KR101990674B1 - 소형 공압 장치 - Google Patents

소형 공압 장치 Download PDF

Info

Publication number
KR101990674B1
KR101990674B1 KR1020170011670A KR20170011670A KR101990674B1 KR 101990674 B1 KR101990674 B1 KR 101990674B1 KR 1020170011670 A KR1020170011670 A KR 1020170011670A KR 20170011670 A KR20170011670 A KR 20170011670A KR 101990674 B1 KR101990674 B1 KR 101990674B1
Authority
KR
South Korea
Prior art keywords
plate
gas
chamber
outlet
valve
Prior art date
Application number
KR1020170011670A
Other languages
English (en)
Other versions
KR20170091033A (ko
Inventor
신-창 첸
치-펭 후앙
영-룽 한
지아-유 리오
슈-훙 첸
체-웨이 후앙
훙-신 리오
차오-치 첸
젱-웨이 첸
잉-룬 창
치아-하우 창
웨이-밍 리
Original Assignee
마이크로제트 테크놀로지 컴파니 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from TW105128586A external-priority patent/TWI676739B/zh
Application filed by 마이크로제트 테크놀로지 컴파니 리미티드 filed Critical 마이크로제트 테크놀로지 컴파니 리미티드
Publication of KR20170091033A publication Critical patent/KR20170091033A/ko
Application granted granted Critical
Publication of KR101990674B1 publication Critical patent/KR101990674B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • F04B43/043Micropumps
    • F04B43/046Micropumps with piezoelectric drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • F04B39/1066Valve plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/04Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
    • F04B45/047Pumps having electric drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/001Noise damping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/16Casings; Cylinders; Cylinder liners or heads; Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2047Membrane type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/12Kind or type gaseous, i.e. compressible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/60Fluid transfer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S417/00Pumps

Abstract

소형 공압 장치는 소형 유체 제어 장치 및 소형 밸브 장치를 포함한다. 소형 유체 제어 장치는 가스 유입 플레이트, 공진 플레이트, 압전 액추에이터 및 가스 포집 플레이트를 포함한다. 가스 포집 플레이트는 6mm와 18mm 사이의 범위의 길이와 6mm와 18mm 사이의 범위의 폭을 갖는다. 공진 플레이트와 압전 액추에이터 사이에는 갭이 형성되어 제 1 챔버를 형성한다. 압전 액추에이터가 구동되고 가스가 가스 유입 플레이트로 공급된 후, 가스는 공명 플레이트를 통해 제 1 챔버로 이송된 다음 아래쪽으로 이송된다. 소형 밸브 장치는 밸브 플레이트 및 가스 유출 플레이트를 포함한다. 가스는 소형 유체 제어 장치로부터 소형 밸브 장치로 전달되어 가스 포집 작동 또는 압력 해제 작동을 수행한다.

Description

소형 공압 장치{MINIATURE PNEUMATIC DEVICE}
본 발명은 공압 장치 특히 얇고 조용한 소형 자동 공압 장치에 관한 것이다.
과학 기술의 발달로 제약 산업, 컴퓨터 기술, 인쇄 산업 또는 에너지 산업과 같은 많은 분야에서 사용되는 유체 이송 장치가 정교화 및 소형화 추세로 발전되고 있다. 유체 이송 장치는 예를 들어 마이크로 펌프, 마이크로 분무기, 프린트 헤드 또는 산업용 프린터에 사용되는 중요한 구성 요소이다. 따라서, 유체 이송 장치의개선된 구조를 제공하는 것이 중요하다.
예를 들어, 제약 산업에서, 공압 장치 또는 공압 기계는 가스를 전달하기 위해 모터 또는 압력 밸브를 사용한다. 그러나, 모터 및 압력 밸브의 체적 한계 때문에, 공압식 장치 또는 공압식 기계는 부피가 크다. 즉, 종래의 공압 장치는 소형화 요구에 부응하지 못하고, 휴대용 장비에 설치되거나 또는 휴대용 장비와 협력할 수 없으며 휴대용이 아니다. 또한, 모터 또는 압력 밸브의 작동 중에, 성가신 소음이 발생하기 쉽다. 즉, 종래의 공압 장치는 사용자에게 친근하지도 편안하지도 않다.
따라서, 상기 단점을 제거하기 위해 작고, 소형이며, 조용하고, 휴대 가능하고 편안한 장점을 갖는 소형 공압 장치를 제공할 필요가 있다.
본 발명은 휴대용 또는 착용할 수 있는 장비 또는 기계를 위한 소형 공압 장치를 제공한다. 압전 세라믹 플레이트가 고주파수에서 작동될 때, 소형 유체 제어 장치의 유체 채널에서 압력 구배가 발생되어 가스가 고속으로 흐르게된다. 또한, 공급 방향과 유출 방향 사이에 임피던스 차가 있기 때문에, 가스는 입구 측으로부터 출구 측으로 전달될 수 있다. 결과적으로, 소형 공압 장치는 작고, 가늘고, 휴대가 가능하며 조용하다.
본 발명의 일 실시 형태에 따라 소형 공압 장치가 제공된다. 소형 공압 장치는 소형 유체 제어 장치 및 소형 밸브 장치를 포함한다. 소형 유체 제어 장치는 가스 유입 플레이트, 공진 플레이트, 압전 액추에이터 및 가스 포집 플레이트를 포함한다.
공진 플레이트은 중앙 구멍을 갖는다. 상기 가스 포집 플레이트의 길이는 6mm~18mm의 범위이고, 상기 가스 포집 플레이트의 폭은 6mm~18mm이며, 상기 가스 포집 플레이트의 길이/폭 비율은 0.33~3사이의 범위이다. 가스 유입 플레이트, 공진 플레이트, 압전 액추에이터 및 가스 포집 플레이트는 순차적으로 서로 적층되고 공진 플레이트와 압전 액추에이터 사이에 갭이 형성되어 제 1 챔버를 형성한다. 압전 액추에이터가 구동되고 가스가 소형 유체 제어 장치로 공급 된 후에, 가스는 공진 플레이트을 통해 제 1 챔버로 전달된다. 소형 밸브 장치는 서로에 대해 적층되고 소형 유체 제어 장치의 가스 포집 플레이트상에 위치되는 밸브 플레이트 및 가스 유출 플레이트를 포함한다.
밸브 플레이트는 밸브 개구를 가지며, 가스 유출 플레이트의 길이 및 폭은 소형 유체 제어 장치의 가스 포집 플레이트의 길이 및 폭과 동일하다. 가스는 소형 유체 제어 장치로부터 소형 밸브 장치로 전달되어 가스 포집 작동 또는 압력 해제 작동을 수행한다.
본 발명의 상기 내용은 다음의 상세한 설명 및 첨부된 도면을 검토한 후 당업자에게 보다 쉽게 명백해질 것이다:
도 1A는 본 발명의 일 실시예 및 제 1 관점에 따른 소형 공압 장치를 도시하는 개략적 분해도.
도 1B는 도 1A의 소형 공압 장치를 도시한 개략적 조립도.
도 2A는 본 발명의 실시예 및 제 2 관점에 따른 소형 공압 장치를 도시하는개략적 분해도.
도 2B는 도 2A의 소형 공압 장치를 도시한 개략적 조립도.
도 3A는 도 1A의 소형 공압 장치의 압전 액추에이터를 정면에서 본 개략적 사시도.
도 3B는 도 1A의 소형 공압 장치의 압전 액추에이터를 후방 측에서 본 개략적 사시도.
도 3C는 도 1A의 소형 공압 장치의 압전 액추에이터를 도시한 개략적 단면도.
도 4A 내지 도 4C는 본 발명의 소형 공압 장치에 사용되는 다양한 예시적인 압전 액추에이터를 개략적으로 도시한다.
도 5A 내지 도 5E는 도 1A의 소형 공압 장치의 소형 유체 제어 장치의 작용을 개략적으로 도시한다.
도 6A 도 1A의 소형 공압 장치의 가스 포집 플레이트 및 소형 밸브 장치의 가스 포집 동작을 개략적으로 도시한다.
도 6B는 도 1A의 소형 공압 장치의 가스 포집 플레이트 및 소형 밸브 장치의 가스 해제 작동을 개략적으로 도시한다.
도 7A 내지 도 7E는 도 1A의 소형 공압 장치의 가스 포집 동작을 개략적으로 도시한다. 및
도 8은 도 1A의 소형 공압 장치의 가스 해제 작용 또는 감압 작용을 개략적으로 도시한다.
이하, 본 발명을 실시예에 의해 구체적으로 설명한다. 본 발명의 바람직한 실시예에 대한 하기하는 설명은 단지 예시 및 설명을 목적으로 본 명세서에 제시된 것이며 포괄적이거나 공개된 정확한 형태로 제한하려는 것이 아니다.
본 발명은 소형 공압 장치를 제공한다. 소형 공압 장치는 가스 운송을 위해 제약 산업, 에너지 산업, 컴퓨터 기술 또는 인쇄 산업과 같은 많은 분야에서 사용될 수 있다.
도 1A, 도 1B, 도 2A, 도 2B 및 도 7A 내지도 7E를 참조하라. 도 1A는 본 발명의 일 실시예에 따른 소형 공압 장치를 제 1 관점에서 본 개략적 분해도이다. 도 1B는 도 1A의 소형 공압 장치를 나타내는 개략적 조립도이다. 도 2A는 본 발명의 실시예에 따른 소형 공압 장치를 제 2 관점에서 개략적으로 도시한 분해도이다. 도 2B는 도 2A의 소형 공압 장치를 도시하는 개략적 조립도이다. 도 7A 내지 도 7E는 도 1A의 소형 공압 장치의 가스 포집 동작을 개략적으로 도시한다.
도 1A 및 도 2A에 도시된 바와 같이, 소형 공압 장치(1)는 소형 유체 제어 장치(1A) 및 소형 밸브 장치(1B)를 포함한다. 이 실시예에서, 소형 유체 제어 장치(1A)는 하우징(1a), 압전 액추에이터(13), 제 1 절연 플레이트(141), 전도성 플레이트(15) 및 제 2 절연 플레이트를 포함한다. 상기 하우징(1a)은 가스 포집 플레이트(16) 및 베이스(10)를 포함한다. 상기 베이스(10)는 가스 유입 플레이트(11), 공진 플레이트(12)를 포함한다. 압전 액추에이터(13)는 공진 플레이트(12)와 정렬된다. 가스 유입 플레이트(11), 공진 플레이트(12), 압전 액추에이터(13), 제 1 절연 플레이트(141), 전도성 플레이트(15), 제 2 절연 플레이트(142) 및 가스 포집 플레이트(16)는 순차적으로 서로 적층된다. 또한, 압전 액추에이터(13)는 서스펜션 플레이트(130), 외부 프레임(131), 적어도 하나의 브래킷(132) 및 압전 세라믹 플레이트(133)을 포함한다. 상기 실시예에서, 소형 밸브 장치(1B)는 밸브 플레이트(17) 및 가스 유출 플레이트(18)를 포함한다.
도 1A에 도시된 바와 같이, 가스 포집 플레이트(16)는 바닥 플레이트와 측벽(168)을 포함한다. 측벽(168)은 바닥 플레이트의 에지로부터 돌출된다. 가스 포집 플레이트(16)의 길이는 6mm~18mm의 범위이고, 상기 가스 포집 플레이트의 폭은 6mm~18mm이며, 상기 가스 포집 플레이트의 길이/폭 비율은 0.33~3사이의 범위이다. 선택적으로 가스 포집 플레이트(16)의 길이는 9mm와 17mm 사이의 범위이다. 가스 포집 플레이트(16)의 폭은 9mm와 17mm 사이의 범위이다. 바람직하게는, 가스 포집 플레이트(16)의 길이/폭 비율은 0.53 내지 1.88의 범위 내이다. 바람직하게는 가스 포집 플레이트(16)의 길이는 9mm이고, 가스 포집 플레이트(16)의 폭은 9mm이다. 또한, 수용 공간(16a)은 바닥 플레이트과 측벽(168)에 의해 형성된다. 압전 액추에이터(13)는 수용 공간(16a) 내에 배치된다. 소형 공압 장치(1)가 조립된 후, 정면으로 본 소형 공압 장치의 최종 구조가 도 1B 및 도 7A 내지 도 7E에 도시된다. 소형 유체 제어 장치(1A)와 소형 밸브 장치(1B)는 함께 결합된다. 즉, 소형 밸브 장치(1B)의 밸브 플레이트(17)와 가스 유출 플레이트(18)는 서로 적층되어 소형 유체 제어 장치(1A)의 가스 포집 플레이트(16) 상에 위치된다. 가스 유출 플레이트(18)는 압력 해제 천공(181) 및 유출 구조(19)를 포함한다. 유출 구조(19)는 장비(미도시)와 연결되어 있다. 소형 밸브 장치(1B) 내의 기체가 압력 해제 천공(181)으로부터 방출되면, 압력 방출 목적이 달성된다.
소형 유체 제어 장치(1A)와 소형 밸브 장치(1B)가 결합된 후, 소형 공압 장치(1)가 조립된다. 결과적으로, 가스 유입 플레이트(11)의 적어도 하나의 입구(110)를 통해 소형 유체 제어 장치(1A) 내로 가스가 공급된다. 압전 액추에이터(13)의 작용에 응답하여, 가스는 복수의 압력 챔버(미도시)를 통하여 하향으로 전달된다. 그 후, 가스는 소형 밸브 장치(1B)를 통해 한 방향으로 전달된다. 가스의 압력은 소형 밸브 장치(1B)의 유출 구조(19)와 연통하는 장비(미도시)에 축적된다. 압력을 해제하기 위해, 소형 유체 제어 장치(1A)의 출력 가스량은 소형 밸브 장치(1B)의 가스 유출 플레이트(18)의 압력 해제 천공(181)으로부터 유출된다.
도 1A 및 도 2A를 다시 참조하면, 소형 유체 제어 장치(1A)의 가스 유입 플레이트(11)은 제 1 표면(11b), 제 2 표면(11a) 및 적어도 하나의 입구(110)를 포함한다. 상기 실시 예에서, 가스 유입 플레이트(11)는 4개의 입구(110)를 포함한다. 상기 입구(110)는 가스 유입 플레이트(11)의 제 1 표면(11b) 및 제 2 표면(11a) 사이에 제공된다. 대기압의 작용에 응답하여, 가스는 적어도 하나의 입구(110)를 통해 소형 유체 제어 장치(1A) 내로 도입될 수 있다. 도 2A에 도시된 바와 같이, 적어도 하나의 수렴 채널(112)은 가스 유입 플레이트(11)의 제 1 표면(11b)에 형성된다. 하나 이상의 수렴 채널(112)은 가스 유입 플레이트(11)의 제 2 표면(11a)에서 적어도 하나의 입구(110)와 연통한다. 적어도 하나의 수렴 채널(112)의 수는 적어도 하나의 입구(110)의 수와 동일하다. 상기 실시 예에서, 가스 유입 플레이트(11)는 4개의 수렴 채널(112)을 포함한다. 하나 이상의 수렴 채널 채널(112)의 수 및 적어도 하나의 입구(110)의 수는 실제 요구 조건에 따라 변경될 수 있다. 또한, 중앙 공동(111)은 가스 유입 플레이트(11)의 제 1 표면(11b)에 형성되고 4개의 수렴 채널(112)의 중앙 수렴 영역에 위치한다. 중앙 공동(111)은 적어도 하나의 수렴 채널(112)과 연통한다. 가스는 적어도 하나의 입구(110)를 통해 적어도 하나의 수렴 채널(112)로 도입되고, 가스는 중앙 공동(111)으로 안내된다. 상기 실시예에서, 적어도 하나의 입구(110), 적어도 하나의 수렴 채널(112) 및 가스 유입 플레이트(11)의 중앙 공동(111)은 일체로 형성된다. 중앙 공동(111)은 가스를 일시적으로 저장하기 위한 수렴 챔버이다.
가스 유입 플레이트(11)은 바람직하게는 스테인리스 강으로 제조되지만, 이에 제한되지는 않는다. 가스 유입 플레이트(11)의 두께는 0.4mm와 0.6mm 사이의 범위이고, 바람직하게는 0.5mm이다. 또한, 중앙 공동(111)에 의해 한정된 수렴 챔버의 깊이와 하나 이상의 수렴 채널(112)의 깊이는 동일하다. 예를 들어, 수렴 챔버의 깊이와 적어도 하나의 수렴 채널(112)의 깊이는 0.2mm와 0.3mm 사이의 범위 내에 있다. 바람직하게는, 배타적이지는 않지만, 공진 플레이트(12)은 가요성 재료로 제조된다. 공진 플레이트(12)는 가스 유입 플레이트(11)의 중앙 공동(111)에 대응하는 중앙 구멍(120)을 포함한다. 결과적으로, 가스는 중앙 구멍(120)을 통해 하향 전달될 수 있다. 공진 플레이트(12)의 두께는 0.03mm 내지 0.08mm, 바람직하게는 0.05mm이다.
