are modified, show that the inhibitory effect on NO release is reduced compared to compound 1d, which has an inhibition rate of 87% against NO release.

또한, 화합물 1d의 R4 위치에 있는 메틸기가 화합물 1i 및 1j와 같이 변형되면, NO 방출의 억제가 유의하게 감소되는 것을 알 수 있다.It can also be seen that when the methyl group at the R4 position of the compound 1d is modified like the compounds 1i and 1j, the inhibition of NO release is significantly reduced.

따라서, 화합물 1d의 치환기 R1 내지 R4가 염증 억제 효과에 가장 적절한 것임을 확인하였다.Therefore, it was confirmed that the substituents R1 to R4 of Compound 1d are most appropriate for the inflammation-inhibiting effect.

[시험예 3][Test Example 3]

테트라하이드로 피리다진 고리의 이중 결합을 이동 또는 제거한 화합물의 염증 억제 효과Inflammation-inhibiting effect of a compound in which a double bond of a tetrahydropyridazine ring is moved or removed

화합물 1d에서 테트라하이드로 피리다진 고리의 이중 결합을 이동 또는 제거한 화합물들에 대해 시험예 2와 동일한 방법으로 NO 방출의 억제율을 측정하여 도 4에 나타내었다.The inhibition rate of NO release was measured in the same manner as in Test Example 2 for the compounds in which the double bond of the tetrahydropyridazine ring was removed or removed from the compound 1d and is shown in FIG.

화합물 1d(A, 87%)에 비해 이중결합의 제거(B, 17%) 및 이중결합의 이동(C, 56%)으로 인한 NO 방출 억제율이 유의하게 감소되는 것을 확인하였다. 따라서, 이중 결합의 이동 또는 제거로 인한 NO 방출의 억제 효과는 오히려 감소하는 것을 알 수 있다.(B, 17%) and double bond migration (C, 56%) compared to compound 1d (A, 87%). Therefore, it can be seen that the inhibitory effect of NO release due to the migration or elimination of the double bonds is rather reduced.

[시험예 4][Test Example 4]

2a 내지 2o 화합물의 염증 억제 효과 (NO 방출의 억제율)The anti-inflammatory effect (rate of inhibition of NO release)

실시예 2에서 제조된 화합물 2a 내지 2o에 대한 염증 억제 효과를 확인하여 위하여, 시험예 2와 동일한 방법으로 NO 방출의 억제율을 측정하여 표 4에 나타내었다.In order to confirm the anti-inflammatory effect of the compounds 2a to 2o prepared in Example 2, the inhibition rate of NO release was measured in the same manner as in Test Example 2 and is shown in Table 4. [

화합물compound 구조rescue 산화질소 방출Nitric oxide release
억제율(%)% Inhibition
1d1d

Figure 112019035373432-pat00035
Figure 112019035373432-pat00035
8787 2a2a
Figure 112019035373432-pat00036
Figure 112019035373432-pat00036
4545
2b2b
Figure 112019035373432-pat00037
Figure 112019035373432-pat00037
7070
2c2c
Figure 112019035373432-pat00038
Figure 112019035373432-pat00038
6363
2d2d
Figure 112019035373432-pat00039
Figure 112019035373432-pat00039
4848
2e2e
Figure 112019035373432-pat00040
Figure 112019035373432-pat00040
6666
2f2f
Figure 112019035373432-pat00041
Figure 112019035373432-pat00041
9696
2g2g
Figure 112019035373432-pat00042
Figure 112019035373432-pat00042
8989
2h2h
Figure 112019035373432-pat00043
Figure 112019035373432-pat00043
8787
2i2i
Figure 112019035373432-pat00044
Figure 112019035373432-pat00044
9494
2j2j
Figure 112019035373432-pat00045
Figure 112019035373432-pat00045
9393
2k2k
Figure 112019035373432-pat00046
Figure 112019035373432-pat00046
9292
2l2l
Figure 112019035373432-pat00047
Figure 112019035373432-pat00047
9494
2m2m
Figure 112019035373432-pat00048
Figure 112019035373432-pat00048
8585
2n2n
Figure 112019035373432-pat00049
Figure 112019035373432-pat00049
9999
2o2o
Figure 112019035373432-pat00050
Figure 112019035373432-pat00050
9999

상기 표 4에서 보는 바와 같이, 화합물 1d와 비교하여, 오르쏘(Ortho) 위치에 치환기를 도입한 화합물 2d(63%) 및 2e(48%)는 NO 방출에 대해 억제효과가 향상되지 않았다. As shown in Table 4, Compounds 2d (63%) and 2e (48%) in which a substituent was introduced at the Ortho position did not have an inhibitory effect on NO release as compared with Compound 1d.

반면 메타(meta) 위치에 메톡시 치환기를 도입한 화합물 2f(96%) 및 파라(para)위치에 메톡시 치환기를 도입한 화합물 2g(89%)는 화합물 1d(87%)와 비교하여 NO 방출의 억제효과가 향상된 것을 확인하였다.Compounds 2f (96%) with a methoxy substituent at the meta position and 2g (89%) with a methoxy substituent at the para position have NO release And the inhibitory effect of < RTI ID = 0.0 >

결국, 화합물 2f, 2g 내지 2l, 2n 및 2o은 화합물 1d와 비교하여, NO 방출의 억제효과가 우수한 것을 알 수 있다.As a result, it can be seen that the compounds 2f, 2g to 2l, 2n and 2o are superior to the compound 1d in the suppression effect of NO release.

[시험예 5][Test Example 5]

2a 내지 2o 화합물의 비교 세포 활성도Comparative cell activity of 2a to 2o compounds

실시예 2에서 제조된 화합물 2a 내지 2o에 대한 비교 세포 활성도(relative cell viability)를 확인하여 위하여, WST(water-soluble tetrazolium) 분석을 이용하여 측정하였다.Soluble tetrazolium (WST) assay in order to determine relative cell viability for the compounds 2a to 2o prepared in Example 2.

WST(water-soluble tetrazolium) 분석WST (water-soluble tetrazolium) analysis

Raw 264.7 세포를 투명한 96-well 플레이트에 파종(seed)하고 1일 동안 유지하였다. 배지가 흡수된 후, 각각의 well을 무혈청의 DMEM으로 2회 세척하고 무혈청 DMEM으로 다시 채웠다. 그런 다음 100 ng/mL LPS와 각 화합물로 처리하고 24시간 동안 배양한 후, 상등액 배양 배지를 새로운 96-well 플레이트로 옮겼다. Raw 264.7 cells were seeded on a clear 96-well plate and maintained for 1 day. After the medium was absorbed, each well was washed twice with serum-free DMEM and refilled with serum-free DMEM. After treatment with 100 ng / mL LPS and each compound and incubation for 24 hours, the supernatant culture medium was transferred to a new 96-well plate.

배지를 옮긴 직후, 세포를 파종(seed)한 well에 10% FBS 및 1% 항생제와 항균제를 포함하는 DMEN 배지 100 μL를 다시 채웠다. 이후 Ez-cytox WST 분석 시약 10 μL를 사용하여 각 well을 제조사의 프로토콜에 따라 처리했다. Immediately after transferring the medium, 100 μL of DMEN medium containing 10% FBS and 1% antibiotic and antimicrobial agent was replenished in the seeded wells of the cells. Each well was then treated according to the manufacturer's protocol using 10 μL of Ez-cytox WST assay reagent.

표준 세포 배양 조건(37 °C, 5% CO2, humidified atmosphere)에서 20분간 배양 한 후, 450 nm에서 흡광도를 측정하였다.After incubation for 20 min in standard cell culture conditions (37 ° C, 5% CO2, humidified atmosphere), the absorbance was measured at 450 nm.

10% FBS 및 1% 항생제 및 항균제를 포함한 DMEM 배지로 처리된 well의 흡광도를 측정하여 blank 값을 구하였다. 상기 실험은 최소 3회 수행되었다.The blank was determined by measuring the absorbance of the well treated with DMEM medium containing 10% FBS and 1% antibiotic and antimicrobial agent. The experiment was performed at least three times.

상기 실험을 통하여, 비교 세포 활성도(relative cell viability)를 측정한 결과를 하기 표 5에 나타내었다.The results of measuring relative cell viability through the above experiment are shown in Table 5 below.

화합물compound relative cell viability (%)relative cell viability (%) 1d1d 105105 2a2a 114114 2b2b 106106 2c2c 117117 2d2d 109109 2e2e 115115 2f2f 118118 2g2g 127127 2h2h 109109 2i2i 130130 2j2j 111111 2k2k 121121 2l2l 121121 2m2m 106106 2n2n 105105 2o2o 5050

상기 표 5에서 보는 바와 같이, 화합물 1d의 비교세포활성도가 105이며, 화합물 2a 내지 2l은 화합물 1d와 비교하여 월등하게 우수한 비교세포활성도를 나타내는 것을 확인하였다.As shown in Table 5, the comparative cell activity of Compound 1d was 105, and the compounds 2a to 2l showed superior comparative cell activity as compared with Compound 1d.

[시험예 6][Test Example 6]

2a 내지 2l 화합물의 염증 억제 효과 (TNF-α 분비 억제율)The inhibitory effect of the 2a-2l compound on inflammation (TNF-a secretion inhibiting rate)

시험예 5의 결과로부터, 화합물 1d와 비교하여 이와 유사하거나 열등한 비교세포활성도를 나타내는 화합물 2m 내지 2o를 제외하고, 시험예 4의 결과로부터 화합물 1d와 비교하여 이와 유사하거나 열등한 NO 방출 억제 효과를 나타내는 화합물 2a 내지 2e의 화합물을 제외하였다.From the results of Test Example 5, the results of Test Example 4 are shown to show similar or inferior NO release inhibitory effects as compared with Compound 1d, except for compounds 2m to 2o which exhibit similar or inferior comparative cell activity as Compound 1d Compounds 2a to 2e were excluded.

따라서, 화합물 2f 내지 2l에 대한 염증 억제 효과를 추가로 확인하기 위하여, ELISA를 이용하여 TNF-α 분비 억제율을 측정하였다.Therefore, in order to further confirm the anti-inflammatory effect of the compounds 2f to 2l, the TNF-a secretion inhibition rate was measured using an ELISA.

세포에 각각의 화합물 id 및 2f 내지 2l, 및 LPS를 24시간 동안 처리한 뒤, 배양액에 존재하는 TNF-α에 대한 ELISA를 수행하였다. Cells were treated with each compound id and 2f to 2l, and LPS for 24 hours, followed by ELISA for TNF-a present in the culture.

ELISAELISA

분비된 TNF-α 양을 측정하기 위해, Raw 264.7 세포를 투명한 96-well 플레이트에 파종하고 1일 동안 배양하였다. 1일 후 흡수된 배지를 1% (v/v)의 항생제와 항진균제 용액을 포함한 무혈청 DMEM 배지로 대체하고, 100 ng/mL의 LPS 및 10 μM의 각 화합물을 처리하였다. To determine the amount of secreted TNF- [alpha], Raw 264.7 cells were seeded in clear 96-well plates and cultured for 1 day. After 1 day, the absorbed medium was replaced with serum-free DMEM medium containing 1% (v / v) antibiotic and antifungal agent solution, and treated with 100 ng / mL LPS and 10 μM each compound.

4시간 후, 배지를 새로운 투명한 96-well 플레이트로 옮기고 1% BSA를 포함한 PBS(phosphate buffer) 용액으로 희석하고, 제조자의 프로토콜에 따라 하기의 ELISA 분석을 수행하였다. After 4 hours, the medium was transferred to a new clear 96-well plate, diluted with PBS (phosphate buffer) containing 1% BSA, and subjected to the following ELISA analysis according to the manufacturer's protocol.

CLP(Cecal Ligation and Puncture) 유도 C57BL/6 마우스에서 혈청 IL-6 값의 정량화를 위해, 수술 후 24 시간이 지난 마우스로부터 혈액을 수집하였다.Blood was collected from mice 24 hours after surgery to quantify serum IL-6 levels in CLP (Cecal Ligation and Puncture) induced C57BL / 6 mice.

4℃에서 ELISA 플레이트(Costar, Cambridge, MA)를 항 IL-6 단일 클론 항체(eBioscience, San Diego, CA)로 밤새 코팅 하였다. 실온(RT)에서 1시간 동안 1% 소혈청 알부민(albumin)(Sigma-Aldrich, St. Louis, MO)을 포함한 PBS로 Well을 차단(block)하고 4℃에서 밤새 혈청과 함께 배양했다. ELISA plates (Costar, Cambridge, Mass.) Were coated overnight with anti-IL-6 monoclonal antibody (eBioscience, San Diego, Calif.) At 4 ° C. Wells were blocked with PBS containing 1% bovine serum albumin (Sigma-Aldrich, St. Louis, MO) for 1 hour at room temperature (RT) and incubated overnight at 4 ° C with serum.

세척 후, 플레이트를 실온에서 1시간 동안 비오틴화 된(biotinylated) 항 IL-6 항체(eBioscience)로 처리하여 배양하였다. 실온에서 1시간 동안 eBioscience회사의 streptavidin-HRP(horseradish peroxidase)를 붙인 후, TMB 용액(eBioscience)을 사용하여 발색시켰다. Multiskan Ascent(Labsystems, Kennett Square, PA)를 사용하여 450 nm에서 흡광도를 측정하였다. 모든 분석은 3 번 반복하여 수행되었다. After washing, the plates were incubated at room temperature for 1 hour with biotinylated anti-IL-6 antibody (eBioscience). After streptavidin-HRP (horseradish peroxidase) of eBioscience company was added for 1 hour at room temperature, the solution was developed with TMB solution (eBioscience). Absorbance was measured at 450 nm using Multiskan Ascent (Labsystems, Kennett Square, PA). All analyzes were performed in triplicate.

시험예 6의 blank 값은 TNF-α가 없는 용액을 ELISA 분석하여 구하였고, ELISA 키트와 함께 제공되는 대조군 TNF-α 단백질의 투여 용량에 따라 표준 곡선(Standard curve)을 그렸다.The blank value of Test Example 6 was determined by ELISA analysis of a solution lacking TNF- ?, and a standard curve was drawn according to the dosage of the control TNF-alpha protein supplied with the ELISA kit.

화합물 1d, 및 화합물 2f 내지 2l 를 각각 처리한 경우, 대조군과 비교하여 TNF-α의 분비 억제율(%)을 확인하였으며, 그 결과를 하기 표 6에 나타내었다.When Compound 1d and Compound 2f to 2l were treated, the inhibitory rate (%) of TNF-α secretion was compared with that of the control, and the results are shown in Table 6 below.

화합물compound TNF-α의 분비 억제율 (%)TNF-α secretion inhibition rate (%) 1d1d 4343 2f2f 3838 2g2g 4444 2h2h 4444 2i2i 4545 2j2j 6868 2k2k 4646 2l2l 6060

상기 표 6에서 보는 바와 같이, 화합물 1d, 및 화합물2f 내지 2l은 Raw264.7 세포에서 TNF-α 방출을 억제하는 것을 확인하였다. 특히, 화합물 1d(43%)와 비교하여 화합물 2j(68%) 및 2l(60%)은 월등하게 우수한 TNF-α 방출 억제 효과를 나타내는 것을 알 수 있다.As shown in Table 6, it was confirmed that Compound 1d and Compound 2f to 2l inhibited TNF-a release in Raw264.7 cells. In particular, Compounds 2j (68%) and 2l (60%) exhibit superior TNF-a release-inhibiting effects compared to Compound 1d (43%).

[시험예 7][Test Example 7]

HMGB1 이동 억제HMGB1 migration inhibition

시험예 6의 결과로부터, 화합물 1d와 비교하여 우수한 TNF-α의 분비 억제 효과를 나타내는 화합물 2i 내지 2l을 대상으로, 상기 화합물들이 HMGB1가 핵에서 세포질로 이동하는 것을 억제할 수 있는지 여부를 면역형광법(immunofluorescence)으로 분석하였다. From the results of Test Example 6, the compounds 2i to 2l, which exhibit an excellent TNF-a secretion inhibitory effect as compared with the compound 1d, were tested for the ability of these compounds to inhibit the migration of HMGB1 from the nucleus to the cytoplasm, (immunofluorescence).

면역형광법(immunofluorescence)Immunofluorescence

Raw 264.7 세포를 "Nunc Lab-Tek II" 회사의 "chambered coverglass"에 파종하고 하루 동안 배양했다. Raw 264.7 cells were seeded in a "chambered coverglass" of "Nunc Lab-Tek II" and cultured for one day.

20 μM 농도의 각각의 화합물로 1시간 동안 처리한 후, 500 ng/mL의 LPS로 2시간 동안 처리하였다. Treated with each compound at a concentration of 20 μM for 1 hour and then treated with 500 ng / mL of LPS for 2 hours.

배지를 흡수하고 PBS로 세척 한 후, 4%의 파라포름알데히드(paraformaldehyde) 용액 200 ㎕를 처리하고 실온에서 20분 동안 배양하였다. After the medium was absorbed and washed with PBS, 200 μl of 4% paraformaldehyde solution was treated and cultured at room temperature for 20 minutes.

4% 파라포름알데히드 용액이 흡수되면, 시료를 PBS로 3회 세척하였다. 항체 결합을 가능하게 하는 투과성 부여를 위해 200 ㎕의 메탄올을 처리하고 -20℃에서 20분 동안 배양하였다. When the 4% paraformaldehyde solution was absorbed, the sample was washed three times with PBS. 200 [mu] l of methanol was treated and incubated at -20 [deg.] C for 20 minutes for permeability conferring antibody binding.

이후, 메탄올을 제거하고 시료를 PBS로 3회 세척하였다. 시료를 실온에서 1시간 동안 PBS 용액 중 2% BSA로 차단시켰다. 그런 다음 PBS 용액 중 2% BSA를 제거하고 PBS에 1% BSA를 포함한 1차 항체를 4℃에서 하룻밤 동안 처리하였다. 항체 농도는 제조사의 프로토콜에 따라 최적화하였다.Then, the methanol was removed and the sample was washed three times with PBS. Samples were blocked with 2% BSA in PBS solution for 1 hour at room temperature. Then, 2% BSA in PBS solution was removed and the primary antibody containing 1% BSA in PBS was treated overnight at 4 ° C. Antibody concentrations were optimized according to the manufacturer's protocol.

1차 항체 용액을 제거하고 시료를 PBS로 3회 세척하였다. 1% BSA를 포함하는 PBS 용액의 2차 항체를 실온에서 1시간 동안 처리하였다. 2차 항체는 Abcam 회사의 goat anti-rabbit IgG(TRITC)를 사용하였다. 1시간 후, 항체 용액이 흡수되고, 시료를 PBS로 3회 세척하였다. The primary antibody solution was removed and the samples were washed three times with PBS. The secondary antibody of the PBS solution containing 1% BSA was treated at room temperature for 1 hour. The secondary antibody used was Abcam's goat anti-rabbit IgG (TRITC). After 1 hour, the antibody solution was absorbed and the sample was washed 3 times with PBS.

핵을 염색하기 위해, 각 well을 PBS로 희석된 Hoechst 33342로 처리하고, 실온에서 1시간 동안 배양하였다. Hoechst 33342를 제거하고, 챔버(chamber)를 PBS로 채우고, DeltaVision 현미경을 사용하여 이미지화(imaging) 하였다.To stain the nuclei, each well was treated with Hoechst 33342 diluted in PBS and incubated at room temperature for 1 hour. Hoechst 33342 was removed, the chamber was filled with PBS and imaged using a DeltaVision microscope.

상기의 분석 결과를 도 5에 나타내었으며, 화합물 1d, 및 화합물 2i 내지 2l은 HMGB1가 핵에서 세포질로 이동하는 것을 억제하는 것을 확인하였다. The results of the above analysis are shown in FIG. 5, and it was confirmed that the compound 1d and the compounds 2i to 2l inhibited the migration of HMGB1 from the nucleus to the cytoplasm.

[시험예 8][Test Example 8]

IL-6 분비 감소Decreased IL-6 secretion

시험예 6의 결과로부터, 화합물 1d와 비교하여 월등하게 우수한 TNF-α의 분비 억제 효과를 나타내는 화합물 2i 내지 2l의 염증 억제 효과에 대한 추가적인 확인을 위해, IL-6 분비 억제 효과를 웨스턴 블롯(western blot)으로 분석하였다. From the results of Test Example 6, in order to further confirm the inflammation-inhibiting effect of the compound 2i to 2l, which exhibits the superior suppression effect of TNF-α secretion compared with the compound 1d, the IL-6 secretion inhibitory effect was evaluated by Western blotting blot analysis.

웨스턴블롯(western blot)Western blot

단백질 샘플링(sampling)을 4°C에서 수행하였다. protease inhibitor cocktail 및 phosphatase inhibitor를 함유하는 RIPA 용해액(lysis buffer)으로 세포를 용해하였다. 15000 rpm에서 20분간 원심분리 한 후, 상등액을 새로운 1.5 mL 튜브로 옮겼다. 단백질 농도는 Micro BCA 단백질 분석 키트로 표준화하였다.Protein sampling was performed at 4 ° C. Protease inhibitor cocktail and phosphatase inhibitor were dissolved in RIPA lysis buffer. After centrifugation at 15000 rpm for 20 minutes, the supernatant was transferred to a new 1.5 mL tube. Protein concentrations were normalized by Micro BCA protein assay kit.

상기 단백질 샘플을 SDS-PAGE 및 웨스턴 블롯(western blot)으로 분석하였다. SDS-PAGE 후 단백질을 PVDF 막으로 이동시켰다. 2% BSA를 포함한 TBST(tris-buffered saline Tween20)를 사용하여 실온에서 1시간 동안 이동시킨 후 상기 막(PVDF membrane)을 차단(block)하였다.The protein samples were analyzed by SDS-PAGE and western blotting. Protein was transferred to PVDF membrane after SDS-PAGE. The cells were blocked with TBST (tris-buffered saline Tween 20) containing 2% BSA at room temperature for 1 hour and then the PVDF membrane was blocked.

상기 막을 1차 항체로 하룻밤동안 4°C에서 처리하거나, 1시간 동안 실온에서 처리한 후 TBST로 세척하였다. HRP(horseradish peroxidase)가 접합된 2차 항체를 실온에서 1시간 동안 처리하였다. 1% BSA를 포함하는 TBST 용액을 이용하여 항체를 항체 제조사의 프로토콜에 지시된 농도로 희석하였다. TBST로 세척한 후, 상기 막(membrane)을 Amersham 회사의 ECL(enhanced chemiluminescence) prime 용액으로 전개시켰다.The membrane was treated with primary antibody overnight at 4 ° C, treated at room temperature for 1 hour, and then washed with TBST. HRP (horseradish peroxidase) conjugated secondary antibody was treated at room temperature for 1 hour. The antibody was diluted to the indicated concentration in the antibody manufacturer's protocol using TBST solution containing 1% BSA. After washing with TBST, the membrane was developed with Amersham's ECL (enhanced chemiluminescence) prime solution.

화학 발광(Chemiluminescent) 신호를 ChemiDoc MP 이미징 시스템으로 측정하였고, 상대적 정량화는 ImageLab 4.0 소프트웨어를 사용하여 수행하였다. 정량화 결과는 GraphPad Prism 5.0 소프트웨어를 사용하여 나타내었다.Chemiluminescent signals were measured with a ChemiDoc MP imaging system and relative quantification was performed using ImageLab 4.0 software. Quantification results are shown using GraphPad Prism 5.0 software.

상기의 분석 결과를 도 6에 나타내었으며, Raw 264.7 세포에서 분비된 IL-6수치가 화합물 1d, 및 화합물 2i 내지 2l로 처리했을 때 유의하게 감소한 것을 확인하였다.The results of the above analysis are shown in FIG. 6, and it was confirmed that IL-6 levels secreted from Raw 264.7 cells were significantly decreased upon treatment with Compound 1d and Compound 2i to 2l.

특히, 화학물 2j 및 2l가 IL-6 분비와 관련하여 우수한 감소 효과를 나타내는 것을 알 수 있다.In particular, it can be seen that the chemicals 2j and 2l exhibit an excellent reduction effect with respect to IL-6 secretion.

[시험예 9][Test Example 9]

HMGB1과의 상대적인 결합 친화도Relative affinity for HMGB1

HMGB1의 리간드로 화합물 1d, 2j 및 2l의 결합에너지를 측정하였으며, 그 결과를 도 7에 나타내었다. 도 7에서 보는 바와 같이, 화합물 2j 및 2l는 화합물 1d와 비교하여 HMGB1에 더 잘 결합하는 것을 알 수 있다.The binding energies of the compounds 1d, 2j and 2l were measured with a ligand of HMGB1, and the results are shown in Fig. As shown in FIG. 7, compounds 2j and 21 show better binding to HMGB1 as compared to compound 1d.

[시험예 10][Test Example 10]

염증 신호 억제Inflammatory signal suppression

세포 내 염증 신호 전달 경로는 활성화된 대식세포에서 면역반응을 증가시키는데 중요한 역할을 한다.The intracellular inflammatory signaling pathway plays an important role in increasing the immune response in activated macrophages.

B 세포 (NF-κB) 복합체에서 Mitogen-activated protein kinase (MAPK)와 nuclear factor kappa-light-chain enhancer는 대식세포에서 HMGB 및 기타 사이토카인의 방출을 조절하는 가장 중요한 염증 신호 시스템 중 2가지이다. p38, JNK 및 ERK의 세 가지 유형의 MAPK가 있으며, 대식세포 활성화 후 MAPK는 인산화되어 세포 내에서 염증 신호의 전달을 유발한다.Mitogen-activated protein kinase (MAPK) and nuclear factor kappa-light-chain enhancer in B cell (NF-κB) complexes are two of the most important inflammatory signaling systems that regulate the release of HMGB and other cytokines in macrophages. There are three types of MAPKs, p38, JNK, and ERK. After macrophage activation, MAPK is phosphorylated and induces inflammatory signaling in the cells.

웨스턴 블롯 데이터를 도 8에 나타내었으며, 도 8에서 보는 바와 같이 화합물 1d, 2j 및 2l은 p38, JNK 및 ERK를 포함하는 MAPK의 인산화를 명백하게 억제하는 것을 확인하였다.Western blot data are shown in FIG. 8, and as shown in FIG. 8, it was confirmed that compounds 1d, 2j and 2l apparently inhibited the phosphorylation of MAPK including p38, JNK and ERK.

NF-κB 경로는 염증 반응을 조절하는 또 다른 중요한 신호 전달 경로이며, NF-κB는 두 개의 다른 단백질 도메인, p50과 p65의 복합체이다. NF-κB 복합체의 활성은 B 세포 억제제 (IκB)에서 카파-라이트 폴리펩티드(kappa-light polypeptide) 유전자 증강인자의 핵 인자에 의해 억제된다.The NF-κB pathway is another important signaling pathway that regulates the inflammatory response, and NF-κB is a complex of two different protein domains, p50 and p65. The activity of the NF-κB complex is inhibited by the nuclear factor of the kappa-light polypeptide gene enhancer in the B cell inhibitor (IκB).

활성화 신호가 대식세포에 도달하면 IκB 키나아제 (IKK)가 IκB를 인산화시켜 NF-κB 복합체의 활성화를 유도한다. 활성화된 NF-κB는 핵으로 이동하여 염증성 사이토카인을 생성하는 전사 인자로서 작용한다. 이 신호 전달 경로에서 NF-κB 복합체의 세포 내 이동이 대식세포의 활성화에서 중요한 역할을 한다.When the activation signal reaches the macrophage, IκB kinase (IKK) phosphorylates IκB and induces activation of the NF-κB complex. Activated NF-κB acts as a transcription factor that moves to the nucleus and produces an inflammatory cytokine. In this signal transduction pathway, the intracellular transport of the NF-κB complex plays an important role in the activation of macrophages.

도 9에서 보는 바와 같이, 화합물 1d, 2j 및 2l이 NF-κB가 핵으로 이동하는 것을 억제하는 것을 알 수 있다.9, it can be seen that the compounds 1d, 2j and 2l inhibit NF-κB from migrating to the nucleus.

결국, 화합물 2j 및 2l이 활성화된 대식세포에서 염증 신호 경로를 조절 또는 차단하는 것을 알 수 있다.Finally, it can be seen that compounds 2j and 2l regulate or block inflammatory signaling pathways in activated macrophages.

[시험예 11][Test Example 11]

화합물의 약동학적 특징Pharmacokinetic properties of compounds

CLP 마우스 모델에서 화합물 1d, 2j 및 2l의 수용성, 마이크로솜 안정성 및 PK profile을 측정하였으며, 그 결과 표 7에 나타내었다.The water solubility, microsomal stability and PK profile of compounds 1d, 2j and 2l in the CLP mouse model were measured and are shown in Table 7.

Figure 112019035373432-pat00051
Figure 112019035373432-pat00051

화합물 1d와 비교할 때, 화합물 2j 및 2l은 수성 매질에서 개선된 용해도를 가지고, 마우스 및 인간 모두에서 보다 우수한 간 마이크로솜 안정성을 갖는다. 또한, 화합물 1d, 2j 및 2l은 모두 정맥 주사에 의해 용이하게 투여되고 장시간 동안 그들의 활동을 유지하였다.Compared with compound 1d, compounds 2j and 2l have improved solubility in aqueous media and have better liver microsomal stability in both mice and humans. In addition, compounds 1d, 2j, and 2l were all easily administered by intravenous injection and maintained their activity for an extended period of time.

[시험예 12][Test Example 12]

CLP 마우스 모델에서의 효과Effects on the CLP mouse model

CLP 마우스 모델에서 화합물 1d, 2j 및 2l의 치료 효과를 분석하였다.The therapeutic effects of compounds 1d, 2j and 2l in the CLP mouse model were analyzed.

화합물 1d, 2j 및 2l을 CLP 유도 1 시간 전에 투여하기 시작한 후 21 일 동안 10 mg/kg의 1 일 투여량으로 복강 내 각각 투여한 후 생존율을 측정하여, 도 10에 나타내었다.Compound 1d, 2j, and 2l were administered intraperitoneally at a daily dose of 10 mg / kg for 21 days after the start of administration of CLP 1 hour before induction, and the survival rate was measured and shown in FIG.

도 10에 나타난 바와 같이, 대조군의 생존율은 약 10%이었으나, 화합물 1d 투여군의 생존율이 45%이었다. 또한, 화합물 2j 및 2l 투여군의 생존율은 각각 74% 및 54%로, 대조군 및 화합물 1d 투여군과 비교하여 생존율이 월등하게 우수한 것을 확인하였다. As shown in Fig. 10, the survival rate of the control group was about 10%, but the survival rate of the compound 1d-treated group was 45%. In addition, the survival rates of the compound 2j and 2l administration groups were 74% and 54%, respectively, and the survival rate was remarkably superior to that of the control and compound 1d administration groups.

또한, CLP 마우스 모델에 화합물 1d, 2j 및 2l을 CLP 유도 1 시간 전에 투여하기 시작한 후 21 일 동안 10 mg/kg의 1 일 투여량으로 처리된 마우스의 혈청 IL-6을 측정하여, 도 11에 나타내었다.In addition, serum IL-6 levels in mice treated with a daily dose of 10 mg / kg for 21 days after starting the administration of compounds 1d, 2j and 2l 1 hour before CLP induction in the CLP mouse model were measured, Respectively.

도 11에 나타난 바와 같이, 생존한 마우스에서 혈청 IL-6수치가 현저히 감소하는 것을 확인하였다.As shown in Fig. 11, it was confirmed that serum IL-6 levels were remarkably decreased in surviving mice.

상기 시험 결과에서 보는 바와 같이, 화합물 2j 및 2l는 화합물 1d 및 다른 유사한 구조를 갖는 화합물들과 비교하여 우수한 염증억제 효과, 생존율 및 약동학적 특성 등을 갖는 것을 알 수 있다. 또한, 화합물 2j 및 2l은 HMGB1이 핵에서 세포질로 이동하는 것을 억제하고 IL-6 방출의 감소시키는 등 염증반응의 다양한 경로를 통해 염증반응을 차단하는 것을 알 수 있다.As can be seen from the test results, compounds 2j and 2l have excellent inflammation-inhibiting effect, survival rate and pharmacokinetic properties in comparison with compounds having Compound 1d and other similar structures. Also, it can be seen that compounds 2j and 2l block the inflammatory response through various pathways of the inflammatory response, such as inhibiting the migration of HMGB1 from the nucleus to the cytoplasm and reducing IL-6 release.

결국, 신규한 화합물 2j 및 2l은 우수한 염증 억제 효과를 가지며, 특히 우수한 패혈증 치료 및 예방용 의약품 등으로 사용될 수 있는 것을 확인하였다.As a result, it has been confirmed that the novel compounds 2j and 2l have an excellent inflammation-inhibiting effect and can be used particularly as an excellent sepsis treatment and prevention drug.

Claims (5)

하기 화학식 5로 표시되는 화합물, 또는 이의 약제학적으로 허용가능한 염:
[화학식 5]
Figure 112019035373432-pat00053
.
A compound represented by the following formula (5), or a pharmaceutically acceptable salt thereof:
[Chemical Formula 5]
Figure 112019035373432-pat00053
.
제1항의 화합물 또는 이의 약제학적으로 허용가능한 염을 포함하는 염증 억제 효과를 갖는 약학적 조성물.
A pharmaceutical composition having an anti-inflammatory effect comprising the compound of claim 1 or a pharmaceutically acceptable salt thereof.
제1항의 화합물 또는 이의 약제학적으로 허용가능한 염을 포함하는 패혈증 치료 또는 예방용 약학적 조성물.
A pharmaceutical composition for treating or preventing sepsis comprising the compound of claim 1 or a pharmaceutically acceptable salt thereof.
하기 화학식 3으로 표시되는 화합물, 또는 이의 약제학적으로 허용가능한 염을 포함하는 염증 억제 효과를 갖는 약학적 조성물:
[화학식 3]
Figure 112019035373432-pat00067
.
A pharmaceutical composition having an anti-inflammatory effect comprising a compound represented by the following formula (3), or a pharmaceutically acceptable salt thereof:
(3)
Figure 112019035373432-pat00067
.
하기 화학식 3으로 표시되는 화합물, 또는 이의 약제학적으로 허용가능한 염을 포함하는 패혈증 치료 또는 예방용 약학적 조성물:
[화학식 3]
Figure 112019035373432-pat00068
.
A pharmaceutical composition for the treatment or prevention of sepsis comprising a compound represented by the following formula (3), or a pharmaceutically acceptable salt thereof:
(3)
Figure 112019035373432-pat00068
.
KR1020170136702A 2017-10-20 2017-10-20 Novel benzopyranyl tetracycle compound and pharmaceutical composition having excellent anti-inflammatory effect comprising the same KR101999899B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170136702A KR101999899B1 (en) 2017-10-20 2017-10-20 Novel benzopyranyl tetracycle compound and pharmaceutical composition having excellent anti-inflammatory effect comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170136702A KR101999899B1 (en) 2017-10-20 2017-10-20 Novel benzopyranyl tetracycle compound and pharmaceutical composition having excellent anti-inflammatory effect comprising the same

Publications (2)

Publication Number Publication Date
KR20190044366A KR20190044366A (en) 2019-04-30
KR101999899B1 true KR101999899B1 (en) 2019-07-16

Family

ID=66285728

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170136702A KR101999899B1 (en) 2017-10-20 2017-10-20 Novel benzopyranyl tetracycle compound and pharmaceutical composition having excellent anti-inflammatory effect comprising the same

Country Status (1)

Country Link
KR (1) KR101999899B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4365175A1 (en) * 2021-07-02 2024-05-08 Spark Biopharma, Inc. Novel benzopyran derivative and use thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101645942B1 (en) * 2014-08-07 2016-08-08 서울대학교산학협력단 Anti-inflammatory pharmaceutical composition comprising benzopyranyl tetracycles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ACS Comb. Sci. 14(2):124-134(2012.)*

Also Published As

Publication number Publication date
KR20190044366A (en) 2019-04-30

Similar Documents

Publication Publication Date Title
TWI817968B (en) DIARYL SUBSTITUTED 5,5-FUSED RING COMPOUNDS AS C5aR INHIBITORS
TWI789470B (en) DIARYL SUBSTITUTED 6,5-FUSED RING COMPOUNDS AS C5aR INHIBITORS
CN105682655B (en) Antimicrobial compounds
MXPA01009077A (en) Aromatic heterocyclic compounds as anti-inflammatory agents.
WO2018068666A1 (en) Microtubule protein inhibitor
JP2002526384A (en) Use of rosmarinic acid and its derivatives as immunosuppressants and inhibitors of SH2-mediated processes
KR20080027191A (en) New benzoxazole derivative, process for the preparation thereof and pharmaceutical composition comprising the same
KR101432246B1 (en) Composition for preventing and treating autoimmune diseases comprising metformin
KR20150124923A (en) Novel compounds having treatment of immune diseases and use therof
EP0731697B1 (en) Ssi tyrphostins and pharmaceutical compositions
CA3112695A1 (en) Composition for treating fibrotic diseases, comprising benzhydryl thioacetamide compound as active ingredient
KR102277739B1 (en) A composition for treating fibrosis diseases comprising benzhydrylthio acetamide compounds as an active ingredient
KR101999899B1 (en) Novel benzopyranyl tetracycle compound and pharmaceutical composition having excellent anti-inflammatory effect comprising the same
EP1485083A2 (en) Dexanabinol and dexanabinol analogs regulate inflammation related genes
Yang et al. Discovery of novel aporphine alkaloid derivative as potent TLR2 antagonist reversing macrophage polarization and neutrophil infiltration against acute inflammation
US20050137251A1 (en) Dexanabinol and dexanabinol analogs regulate inflammation related genes
US20120225889A1 (en) Use of macrocyclic lactone derivatives for the treatment of inflammatory disorders
US10160766B1 (en) Benzopyranyl tetracycle compound and pharmaceutical composition having excellent anti-inflammatory effect comprising the same
US10385034B2 (en) Flavonoid IL-17A inhibitors
JP2007523829A (en) Proline derivatives used as pharmaceutically active substances for the treatment of tumors
JP2013520484A (en) Pyrrolidine-substituted flavones for the treatment of inflammatory diseases
JPH0753546A (en) Diaryl-substituted heterocyclic compound and its medical use
JP2021500413A (en) IL-8 inhibitor for use in the treatment of some sarcomas
RU2796983C2 (en) DIARYL-SUBSTITUTED 6,5-CONJUGED CYCLIC COMPOUNDS AS C5aR INHIBITORS
RU2785549C2 (en) DIARYL-SUBSTITUTED 5,5 CONJUGATED CYCLIC COMPOUNDS AS C5aR INHIBITORS

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant