KR101996273B1 - Radon gas reduction building board using synthetic zeolite and manufacturing method thereof - Google Patents

Radon gas reduction building board using synthetic zeolite and manufacturing method thereof Download PDF

Info

Publication number
KR101996273B1
KR101996273B1 KR1020170174966A KR20170174966A KR101996273B1 KR 101996273 B1 KR101996273 B1 KR 101996273B1 KR 1020170174966 A KR1020170174966 A KR 1020170174966A KR 20170174966 A KR20170174966 A KR 20170174966A KR 101996273 B1 KR101996273 B1 KR 101996273B1
Authority
KR
South Korea
Prior art keywords
mixture
weight
parts
synthetic zeolite
board
Prior art date
Application number
KR1020170174966A
Other languages
Korean (ko)
Other versions
KR20190073803A (en
Inventor
이상수
임현웅
권오한
김태현
편수정
Original Assignee
한밭대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한밭대학교 산학협력단 filed Critical 한밭대학교 산학협력단
Priority to KR1020170174966A priority Critical patent/KR101996273B1/en
Publication of KR20190073803A publication Critical patent/KR20190073803A/en
Application granted granted Critical
Publication of KR101996273B1 publication Critical patent/KR101996273B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/047Zeolites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/141Slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/12Acids or salts thereof containing halogen in the anion
    • C04B22/124Chlorides of ammonium or of the alkali or alkaline earth metals, e.g. calcium chloride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/10Lime cements or magnesium oxide cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/02Selection of the hardening environment
    • C04B40/024Steam hardening, e.g. in an autoclave
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/26Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0068Ingredients with a function or property not provided for elsewhere in C04B2103/00
    • C04B2103/0078Sorbent materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00025Aspects relating to the protection of the health, e.g. materials containing special additives to afford skin protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Architecture (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

본 발명은 합성제올라이트를 활용한 라돈가스 저감 건축용 보드 및 이의 제조방법에 관한 것으로, 산업부산물을 재활용하면서 보드의 휨이나 균열 발생을 방지하고, 더불어 합성제올라이트를 사용하여 라돈가스 흡착은 물론, 공정과정에서 발생하는 유해성 물질을 저감할 수 있는 특징이 있다.The present invention relates to a board for reducing laundromat using synthetic zeolite and a method for manufacturing the same, and it is intended to prevent the board from being warped or cracked while recycling industrial by-products, and also, by using synthetic zeolite, It is possible to reduce the harmful substances generated in the process.

Description

합성제올라이트를 활용한 라돈가스 저감 건축용 보드 및 이의 제조방법{ RADON GAS REDUCTION BUILDING BOARD USING SYNTHETIC ZEOLITE AND MANUFACTURING METHOD THEREOF}TECHNICAL FIELD [0001] The present invention relates to a board for reducing longevity reduction using synthetic zeolite and a method for manufacturing the same,

본 발명은 합성제올라이트를 활용한 라돈가스 저감 건축용 보드 및 이의 제조방법에 관한 것으로, 보다 상세하게는 산업부산물을 재활용하면서 보드의 휨이나 균열 발생을 방지하고, 더불어 합성제올라이트를 사용하여 라돈가스 흡착은 물론, 공정과정에서 발생하는 유해성 물질을 저감할 수 있는 합성제올라이트를 활용한 라돈가스 저감 건축용 보드 및 이의 제조방법에 관한 것이다.[0001] The present invention relates to a board for reducing laundromat using synthetic zeolite and a method of manufacturing the same, and more particularly, to a board for reducing longevity by using synthetic zeolite, Of course, the present invention relates to a board for low-loss gas reduction utilizing a synthetic zeolite capable of reducing harmful substances generated in a process, and a method for manufacturing the board.

사람이 일생 동안 마시는 공기의 97%는 실내공기라고 한다. 실내공기 오염과 그로 인한 건강 위해(危害) 문제는 이미 세계보건기구(WHO)는 물론 미국을 비롯한 선진국의 주요 관심사로 다루어져 오고 있다.97% of the air that people drink for a lifetime is called indoor air. Indoor air pollution and its associated health hazards have already been addressed by the WHO as well as the US and other developed countries.

WHO는 공기오염에 의한 사망자 수는 매년 최대 600만 명에 이르고, 특히 실내공기에 의한 사망자는 해마다 280만 명에 달한다고 보고하여 실내공기의 질이 얼마나 중요한가를 설명하고 있다.WHO reports that the number of deaths due to air pollution reaches up to 6 million per year, and in particular, 2.8 million deaths from indoor air each year, explaining how important indoor air quality is.

실내공기 오염물질 중 인체에 가장 유해한 것은 휘발성유기화합물(VOC), 포름알데히드(HCHO), 미세먼지, 라돈(Rn) 등인데 이 중에서도 라돈의 경우 폐암을 유발하기 때문에 매우 치명적이다.Of indoor air pollutants, volatile organic compounds (VOC), formaldehyde (HCHO), fine dust, radon (Rn) and the like are the most harmful to human body. Radon is very fatal because it causes lung cancer.

폐암을 유발하는 1급 발암물질인 라돈은 무색, 무취, 무미 등의 가스상 물질로, 화학적으로 불활성이며 이동성이 크고 공기보다 9배가 무거워 지표 가까이 존재하며, 호흡을 통해 쉽게 인체에 흡입되는 물질이다.Radon, a primary carcinogen that induces lung cancer, is a gaseous substance such as colorless, odorless, tasteless, chemically inert, large in mobility, 9 times heavier than air, close to the surface, and easily absorbed into human body through respiration.

WHO에서는 이러한 라돈에 대해 이미 1988년에 발암성분으로 분류했고, 전 세계 폐암 발생의 3∼14%가 라돈에 의한 것이며, 라돈을 흡연에 이은 폐암 발병 주요 원인물질로 규정하고 있다. 또한, 국제암연구센터(IARC)에서도 건강위험성 측면에서 석면과 함께 라돈을 1급 발암물질로 규정하고 있으며, 미국환경청(EPA) 발표에 따르면 4피코큐리(pCi/L)의 라돈 농도에서 장기간 거주할 경우 흡연자는 1,000명 중 62명, 비흡연자는 1,000명 중 7명이 폐암에 걸린다고 발표한 바 있다.WHO has already classified such radon as a carcinogen in 1988, and 3 to 14% of lung cancer worldwide is caused by radon, and it defines radon as a major cause of lung cancer after smoking. The International Agency for Research on Cancer (IARC) also defines asbestos as a first-rate carcinogen in terms of health hazards. According to the EPA, the long-term residence time of 4 picosy- , 62 of 1,000 smokers and 7 of 1,000 smokers have lung cancer.

이러한 라돈을 저감하기 위한 기술로, 특허등록 제454753호에 건축물 시공시 라돈차단제를 콘크리트에 첨가하여 라돈의 방출을 억제시키는 방법이 기술되어 있지만, 라돈저감율이 30% 이하로 저감 효율이 낮은 문제점이 있다.As a technique for reducing such radon, Patent Registration No. 454753 describes a method of suppressing the release of radon by adding a radon blocking agent to concrete when a building is constructed. However, there is a problem that the reduction efficiency is low because the radon reduction rate is less than 30% have.

대한민국 특허등록 제454753호Korea Patent No. 454753

본 발명은 상기와 같은 문제점을 감안하여 안출된 것으로, 본 발명의 목적은, 산업부산물을 재활용하면서 보드의 휨이나 균열 발생을 방지하고, 더불어 합성제올라이트를 사용하여 공기정화와 라돈가스 흡착은 물론, 공정과정에서 발생하는 유해성물질을 저감할 수 있는 합성제올라이트를 활용한 라돈가스 저감 건축용 보드 및 이의 제조방법을 제공하는데 있다.SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and it is an object of the present invention to provide a method and apparatus for preventing bending and cracking of a board while reusing industrial byproducts, and using synthetic zeolite for air purification, The present invention provides a board for reducing lardin gas utilizing synthetic zeolite capable of reducing harmful substances generated during the process and a method for manufacturing the same.

본 발명의 제 2목적은, 공기정화와 더불어 사용하여 휨강도 및 압축강도가 우수한 라돈가스 저감 건축용 보드 및 이의 제조방법을 제공하는데 있다. A second object of the present invention is to provide a board for reducing laundromat which is excellent in bending strength and compressive strength when used together with air purification, and a method for manufacturing the board.

상기한 바와 같은 목적을 달성하기 위한 특징에 따르면, 제 1발명은, 합성제올라이트를 활용한 라돈가스 저감 건축용 보드의 제조방법에 관한 것으로, 이를 위해 마그네시아 시멘트 100중량부에 대해 염화마그네슘을 20 ~ 30중량부를 첨가하여 1차 혼합물을 생성하는 S10단계;와, 마그네시아 시멘트 100중량부에 대해 흡착재 20 ~ 30중량부를 1차 혼합물에 첨가하여 2차 혼합물을 생성하는 S20단계;와, 마그네시아 시멘트 100중량부에 대해 플라이애시나 고로슬래그와 같은 산업부산물 8 ~ 12중량부를 2차 혼합물에 첨가하여 3차 혼합물을 생성하는 S30단계;와, 마그네시아 시멘트 100중량부에 대해 물 35 ~ 45중량부를 3차 혼합물에 첨가하여 4차 혼합물을 생성하는 S40단계;와, 4차 혼합물을 보드 형태의 오토클레이브에 투입 후 양생하여 완성하는 S50단계;를 포함하되, 상기 흡착재는 알칼리, 물, 유기질 등의 혼합물로 구성된 실리카와, 알루미나를 느리게 결정화시킨 것으로, 결정구조 내에 있는 양이온의 작용에 의해 흡착성질을 갖는 합성제올라이트로 이루어지는 것을 특징으로 한다.According to a first aspect of the present invention, there is provided a method of manufacturing a board for reducing laid-on-gas using synthetic zeolite, wherein magnesium chloride is added in an amount of 20 to 30 parts by weight per 100 parts by weight of magnesia cement. Adding 20 to 30 parts by weight of the adsorbent to 100 parts by weight of the magnesia cement to produce a second mixture by adding 20 to 30 parts by weight of the adsorbent to 100 parts by weight of the magnesia cement; To 8 to 12 parts by weight of industrial by-products such as fly ash and blast furnace slag to the secondary mixture to produce a tertiary mixture; and 35 to 45 parts by weight of water relative to 100 parts by weight of the magnesia cement to the tertiary mixture (S40) of adding a quaternary mixture to the autoclave in a board form and then curing the mixture to form a quaternary mixture, Based adsorbent is characterized by consisting of an alkali, water, and consisting of a mixture of an organic such as silica, to which slowly crystallized alumina, synthetic zeolite having adsorption properties by the action of the cations in the crystal structure.

제 2발명은, 제 1발명에서, 상기 합성제올라이트는 알루미늄 39 ~ 45중량%와, 규소 54 ~ 60 중량%와, 인 1 ~ 1.2중량%와, 칼륨 0.012 ~ 0.018중량%와, 칼슘 0.11 ~ 0.015중량%, 티타늄 0.007 ~0.001중량%의 화학성분을 갖는 것을 특징으로 한다.A second aspect of the present invention is the second aspect of the present invention, wherein, in the first invention, the synthetic zeolite comprises 39 to 45 wt% of aluminum, 54 to 60 wt% of silicon, 1 to 1.2 wt% of phosphorus, 0.012 to 0.018 wt% of potassium, By weight, and 0.007 to 0.001% by weight of titanium.

제 3발명은, 합성제올라이트를 활용한 라돈가스 저감 건축용 보드에 관한 것으로, 제 1발명 또는 제 2발명 중 어느 한 항으로 제조되는 것을 특징으로 한다.The third aspect of the present invention relates to a board for reducing lardin gas utilizing synthetic zeolite and is characterized in that it is manufactured by any one of the first invention and the second invention.

본 발명의 합성제올라이트를 활용한 라돈가스 저감 건축용 보드 및 이의 제조방법에 따르면, 흡착기능을 갖는 기존의 벤토나이트나, 규조토 및 일라이트와 같은 천연자원을 대체할 수 있으며, 라돈가스의 흡수율 또한 천연자원 보다 뛰어난 효과가 있다.According to the board for reducing laundromat using the synthetic zeolite of the present invention and the manufacturing method thereof, it is possible to substitute natural resources such as existing bentonite, diatomaceous earth and ilite having an adsorption function, There is a better effect.

또한 합성제올라이트를 사용하여 단가를 낮출 수 있을 뿐만 아니라, 라돈가스는 물론, 공기의 세정, 산화, 살균, 탈취 등을 할 수 있는 효과가 있다.In addition, the synthetic zeolite can be used to lower the unit cost as well as to wash, oxidize, sterilize, and deodorize the air as well as the lard.

도 1은 본 발명에 따른 합성제올라이트를 활용한 라돈가스 저감 건축용 보드의 제조방법의 순서도,
도 2는 흡착재를 합성제올라이트(13X, 4A)와, OPC와, 규조토와, 천연제올라이트로 대체하여 제작된 보드의 재령일 3일, 7일, 28일 등으로 나눠 압축강도를 측정한 그래프,
도 3은 흡착재를 합성제올라이트(13X, 4A)와, OPC와, 규조토와, 천연제올라이트로 대체하여 제작된 보드의 재령일 3일, 7일, 28일 등으로 나눠 휨강도를 측정한 그래프,
도 4는 흡착재를 합성제올라이트(13X, 4A)와, OPC와, 규조토와, 천연제올라이트로 대체하여 제작된 보드의 라돈가스 방출량 결과를 나타낸 그래프이다.
FIG. 1 is a flow chart of a method for manufacturing a board for reducing laid-down gas using synthetic zeolite according to the present invention,
FIG. 2 is a graph showing the compressive strength of a board prepared by replacing an adsorbent with synthetic zeolite (13X, 4A), OPC, diatomaceous earth, and natural zeolite at 3 days, 7 days, 28 days,
FIG. 3 is a graph showing the bending strengths of the boards prepared by replacing the adsorbent with the synthetic zeolite (13X, 4A), OPC, diatomaceous earth, and natural zeolite at three days, seven days,
FIG. 4 is a graph showing the results of lardon gas emission of a board manufactured by replacing an adsorbent with synthetic zeolite (13X, 4A), OPC, diatomaceous earth, and natural zeolite.

이하의 본 발명의 목적들, 다른 목적들, 특징들 및 이점들은 첨부된 도면과 관련된 이하의 바람직한 실시예들을 통해서 쉽게 이해될 것이다. 그러나 본 발명은 여기서 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다.BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features, and advantages of the present invention will become more readily apparent from the following description of preferred embodiments with reference to the accompanying drawings. However, the present invention is not limited to the embodiments described herein but may be embodied in other forms.

오히려, 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다.Rather, the embodiments disclosed herein are provided so that the disclosure can be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.

여기에 설명되고 예시되는 실시예들은 그것의 상보적인 실시예들도 포함한다.The embodiments described and exemplified herein also include their complementary embodiments.

본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 '포함한다(comprise)' 및/또는 '포함하는(comprising)'은 언급된 구성요소는 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다.In the present specification, the singular form includes plural forms unless otherwise specified in the specification. The terms "comprise" and / or "comprising" used in the specification do not exclude the presence or addition of one or more other elements.

이하, 도면을 참조하여 본 발명을 상세히 설명하도록 한다. 아래의 특정 실시예들을 기술하는데 있어서, 여러가지의 특정적인 내용들은 발명을 더 구체적으로 설명하고 이해를 돕기 위해 작성되었다. 하지만 본 발명을 이해할 수 있을 정도로 이 분야의 지식을 갖고 있는 독자는 이러한 여러 가지의 특정적인 내용들이 없어도 사용될수 있다는 것을 인지할 수 있다. 어떤 경우에는, 발명을 기술하는 데 있어서 흔히 알려졌으면서 발명과 크게 관련 없는 부분들은 본 발명을 설명하는 데 있어 혼돈을 막기 위해 기술하지 않음을 미리 언급해 둔다.Hereinafter, the present invention will be described in detail with reference to the drawings. In describing the specific embodiments below, various specific details have been set forth in order to provide a more detailed description of the invention. However, it will be appreciated by those skilled in the art that the present invention may be understood by those skilled in the art without departing from such specific details. In some cases, it should be mentioned in advance that it is common knowledge in describing an invention that parts not significantly related to the invention are not described in order to avoid confusion in explaining the present invention.

도 1은 본 발명에 따른 합성제올라이트를 활용한 라돈가스 저감 건축용 보드의 제조방법의 순서도이다.FIG. 1 is a flow chart of a method for manufacturing a low-loss gas building board utilizing synthetic zeolite according to the present invention.

도 1에 도시된 바와 같이, 본 발명은 산업부산물을 재활용하면서 보드의 휨이나 균열 발생을 방지하고, 더불어 합성제올라이트를 활용하여 라돈가스 흡착은 물론, 공정과정에서 발생하는 유해성 물질을 저감할 수 있는 합성제올라이트를 활용한 라돈가스 저감 건축용 보드 및 이의 제조방법에 관한 것이다As shown in FIG. 1, the present invention can prevent warping and cracking of a board while recycling industrial byproducts, and can reduce the harmful substances generated during the process as well as adsorption of lanthanum by utilizing synthetic zeolite This invention relates to a board for reducing lardin gas using synthetic zeolite and a manufacturing method thereof

먼저 1차 혼합물을 생성하는 S10단계는 마그네시아 시멘트 100중량부에 대해 염화마그네슘을 20 ~ 30중량부를 첨가하여 이루어진다.First, the step S10 of producing the primary mixture is performed by adding 20 to 30 parts by weight of magnesium chloride to 100 parts by weight of the magnesia cement.

여기서 마그네시아 시멘트는 주 성분이 산화마그네슘으로 이루어지는 것으로, 단기간에 응결하고 일단 응결되거나 경화된 것은 단단하게 굳어서 쉽게 상하지 않는 장점이 있다.Magnesia cement is composed of magnesium oxide as a main component, and it is advantageous in that it hardens in a short period of time and hardly solidifies once hardened or cured.

상기 염화마그네슘은 마그네시아 시멘트의 산화마그네슘과의 반응으로 미세한 공극들이 다수 발생하도록 경화제로 사용되는데, 이러한 염화마그네슘은 20 ~ 30중량부 범위 내에서 첨가할 수 있으며, 바람직하게는 25중량부가 혼합된다.The magnesium chloride is used as a curing agent so that a large number of fine pores are generated by reaction with magnesium oxide of magnesia cement. The magnesium chloride may be added in an amount of 20 to 30 parts by weight, preferably 25 parts by weight.

또한 산화마그네슘과 염화마그네슘은 반응시 바늘형태의 수화물이 형성되는데 이러한 바늘형태의 수화물이 서로 엉키면서 조직을 치밀하게 하며 강도를 증진시킬 수 있게 된다.In addition, magnesium oxide and magnesium chloride form a needle-like hydrate in the reaction. Such needle-shaped hydrate tangles with each other, thereby making the structure dense and enhancing the strength.

2차 혼합물을 생성하는 S20단계는 마그네시아 시멘트 100중량부에 대해 흡착재 20 ~ 30중량부를 1차 혼합물에 첨가하여 이루어진다.The step S20 of producing the secondary mixture is performed by adding 20 to 30 parts by weight of the adsorbent to 100 parts by weight of the magnesia cement to the primary mixture.

상기 흡착재는 마그네시아 시멘트를 베이스로 다공질의 특성을 가지고 있는 합성제올라이트인 것이 바람직하다.Preferably, the adsorbent is synthetic zeolite based on magnesia cement and having porous properties.

천연제올라이트는 장석과 같이 (Si,Al)O₄의 사면체가 정점 산소(Apical oxygen)에 의하여 3차원의 골격구조를 만들고 있지만 공극이 있고 여기에 물 분자와 교환성 양이온이 포함되어 있으며, 규칙적인 구조로 구성된 미세한 구멍을 지닌 모공 광석으로 분자체로 전체 부피의 최대 50% 정도가 공극으로 구성되어 있다.Natural zeolites, like feldspar, form a three-dimensional skeleton structure with (apical oxygen) tetrahedral (Si, Al) O4, but have pores and water molecules and exchangeable cations. , Which is composed of pores of up to 50% of the total volume.

본 발명의 합성제올라이트(13X, 4A)일 경우에는 알칼리, 물, 유기질 등의 혼합물로 구성된 실리카와 알루미나를 느리게 결정화시켜 만든 것으로, 천연제올라이트의 장점과 더불어, 결정구조 내에 있는 양이온의 작용에 의해 강하게 흡착하는 성질을 가지고 있다.In the case of the synthetic zeolite (13X, 4A) of the present invention, silica and alumina composed of a mixture of alkali, water, and organic substances are slowly crystallized. In addition to the advantages of natural zeolite, Adsorption property.

천연제올라이트와 합성제올라이트의 화학성분비는 아래 [표 1]과 같다.The chemical composition ratios of natural zeolite and synthetic zeolite are shown in Table 1 below.

ElementElement Al(Al2O3)Al (Al 2 O 3) Si(SiO2)Si (SiO 2) FeFe PP KK CaCa Ti(TiO2)Ti (TiO 2) Zeolite
(natural)
Zeolite
(natural)
10.6010.60 47.0247.02 37.7037.70 0.410.41 0.940.94 1.211.21 --
Zeolite (13X)Zeolite (13X) 40.540.5 58.358.3 -- 1.051.05 0.01660.0166 0.01660.0166 0.00730.0073 Zeolite
(4A)
Zeolite
(4A)
43.543.5 54.954.9 -- 1.131.13 0.01360.0136 0.01360.0136 0.00970.0097

[표 1]과 같이, 본 발명의 합성제올라이트(13X, 4A)는 [표 1]에서는 표기되지 않았지만 Fe의 미세잔량이 잔류할 수 있다. As shown in Table 1, the synthetic zeolite (13X, 4A) of the present invention is not shown in Table 1, but a minute amount of Fe may remain.

또한 본 발명의 합성제올라이트(13X, 4A)는 천연제올라이트에 비해 Fe 성분을 대체하여 알루미늄의 성분을 증대시켰으며, 이에 따라 흡착성능을 효과적으로 증대시킬 수 있다.Further, the synthetic zeolite (13X, 4A) of the present invention replaces the Fe component in comparison with the natural zeolite to increase the aluminum component, thereby effectively increasing the adsorption performance.

아울러 [표 1]에서의 Ti성분은 TiO2 결정화할 때 검출되는 것으로, iO2는 1차로 자외선(O3)과의 반응에 의해 e-(전자)와 h-(정공)을 생성하고, 2차로 e-(전자)와, h+(정공)는 각각 TiO2와 반응하여 O2-와, OH- 생성하여 결국 유입된 공기를 세정, 산화, 살균, 탈취 등을 할 수 있게 된다.In addition, the Ti component in [Table 1] is detected when TiO 2 crystallizes, and iO 2 primarily generates e- (electron) and h- (hole) by reaction with ultraviolet (O 3 ) The electron (e) and h + (hole) react with TiO 2 , respectively, O 2 - OH -, and finally, the inflow air can be cleaned, oxidized, sterilized, and deodorized.

한편, 3차 혼합물을 생성하는 S30단계는 마그네시아 시멘트 100중량부에 대해 플라이애시나 고로슬래그와 같은 산업부산물 8 ~ 12중량부를 2차 혼합물에 첨가하여 이루어진다.On the other hand, the step S30 of producing the tertiary mixture is performed by adding 8 to 12 parts by weight of industrial by-products such as fly ash or blast furnace slag to the secondary mixture with respect to 100 parts by weight of the magnesia cement.

상기 산업부산물은 보드의 휨이나 균열 발생을 방지하기 위한 것으로, 수화열을 낮출 목적으로도 사용된다.The industrial byproducts are used for the purpose of preventing warpage and cracking of the board and also for reducing the heat of hydration.

4차 혼합물을 생성하기 위한 S40단계는 마그네시아 시멘트 100중량부에 대해 물 35 ~ 45중량부를 3차 혼합물에 첨가하여 이루어진다. Step S40 for producing the fourth mixture is performed by adding 35 to 45 parts by weight of water to the third mixture with respect to 100 parts by weight of the magnesia cement.

S50단계는 4차 혼합물을 오토클레이브에 투입하여 양생하는 것으로, 이는 고온 고압의 가마 속에 4차 혼합물을 넣어 온도, 하중, 충격, 오손, 파손 따위의 유해한 영향을 받지 않도록 양생하는 것으로, 보드의 목표 성능치를 최대로 끌어올 릴 수 있게 된다. In step S50, the quaternary mixture is cured by charging it into an autoclave. It is cured so as not to be adversely influenced by temperature, load, impact, damage, breakage or the like by putting a quarternary mixture in a high- The performance value can be maximized.

[실험예 1][Experimental Example 1]

* 압축강도** Compressive strength *

도 2는 흡착재를 합성제올라이트(13X, 4A)와, OPC(포틀랜드 시멘트)와, 규조토와, 천연제올라이트로 대체하여 제작된 보드의 재령(콘크리트를 부어 넣은 후부터 완전히 굳어지기까지의 경과 일수)일 3일, 7일, 28일 등으로 나눠 압축강도를 측정한 그래프이다.Fig. 2 shows the aging time (from the pouring of the concrete to the hardening of the concrete) of the board made by replacing the adsorbent with the synthetic zeolite (13X, 4A), OPC (Portland cement), diatomaceous earth and natural zeolite. Day, 7 days, 28 days, and so on.

그 결과, 압축강도는 13X제올라이트-20% > 4A제올라이트-20% > OPC > 규조토-5% > 천연제올라이트-20% 순으로 나타냈었으며, 재령 28일에서 13X제올라이트의 시험체 보드가 20.05㎫로 강도가 가장 높았고, 천연제올라이트-60%의 시험체 보드가 3.54㎫로 가장 낮는 강도가 발현함을 알 수 있었다.As a result, compressive strengths were 13X zeolite - 20%> 4A zeolite - 20%> OPC> diatomaceous earth - 5%> natural zeolite - 20%, and the test board of 13X zeolite at 20 days , And the strength of the natural zeolite-60% test board was 3.54 MPa.

특히, 13X, 4A제올라이트의 경우, 다른 흡착재료에 비해 압축강도가 높은 것을 알 수 있었다. 이는 합성제올라이트가 다른 흡착재료와 비교했을 때 Si성분이 다량 함유되어 있어 압축강도가 높아진 것으로 판단된다.Especially, 13X and 4A zeolite showed higher compressive strength than other adsorbents. It is considered that the compressive strength is increased because synthetic zeolite contains a large amount of Si component as compared with other adsorbent materials.

[실험예 2][Experimental Example 2]

*휨강도** Flexural strength *

도 3은 흡착재를 합성제올라이트(13X, 4A)와, OPC와, 규조토와, 천연제올라이트로 대체하여 제작된 보드의 재령일 3일, 7일, 28일 등으로 나눠 휨강도를 측정한 그래프이다.FIG. 3 is a graph showing the bending strengths of the boards prepared by replacing the adsorbent with the synthetic zeolite (13X, 4A), OPC, diatomaceous earth, and natural zeolite at 3 days, 7 days, 28 days.

그 결과, 휨강도는 13X제올라이트-20%, 규조토-5%가 가장 우수하였으며, OPC와, 4A제올라이트-20%와, 천연제올라이트-20%의 강도는 대체로 비슷함을 알 수 있었다.As a result, the flexural strength of 13X zeolite-20% and diatomite-5% was the best, and the strengths of OPC, 4A zeolite-20% and natural zeolite -20% were almost similar.

[실험예 3][Experimental Example 3]

*라돈가스** London *

도 4는 흡착재를 합성제올라이트(13X, 4A)와, OPC와, 규조토와, 천연제올라이트로 대체하여 제작된 보드의 라돈가스 방출량 결과를 나타낸 그래프이다.FIG. 4 is a graph showing the results of lardon gas emission of a board manufactured by replacing an adsorbent with synthetic zeolite (13X, 4A), OPC, diatomaceous earth, and natural zeolite.

여기서 라돈가스 방출량은 라돈가스 측정기를 이용하여 7일 단위로 측정하였다.Here, the emission of lardon gas was measured on a 7-day scale using a lardon gas analyzer.

그 결과, 흡착재료를 사용하지 않은 OPC가 가장 높은 라돈가스 방출량을 보였으며, 13X제올라트 > 4A제올라이트 > 규조토 > 천연제올라이트 > 천정텍스 > OPC 순으로 라돈가스 흡착성능을 보였다.As a result, OPC without adsorbing material showed the highest lardon gas emission, and 13D zeolite> 4A zeolite> diatomaceous earth> natural zeolite> ceftinex> OPC showed ladon gassing performance.

전체적으로는 모든 시험체의 AVG(장시간 평균치), EPA(평균농도)는 천정텍스 보다 증가하였으며, CUR(현재 평균치)은 현저히 감소하는 것을 확인하였다.Overall, the AVG (long-term average) and EPA (average concentration) of all the samples were higher than the ceiling tex, and the CUR (current average) was significantly reduced.

특히 13X,4A제올라이트가 우수한 흡착성능을 발현한 것은 합성제올라이트의 수소이온쌍의 형성의 성질로 인한 것으로 판단된다.Especially, 13X and 4A zeolite exhibited excellent adsorption performance because of the nature of hydrogen ion pair formation of synthetic zeolite.

본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.It should be noted that the embodiments described in the present specification and the configurations shown in the drawings are only the most preferred embodiments of the present invention and are not intended to represent all of the technical ideas of the present invention so that various equivalents And variations are possible.

Claims (3)

마그네시아 시멘트 100중량부에 대해 염화마그네슘을 20 ~ 30중량부를 첨가하여 1차 혼합물을 생성하는 S10단계;
마그네시아 시멘트 100중량부에 대해 흡착재 20 ~30중량부를 1차 혼합물에 첨가하여 2차 혼합물을 생성하는 S20단계;
마그네시아 시멘트 100중량부에 대해 플라이애시 또는 고로슬래그로 이루어지는 산업부산물 8 ~ 12중량부를 2차 혼합물에 첨가하여 3차 혼합물을 생성하는 S30단계;
마그네시아 시멘트 100중량부에 대해 물 35 ~ 45중량부를 3차 혼합물에 첨가하여 4차 혼합물을 생성하는 S40단계;
4차 혼합물을 보드 형태의 오토클레이브에 투입 후 양생하여 완성하는 S50단계;를 포함하되,
상기 흡착재는 알칼리, 물, 유기질 중 어느 하나 이상을 포함하는 혼합물로 구성된 실리카와, 알루미나를 느리게 결정화시킨 것으로, 결정구조 내에 있는 양이온의 작용에 의해 흡착성질을 갖는 합성제올라이트로 이루어지는 것을 특징으로 하고,
상기 합성제올라이트는 알루미늄 40.5~43.5중량%와, 규소 54.9~58.3중량%, 인 1.05~1.13중량%와, 칼륨 0.0136~0.0166중량%와, 칼슘 0.0136~0.0166중량%, 티타늄 0.0073~0.0097중량%의 화학성분을 갖는 것을 특징으로 하는 합성제올라이트를 활용한 라돈가스 저감 건축용 보드의 제조방법.
Adding 10 to 30 parts by weight of magnesium chloride to 100 parts by weight of magnesia cement to produce a first mixture;
Adding 20 to 30 parts by weight of an adsorbent to 100 parts by weight of magnesia cement to the first mixture to produce a second mixture;
S30: adding 8 to 12 parts by weight of industrial by-products composed of fly ash or blast furnace slag to 100 parts by weight of magnesia cement to a second mixture to produce a third mixture;
S40: adding 35 to 45 parts by weight of water to 100 parts by weight of the magnesia cement to the third mixture to produce a fourth mixture;
And a step S50 in which the quaternary mixture is charged into a board-shaped autoclave and then cured and completed,
Wherein the adsorbent is composed of silica composed of a mixture containing at least one of alkali, water and organic matter and synthetic zeolite having slowly adsorbing properties due to the action of cations in the crystal structure,
The synthetic zeolite is composed of 40.5 to 43.5 wt% of aluminum, 54.9 to 58.3 wt% of silicon, 1.05 to 1.13 wt% of phosphorus, 0.0136 to 0.0166 wt% of potassium, 0.0136 to 0.0166 wt% of calcium, 0.0073 to 0.0097 wt% Wherein the synthetic zeolite is used as a raw material for the construction board.
삭제delete 제 1항으로 제조되는 합성제올라이트를 활용한 라돈가스 저감 건축용 보드.A board for reducing lardin gas using a synthetic zeolite produced according to claim 1.
KR1020170174966A 2017-12-19 2017-12-19 Radon gas reduction building board using synthetic zeolite and manufacturing method thereof KR101996273B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170174966A KR101996273B1 (en) 2017-12-19 2017-12-19 Radon gas reduction building board using synthetic zeolite and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170174966A KR101996273B1 (en) 2017-12-19 2017-12-19 Radon gas reduction building board using synthetic zeolite and manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR20190073803A KR20190073803A (en) 2019-06-27
KR101996273B1 true KR101996273B1 (en) 2019-07-04

Family

ID=67057010

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170174966A KR101996273B1 (en) 2017-12-19 2017-12-19 Radon gas reduction building board using synthetic zeolite and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR101996273B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102363453B1 (en) * 2020-01-14 2022-02-15 (주) 선엔지니어링종합건축사사무소 Composite panels with used-zeolite
CN114288986A (en) * 2021-08-20 2022-04-08 天津市万鑫众达科技发展有限公司 Formula and production method of special adsorbent for radon and radon daughter aerosol

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101777508B1 (en) * 2016-04-12 2017-09-15 한밭대학교 산학협력단 Radon gas adsorption board and manufacturing method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5670131A (en) * 1995-10-02 1997-09-23 Mobil Oil Corporation Synthetic porous crystalline MCM-61, its synthesis and use
KR100454753B1 (en) 2002-02-06 2004-11-05 박영웅 Radon Blocking Material Shaped Powdered-Ceramic-Activated-Carbon Made From Kaoline

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101777508B1 (en) * 2016-04-12 2017-09-15 한밭대학교 산학협력단 Radon gas adsorption board and manufacturing method thereof

Also Published As

Publication number Publication date
KR20190073803A (en) 2019-06-27

Similar Documents

Publication Publication Date Title
KR101996273B1 (en) Radon gas reduction building board using synthetic zeolite and manufacturing method thereof
KR100754910B1 (en) Concrete paving blocks for side walk and road using waste stone and the making method thereof
KR101370976B1 (en) Geopolymer mortar containing natural antioxidant and construction method thereof
Letelier et al. Assessment of the mechanical properties of a concrete made by reusing both: Brewery spent diatomite and recycled aggregates
Tittarelli et al. Influence of binders and aggregates on VOCs adsorption and moisture buffering activity of mortars for indoor applications
KR20140044535A (en) Composition of e-co friendly inorganic floor coating materials
KR101337759B1 (en) Inorganic binder composition
KR101896274B1 (en) Functional adsorbent composition having excellent acid gas removal efficiency
KR101832339B1 (en) Eco-friendly light weight finishing material composition and manufacturing method thereof
US7097706B2 (en) Non-heating clay composites for building materials
KR20200071177A (en) Porous Water Purification Structure And Method for Manufacturing the Same
KR100831846B1 (en) A mortar compositions for building finishing materials of purifying indoor air
JP5025305B2 (en) Alkali-aggregate reaction inhibitor
JP2018162620A (en) Adsorption permeable concrete
KR100762893B1 (en) Loess board and charcoal board using coating material for surface of board
KR101531352B1 (en) Manufacturing method of carbonized board increasing absorbability for radon
KR100842422B1 (en) Method of manufacturing compound for removing noxious elements
KR20180047861A (en) Composition for environmental nature block comprising carbon fiber
KR20110096777A (en) White paint composition for radon reduction
KR100791051B1 (en) Method for manufacturing interior materials or exterior materials using clay, ash and dust
KR100483475B1 (en) Multi-functional ceramics using scoria aggregate
KR20100055730A (en) Antifungal inorganic paint and its manufacturing method
KR102216584B1 (en) A eco-friendly diatomitefoaming tray, and its fabrication method
KR20110117765A (en) The fabrication of deodorized concrete included with both surface-modified carbon ash and catalyst compound for the removal of voc and formaldehyde, simultaneously
KR101200161B1 (en) Porous Composition For Internal Wall And Method For Producing Internal Wall Materials Using The Composition

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right