도 3A는 도 1A의 소형 공압 장치의 압전 액추에이터를 정면에서 본 사시도이다. 도 3B는 도 1A의 소형 공압 장치의 압전 액추에이터를 후방에서 본 개략적 사시도이다. 도 3C는 도 1A의 소형 공압 장치의 압전 액추에이터를 도시한 개략적 인 단면도이다. 도 3A, 도 3B 및 도 3C에 도시된 바와 같이, 압전 액추에이터(13)는 서스펜션 플레이트(130), 외부 프레임(131), 적어도 하나의 브래킷(132) 및 압전 세라믹 플레이트(133)를 포함한다. 압전 세라믹 플레이트(133)는 서스펜션 플레이트(130)의 제 1 표면(130b)에 부착된다. 압전 세라믹 플레이트(133)는 인가된 전압에 따라 곡률 진동을 받는다. 서스펜션 플레이트(130)는 중간부(130d)와 주변부(130e)를 포함한다. 압전 세라믹 플레이트(133)가 곡률 진동을 받을 때, 서스펜션 플레이트(130)는 중간부(130d)로부터 주변부(130e)로 곡률 진동을 받는다. 적어도 하나의 브라켓(132)은 서스펜션 플레이트(130)와 외부 프레임(131) 사이에 배치된다. 즉, 적어도 하나의 브래킷(132)은 서스펜션 플레이트(130)와 외부 프레임(131) 사이에 연결된다. 브래킷(132)의 두 단부는 외부 프레임(131)과 서스펜션 플레이트(130)와 각각 연결된다. 결과적으로 브래킷(131)은 서스펜션 플레이트(130)를 탄성적으로 지지한다. 또한, 브래킷(132), 서스펜션 플레이트(130) 및 외부 프레임(131) 사이에는 가스가 통과할 수 있도록 적어도 하나의 빈 공간(135)이 형성된다. 상기 서스펜션 플레이트(130) 및 상기 외부 프레임(131)의 종류 및 적어도 하나의 브래킷(132)의 종류 및개수는 실제 요구 사항에 따라 달라질 수 있다. 또한, 도전성 핀(134)이 상기 외부 프레임(131)의 외측으로 돌출되어 외부 회로(미도시)와 전기적으로 연결된다.
본 실시예에서, 서스펜션 플레이트(130)는 계단형 구조이다. 즉, 상기 서스펜션 플레이트(130)는 돌출부(130c)를 포함한다. 돌출부(130c)는 서스펜션 플레이트(130)의 제 2 표면(130a)에 형성된다. 예를 들어, 돌출부(130c)는 원형 볼록 구조이다. 돌출부(130c)의 두께는 0.02mm 내지 0.08mm의 범위, 바람직하게는 0.03mm이다. 바람직하게, 비제한적으로 돌출부(130c)의 직경은 2mm와 4.6mm 사이의 범위에 있다. 도 3A 및 도 3C에 도시된 바와 같이, 서스펜션 플레이트(130)의 돌출부(130c)의 상부 표면은 외부 프레임(131)의 제 2 표면(131a)과 동일 평면상에 있고, 서스펜션 플레이트(130)의 제 2 표면(130a)은 브래킷(132)의 제 2 표면(132a)과 동일 평면상에 있다. 또한 서스펜션 플레이트(130)의 돌출부(130c)(또는 외부 프레임(131)의 제 2 표면(131a))는 서스펜션 플레이트(130)의 제 2 표면(130a)(또는 브래킷(132)의 제 2 표면(132a))에 대해 일정한 두께를 가진다. 도 3B 및 도 3C에 도시된 바와 같이, 상기 서스펜션 플레이트(130)의 제 1 표면(130b), 상기 외부 프레임(131)의 제 1 표면(131b) 및 상기 브래킷(132)의 제 1 표면(132b)은 서로 동일 평면상에 있다. 압전 세라믹 플레이트(133)는 서스펜션 플레이트(130)의 제 1 표면(130b)에부착된다. 다른 실시예에서, 서스펜션 플레이트(130)는 두개의 평평한 표면을 갖는 정방 플레이트 구조이다. 즉, 상기 서스펜션 플레이트(130)의 구조는 실제 요구 조건에 따라 달라질 수 있다. 본 실시예에서, 서스펜션 플레이트(130), 적어도 브래킷(132) 및 외부 프레임(131)은 금속 플레이트(예를 들어, 스테인레스 스틸 플레이트)를 사용하여 일체로 형성 및 제조된다. 상기 서스펜션 플레이트(130)의 두께는 0.1mm 내지 0.4mm이며, 바람직하게는 0.27mm이다. 서스펜션 플레이트(130)의 길이는 4mm와 12mm 사이의 범위이고, 바람직하게는 7.5mm와 8.5mm 사이의 범위이다. 서스펜션 플레이트(130)의 폭은 4mm와 12mm 사이의 범위이고, 바람직하게는 7.5mm와 8.5mm 사이의 범위이다. 외부 프레임(131)의 두께는 0.2mm와 0.4mm 사이의 범위이고, 바람직하게는 0.3mm이다.
압전 세라믹 플레이트(133)의 두께는 0.05 ㎜ 내지 0.3 ㎜, 바람직하게는 0.10 ㎜의 범위이다. 압전 세라믹 플레이트(133)의 길이는 서스펜션 플레이트(130)의 길이보다 크지 않다. 압전 세라믹 플레이트(133)의 길이는 4mm와 12mm 사이의 범위이고, 바람직하게는 7.5mm와 8.5mm 사이의 범위이다. 압전 세라믹 플레이트(133)의 폭은 4mm 내지 12mm의 범위이고, 바람직하게는 7.5mm 내지 8.5mm의 범위이다. 또한, 압전 세라믹 플레이트(133)의 길이/폭 비율은 0.33와 3 사이의 범위이다. 일부 실시예에서, 압전 세라믹 플레이트(133)의 길이는 서스펜션 플레이트(130)의 길이보다 작다. 유사하게 압전 세라믹 플레이트(133)는 서스펜션 플레이트(130)에 해당하는 정방형 플레이트이다.
본 발명의 소형 공압 장치(1)에 사용되는 압전 액추에이터(13)의 서스펜션 플레이트(130)는 정방 서스펜션 플레이트인 것이 바람직하다. 원형 서스펜션 플레이트(예를 들어, 도 4A에 도시된 바와 같은 원형 서스펜션 플레이트(j0))와 비교하여, 정방형 서스펜션 플레이트는 더 절전적이다. 다양한 유형 및 크기의 서스펜션 플레이트에 대한 소비 전력과 작동 주파수의 비교는 표 1에 도시된다.
서스펜선 플레이트의 형태 및 크기 작동 주파수 소비 전력
정방형(측면 길이: 10mm) 18kHz 1.1W
원형(직경: 10mm) 28kHz 1.5W
정방형(측면 길이: 9mm) 22kHz 1.3W
원형(직경: 9mm) 34kHz 2W
정방형(측면 길이: 8mm) 27kHz 1.5W
원형(직경: 8mm) 42kHz 2.5W
표 1의 결과로부터, 정방 서스펜션 플레이트(8mm~10mm)를 갖는 압전 액추에이터는 원형 서스펜션 플레이트(8mm~10mm)를 갖는 압전 액추에이터 보다 절전 효과가 높다는 것을 알 수 있다. 즉, 정방 서스펜션 플레이트를 갖는 압전 액추에이터는 소비 전력이 적다. 일반적으로, 공진 주파수에서 용량성부하의 소비 전력은 공진 주파수와 양의 상관 관계가 있다. 정방 서스펜션 플레이트의 공진 주파수가 원형 정방 서스펜션 플레이트의 공진 주파수보다 명백하게 낮기 때문에, 정방 서스펜션 플레이트의 소비 전력은 더 낮다. 정방 서스펜션 플레이트는 원형 서스펜션 플레이트보다 더 절전적이기 때문에 정방 서스펜션 플레이트가 착용 장치에 사용되기에 적합하다. 정방 서스펜션 플레이트가 원형 서스펜션 플레이트보다 절전 효과가 있다는 사실은 이론적인 수학 공식보다는 실험 결과에 따라 달성된다.
도 4A, 4B 및 4C는 본 발명의 소형 공압 장치에 사용되는 다양한 예시적인 압전 액추에이터를 개략적으로 도시한다. 도면에 도시된 바와 같이, 압전 액추에이터(13)의 서스펜션 플레이트(130), 외부 프레임(131) 및 적어도 하나의 브래킷(132)은 다양한 형태를 갖는다.
도 4A는 압전 액추에이터의 유형(a)~(l)을 개략적으로 도시한다. 유형(a)에 있어서, 외부 프레임(a1)과 서스펜션 플레이트(a0)는 정방형이며, 외부 프레임(a1)과 서스펜션 플레이트(a0)는 8개의 브래킷(a2)을 통해 서로 연결되고, 빈공간(a3)은 가스를 통과시키기 위해 브래킷(a2), 서스펜션 플레이트(a0) 및 외부 프레임(a1) 사이에 형성된다. 유형(i)에서, 외부 프레임(i1)과 서스펜션 플레이트(i0)도 정방형이지만, 외부 프레임(i1)과 서스펜션 플레이트(i0)는 2개의 브래킷(i2)을 통해 연결된다. 또한, 각 유형(b)~(h)의 외부 프레임 및 서스펜션 플레이트 또한 정방형이다. 각 유형(j)~(l)에서, 서스펜션 플레이트는 원형이고, 외부 프레임은 아크형 모서리를 갖는 정방형을 가진다. 예를 들어, 유형(j)에서, 서스펜션 플레이트(j0)는 원형이고, 외부 프레임은 아크형 모서리를 갖는 정방형을 가진다.
도 4B는 압전 액추에이터의 유형(m)~(r)을 개략적으로 도시한다. 이러한 유형(m)~(r)에서, 서스펜션 플레이트(130) 및 외부 프레임(131)은 정방형이다. 유형(m)에서, 외부 프레임(m1)과 서스펜션 플레이트(m0)는 정방형이고, 외부 프레임(m1)과 서스펜션 플레이트(m0)는 4개의 브래킷(m2)으로 서로 연결되며, 가스가 통과하도록 브래킷(m2), 서스펜션 플레이트(m0) 및 외부 프레임(m1)사이에 빈 공간(m3)이 형성된다. 외부 프레임(m1)과 서스펜션 플레이트(m0) 사이의 브래킷(m2)은 연결부이다. 브래킷(m2)은 두 단부(m2'및 m2")를 가진다. 브래킷(m2)의 단부(m2')는 외부 프레임(m1)과 연결된다. 브래킷(m2)의 단부(m2")는 서스펜션 플레이트(m0)와 연결된다. 2개의 단부(m2', m2")는 서로 대향하고 동일한 수평선을 따라 배열된다. 유형(n)에서, 외부 프레임(n1)과 서스펜션 플레이트(m0)는 정방형이고, 외부 프레임(n1)과 서스펜션 플레이트(n0)는 4개의 브래킷(n2)을 통해 서로 연결되며, 가스가 통과하도록 브래킷(n2), 서스펜션 플레이트(n0) 및 외부 프레임(n1) 사이에는 빈공간이 형성된다. 외부 프레임(n1)과 서스펜션 플레이트(n0) 사이의 브래킷(n2)은 연결부이다. 브래킷(n2)은 두 개의 단부(n2' 및 n2")를 갖는다. 브래킷(n2)의 단부(n2')는 외부 프레임(n1)과 연결된다. 브라켓(n2)의 단부(n2")는 서스펜션 플레이트(n0)와 연결된다. 2개의 단부(n2', n2")는 동일한 수평선을 따라 배열되지 않는다. 예를 들어, 두 단부(n2', n2")는 수평선에 대해 0~45도 기울어 져 있고, 두 단부(n2', n2")는 인터레이스되어 있다. 유형(o)에서, 외부 프레임(o1)과 서스펜션 플레이트(o0)가 정방형이고, 외부 프레임(o1)과 서스펜션 플레이트(o0)가 4개의 브래킷(o2)으로 서로 연결되어 있으며, 가스가 통과하도록 빈공간이 브래킷(o2), 서스펜션 플레이트(o0) 및 외부 프레임(o1) 사이에 형성된다. 외부 프레임(o1)과 서스펜션 플레이트(o0) 사이의 브래킷(o2)은 연결부이다. 브래킷(o2)은 두 단부(o2' 및 o2")를 가진다. 브래킷(o2)의 단부(o2')는 외부 프레임(o1)과 연결된다. 브래킷(o2)의 단부(o2")는 서스펜션 플레이트(o0)에 연결된다. 2개의 단부(o2', o2")는 서로 대향하고 동일한 수평선을 따라 배열된다. 상기 유형과 비교하여, 브래킷(o2)의 프로파일이 구별된다.
타입(p)에서, 외부 프레임(p1)과 서스펜션 플레이트(p0)이 정방형이고, 외부 프레임(p1)과 서스펜션 플레이트(p0)이 4 개의 브래킷(p2)을 통해 서로 연결되어 있고, 공기가 통과하도록 빈 공간(p3)이 브래킷(p2), 서스펜션 플레이트(p0) 및 외부 프레임(p1) 사이에 형성된다. 외부 프레임(p1)과 서스펜션 플레이트(p0) 사이의 브래킷(p2)은 제 1 연결부(p20), 중간부(p21) 및 제 2 연결부(p22)를 포함한다. 중간부(p21)는 빈 공간(p3)에 형성되고 외부 프레임(p1) 및 서스펜션 플레이트(p0)과 평행하게 형성된다. 제 1 연결부(p20)는 중간부(p21)와 서스펜션 플레이트(p0) 사이에 배치된다. 제 2 연결부(p22)는 중간부(p21)와 외부 프레임(p1) 사이에 배치된다. 제 1 연결부(p20)와 제 2 연결부(p22)는 서로 마주하여 동일한 수평선을 따라 배치된다.
타입(q)에서, 외부 프레임(q1), 서스펜션 플레이트(q0), 브래킷(q2) 및 빈 공간(q3)은 유형(m) 및 유형(o)과 유사하다. 그러나, 브래킷 q2의 구조는 구별된다. 서스펜션 플레이트 q0는 정방형이다. 서스펜션 플레이트(q0)의 각 변은 2 개의 연결부(q2)를 통해 외부 프레임(q1)의 대응 변과 연결된다. 각 연결부(q2)의 두 단부(q2', q2")는 서로 대향하고 동일한 수평선을 따라 배열된다. 유형(r)에서, 외부 프레임(r1), 서스펜션 플레이트(r0), 브래킷(r2) 및 빈 공간(r3)은 상기 실시 형태와 마찬가지이다. 그러나, 브래킷(r2)은 V 형 연결부이다. 즉, 브래킷(r2)은 외부 프레임(r1)과 서스펜션 플레이트(r0)에 0° 내지 45°의 경사각으로 연결된다. 브래킷(r2)의 단부(r2")는 서스펜션 플레이트(r0)에 연결되고, 브래킷(r2)의 두 단부(r2')는 외부 프레임(r1)에 연결된다. 즉, 단부(b2' 및 b")들은 동일한 수평선을 따라 배치되지 않는다.
도 4C는 압전 액추에이터의 유형(s)~(x)을 개략적으로 도시한다. 유형(s)~(x)의 구조는 유형(m)~(r) 각각의 구조와 유사하다. 그러나, 유형(s)~(x)에서, 압전 액추에이터(13)의 서스펜션 플레이트(130)는 돌출부(130c)를 갖는다. 유형(s)~(x)의 돌출부(130c)는 각각 s4, t4, u4, v4, w4 및 x4로 표시된다. 상기 서스펜션 플레이트(130)는 정방형이기 때문에 절전 효과가 있다. 상술한 바와 같이, 본 발명의 서스펜션 플레이트로서, 2 개의 평탄한 면을 갖는 사각 플레이트 구조 및 돌출부를 포함하는 계단형 구조가 적합하게 사용된다. 또한, 외부 프레임(131)과 서스펜션 플레이트(130) 사이의 브라켓(132)의 수는 실제 요구 사항에 따라 달라질 수 있다. 또한, 서스펜션 플레이트(130), 외곽 프레임(131) 및 브래킷(132)은 일체로 형성되어 있으며, 종래의 기계 가공 공정, 포토리소그래피 및 에칭 공정, 레이저 가공 공정, 전기 주조 공정, 방전 가공 가공 공정 등에 의해 제공된다.
다시 도 1A 및 도 2A를 참조하면, 소형 유체 제어 장치(1A)는 제 1 절연 플레이트(141), 전도성 플레이트(15) 및 제 2 절연 플레이트(142)을 더 포함한다. 제 1 절연 플레이트(141), 전도성 플레이트(15) 및 제 2 절연 플레이트(142)는 서로 연속적으로 적층되고 압전 액추에이터(13)아래에 위치된다. 제 1 절연 플레이트(141), 전도성 플레이트(15) 및 제 2 절연 플레이트(142)의 형상은 압전 액추에이터(13)의 외부 프레임(131)의 프로파일과 일치한다. 제 1 절연 플레이트(141)과 제 2 절연 플레이트(142)는 절연 효능을 제공하기 위한 절연 재료(예: 플라스틱 재료)로 만들어진다. 전도성 플레이트(15)는 전기 전도성을 제공하기 위해 전기 전도성 물질(예를 들어, 금속 물질)로 만들어진다. 또한, 전도성 플레이트(15)는 외부 회로(미도시)와 전기적으로 접속되도록 전도성 핀(151)을 갖는다.
도 5A 내지 도 5E는 도 1A의 소형 공압 장치의 소형 유체 제어 장치의 작용을 개략적으로 도시한다. 도 5A에 도시된 바와 같이, 소형 유체 제어 장치(1A)의 가스 유입 플레이트(11), 공진 플레이트(12), 압전 액추에이터(13), 제 1 절연 플레이트(141), 전도성 플레이트(15) 및 제 2 절연 플레이트(142)는 서로 순차적으로 적층된다. 또한, 공진 플레이트(12)와 압전 액추에이터(13)의 외부 프레임(131) 사이에는 갭(g0)이 있다. 본 실시예에서는 갭(g0)에 필러(예를 들어, 전도성 접착제)가 삽입되어 있다. 결과적으로, 공진 플레이트(12)와 서스펜션 플레이트(130)의 돌출부(130c) 사이의 갭(g0)의 깊이는 가스가 보다 신속하게 유동하게 안내되도록 유지될 수 있다. 또한, 공진 플레이트(12)와 서스펜션 플레이트(130)의 돌출부(130c) 사이의 적절한 거리로 인해 접촉 간섭이 감소되고 발생하는 잡음이 크게 감소된다. 일부 실시예에서, 갭은 외부 프레임(131)의 두께를 증가시킴으로써 압전 액추에이터(13)의 외부 프레임(131)과 공진 플레이트(12)사이에 형성된다.
도 5A 내지 도 5E를 다시 참조하면, 가스 유입 플레이트(11), 공진 플레이트(12) 및 압전 액추에이터(13)가 결합된 후, 공진 플레이트(12)의 중심 구멍(120)과 가스 유입 플레이트(11)가 협동하여 가스를 수렴시키는 수렴 챔버가 형성되고, 공진 플레이트(12)과 압전 액추에이터(13) 사이에는 가스를 일시적으로 저장하기 위한 챔버(121)가 형성된다. 제 1 챔버(121)는 공진 플레이트(12)의 중앙 구멍(120)을 통해 가스 유입 플레이트(11)의 제 1 표면(11b)에 형성된 중앙 공동(111)과 연통한다. 제 1 챔버(121)의 주변 영역은 압전 액추에이터(13)의 빈 공간(135)을 통해 하부의 소형 밸브 장치(1B)에 연통한다.
소형 공압 장치(1)의 소형 유체 제어 장치(1A)가 작동될 때, 압전 액추에이터(13)는 인가된 전압에 의해 작동된다. 따라서, 압전 액추에이터(13)는 브래킷(132)을 지점으로 하여 상하 방향을 따라 왕복 진동한다. 공진 플레이트(12)은 가볍고 얇다. 도 5B를 참조하면, 압전 액추에이터(13)가 인가된 전압에 따라 하방으로 진동될 때, 압전 액추에이터(13)의 공진 때문에 공진 플레이트(12)는 수직 방향을 따라 왕복 진동한다. 특히, 가스 유입 플레이트(11)의 중앙 공동(111)에 상응하는 공진 플레이트(12)의 부분은 만곡 변형된다. 이하, 가스 유입 플레이트(11)의 중앙 공동(111)에 대응하는 공진 플레이트(12)의 영역을 공진 플레이트(12)의 가동부(12a)라고 한다. 압전 액추에이터(13)가 하방으로 진동될 때, 공진 플레이트(12)의 가동부(12a)는 가스에 의해 압박되고, 압전 액추에이터(13)에 응답하여 진동하기 때문에, 곡률 변형을 겪게된다. 가스가 가스 유입 플레이트(11)의 적어도 하나의 입구(110)로 공급된 후, 가스는 적어도 하나의 수렴 채널(112)을 통해, 가스 유입 플레이트(11)의 중앙 공동(111)으로 전달된다. 그후 가스는 공진 플레이트(12)의 중앙 구멍(120)을 통해 전달되어 제 1 챔버(121)내로 하향 도입된다. 압전 액추에이터(13)가 작동됨에 따라, 공진 플레이트(12)의 공진이 발생한다. 결과적으로, 공진 플레이트(12)의 가동부(12)는 또한 수직 방향을 따라 왕복 진동한다.
도 5C에 도시된 바와 같이, 공진 플레이트(12)는 압전 액추에이터(13)의 서스펜션 플레이트(130)의 돌출부(130c)와 하방으로 접촉하여 진동한다. 공진 플레이트(12)의 가동부(12a)를 제외한 영역은 고정부(12b)로 부른다. 한편, 상기 서스펜션 플레이트(130)와 공진 플레이트(12)의 고정부(12b) 사이의 갭은 줄어들지 않는다. 공진 플레이트(12)의 변형으로 인해 제 1 챔버(121)의 체적이 수축되고 제 1 챔버(121)의 중간 연통 공간이 폐쇄된다. 이 상태에서, 가스는 제 1 챔버(121)의 주변 영역을 향해 가압된다. 결과적으로, 가스는 압전 액추에이터(13)의 빈 공간(135)을 통해 하향 전달된다.
도 5D에 도시된 바와 같이, 공진 플레이트(12)는 공진 플레이트(12)의 가동부(12a)가 만곡 변형된 후에 원위치로 복귀된다. 그후, 인가된 전압에 따라 압전 액추에이터(13)가 상방으로 진동한다. 결과적으로, 제 1 챔버(121)의 체적도 축소된다. 압전 액추에이터(13)가 진동 변위(d)에서 상승하기 때문에, 가스는 제 1 챔버(121)의 주변 영역을 향해 연속적으로 가압된다. 한편, 가스는 가스 유입 플레이트(11)의 적어도 하나의 입구(110)로 연속적으로 공급되어 중앙 공동(111)으로 전달된다.
다음, 도 5E에 도시된 바와 같이, 압전 액추에이터(13)가 상향으로 진동하기 때문에 공진 플레이트(12)는 상방으로 이동한다. 즉, 공진 플레이트(12)의 가동부(12a)가 상방으로 이동한다. 이러한 상황에서, 중앙 공동(111) 내의 가스는 공진 플레이트(12)의 중심 개구(120)를 통해 제 1 챔버(121)로 전달된 후, 압전 액추에이터(13)의 빈 공간(135)을 통해 아래쪽으로 가스가 전달되고, 마지막으로 가스는 소형 유체 제어 장치(1A)로부터 유출된다.
상기 설명으로부터, 공진 플레이트(12)가 왕복 운동으로 수직 방향을 따라 진동될 때, 공진 플레이트(12)과 압전 액추에이터(13) 사이의 갭(g0)은 공진 플레이트(12)의 진폭을 증가시키는데 도움이 된다. 즉, 공진 플레이트(12)와 압전 액추에이터(13) 사이의 갭(g0)으로 인해, 공진이 발생할 때 공진 플레이트(12)의 진폭이 증가한다. 갭(g0)과 압전 액추에이터(13)의 진동 변위(d) 사이의 차이(x)는 공식 x = g0 - d로 주어진다. 다른 x 값에 대응하는 소형 공압 장치(1)의 최대 출력 압력에 대한 일련의 테스트가 수행된다. x≤0μm인 경우, 소형 공압 장치(1)는 소음을 발생시킨다. x = 1~5μm인 경우, 소형 공압 장치 1의 최대 출력 압력은 350mmHg이다. x = 5~10μm인 경우, 소형 공압 장치(1)의 최대 출력 압력은 250mmHg이다. x = 10~15μm인 경우, 소형 공압 장치(1)의 최대 출력 압력은 150mmHg이다. 차이 x와 최대 출력 압력 사이의 관계는 표 2에 나열되어 있다. 표 2의 값은 작동 주파수가 17kHz와 20kHz 사이의 범위에 있고 작동 전압이 10V와 20V 사이의 범위에 있을 때 얻어진다. 결과적으로, 소형 유체 제어 장치(1A)의 유체 채널에 압력 구배가 발생하여 가스가 고속으로 흐르게된다. 또한, 공급 방향과 유출 방향 사이에 임피던스 차가 있기 때문에, 가스는 입구 측으로부터 출구 측으로 전달될 수 있다. 또한, 출구 측이 가스 압력을 가지더라도, 소형 유체 제어 장치(1A)는 조용한 효과를 가지며 가스를 밀어낼 수 있는 능력을 여전히 가진다.
테스트 X 최대 출력 압력
1 x = 1 ~ 5μm 350mmHg
2 x = 5 ~ 10μm 250mmHg
3 x = 10 ~ 15μm 150mmHg
일부 실시예에서, 왕복 운동의 수직 방향을 따른 공진 플레이트(12)의 진동 주파수는 압전 액추에이터(13)의 진동 주파수와 동일하다. 즉, 공진 플레이트(12)와 압전 액추에이터(13)는 상향 또는 하방을 따라 동기하여 진동한다. 본 발명의 사상을 유지하면서 소형 유체 제어 장치(1A)의 작용에 대한 많은 변형 및 변경이 이루어질 수 있음을 알아야 한다.
도 1A, 도 2A, 도 6A 및 도 6B를 참조하면, 도 6A는 도 1A의 소형 공압 장치의 가스 포집 플레이트 및 소형 밸브 장치의 가스 포집 작동을 개략적으로 도시한다. 도 6B는 도 1A의 소형 공압 장치의 가스 포집 플레이트 및 소형 밸브 장치의 가스 해제 작동을 개략적으로 도시한다. 도 1A 및 도 6A에 도시된 바와 같이, 소형 밸브 장치(1B)의 밸브 플레이트(17)와 가스 유출 플레이트(18)는 순차적으로 서로 적층된다. 또한, 소형 유체 제어 장치(1A)의 소형 밸브 장치(1B)와 가스 포집 플레이트(16)는 서로 협력한다.
가스 포집 플레이트(16)는 제 1 표면(160) 및 제 2 표면(161)(기점 표면으로도 지칭됨)을 포함한다. 가스 포집 플레이트(16)의 제 1 표면(160)은 가스 포집 챔버(162)를 형성하도록 오목하게 되어있다. 압전 액추에이터(13)는 가스 포집 챔버(162) 내에 수용된다. 소형 유체 제어 장치(1A)에 의해 하향으로 이동된 가스는 일시적으로 가스 포집 챔버(162)내에 축적된다. 가스 포집 플레이트(16)는 제 1 천공(163) 및 제 2 천공(164)을 포함한다. 제 1 천공(163)의 제 1 단부 및 제 2 천공(164)의 제 1 단부는 가스 포집 챔버(162)와 연통한다. 제 1 천공(163)의 제 2 단부 및 제 2 천공(164)의 제 2 단부는 가스 포집 챔버(162)의 제 2 표면(161)에 형성된 제 1 압력 해제 챔버(165) 및 제 1 유출 챔버(166)와 연통한다. 또한, 가스 포집 플레이트(16)는 제 1 유출 챔버(166)에 대응하는 융기 구조(167)를 갖는다. 예를 들어, 융기 구조(167)는 원통형 포스트를 포함하지만 이에 한정되지는 않는다. 융기 구조(167)의 두께는 가스 포집 플레이트(16)의 제 2 표면(161)보다 높은 레벨에 위치한다. 또한, 융기 구조(167)의 두께는 0.45mm 내지 0.55mm, 바람직하게는 0.5mm이다.
가스 유출 플레이트(18)의 길이와 폭은 가스 포집 플레이트(16)와 동일하다. 가스 유출 플레이트(18)는 압력 해제 천공(181), 유출 천공(182), 제 1 표면(180)(기점 표면으로도 지칭됨) 및 제 2 표면(187)을 포함한다. 압력 해제 천공(181) 및 유출 천공(182)은 제 1 표면(180) 및 제 2 표면(187)을 관통한다. 가스 유출 플레이트(18)의 제 1 표면(180)은 오목하게 놓여 제 2 압력 해제 챔버(183) 및 제 2 유출 챔버(184)를 형성한다. 압력 해제 천공(181)은 제 2 압력 해제 챔버(183)의 중심에 위치된다. 또한, 가스 유출 플레이트(18)는 가스가 통과할 수 있도록 제 2 압력 해제 챔버(183)와 제 2 유출 챔버(184) 사이에 연통 채널(185)을 더 포함한다. 유출 천공(182)의 제 1 단부는 제 2 유출 챔버(184)와 연통한다. 유출 천공(182)의 제 2 단부는 유출 구조(19)와 연통된다. 유출 구조(19)는 장비(미도시)와 연결되어있다. 상기 장비는 예를 들어 가스 압력 구동 장비를 포함하나 이에 한정되지 않는다.
밸브 플레이트(17)는 밸브 개구(170)와 복수의 위치 설정 개구(171)를 포함한다(도 1A 참조). 밸브 플레이트(17)의 두께는 0.1mm와 0.3mm 사이의 범위이고, 바람직하게는 0.2mm이다.
가스 포집 플레이트(16), 밸브 플레이트(17) 및 가스 유출 플레이트(18)가 결합된 후, 가스 유출 플레이트(18)의 압력 해제 천공(181)은 가스 포집 플레이트(16)의 제 1 천공(163)과 정렬되고, 가스 유출 플레이트(18)의 제 2 압력 해제 챔버(183)는 가스 포집 플레이트(16)의 제 1 압력 해제 챔버(165)와 정렬되며, 가스 유출 플레이트(18)의 제 2 유출 챔버(184)는 가스 포집 플레이트(16)의 제 1 유출 챔버(166)와 정렬된다. 밸브 플레이트(17)는 가스 포집 플레이트(16)와 가스 유출 플레이트(18) 사이에 배치되어 제 1 압력 해제 챔버(165)와 제 2 압력 해제 챔버(183) 사이의 연통을 차단한다. 밸브 플레이트(17)의 밸브 개구(170)는 제 2 천공(164)과 유출 천공(182) 사이에 배치된다. 또한, 밸브 플레이트(17)의 밸브 개구(170)는 가스 포집 플레이트(16)의 제 1 유출 챔버(166)에 대응하는 돌출 구조물(167)과 정렬된다. 단일 밸브 개구(170)의 배열로 인해, 가스는 압력 차에 응답하여 소형 밸브 장치(1B)를 통해 한 방향으로 전달된다.
상기 실시 예에서, 가스 유출 플레이트(18)는 압력 해제 천공(181)의 제 1 단부 옆에 볼록 구조(181a)를 갖는다. 바람직하게는, 볼록 구조(181a)는 원통형 포스트이나 이에 제한되지는 않는다. 볼록 구조(181a)의 두께는 0.45mm-0.55mm 사이, 바람직하게는 0.5mm 이하의 범위이다. 볼록 구조(181a)의 상부 표면은 가스 유출플레이트(18)의 제 1 표면(180)보다 높은 위치에 있다. 따라서, 밸브 플레이트(17)는 신속하게 상기 볼록 구조와 접촉하고 압력 해제 천공(181)을 폐쇄할 수 있다. 또한, 볼록 구조(181a)의 배열에 의해 제2 압력 해제 챔버내의 가스로부터 압력 해제 천공을 밀봉시키는 예비 힘이 밸브 플레이트에 형성된다. 상기 실시 예에서, 가스 유출플레이트(18)는 위치 제한 구조(188)를 더 포함한다. 위치 제한 구조(188)의 두께는 0.4mm이다. 위치 제한 구조(188)는 제 2 압력 해제 챔버(183) 내에 배치된다. 바람직하게는 그러나 제한적이지는 않지만, 위치 제한 구조(188)는 링 형상 구조이다. 소형 밸브 장치(1B)의 가스 포집 작동이 수행되는 동안, 위치 제한 구조(188)는 밸브 플레이트(17)를 지지하는 것을 돕고 밸브 플레이트(17)의 붕괴를 피할 수 있다. 따라서, 밸브 플레이트(17)를 보다 신속하게 개폐할 수 있다.
이하, 도 6A를 참조하여 소형 밸브 장치(1B)의 가스 포집 동작을 설명한다. 소형 유체 제어 장치(1A)로부터의 가스가 소형 밸브 장치(1B)로 하향 전달되거나 대기압이 유출 구조(19)와 연통하는 장치의 내부 압력보다 높은 경우, 가스는 소형 유체 제어 장치(1A)로부터 가스 포집 플레이트(16)의 가스 포집 챔버(162)로 전달된다. 그 후, 가스는 제 1 천공(163) 및 제 2 천공(164)을 통해 제 1 압력 해제 챔버(165) 및 제 1 유출 챔버(166)로 하향 전달된다. 하향 가스에 응답하여, 가요성 밸브 플레이트(17)는 아래쪽으로 만곡 변형된다. 따라서, 제 1 압력 해제 챔버(165)의 체적이 팽창하고, 밸브 플레이트(17)는 제 1 관통 천공(163)에 대응하는 압력 해제 관통 천공(181)의 제 1 단부에 밀착된다. 이 상태에서, 가스 유출 플레이트(18)의 천공(181)이 폐쇄되어, 제 2 압력 해제 챔버(183) 내의 가스가 압력 해제 천공(181)으로부터 누설되지 않는다. 상기 실시예에서, 가스 유출 플레이트(18)는 압력 해제 천공(181)의 제 1 단부 옆에 볼록 구조(181a)를 갖는다. 볼록 구조(181a)의 배열로 인해, 압력 해제 천공(181)은 밸브 플레이트(17)에 의해 신속하게 폐쇄될 수 있다. 또한, 볼록 구조(181a)의 배열에 의해 제2 압력 해제 챔버내의 가스로부터 압력 해제 천공을 밀봉시키는 예비 힘이 밸브 플레이트에 형성된다. 위치 제한 구조(188)는 밸브 플레이트(17)의 지지를 돕고 밸브 플레이트(17)의 붕괴를 피하기 위해 압력 해제 천공(181) 주위에 배열된다. 한편, 가스는 제 2 천공(164)을 통해 제 1 유출 챔버(166)로 하향 전달된다. 하향 가스에 반응하여, 제 1 유출 챔버(166)에 대응하는 밸브 플레이트(17)는 또한 하향 만곡 변형을 받는다. 결과적으로, 밸브 막(17)의 밸브 개구(170)는 그에 상응하여 하측으로 개방된다. 이 상황에서, 가스는 밸브 개구(170)를 통해 제 1 유출 챔버(166)로부터 제 2 유출 챔버(184)로 전달된다. 그 후, 가스는 유출 천공(182)을 통해 유출 구조(19)로 전달된 다음 유출 구조체(19)와 연통하는 장비로 전달된다. 결과적으로, 가스 압력을 포집하는 목적이 달성된다.
이하, 도 6B을 참조하여 소형 밸브 장치(1B)의 가스 배출 작동을 설명한다. 가스 해제 동작을 수행하기 위해, 사용자는 소형 유체 제어 장치(1A)에 공급되는 가스의 양을 조정하여 가스가 더 이상 가스 포집 챔버(162)로 이송되지 않도록 한다. 선택적으로, 유출 구조(19)와 연통하는 장비의 내부 압력이 대기압보다 높은 경우, 가스 배출 작동이 수행될 수 있다. 이 상태에서, 가스는 유출 구조(19)로부터 유출 천공(182)을 통해 제 2 유출 챔버(184)로 전달된다. 따라서, 제 2 유출 챔버(184)의 체적이 팽창되고, 제 2 유출 챔버에 대응하는 가요성 밸브 플레이트(17) 184)가 위쪽으로 만곡 변형된다. 또한, 밸브 플레이트(17)는 가스 포집 플레이트(16)와 밀착된다. 따라서, 밸브 플레이트(17)의 밸브 개구(170)는 가스 포집 플레이트(16)에 의해 폐쇄된다. 또한, 가스 포집 플레이트(16)는 제 1 유출 챔버(166)와 상응하는 융기 구조(167)를 가진다. 융기 구조(167)의 배열로 인해, 가요성 밸브 플레이트(17)는 보다 신속하게 상향 절곡될 수 있다. 또한, 융기 구조(167)의 배열에 의해 제2 유출 챔버의 가스로부터 밸브 개구(170)를 밀봉시키는 예비 힘이 밸브 플레이트(17)에 형성된다. 밸브 플레이트(17)의 밸브 개구(170)가 융기 구조(167)와 접촉하여 폐쇄되므로, 제 2 유출 챔버(184)의 가스는 제 1 유출 챔버(166)로 역류되지 않는다. 결과적으로, 가스 누설을 피하는 효과가 향상된다. 또한, 제 2 유출 챔버(184)의 가스가 연통 채널(185)을 통해 제 2 압력 해제 챔버(183)로 전달되기 때문에, 제 2 압력 해제 챔버(183)의 체적이 확대된다. 결과적으로, 제 2 압력 해제 챔버(183)에 대응하는 밸브 플레이트(17)는 또한 상방 만곡 변형을 받는다. 밸브 플레이트(17)가 더 이상 압력 해제 천공(181)의 제 1 단부와 접촉하지 않기 때문에, 압력 해제 천공(181)이 개방된다. 이 상태에서, 제 2 압력 해제 챔버(183) 내의 가스는 압력 해제 천공(181)을 통해 출력된다. 결과적으로, 가스의 압력이 해제된다. 유사하게, 제 2 압력 해제 챔버(183) 내의 압력 해제 천공(181) 또는 위치 제한 구조(188) 옆의 볼록 구조(181a)로 인해, 가요성 밸브 플레이트(17)는 보다 신속하게 상향 만곡 변형을 받을 수 있다. 결과적으로, 압력 해제 천공(181)은 신속하게 개방될 수 있다. 한 방향으로의 가스 배출 작동이 수행된 후, 유출 구조(19)와 연통하는 장비 내의 가스는 부분적으로 또는 전체적으로 주변으로 배출된다. 이 경우 장비의 압력이 감소한다.
도 7A 내지 도 7E는 도 2A의 소형 공압 장치의 가스 포집 작용을 개략적으로 도시한다. 도 1A, 도 2A 및 도 7A 내지 도 7E를 참조한다. 도 7A에 도시된 바와 같이, 소형 공압 장치(1)는 소형 유체 제어 장치(1A) 및 소형 밸브 장치(1B)를 포함한다. 상술 한 바와 같이, 소형 유체 제어 장치(1A)의 가스 유입 플레이트(11), 공진 플레이트(12), 압전 액추에이터(13), 제 1 절연 플레이트(141), 전도성 플레이트(15), 제 2 절연 플레이트(142) 및 가스 포집 플레이트(16)는 순차적으로 적층되어있다. 또한, 공진 플레이트(12)와 압전 액추에이터(13) 사이에는 갭이 형성된다. 또한, 제 1 챔버(121)는 공진 플레이트(12)와 압전 액추에이터(13)사이에 형성된다. 소형 밸브 장치(1B)의 밸브 플레이트(17) 및 가스 유출 플레이트(18)는 서로 적층되어 소형 유체 제어 장치(1A)의 가스 포집 플레이트(16) 아래에 배치된다. 가스 포집 챔버(162)는 가스 포집 플레이트(16)와 압전 액추에이터(13)사이에 배치된다. 가스 포집 플레이트(16)의 제 2 표면(161)에는 제 1 압력 해제 챔버(165)와 제 1 유출 챔버(166)가 형성된다. 제 2 압력 해제 챔버(183) 및 제 2 유출 챔버(184)는 가스 유출 플레이트(18)의 제 1 표면(180)에 형성된다. 일 실시 예에서, 소형 공압 장치(1)의 동작 주파수는 27kHz와 29.5kHz 사이의 범위에 있고, 소형 공압 장치(1)의 작동 전압은 ±10V와 ±16V 사이의 범위 내에 있다. 또한, 복수의 압력 챔버의 배치, 압전 액추에이터(13)의 작동 및 플레이트(12)와 밸브 플레이트(17)의 진동으로 인해, 가스는 하향으로 전달될 수 있다.
도 7B에 도시된 바와 같이, 소형 유체 제어 장치(1A)의 압전 액추에이터(13)는 인가된 전압에 응답하여 하방으로 진동한다. 결과적으로, 가스는 가스 유입 플레이트(11)의 하나 이상의 입구(110)를 통해 소형 유체 제어 장치(1A)로 공급된다. 가스는 가스 유입 플레이트(11)의 적어도 하나의 수렴 채널(112)을 통해 중앙 공동(111)으로 순차적으로 수렴되고, 공진 플레이트(12)의 중앙 구멍(120)를 통해 전달되어 제 1 챔버(121)로 하향 도입된다.
압전 액추에이터(13)가 작동됨에 따라, 공진 플레이트(12)의 공진이 발생한다. 결과적으로, 공진 플레이트(12)은 또한 왕복 운동으로 수직 방향을 따라 진동한다. 도 7C에 도시된 바와 같이, 공진 플레이트(12)는 압전 액추에이터(13)의 서스펜션 플레이트(130)의 돌출부(130c)와 하방으로 접촉하여 진동한다. 공진 플레이트(12)의 변형으로 인해 가스 유입 플레이트(11)의 중앙 공동(111)에 대응하는 챔버의 체적은 팽창되지만 제 1 챔버(121)의 체적은 수축된다. 이 상태에서, 가스는 제 1 챔버(121)의 주변 영역쪽으로 밀려 나게된다. 결과적으로, 가스는 압전 액추에이터(13)의 빈 공간(135)을 통해 아래쪽으로 이동한다. 그 후 가스는 소형 유체 제어 장치(1A)와 소형 밸브 장치(1B) 사이의 가스 포집 챔버(162)로 이송된다. 그 다음, 가스는 가스 포집 챔버(162)와 연통하는 제 1 천공(163) 및 제 2 천공(164)을 통해 제 1 압력 해제 챔버(165) 및 제 1 유출 챔버(166)로 하향 전달된다. 결과적으로, 공진 플레이트(12)가 왕복 운동으로 수직 방향을 따라 진동할 때, 공진 플레이트(12)와 압전 액추에이터(13) 사이의 갭(g0)은 공진 플레이트(12)의 진폭을 증가시키는데 도움이된다. 즉, 공진 플레이트(12)와 압전 액추에이터(13) 사이의 갭(g0)으로 인해, 공진이 발생할 때 공진 플레이트(12)의 진폭이 증가한다.
도 7d에 도시된 바와 같이, 소형 유체 제어 장치(1A)의 공진 플레이트(12)는 원래의 위치로 복귀되고, 압전 액추에이터(13)는 인가된 전압에 응답하여 상향으로 진동한다. 갭(g0)과 압전 액추에이터(13)의 진동 변위(d) 사이의 차이(x)는 공식: x = g0 - d로 주어진다. 다른 x 값에 대응하는 소형 공압 장치(1)의 최대 출력 압력에 대한 일련의 테스트가 수행된다. 소형 공압 장치(1)의 동작 주파수는 27kHz와 29.5kHz 사이이며, 소형 공압 장치(1)의 작동 전압은 ±10V와 ±16V 사이이다. x = 1 ~ 5μm인 경우, 소형 공압 장치(1)의 최대 출력 압력은 최소 300mmHg이다. 결과적으로, 제 1 챔버(121)의 체적도 축소되고, 가스는 제 1 챔버(121)의 주변 영역을 향해 연속적으로 가압된다. 또한, 가스는 압전 액추에이터(13)의 빈 공간(135)을 통해 가스 포집 챔버(162), 제 1 압력 해제 챔버(165) 및 제 1 유출 챔버(166)로 연속적으로 전달된다. 결과적으로, 제 1 압력 해제 챔버(165) 및 제 1 유출 챔버(166) 내의 압력은 점차적으로 증가하게된다. 증가된 가스 압력에 응답하여, 가요성 밸브 플레이트(17)는 하향 만곡 변형을 받는다. 따라서, 제 2 압력 해제 챔버(183)에 대응하는 밸브 플레이트(17)는 하방으로 이동하여 압력 해제 천공(181)의 제 1 단부에 대응하는 볼록 구조(181a)와 접촉된다. 이 상황에서, 가스 유출 플레이트(18)의 압력 해제 천공(181)은 폐쇄된다. 제 2 유출 챔버(184)에서, 유출 천공(182)에 대응하는 밸브 플레이트(17)의 밸브 개구(170)는 하향으로 개방된다. 그 다음, 제 2 유출 챔버(184) 내의 가스는 유출 천공(182)을 통해 유출 구조(19)로 하향 전달된 다음, 유출 구조(19)와 연통하는 장비로 전달된다. 결과적으로, 가스 압력 포집 목적이 달성된다.
그후, 도 7E에 도시된 바와 같이, 소형 유체 제어 장치(1A)의 공진 플레이트(12)가 상방으로 진동된다. 이러한 상황에서, 가스 유입 플레이트(11)의 중앙 공동(111) 내의 가스는 공진 플레이트(12)의 중앙 구멍(120)을 통해 제 1 챔버(121)로 전달된 후, 가스가 압전 액추에이터(13)의 빈 공간(135)을 통해 가스 포집 플레이트(16)로 하향 전달된다. 가스 압력이 하향 방향을 따라 연속적으로 증가함에 따라, 가스는 가스 포집 챔버(162), 제 2 천공(164), 제 1 유출 챔버(166), 제 2 유구 챔버(184) 및 유출 천공(182)으로 연속적으로 전달된 후, 유출 구조(19)와 연통하는 장비로 전달된다. 즉, 압력 포집 작동은 주변 압력과 장비의 내부 압력 사이의 압력 차에 의해 유발된다.
도 8은 도 1A의 소형 공압 장치의 가스 해제 작용 또는 감압 작용을 개략적으로 도시한다. 유출 구조(19)와 연통하는 장비의 내부 압력이 대기압보다 높은 경우, 가스 해제 작동(또는 감압 작동)이 수행될 수 있다. 전술한 바와 같이, 사용자는 소형 유체 제어 장치(1A)에 공급되는 가스의 양을 조정하여 가스가 더 이상 가스 포집 챔버(162)로 전달되지 않도록 할 수 있다. 이러한 상황에서, 가스는 유출 구조(19)로부터 유출 천공(182)을 통해 제 2 유출 챔버(184)로 전달된다. 그 결과, 제 2 유출 챔버(184)의 체적이 팽창하고, 제 2 유출 챔버(184)에 대응하는 가요성 밸브 플레이트(17)가 상방으로 굽어진다. 또한, 밸브 플레이트(17)는 제 1 유출 챔버(166)에 대응하는 융기 구조(167)와 밀접하게 접촉한다. 밸브 플레이트(17)의 밸브 개구(170)가 융기 구조(167)에 의해 폐쇄되기 때문에, 제 2 유출 챔버(184) 내의 가스는 제 1 유출 챔버(166)로 역으로 복귀되지 않는다. 또한, 제 2 유출 챔버(184) 내의 가스는 연통 채널(185)을 통해 제 2 압력 해제 챔버(183)로 전달된 후, 제 2 압력 해제 챔버(183)의 가스가 압력 해제 천공(181)에 전달된다. 이러한 상황 하에서, 가스 해제 작동이 수행된다. 소형 밸브 장치(1B)의 한 방향 가스 해제 작동이 수행된 후, 유출 구조(19)와 연통하는 장비 내의 가스는 부분적으로 또는 전체적으로 주변으로 배출된다. 이 경우 장비의 내부 압력이 감소한다.
다른 크기의 정방형 서스펜션 플레이트를 가진 소형 공압 장치의 성능 데이터는 표 3에 나타난다.
정방형 서스펜션
플레이트의 측면길이
7.5mm 8mm 8.5mm 10mm 12mm 14mm
주파수 28 kHz 27kHz 27kHz 18kHz 15kHz 15 kHz
최대 출력 압력 400mmHg 400mmHg 320mmHg 300mmHg 250mmHg 200mmHg
결함 비율 1/25=4% 1/25=4% 3/25=12% 10/25=40% 12/25=48% 15/25=60%
상기 표의 결과는 크기가 다른 정방형의 서스펜션 플레이트가 있는 소형 공압 장치의 25개 샘플을 테스트하여 얻은 결과이다. 정방형 서스펜션 플레이트의 측면 길이가 감소함에 따라, 산출량과 최대 출력 압력이 모두 증가한다. 정방형 서스펜션 플레이트의 최적화된 측면 길이는 7.5mm와 8.5mm 사이이다. 최적화된 측면 길이에 해당하는 작동 주파수는 27kHz~29.5kHz 범위이며, 최대 출력 압력은 최소 300mmHg이다. 감소된 측면 길이를 가지는 정방형 서스펜션 플레이트(130)를 사용함으로써 서스펜션 플레이트(130)의 강성이 강화되고, 최대 출력 압력이 증가하며 서스펜션 플레이트의 수직 진동에 대응하여 수평 방향의 변형량이 감소된다. 서스펜션 플레이트는 더욱 안정적으로 압전 세라믹 플레이트(133)와 협력할 수 있어서 압전 액추에이터(13)의 진동은 압전 액추에이터(13)가 작동될 때 동일한 방향에서 유지될 수 있다. 결과적으로, 서스펜션 플레이트와 공진 플레이트 또는 다른 부품 사이의 충돌 간섭이 감소될 수 있고, 서스펜션 플레이트와 공진 플레이트 사이의 특정 거리가 유지될 수 있다. 이 상황에서 소음 문제가 극복되고, 제품 수율이 향상되며 생산 품질이 향상된다. 또한, 서스펜션 플레이트의 크기가 감소됨에 따라, 압전 액추에이터의 크기가 그에 따라 감소될 수 있다. 압전 액추에이터는 진동 중에 쉽게 기울어지지 않기 때문에, 가스 채널의 부피가 감소되고 가스를 밀거나 압축하는 효과가 증가된다. 결과적으로, 본 발명의 소형 공압 장치는 향상된 성능과 작은 크기를 갖는다. 압전 액추에이터의 서스펜션 플레이트 및 압전 세라믹 플레이트가 더 큰 경우, 서스펜션 플레이트의 강성이 저하되기 때문에 서스펜션 플레이트는 진동 중에 쉽게 변형된다. 서스펜션 플레이트의 변형이 발생하면 서스펜션 플레이트와 공진 플레이트 또는 다른 부품 사이의 충돌 간섭이 증가하여 소음이 발생한다. 소음 문제로 인해 제품에 결함이 발생할 수 있다. 즉, 서스펜션 플레이트의 크기와 압전 세라믹 플레이트의 크기가 커질수록 소형 공압 장치의 불량률이 증가하게 된다. 서스펜션 플레이트의 크기와 압전 세라믹 플레이트의 크기를 줄임으로써 소형 공압 장치의 성능이 향상되고 소음이 감소하며 불량률이 감소한다. 서스펜션 플레이트의 크기 감소가 성능 및 최대 출력 압력을 증가시킨다는 사실은 이론적인 수학 공식보다는 실험 결과에 따라 달성된다.
소형 유체 제어 장치(1A)와 소형 밸브 장치(1B)가 결합된 후, 소형 공압 장치(1)의 전체 두께는 2㎜와 6㎜ 사이의 범위에 있다. 소형 공압 장치는 슬림하고 휴대용이기 때문에 의료 기기 또는 기타 적절한 장비에 적합하다.
이상의 설명으로부터, 본 발명은 소형 공압 장치를 제공한다. 소형 공압 장치는 소형 유체 제어 장치 및 소형 밸브 장치를 포함한다. 기체가 입구를 통해 소형 유체 제어 장치로 공급된 후, 압전 액추에이터가 작동된다. 결과적으로, 소형 유체 제어 장치 및 가스 포집 챔버의 유체 채널에 압력 구배가 발생되어 가스가 소형 밸브 장치로 고속으로 흐르게된다. 또한, 소형 밸브 장치의 한방향 밸브 플레이트로 인해, 가스는 한 방향으로 전달된다. 결과적으로 가스의 압력은 출구 구조와 연결된 모든 장비에 축적된다. 가스 배출 작동(또는 감압 작동)을 수행하기 위해, 사용자는 소형 유체 제어 장치로 공급될 가스의 양을 조절하여, 가스가 더 이상 가스 포집 챔버로 이송되지 않도록 할 수 있다. 이러한 상황하에서, 가스는 소형 밸브 장치의 유출 구조로부터 제 2 유출 챔버로 전달된 다음, 연통 채널을 통해 제 2 압력 해제 챔버로 전달되고, 마지막으로 압력 해제 천공으로부터 빠져나간다. 본 발명의 소형 공압 장치에 의하면, 가스를 신속하게 이송하면서 조용한 효과를 얻을 수 있다. 또한, 본 발명의 소형 공압 장치는 특별한 구성으로 인해 체적이 작고 두께가 얇다. 결과적으로, 소형 공압 장치는 휴대용이며 의료 장비 또는 기타 적절한 장비에 적용된다. 즉, 본 발명의 소형 공압 장치는 공업적 가치를 가진다.
본 발명은 현재 가장 실용적이고 바람직한 실시예로 고려되는 것에 관하여 설명되었지만, 본 발명은 개시된 실시예에 한정될 필요는 없다는 것을 이해하여야 한다. 반대로, 모든 수정 및 유사한 구조를 포함하도록 가장 넓은 해석과 일치하는 첨부된 청구 범위의 사상 및 범위 내에 포함되는 다양한 변형 및 유사한 배열을 포함하는 것으로 의도된다.

Claims (10)

  1. 소형 공압 장치에 있어서, 소형 유체 제어 장치 및 소형 밸브 장치를 포함하고, 상기 소형 유체 제어 장치는
    가스 유입 플레이트,
    중앙 구멍을 갖는 공진 플레이트,
    압전 액추에이터,
    가스 포집 플레이트를 포함하고, 상기 가스 포집 플레이트의 길이는 6mm~18mm이고, 상기 가스 포집 플레이트의 폭은 6mm~18mm이며, 상기 가스 포집 플레이트의 길이/폭 비율은 0.33 내지 3의 범위이고,
    상기 가스 유입 플레이트, 상기 공진 플레이트, 상기 압전 액추에이터 및 상기 가스 포집 플레이트는 서로 순차적으로 적층되며, 상기 공진 플레이트와 상기 압전 액추에이터 사이에 갭이 형성되어 제 1 챔버를 형성하고, 상기 압전 액추에이터가 구동되고 상기 소형 유체 제어 장치에 가스가 공급된 후, 상기 공진 플레이트를 통해 상기 가스가 상기 제 1 챔버로 이송되고,
    상기 소형 밸브 장치는 서로 적층되고 상기 소형 유체 제어 장치의 가스 포집 플레이트 상에 위치하는 밸브 플레이트와 가스 유출 플레이트를 포함하며, 상기 밸브 플레이트는 밸브 개구를 가지고, 상기 가스 유출 플레이트는 위치 제한 구조를 추가로 포함하며, 가스 유출 플레이트의 길이와 폭은 소형 유체 제어 장치의 가스 포집 플레이트의 길이 및 폭과 동일하고,
    가스가 소형 유체 제어 장치로부터 소형 밸브 장치로 이송되어 가스 포집 작동 또는 압력 배출 작동을 수행하는 것을 특징으로 하는 소형 공압 장치.
  2. 제 1 항에 있어서, 상기 가스 포집 플레이트의 길이는 9mm 내지 17mm이고, 상기 가스 포집 플레이트의 폭은 9mm 내지 17mm이며, 상기 가스 포집 플레이트의 길이/폭 비율은 0.53 내지 1.88의 범위 내에 있는 것을 특징으로 하는 소형 공압 장치.
  3. 제 1 항에 있어서, 상기 가스 유입 플레이트는 적어도 하나의 유입구, 적어도 하나의 수렴 채널 및 중앙 공동을 포함하며, 상기 중앙 공동에 의해 수렴 챔버가 형성되고, 상기 가스가 적어도 하나의 유입구를 통하여 적어도 하나의 수렴 채널로 도입된 후, 상기 가스는 상기 적어도 하나의 수렴 채널에 의해 안내되어 상기 수렴 챔버로 수렴되며, 상기 수렴 챔버는 공진 플레이트의 상기 중앙 구멍에 대응하는 것을 특징으로 하는 소형 공압 장치.
  4. 제 1 항에 있어서, 상기 압전 액추에이터는,
    중간 부분과 주변부분을 구비하는 서스펜션 플레이트를 포함하고, 상기 서스펜션 플레이트는 상기 중간 부분으로부터 상기 주변부분으로 곡률 진동을 받도록 허용되며,
    상기 서스펜션 플레이트 주위에 배치된 외부 프레임을 포함하고,
    상기 서스펜션 플레이트와 상기 외부 프레임 사이에 연결되어 상기 서스펜션 플레이트를 탄성적으로 지지하는 적어도 하나의 브라켓을 포함하며,
    압전 세라믹 플레이트를 포함하고, 상기 압전 세라믹 플레이트의 길이는 상기 서스펜션 플레이트의 길이보다 크지 않고, 상기 압전 세라믹 플레이트는 상기 서스펜션 플레이트의 제 1 표면에 부착되며, 상기 압전 세라믹 플레이트에 전압이 인가될 때 서스펜션 플레이트는 곡률 진동을 받도록 구동되는 것을 특징으로 하는 소형 공압 장치.
  5. 제 1 항에 있어서, 상기 가스 포집 플레이트는 제 1 천공, 제 2 천공, 제 1 압력 해제 챔버, 제 1 유출 챔버 및 기점 표면을 포함하고, 상기 가스 포집 플레이트는 제 1 유출 챔버에 대응하는 융기 구조를 더 포함하고, 상기 융기 구조는 상기 가스 포집 플레이트의 기점 표면보다 높은 레벨에 위치되고, 상기 제 1 천공은 상기 제 1 압력 해제 챔버와 연통되며, 상기 제 2 천공은 상기 제 1 유출 챔버와 연통되는 것을 특징으로 하는 소형 공압 장치.
  6. 제 5 항에 있어서, 상기 가스 유출 플레이트는 압력 해제 천공, 유출 천공, 제 2 압력 해제 챔버, 제 2 유출 챔버 및 기점 표면을 포함하고, 상기 가스 유출 플레이트의 기점 표면은 상기 제 2 압력 해제 챔버와 상기 제 2 유출 챔버를 형성하도록 오목하게 형성되고, 상기 압력 해제 천공은 제 2 압력 해제 챔버의 중앙에 위치하며, 압력 해제 천공의 단부 옆에 볼록 구조가 위치하고, 상기 볼록 구조는 가스 유출 플레이트의 기점 표면보다 높은 레벨에 위치하고, 상기 유출 천공은 상기 제 2 유출 챔버와 연통하며, 상기 가스 유출 플레이트는 상기 제 2 압력 해제 챔버와 제 2 유출 챔버 사이에 연통 채널을 포함하고 밸브 플레이트와 가스 유출 플레이트는 서로 적층되고 소형 유체 제어 장치의 가스 포집 플레이트 상에 위치되고, 상기 가스 유출 플레이트의 압력 해제 천공은 가스 포집 플레이트의 제 1 천공과 정렬되고, 가스 유출 플레이트의 제 2 압력 해제 챔버는 가스 포집 플레이트의 제 1 압력 해제 챔버와 정렬되며, 가스 유출 플레이트의 제 2 유출 챔버는 가스 포집 플레이트의 제 1 유출 챔버와 정렬되고, 상기 밸브 플레이트는 상기 제 1 압력 해제 챔버와 상기 제 2 압력 해제 챔버 사이의 연통을 차단하기 위해 가스 포집 플레이트와 가스 유출 플레이트사이에 배열되고, 상기 밸브 플레이트의 밸브 개구는 제 2 천공과 유출 천공 사이에 배치되는 것을 특징으로 하는 소형 공압 장치.
  7. 제 6 항에 있어서, 가스가 소형 유체 제어 장치로부터 소형 밸브 장치로 하방으로 전달된 후, 가스는 제 1 천공과 제 2 천공을 통해 제 1 압력 해제 챔버로 도입되고, 제2 압력 해제 챔버내의 가스로부터 압력 해제 천공을 밀봉시키는 예비 힘이 밸브 플레이트에 형성되도록 밸브 플레이트는 가스 유출 플레이트의 볼록 구조와 신속하게 접촉하고, 제 1 유출 챔버 내의 가스는 밸브 플레이트의 밸브 개구를 통해 유출 천공으로 전달되어 압력 포집 작동이 수행되는 것을 특징으로 하는 소형 공압 장치.
  8. 제 7 항에 있어서, 압력 해제 작동이 수행되는 동안, 가스는 밸브 플레이트를 이동시키기 위해 유출 천공으로부터 제 2 유출 챔버로 전달되고, 밸브 플레이트의 밸브 개구는 상기 가스 포집 플레이트와 접촉하여 폐쇄되고, 가스는 연통 채널을 통해 제 2 유출 챔버로부터 제 2 압력 해제 챔버로 전달되며, 제 2 압력 해제 챔버에 대응하는 밸브 플레이트가 이동하고, 가스가 압력 해제 천공으로부터 빠져나오는 것을 특징으로 하는 소형 공압 장치.
  9. 제 4 항에 있어서, 상기 서스펜션 플레이트는 정방형 서스펜션 플레이트이고 서스펜션 플레이트의 길이는 4mm와 12mm사이의 범위이고, 서스펜션 플레이트의 폭은 4mm와 12mm사이의 범위이며, 서스펜션 플레이트의 두께는 0.1mm와 0.4mm사이의 범위인 것을 특징으로 하는 소형 공압 장치.
  10. 제 1 항에 있어서, 상기 소형 공압 장치의 전체 두께는 2mm와 6mm사이의 범위인 것을 특징으로 하는 소형 공압 장치.
KR1020170011670A 2016-01-29 2017-01-25 소형 공압 장치 KR101990674B1 (ko)

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
TW105102843 2016-01-29
TW105102842 2016-01-29
TW105102842 2016-01-29
TW105102843 2016-01-29
TW105102845 2016-01-29
TW105102845 2016-01-29
TW105119823 2016-06-24
TW105119823 2016-06-24
TW105119824 2016-06-24
TW105119825 2016-06-24
TW105119825 2016-06-24
TW105119824 2016-06-24
TW105128586 2016-09-05
TW105128586A TWI676739B (zh) 2016-01-29 2016-09-05 微型氣壓動力裝置

Publications (2)

Publication Number Publication Date
KR20170091033A KR20170091033A (ko) 2017-08-08
KR101990674B1 true KR101990674B1 (ko) 2019-06-18

Family

ID=57914774

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170011670A KR101990674B1 (ko) 2016-01-29 2017-01-25 소형 공압 장치

Country Status (4)

Country Link
US (1) US20170218937A1 (ko)
EP (1) EP3203082B1 (ko)
JP (1) JP6574452B2 (ko)
KR (1) KR101990674B1 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI663999B (zh) * 2017-08-08 2019-07-01 研能科技股份有限公司 空氣過濾防護器
TWI650545B (zh) * 2017-08-22 2019-02-11 研能科技股份有限公司 致動傳感模組
TWI681120B (zh) 2018-05-21 2020-01-01 研能科技股份有限公司 微型輸送裝置
TWI681121B (zh) * 2018-05-21 2020-01-01 研能科技股份有限公司 微型輸送裝置
CN109764150B (zh) * 2019-01-25 2020-03-17 哈尔滨工业大学 一种驱动器
CN112240280B (zh) * 2019-07-17 2023-01-13 研能科技股份有限公司 微型泵
TWI698583B (zh) 2019-07-17 2020-07-11 研能科技股份有限公司 微型泵浦
TW202217146A (zh) * 2020-10-20 2022-05-01 研能科技股份有限公司 薄型氣體傳輸裝置
CN114810561A (zh) * 2021-01-29 2022-07-29 研能科技股份有限公司 薄型气体传输装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140377099A1 (en) * 2013-06-24 2014-12-25 Microjet Technology Co., Ltd. Micro-gas pressure driving apparatus

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2517378B1 (fr) * 1981-11-28 1988-03-11 Becker Erich Pompe a membrane
DE3935474A1 (de) * 1989-06-22 1991-01-03 Hoechst Ceram Tec Ag Piezoelektrischer biegewandler und seine verwendung
US6715733B2 (en) * 2001-08-08 2004-04-06 Agilent Technologies, Inc. High temperature micro-machined valve
DE10202996A1 (de) * 2002-01-26 2003-08-14 Eppendorf Ag Piezoelektrisch steuerbare Mikrofluidaktorik
CN1646323A (zh) * 2002-05-20 2005-07-27 株式会社理光 具有抗环境变化的稳定工作特性的静电致动器和液滴喷射头
JP5533823B2 (ja) * 2011-09-06 2014-06-25 株式会社村田製作所 流体制御装置
JP2013119877A (ja) * 2011-12-06 2013-06-17 Fujikin Inc ダイヤフラム弁
JP5692465B2 (ja) * 2012-06-11 2015-04-01 株式会社村田製作所 ブロア
CN104234986B (zh) * 2013-06-24 2016-10-05 研能科技股份有限公司 微型气压动力装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140377099A1 (en) * 2013-06-24 2014-12-25 Microjet Technology Co., Ltd. Micro-gas pressure driving apparatus

Also Published As

Publication number Publication date
JP2017133515A (ja) 2017-08-03
EP3203082A1 (en) 2017-08-09
KR20170091033A (ko) 2017-08-08
EP3203082B1 (en) 2021-07-21
US20170218937A1 (en) 2017-08-03
JP6574452B2 (ja) 2019-09-11

Similar Documents

Publication Publication Date Title
KR101983438B1 (ko) 소형 공압 장치
KR101959613B1 (ko) 압전 액추에이터
KR20190076938A (ko) 압전 액추에이터
KR101981380B1 (ko) 소형 공압 장치
KR101990674B1 (ko) 소형 공압 장치
KR102382259B1 (ko) 소형 유체 제어 장치
KR20170091000A (ko) 소형 유체 제어 장치
KR20170091020A (ko) 압전 액추에이터
KR20170091002A (ko) 압전 액추에이터
KR20170091021A (ko) 소형 유체 제어 장치
KR20170091004A (ko) 압전 액추에이터
KR102038748B1 (ko) 소형 공압 장치
KR20170091018A (ko) 소형 유체 제어 장치
KR20170091001A (ko) 소형 공압 장치
US10655620B2 (en) Miniature fluid control device
EP3333423B1 (en) Miniature fluid control device
EP3321506B1 (en) Miniature pneumatic device
EP3321505B1 (en) Miniature pneumatic device
US10697448B2 (en) Miniature fluid control device
US10746169B2 (en) Miniature pneumatic device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant