KR101989930B1 - Composition for controlling honeybee Nosema disease comprising dsRNA as effective component and uses thereof - Google Patents

Composition for controlling honeybee Nosema disease comprising dsRNA as effective component and uses thereof Download PDF

Info

Publication number
KR101989930B1
KR101989930B1 KR1020170114838A KR20170114838A KR101989930B1 KR 101989930 B1 KR101989930 B1 KR 101989930B1 KR 1020170114838 A KR1020170114838 A KR 1020170114838A KR 20170114838 A KR20170114838 A KR 20170114838A KR 101989930 B1 KR101989930 B1 KR 101989930B1
Authority
KR
South Korea
Prior art keywords
dsrna
primer
dna
gene
artificial sequence
Prior art date
Application number
KR1020170114838A
Other languages
Korean (ko)
Other versions
KR20190027991A (en
Inventor
우수동
김인희
곽원석
김동준
윤휘건
Original Assignee
충북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충북대학교 산학협력단 filed Critical 충북대학교 산학협력단
Priority to KR1020170114838A priority Critical patent/KR101989930B1/en
Publication of KR20190027991A publication Critical patent/KR20190027991A/en
Application granted granted Critical
Publication of KR101989930B1 publication Critical patent/KR101989930B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0008Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition
    • A61K48/0025Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition wherein the non-active part clearly interacts with the delivered nucleic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0008Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition
    • A61K48/0025Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition wherein the non-active part clearly interacts with the delivered nucleic acid
    • A61K48/0041Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition wherein the non-active part clearly interacts with the delivered nucleic acid the non-active part being polymeric
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.

Abstract

본 발명은 노제마 세라내(Nosema ceranae)의 FNR1(Ferredoxin NADP+ reductase 1) 또는 FNR2 유전자의 발현을 억제하는 dsRNA를 유효성분으로 포함하는 꿀벌 노제마병 방제용 조성물 및 상기 조성물을 처리하는 단계를 포함하는, 꿀벌 노제마병의 방제 방법에 관한 것이다.The present invention comprises the step of processing the Jose do Sera within bee Jose horsemen control composition and the compositions containing dsRNA to inhibit the FNR1 (Ferredoxin NADP + reductase 1) or the expression of FNR2 gene as an active ingredient of (Nosema ceranae) , And a method for controlling the bee sickle horse disease.

Description

dsRNA를 유효성분으로 포함하는 꿀벌 노제마병 방제용 조성물 및 이의 용도{Composition for controlling honeybee Nosema disease comprising dsRNA as effective component and uses thereof}[0001] The present invention relates to a composition for controlling a honeybee syrup containing dsRNA as an active ingredient and a use thereof,

본 발명은 노제마 세라내의 특정 유전자 발현을 억제하는 dsRNA를 유효성분으로 포함하는 꿀벌 노제마병 방제용 조성물 및 상기 조성물을 이용한 꿀벌 노제마병 방제 방법에 관한 것이다.The present invention relates to a composition for controlling a honeybee sickle-bloom which contains dsRNA as an effective ingredient for inhibiting the expression of a specific gene in nyese macera, and a method for controlling a honeybee sickle horse using such a composition.

양봉꿀벌에 유행하고 있는 노제마병의 원인체인 노제마 세라내(Nosema ceranae)는 미포자충류로서, 진균류의 세포내 기생체이다. 꿀벌 성충에 발병하는 미포자충류는 크게 노제마 아피스(N. apis)와 노제마 세라내로 나뉘며 그 중 노제마 세라내는 최근 급속도로 번지고 있으며, 꿀벌에 더 높은 병원성을 보인다. 실제적으로 자연에서의 감염은 점진적인 개체감소, 가을과 겨울 봉군의 대규모 붕괴, 꿀의 생산성감소 등을 야기한다. 하지만 노제마 세라내로 인한 노제마병의 증상은 꿀벌의 아종, 화분과 화밀의 채집환경, 봉군의 관리 그리고 생물학적 요인과 비 생물학적 요인, 심지어 지역과 기후에 따라서도 병징이 다르며, 표면적인 증상이 없기 때문에 노제마병의 진단에 어려움이 따르고 있다. Nosema ceranae , a causal agent of Nogema 's disease that is prevalent in beekeeping bees, is an endoplasmic retrovirus , an intracellular organism of fungi. Among the microbial strains that develop in adult bees are largely divided into N. apis and Noge masera , among which the nemesis is spreading rapidly and shows higher virulence to bees. Indeed, infections in nature cause gradual decline of individuals, large-scale collapse of autumn and winter populations, and reduced productivity of honey. However, the symptoms of Nogejima due to Nogejima are due to the bee subspecies, the environment of collection of pollen and flower seeds, the management of the fishermen, the biological and nonbiological factors, and even the region and the climate, There is a difficulty in diagnosing Nogee's disease.

봉군에서 노제마병의 전염은 경구감염(fecal-oral route)에 의한 것으로 초기 감염으로부터 몇 주 이내에 포자를 배설하게 되며 배설된 포자는 다른 개체를 감염시키기 위한 새로운 원인이 된다. 다른 원인으로는 개체 사이의 영양교환(trophallaxis)으로 봉군 내에서 빠르게 전염되는 것으로 알려져 있다.Infections of the fungus in the fungus are caused by the fecal-oral route, which excretes the spores within a few weeks of the initial infection, and the excreted spores are a new source of infection for other individuals. Another cause is rapid transmissibility in the rod population due to trophallaxis between individuals.

국내에서 노제마병은 1960년대 후반에 처음 보고 되었으며, 2013년 조사결과에 따르면 약 2만 양봉농가에서 16개 표본 농가를 대상으로 꿀벌 노제마를 확인한 결과 94%인 15개 농가의 봉군이 감염된 것으로 나타났다. 따라서 국내에서 그 심각성은 인지하고 있으나 노제마가 절대기생체인 이유로 그 해결방안에 대한 연구개발은 기초 단계 수준에 머물러 있다. 또한 노제마의 방제제로는 항생제의 일종인 퓨마기린(Fumagilin)만이 유일하게 이용되고 있으나 꿀벌생산물의 잔류성과 포유동물에 대한 독성이 지적되고 있으며 그 효과가 미진하여 새로운 방제법의 개발이 절실하게 필요한 실정이다.In Korea, it was reported for the first time in the late 1960s. According to the results of 2013 survey, about 20,000 specimens of 16 specimens of farmers were found to be bee nemaemas. Therefore, the seriousness of the problem is recognized in Korea, but the research and development of the solution is still at the basic stage because Nogema is an absolute parasitic. In addition, Fumagilin, which is a kind of antibiotics, is used as a control agent of Nogema but the persistence of honey bee products and toxicity to mammals are pointed out and its effect is insufficient and new control methods are urgently needed .

최근에 연구가 시작되고 있는 RNA 간섭(RNA interference; RNAi) 기술은 이중가닥 RNA(double strand RNA; dsRNA)가 세포내로 유입되어 일어나는 유전자 침묵(gene silencing) 현상이다. dsRNA가 세포 내로 전달되면 dsRNA를 20개 내외의 뉴클레오티드로 절단하는 기능을 하는 다이서(Dicer) 효소에 의해 dsRNA가 인지되면서 반응은 개시된다. 절단된 dsRNA는 siRNA(short interfering RNA)라 불리며 다양한 종류의 핵산분해 효소와 함께 RISC(RNA-induced silencing complex)를 형성하게 된다. 그 후 RISC 내로 로딩된 siRNA의 안티센스 가닥(가이드 가닥)에 의해, 상보적인 서열을 가진 목적 mRNA의 서열 부위가 절단되고 그로인해 mRNA의 빠른 분해가 일어나게 되어 목적 mRNA에 의해 코딩된 단백질의 생성이 억제된다. RNA 간섭은 유전자 특이적이며 강력한 영향력을 가지기 때문에 특정한 유전자를 표적으로 한 dsRNA를 합성하여 원하는 유전자의 발현을 억제할 수 있다는 이점으로 농업해충방제, 암세포의 발현억제, 형질전환식물 등 다양한 분야에서 활용되고 있다.RNA interference (RNAi) technology, which is being studied recently, is a gene silencing phenomenon that occurs when double stranded RNA (dsRNA) is introduced into cells. Once the dsRNA is delivered into the cell, the dsRNA is recognized by the Dicer enzyme, which cleaves the dsRNA to around 20 nucleotides, and the reaction is initiated. The cleaved dsRNA is called siRNA (short interfering RNA) and forms RNA-induced silencing complex (RISC) with various kinds of nucleic acid degrading enzymes. Thereafter, the sequence of the target mRNA having the complementary sequence is cleaved by the antisense strand (guide strand) of the siRNA loaded into the RISC, thereby causing rapid degradation of the mRNA, thereby suppressing the production of the protein encoded by the desired mRNA do. Since RNA interference has a gene-specific and powerful influence, it can synthesize dsRNA targeting a specific gene and suppress the expression of a desired gene. Therefore, it can be used in various fields such as agricultural pest control, suppression of cancer cell expression, .

꿀벌에서 RNA 간섭 기술의 적용은 IAPV(Israeli acute paralysis virus)에서의 입증된 효과를 시작으로 Varroa mite의 방제까지 그 범위가 확장되었으며, RNA 간섭 기술을 이용하여 대규모의 꿀벌 바이러스 방제 효과가 보고되었다.The application of RNA interference technology in honey bees has been extended to the control of Varroa mite, starting from the proven effects of IAPV (Israeli acute paralysis virus), and the large-scale bee virus control effect using RNA interference technology has been reported.

한편, 한국등록특허 제1564842호에는 'RNAi 기반 점박이응애 방제용 dsRNA, 이를 포함하는 살비제 조성물, 이를 이용한 독성 증대 방법 및 방제 방법'이 개시되어 있고, 한국공개특허 제2014-0017291호에는 '꿀벌질병 노제마 아피스 치료용 조성물 및 그의 정제방법'이 개시되어 있으나, 본 발명의 노제마 세라내의 유전자 발현을 억제하는 dsRNA를 유효성분으로 포함하는 꿀벌 노제마병 방제용 조성물 및 이의 용도에 대해서는 기재된 바가 없다.Korean Patent No. 1564842 discloses' RNAi-based dsRNA for controlling spotted mite disease, a salicylic acid composition containing the same, a method for enhancing toxicity using the same and a method for controlling the same, 'Korean Patent Publication No. 2014-0017291 discloses' A composition for treating Nogema apis, and a method for purifying Nogemaa apis. "However, there is no description of a composition for controlling a bee's sickle-shaped fever containing dsRNA that inhibits gene expression in the nogejemera of the present invention and its use.

본 발명은 상기와 같은 요구에 의해 도출된 것으로서, 본 발명자들은 노제마 세라내(Nosema ceranae)의 미토솜 유전자를 표적으로 하는 dsRNA를 제작하고 이를 노제마에 감염된 꿀벌에 처리한 결과, FNR1(Ferredoxin NADP+ reductase 1) 또는 FNR2 유전자를 표적하는 dsRNA가 기존에 보고된 유전자들의 dsRNA 조합의 경우보다 포자증식률 억제 및/또는 노제마에 감염된 꿀벌의 생존율 향상에 우수한 효과를 보이는 것을 확인하였다. 또한, dsRNA에 키토산을 결합시킨 나노복합체를 제조하여 처리한 결과, 일반 dsRNA에 비해 dsRNA-키토산 나노복합체가 3일 이상의 간격으로 꿀벌에 처리한 경우에도 우수한 방제 효과가 유지되는 것을 확인함으로써, 본 발명을 완성하였다.Disclosure of the Invention The present invention has been made in view of the above-mentioned needs. The present inventors prepared dsRNA targeting the mitochomal gene of Nosema ceranae and treated the bee infected with Nogema, and found that FNR1 (Ferredoxin NADP + reductase 1) or FNR2 gene showed excellent effect on the suppression of spore multiplication rate and / or the survival rate of bee infected with nemema compared with the case of dsRNA combination of previously reported genes. In addition, as a result of preparing and treating the chitosan-bound nanocomposite with the dsRNA, it was confirmed that the excellent control effect was maintained even when the dsRNA-chitosan nanocomposite was treated with bees at intervals of 3 days or more as compared with the general dsRNA. .

상기 과제를 해결하기 위해, 본 발명은 노제마 세라내(Nosema ceranae)의 FNR1(Ferredoxin NADP+ reductase 1) 또는 FNR2 유전자의 발현을 억제하는 dsRNA를 유효성분으로 포함하는 꿀벌 노제마병 방제용 조성물을 제공한다.In order to solve the above problems, the present invention provides the bees Jose horsemen controlling composition comprising a dsRNA that Jose town sera inhibit in FNR1 (Ferredoxin NADP + reductase 1) or the expression of FNR2 genes (Nosema ceranae) as an active ingredient .

또한, 본 발명은 상기 꿀벌 노제마병 방제용 조성물을 정상 꿀벌 또는 노제마병 의심 꿀벌에 처리하는 단계를 포함하는, 꿀벌 노제마병의 방제 방법을 제공한다.In addition, the present invention provides a method for controlling a bee's sickle-neck disease, comprising the step of treating the bee sickle sickness-controlling composition with normal bees or suspected bee sickles.

본 발명의 노제마 세라내의 유전자 발현을 억제하는 dsRNA를 유효성분으로 포함하는 조성물은 섭식을 통해 꿀벌의 체내에 들어갔을 때 노제마 세라내의 미토솜 단백질의 발현을 억제하여, 노제마 세라내의 포자증식을 억제하고 노제마에 감염된 꿀벌의 생존율 향상을 유도한다. 따라서 본 발명의 조성물은 꿀벌 노제마병의 방제에 유용하게 사용할 수 있으며, 쉽게 내성이 생기는 화학합성 살충제를 대체할 수 있을 것으로 사료된다.The composition comprising the dsRNA which inhibits gene expression in the present invention of the present invention as an active ingredient inhibits the expression of mitochondrial proteins in the nematocyte when it enters the body of bees through feeding, And induce improvement of the survival rate of bees infected with Nogema. Therefore, the composition of the present invention can be used for the control of the bee sickle disease and can be substituted for a chemical resistant insecticide which is easily resistant.

도 1은 꿀벌로부터 분리한 노제마의 종을 동정하기 위한 다중 PCR 수행 결과이다. MP, 다중 PCR 산물.
도 2는 최종 선발된 7가지 유전자에 대한 PCR 결과로, 노제마 세라내의 게노믹 DNA를 주형으로 사용하였다.
도 3은 본 발명의 dsRNA를 제작하는 방법의 모식도이다.
도 4는 제작된 dsRNA의 크기를 확인하기 위한 겔 로딩 사진이다.
도 5는 dsRNA 처리에 따른 노제마 포자증식률(a) 및 꿀벌의 생존율(b)을 분석한 결과이다. no incubated: 노제마 및 dsRNA 모두를 처리하지 않은 꿀벌.
도 6은 dsRNA 처리가 각 목적 유전자 발현에 미치는 영향을 조사하기 위하여 qRT-PCR을 수행한 결과이다.
도 7은 dsRNA 조합 처리에 따른 노제마 포자증식률을 분석한 결과이다.
도 8는 dsRNA 조합 처리에 따른 꿀벌의 생존율을 분석한 결과이다.
도 9는 dsRNA-키토산 나노복합체의 광학현미경 사진(A)과 dsRNA가 첨가되지 않은 키토산 용액의 광학현미경 사진(B)이다.
도 10은 dsRNA-키토산 나노복합체의 독성을 확인하기 위해, 노제마의 접종 없이 dsRNA-키토산 나노복합체를 1일, 2일, 3일 간격으로 처리하고 꿀벌의 생존율을 분석한 결과이다.
도 11은 dsRNA-키토산 나노복합체와 dsRNA의 처리 간격에 따른 포자증식률(a) 및 꿀벌의 생존율(b)을 분석한 결과이다. CP+: dsRNA-키토산 나노복합체, CP-: dsRNA.
Fig. 1 shows results of multiple PCR performed to identify the species of Nemema isolated from bees. MP, multiple PCR products.
Fig. 2 shows the result of PCR on the seven genes finally selected, and genomic DNA in Nogemacera was used as a template.
3 is a schematic diagram of a method for producing the dsRNA of the present invention.
FIG. 4 is a gel loading photograph for confirming the size of the prepared dsRNA.
FIG. 5 shows the results of analysis of the survival rate (a) and the survival rate (b) of the nematode sporophyll according to the dsRNA treatment. no incubated: bee that has not treated both nemema and dsRNA.
Figure 6 shows the results of qRT-PCR performed to investigate the effect of dsRNA treatment on the expression of each target gene.
FIG. 7 shows the results of analysis of the growth rate of N. japonica according to the dsRNA combination treatment.
8 shows the results of analysis of the survival rate of bees according to the dsRNA combination treatment.
9 is an optical microscope photograph (A) of the dsRNA-chitosan nanocomposite and an optical microscope photograph (B) of the chitosan solution to which the dsRNA is not added.
FIG. 10 shows the results of analysis of the survival rate of bees by treating dsRNA-chitosan nanocomposite at 1 day, 2 days, and 3 days intervals without inoculation of nemema in order to confirm the toxicity of dsRNA-chitosan nanocomposite.
FIG. 11 shows the results of analysis of the spore multiplication rate (a) and the survival rate (b) of the honeybee depending on the intervals between the dsRNA-chitosan nanocomposite and the dsRNA. CP +: dsRNA-chitosan nanocomposite, CP-: dsRNA.

본 발명의 목적을 달성하기 위하여, 본 발명은 노제마 세라내(Nosema ceranae)의 FNR1(Ferredoxin NADP+ reductase 1) 또는 FNR2 유전자의 발현을 억제하는 dsRNA를 유효성분으로 포함하는 꿀벌 노제마병 방제용 조성물을 제공한다.According to an aspect of the invention there is provided a bee Jose horsemen controlling composition comprising a dsRNA that Jose town sera inhibit in FNR1 (Ferredoxin NADP + reductase 1) or the expression of FNR2 genes (Nosema ceranae) as an active ingredient to provide.

또한, 본 발명의 상기 꿀벌 노제마병 방제용 조성물은 TOM40(translocase of the outer membrane 40), TOM70, Nar1(nuclear architecture related 1), Nc14(Nosema ceranae 14) 및 Nc17 유전자의 발현을 억제하는 각각의 dsRNA를 추가로 포함하는 것일 수 있으나, 이에 제한되지 않는다.In addition, the composition of the present invention for controlling a bee's sickle-knot disease can be used to inhibit the expression of Tc40 (translocase of the outer membrane 40), TOM70, Nar1 (nuclear architecture related 1), Nc14 (Nosema ceranae 14) But it is not limited thereto.

본 발명의 상기 FNR1, FNR2, TOM40, TOM70 및 Nar1 유전자는 노제마 세라내의 미토솜(mitosome) 단백질을 코딩하는 것으로, 상기 미토솜은 전형적인 미토콘드리아와 유사한 기능적 기관이나, 미토콘드리아와 비교하면 매우 축소된 기관이다. 미토솜은 철-황화물 클러스터(iron-sulfur clusters)에 작용하는 단백질들을 포함하고 있는데, 이는 비호기적인 환경에서 세포기관을 유지하는 선택요인으로 작용하는 것으로 보고되었다.The FNR1, FNR2, TOM40, TOM70 and Nar1 genes of the present invention encode a mitosome protein in Nogemacera. The mitosome is a functional organ similar to a typical mitochondrion, to be. Mitosomes contain proteins that act on iron-sulfur clusters, which have been reported to act as a selectable factor to maintain cell organs in an asymptomatic environment.

상기 방제용 조성물은 미생물 농약의 의미로 사용될 수 있다. 상기 방제는 바람직하게는 치료일 수 있으나, 이에 제한되지 않는다.The composition for controlling can be used as a microbial pesticide. The control may be, but is not limited to, treatment.

본 발명의 상기 dsRNA는 이의 센스 서열 내에 상동성이 높고, 특히 표적(목적) mRNA 서열에 대해 동일한 서열을 포함하는 dsRNA이다.The dsRNA of the present invention is a dsRNA having high homology in its sense sequence, and in particular, containing the same sequence for a target (purpose) mRNA sequence.

본 발명의 일 구현 예에 따른 방제용 조성물에 있어서, 상기 FNR1 유전자의 발현을 억제하는 dsRNA는 서열번호 1의 염기서열로 이루어진 것일 수 있고, FNR2 유전자의 발현을 억제하는 dsRNA는 서열번호 2의 염기서열로 이루어진 것일 수 있으나, 이에 제한되지 않는다. 본 발명의 상기 서열번호 1 또는 서열번호 2의 염기서열은 dsRNA(double stranded RNA)에서 센스(sense) 가닥의 염기서열을 의미하는 것으로, 표적 FNR1 또는 FNR2에 결합하는 안티센스(antisense) 가닥은 상기 서열번호 1 또는 서열번호 2의 염기서열과 상보적인 서열로 이루어진 것일 수 있다.The dsRNA that inhibits the expression of the FNR1 gene may be the base sequence of SEQ ID NO: 1, and the dsRNA that inhibits the expression of the FNR2 gene may be the base of SEQ ID NO: 2 But it is not limited thereto. The nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 2 of the present invention means a nucleotide sequence of a sense strand in a double stranded RNA (dsRNA), and an antisense strand that binds to the target FNR1 or FNR2, Or a sequence complementary to the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 2.

또한, 상기 TOM40, TOM70, Nar1, Nc14 및 Nc17 유전자의 발현을 억제하는 각각의 dsRNA는 각각 서열번호 3 내지 7의 염기서열로 이루어진 것일 수 있으나, 이에 제한되지 않는다. 상기 서열번호 3 내지 7의 염기서열 또한 상기 TOM40, TOM70, Nar1, Nc14 및 Nc17 유전자에 대한 각각의 dsRNA에서 센스 가닥의 염기서열을 의미한다.In addition, each dsRNA that inhibits the expression of the TOM40, TOM70, Nar1, Nc14, and Nc17 genes may be composed of the nucleotide sequence of SEQ ID NOS: 3 to 7, but is not limited thereto. The nucleotide sequences of SEQ ID NOS: 3 to 7 also mean the nucleotide sequences of the sense strands in the respective dsRNAs for the TOM40, TOM70, Nar1, Nc14 and Nc17 genes.

본 발명의 일 구현 예에 따른 방제용 조성물에 있어서, 상기 dsRNA는 키토산이 결합된 복합체 형태인 것일 수 있으나, 이에 제한되지 않으며, dsRNA의 안정성 또는 표적 세포 내로의 흡수를 증진시킬 수 있는 다양한 물질 등으로 변형된 형태일 수 있다. 본 발명의 dsRNA-키토산 나노복합체는 키토산이 결합되지 않은 dsRNA에 비해 안정성이 증가되었다. 상기 dsRNA 또는 dsRNA-키토산 나노복합체의 제조 방법은 당업계에 공지된 방법에 따라 합성 및 제조될 수 있다.In the composition for controlling a disease according to an embodiment of the present invention, the dsRNA may be in the form of a complex with chitosan bound thereto, but is not limited thereto, and may include various substances capable of promoting dsRNA stability or absorption into a target cell As shown in FIG. The dsRNA-chitosan nanocomposite of the present invention has increased stability compared to dsRNA without chitosan. The dsRNA or the dsRNA-chitosan nanocomposite may be synthesized and prepared according to methods known in the art.

본 발명에 따른 노제마병 방제용 조성물은 예를 들어, 직접 분사가능한 용액, 분말 및 현탁액의 형태 또는 고농축 수성, 유성 또는 다른 현탁액, 분산액, 에멀젼, 유성 분산액, 페이스트, 분진, 흩뿌림 물질 또는 과립제로 제조할 수 있으나, 이에 제한되지 않는다.The composition for the control of the present invention according to the present invention may be in the form of, for example, directly sprayable solutions, powders and suspensions, or in the form of highly concentrated aqueous, oily or other suspensions, dispersions, emulsions, oily dispersions, pastes, dusts, But are not limited thereto.

본 발명의 노제마병 방제용 조성물은 다양한 형태로 제제화할 수 있다. 상기 제제는 예를 들어 용매 및/또는 담체를 첨가함으로써 제조될 수 있다. 종종, 비활성 첨가제 및 표면-활성 물질, 예를 들어 유화제 또는 분산제를 제제에 혼합한다. 적합한 표면-활성 물질은 방향족 술폰산(예를 들어 리그노술폰산, 페놀-술폰산, 나프탈렌- 및 디부틸나프탈렌술폰산), 지방산, 알킬- 및 알킬아릴술포네이트, 알킬 라우릴 에테르, 지방 알코올 술페이트의 알칼리 금속, 알카라인 토금속, 암모늄염, 술페이트화 헥사-, 헵타- 및 옥타데칸올, 지방 알코올 글리콜 에테르의 염, 술포네이트 나프탈렌 및 이의 유도체, 포름알데히드의 축합물, 나프탈렌 또는 나프탈렌술폰산, 페놀 및 포름알데히드의 축합물, 폴리옥시에틸렌옥틸 페놀 에테르, 에톡실화 이소옥틸-, 옥틸- 또는 노닐페놀, 알킬페닐 또는 트리부틸페닐 폴리글리콜 에테르, 알킬아릴폴리에테르 알코올, 이소트리데실 알코올, 지방 알코올/에틸렌 옥사이드 축합물, 에톡실화 피마자유, 폴리옥시에틸렌 알킬에테르 또는 폴리옥시프로필렌, 라우릴 알코올 폴리글리콜 에테르 아세테이트, 소르비톨 에스테르, 리그닌-술파이트 폐액 또는 메틸셀룰로오스일 수 있으나, 이에 제한되지는 않는다.The composition of the present invention for controlling Nogzabug can be formulated into various forms. The preparation can be prepared, for example, by adding a solvent and / or a carrier. Often, inert additives and surface-active materials, such as emulsifiers or dispersants, are mixed into the formulation. Suitable surface-active materials include, but are not limited to, aromatic sulfonic acids (e.g., lignosulfonic acid, phenol-sulfonic acid, naphthalene- and dibutylnaphthalenesulfonic acid), fatty acids, alkyl- and alkylarylsulfonates, alkyl lauryl ethers, A salt of a fatty alcohol glycol ether, a sulfonate naphthalene and derivatives thereof, a condensate of formaldehyde, a condensate of naphthalene or naphthalene sulfonic acid, a phenol and a formaldehyde Condensates, polyoxyethylene octylphenol ethers, ethoxylated isooctyl-, octyl- or nonylphenol, alkylphenyl or tributylphenyl polyglycol ethers, alkylaryl polyether alcohols, isotridecyl alcohol, fatty alcohol / ethylene oxide condensates , Ethoxylated castor oil, polyoxyethylene alkyl ether or polyoxypropylene, lauryl alcohol Polyglycol ether acetate, sorbitol esters, lignin-sulfite waste liquid, or may be a cellulose, are not limited.

적합한 고형 담체 물질은 원칙적으로, 모두 다공성이고, 농업적으로 허용가능한 담체, 예를 들어 광물토류(예컨대 실리카, 실리카 겔, 실리케이트, 활석, 고령토, 석회암, 석회, 초크, 보울, 황토, 점토류, 백운석, 규조 토류, 황산칼슘, 황산 마그네슘, 산화마그네슘, 분쇄 합성물질), 비료(예컨대 황산암모늄, 인산암모늄, 질산암모늄, 우레아), 식물성 제품(예컨대 곡물 가루, 나무 껍질 가루, 목분(wood meal) 및 견과 껍질 가루) 또는 셀룰로오스 분말일 수 있으나, 이에 제한되지는 않는다. 또한, 상기 고형 담체는 1종류 또는 2종류 이상을 혼합하여 사용할 수도 있다.Suitable solid carrier materials are in principle all porous and comprise an agriculturally acceptable carrier such as mineral earths such as silica, silica gel, silicate, talc, kaolin, limestone, limestone, chalk, Fertilizers such as ammonium sulfate, ammonium phosphate, ammonium nitrate, urea, vegetable products such as cereal flour, bark powder, wood meal, And nut shell powder), or cellulose powder. The solid carrier may be used alone or in combination of two or more.

본 발명은 또한, 상기 꿀벌 노제마병 방제용 조성물을 정상 꿀벌 또는 노제마병 의심 꿀벌에 처리하는 단계를 포함하는, 꿀벌 노제마병의 방제 방법을 제공한다. 본 발명의 노제마병 방제용 조성물은 노제마 세라내의 미토솜 유전자를 표적으로 하는 dsRNA를 유효성분으로 포함하는 것으로, 상기 dsRNA는 전술한 것과 같다. 상기 노제마병을 방제하는 방법은 정상 꿀벌에 처리하여 노제마병을 예방하거나 노제마병 의심 꿀벌에 처리하여 노제마병을 치료하는 것일 수 있으며, 바람직하게는 노제마병에 감염된 꿀벌을 치료하는 것일 수 있으나, 이에 제한되지 않는다.The present invention also provides a method of controlling a bee's sickle-neck disease, comprising the step of treating the bee sickle sickness-controlling composition with normal bees or suspected bee sickles. The composition of the present invention for controlling Nogzema knocker comprises dsRNA targeting mitochomaceous gene in Nogemacera as an active ingredient, and the dsRNA is as described above. The method for controlling the sickle cell disease may be treating the normal sickle cell disease to prevent the sickle cell disease, treating the sickle cell disease by treating the sickle cell disease suspect with the sickle cell disease, and preferably treating the bee infected with the sickle cell disease, It is not limited.

본 발명의 방제 방법에 있어서, 상기 처리는 노제마병을 방제하기 위해 방제용 조성물을 물로 균일하게 희석한 후 동력살포기와 같은 적절한 살포장치를 이용하여 꿀벌에 살포하거나, dsRNA의 유효량을 포함하는 조성물을 꿀벌에 섭식시키는 것일 수 있으나, 이에 제한되지 않는다. 본 발명의 '유효량'은 유익한 또는 원하는 결과를 일으키기에 충분한 양을 의미한다.In the control method of the present invention, the treatment may be carried out by uniformly diluting the control composition with water to control the agar horseradish, then spraying the bee with a suitable spraying device such as a power sprayer, or a composition containing an effective amount of dsRNA It may be, but is not limited to, eating bees. An " effective amount " of the present invention means an amount that is beneficial or sufficient to produce the desired result.

본 발명의 일 구현 예에 따른 꿀벌 노제마병의 방제 방법에 있어서, 상기 방제용 조성물의 처리는, 노제마 세라내의 미토솜 유전자를 표적으로 하는 dsRNA와 키토산이 결합된 dsRNA-키토산 나노복합체를, 1일 내지 3일 간격으로 꿀벌에 섭식시키는 것일 수 있으나, 이에 제한되지 않는다.
In the method for controlling a honeybee syringe bottle according to an embodiment of the present invention, the treatment composition is prepared by mixing a dsRNA-chitosan-binding dsRNA-chitosan nanocomposite targeting a mitosome gene in Nogemacera with 1 But may be, but not limited to, eating bees at intervals of one to three days.

이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.
Hereinafter, the present invention will be described in detail with reference to examples. However, the following examples are illustrative of the present invention, and the present invention is not limited to the following examples.

재료 및 방법Materials and methods

1. 시험곤충과 균주1. Test insects and strains

시험곤충은 서양종 꿀벌(Apis mellifera)의 봉군을 사육하며, 24시간 이내 우화한 유봉을 이용하였으며, 50% 수크로스와 화분떡(Bee bread)을 주 먹이로 공급하였다.The test insects were reared on the bees ( Apis mellifera ), 24 hours after the emergence, and 50% sucrose and Bee bread were supplied as main feed.

노제마 세라내(Nosema ceranae)는 농촌진흥청 잠사양봉소재과의 봄철 봉군으로부터 공급받은 노제마병에 감염된 서양종 꿀벌로부터 분리하였으며, 절대 기생체인 노제마는 꿀벌 생체를 이용하여 계대배양하며 실험에 이용하였다.
Nosema ceranae was isolated from western bees infected with Nogejima from the Spring Bong of the Rural Development Administration. Nogema, an absolute parasitic species, was cultivated using bees' organisms.

2. 노제마 포자의 분리2. Isolation of spores

꿀벌로부터 순수한 노제마 포자를 분리하기 위해서 감염된 꿀벌의 성충으로부터 중장을 적출하여 1.5㎖ 마이크로튜브에 3mm 비드와 함께 넣은 후 균질화기(homogenizer)를 이용하여 마쇄하였다. 마쇄된 중장은 멸균수를 첨가하여 2mm 여과지를 넣은 컬럼으로 1,000xg, 5분의 조건으로 원심분리를 수행하여 꿀벌의 조직 조각들을 걸러내었다. 그 후 15, 50, 75, 및 90%의 퍼콜(Percoll) 농도 구배를 제작하고 상기에서 여과한 용액을 처리한 후 10,000xg, 30분, 4℃ 조건으로 원심분리 하여 90% 구배에 형성된 침전물을 회수하여 순수한 노제마 포자를 분리하였고, 이를 실험에 이용하였다.
In order to isolate pure N. japonica spores from bees, the mid-field was removed from the adult bees of the infected bees and placed in a 1.5 ml microtube together with 3 mm beads and then ground using a homogenizer. The heavy grinding is added to the sterile water by performing centrifugal separation at 1,000x g, 5 minutes, and the column into a 2mm filter paper served to filter out of the tissue piece bee. Thereafter, a Percoll concentration gradient of 15, 50, 75, and 90% was prepared and the filtered solution was centrifuged at 10,000 × g , 30 minutes, 4 ° C. to obtain a precipitate Was recovered and pure Pseudomonas sp. Was isolated and used for the experiment.

3. 노제마 DNA 추출과 동정용 중합효소연쇄반응(polymerase chain reaction, PCR)3. DNA extraction and PCR for polymerase chain reaction (PCR)

분리된 순수한 노제마 포자를 건조시키고 액체질소로 동결하여 마쇄하는 과정을 3회 반복한 후, i-genomic DNA extraction mini 키트(Intron, 한국)를 이용하여 제조사의 방법에 따라 게노믹 DNA를 추출하여 PCR 반응의 주형으로 사용하였다. 노제마 아피스(N. apis)와 노제마 세라내(N. ceranae)를 구별하기 위해서 각 종에 특이적인 프라이머(표 1)를 이용하여, 다중(multiplex) PCR을 수행하였다. PCR 반응은 AccuPower PCR PreMix(250mM dNTPs, 10mM Tris-HCl(pH 9.0), 30mM KCl, 1.5mM MgCl2, 1 unit Taq DNA polymerase; Bioneer Co., 한국) 시약에 1㎕의 DNA 용액과 각 프라이머 10pmol을 넣어 총 부피 20㎕로 맞춘 후, 95℃에서 2분의 초기변성 1회 후, 95℃에서 30초, 55℃에서 30초, 72℃에서 2분의 조건으로 35회 반복반응을 수행하고, 72℃에서 10분간 처리하여 반응을 종료하였다. 증폭된 PCR 산물은 1.0% 아가로스 젤에 전기영동하여 확인하였다.The pure genomic DNA extraction kit (Intron, Korea) was used to extract the genomic DNA according to the manufacturer's instructions after three separate rounds of freezing and freezing with liquid nitrogen were performed. PCR reaction. Multiplex PCR was performed using primers specific to each species (Table 1) to distinguish between N. apis and N. ceranae . The PCR reaction was carried out using 1 μl of DNA solution and 10 pmol of each primer in AccuPower PCR PreMix (250 mM dNTPs, 10 mM Tris-HCl (pH 9.0), 30 mM KCl, 1.5 mM MgCl 2 , 1 unit Taq DNA polymerase; Bioneer Co., And the reaction was repeated 35 times at 95 ° C for 30 seconds, at 55 ° C for 30 seconds, and at 72 ° C for 2 minutes. The reaction was terminated by treatment at 72 ° C for 10 minutes. The amplified PCR product was confirmed by electrophoresis on 1.0% agarose gel.

노제마 동정용 프라이머Primers for identification 프라이머명Primer name 염기서열(5'→3')The base sequence (5 '- > 3') Mnapis FMnapis F GCATGTCTTTGACGTACTATG (서열번호 8)GCATGTCTTTGACGTACTATG (SEQ ID NO: 8) Mnceranae FMnceranae F CGTTAAAGTGTAGATAAGATGTT (서열번호 9)CGTTAAAGTGTAGATAAGATGTT (SEQ ID NO: 9) Muniv RMuniv R GACTTAGTAGCCGTCTCTC (서열번호 10)GACTTAGTAGCCGTCTCTC (SEQ ID NO: 10)

4. 노제마 유전자의 PCR 증폭 및 클로닝4. PCR amplification and cloning of Najema gene

dsRNA의 제작을 위한 유전자 선발은, 기 보고된 노제마 세라내의 유전자 정보와 서양종 꿀벌의 유전자 정보를 미국 국립생물정보센터(NCBI)의 BLAST(https://blast.ncbi.nlm.nih.gov/Blast.cgi)를 이용하여 비교 및 추정기능을 분석하였다. 이러한 과정을 거쳐 결정된 목적 유전자는 표 2의 프라이머 세트를 이용하여 PCR로 증폭하였다. PCR 반응물의 조성은 Takara taq HS 0.25㎕, 10X PCR 버퍼 5㎕, dNTP 혼합물 4㎕에 DNA 용액과 각 프라이머 10 pmol을 넣어 최종 부피 50㎕로 맞추고, 95℃에서 2분의 초기변성 1회 후 95℃에서 30초, 48.5℃에서 30초, 72℃에서 30초의 조건으로 25회 반복반응을 수행하고 72℃에서 10분간 처리하여 반응을 종료하였다.The selection of genes for the production of dsRNA was carried out by using the genomic information of the reported Nogemaceae and the genomic information of the Western species of bees using the BLAST (https://blast.ncbi.nlm.nih.gov/) of the National Center for Biological Information (NCBI) Blast.cgi) was used to analyze the comparison and estimation functions. The target gene determined through this process was amplified by PCR using the primer set of Table 2. The composition of the reaction mixture was adjusted to a final volume of 50 μl by adding 0.25 μl of Takara taq HS, 5 μl of 10 × PCR buffer, 4 μl of dNTP mixture, and 10 pmol of each primer. The reaction was repeated 25 times at 30 ° C for 30 seconds, 48.5 ° C for 30 seconds, and 72 ° C for 30 seconds, and the reaction was terminated by treatment at 72 ° C for 10 minutes.

노제마 세라내의 목적 유전자 클로닝을 위한 프라이머Primers for cloning target genes in Nogemaacera 유전자gene 프라이머primer 염기서열(5'→3')The base sequence (5 '- > 3') TOM70TOM70 FF ATGAAAAAGTAAACAAGTCAGAATTC (서열번호 11)ATGAAAAAGTAAACAAGTCAGAATTC (SEQ ID NO: 11) RR CCGCTTGATTTATTAATTATAAACC (서열번호 12)CCGCTTGATTTATTAATTATAAACC (SEQ ID NO: 12) Nc14Nc14 FF AATGTCATTCAAATACAAATGTTTG (서열번호 13)AATGTCATTCAAATACAAATGTTTG (SEQ ID NO: 13) RR TTTAAAACACTGCATCTTATAAATTC (서열번호 14)TTTAAAACACTGCATCTTATAAATTC (SEQ ID NO: 14) Nc17Nc17 FF AGCAAAATTATTAAAATTATAAC (서열번호 15)AGCAAAATTATTAAAATTATAAC (SEQ ID NO: 15) RR ATTTAATTAACTACAGAATTGTTAG (서열번호 16)ATTTAATTAACTACAGAATTGTTAG (SEQ ID NO: 16) TOM40TOM40 FF AATAACCGTAAATATCTCATCTGTC (서열번호 17)AATAACCGTAAATATCTCATCTGTC (SEQ ID NO: 17) RR TAAAGAAACGCTATTTTTATGAAAC (서열번호 18)TAAAGAAACGCTATTTTTATGAAAC (SEQ ID NO: 18) Nar1Nar1 FF ATCGATTTAAATATTCCTATTTG (서열번호 19)ATCGATTTAAATATTCCTATTTG (SEQ ID NO: 19) RR ACTTTTTTTAGTGTTAATCATGTC (서열번호 20)ACTTTTTTTAGTGTTAATCATGTC (SEQ ID NO: 20) FNR1FNR1 FF AATGAGAAAATTCTGTATATGAACAC (서열번호 21)AATGAGAAAATTCTGTATATGAACAC (SEQ ID NO: 21) RR TTTTAAATAATCATAAAAGTTGTGTAG (서열번호 22)TTTTAAATAATCATAAAAGTTGTGTAG (SEQ ID NO: 22) FNR2FNR2 FF AGAATTCCTTACTTATTTACATACAC (서열번호 23)AGAATTCCTTACTTATTTACATACAC (SEQ ID NO: 23) RR ATTTATTACTTGTTTAATTTATGAAG (서열번호 24)ATTTATTACTTGTTTAATTTATGAAG (SEQ ID NO: 24)

PCR 산물의 클로닝은 pMD20 클로닝 벡터(Takara biotechnology, 일본)를 제조사의 방법에 따라 PCR증폭 산물과 라이게이션 반응 후 대장균 XL1 blue 균주의 컴피턴트(competent) 세포 내로 형질전환하여 암피실린, X-gal(5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside) 그리고 IPTG(isopropyl β-D-1-thiogalactopyranoside)가 첨가된 LB 고체배지에서 배양시킨 후, 하얀색 콜로니를 선발하여 액체 배지에서 배양하였다. 배양된 대장균은 DOKDO-PrepTM Plasmid mini-prep 키트(Elpis Biotech. Inc, 한국)를 사용하여 플라스미드를 추출하였고, 마크로젠(한국)에 의뢰하여 염기서열을 분석하였다.
The PCR product was cloned by pMD20 cloning vector (Takara biotechnology, Japan) according to the manufacturer's method and ligated with the PCR amplification product and transformed into competent cells of Escherichia coli XL1 blue strain to obtain ampicillin, X-gal (5 -bromo-4-chloro-3-indolyl- beta -D-galactopyranoside) and IPTG (isopropyl [beta] -D-1-thiogalactopyranoside), white colonies were selected and cultured in a liquid medium . The cultured Escherichia coli was extracted with a DOKDO-Prep Plasmid mini-prep kit (Elpis Biotech. Inc, Korea), and the plasmid was extracted and analyzed with Macrogen (Korea).

5. dsRNA의 제작5. Production of dsRNA

dsRNA의 제작을 위해서 T7 프로모터 서열을 포함하는 정방향 프라이머와 노제마 유전자 특이적인 역방향 프라이머를 한 세트로, 그리고 노제마 유전자 특이적인 정방향 프라이머와 T7 프로모터 서열을 포함하는 역방향 프라이머(표 3)를 제작하여 PCR을 수행하였다. PCR 반응의 조성은 Takara taq HS 0.25㎕, 10X PCR 버퍼 5㎕, dNTP 혼합물 4㎕에 DNA 용액과 각 프라이머 10pmol을 넣어 최종 부피 50㎕로 맞추고, 95℃에서 2분의 초기변성 1회 후, 95℃에서 30초, 47.5℃에서 30초, 72℃에서 30초의 조건으로 10회 반복반응을 수행하고, 95℃에서 30초, 67℃에서 30초, 72℃에서 30초의 조건으로 15회 추가반복을 수행한 후, 72℃에서 5분간 처리하여 반응을 종료하였다.For preparation of dsRNA, a reverse primer containing a T7 promoter sequence and a reverse primer specific for N. jima gene were prepared, and a reverse primer containing a N. jima gene-specific forward primer and a T7 promoter sequence (Table 3) PCR was performed. The composition of the PCR reaction was adjusted to a final volume of 50 μl by adding 0.25 μl of Takara taq HS, 5 μl of 10 × PCR buffer, 4 μl of dNTP mixture, and 10 pmol of each primer. After 1 minute of initial denaturation at 95 ° C for 2 minutes, The reaction was repeated 10 times at 30 ° C for 30 seconds, 47.5 ° C for 30 seconds, and 72 ° C for 30 seconds. The reaction was repeated 15 times at 95 ° C for 30 seconds, 67 ° C for 30 seconds, and 72 ° C for 30 seconds And the reaction was terminated by treatment at 72 ° C for 5 minutes.

dsRNA 합성을 위한 프라이머Primers for dsRNA synthesis 유전자gene 프라이머primer 염기서열(5'→3') (서열번호)The nucleotide sequence (5 '- > 3') (SEQ ID NO: TOM70TOM70 T7-Tom70-FT7-Tom70-F TAATACGACTCACTATAGGGAGACTGAATGTTACAAGCAGATGGG (25) TAATACGACTCACTATAGGGAGA CTGAATGTTACAAGCAGATGGG (25) rTom70-RrTom70-R ACCAGGAGTATCTGGATGAC (26)ACCAGGAGTATCTGGATGAC (26) rTom70-FrTom70-F CTGAATGTTACAAGCAGATGGG (27)CTGAATGTTACAAGCAGATGGG (27) T7-Tom70-RT7-Tom70-R TAATACGACTCACTATAGGGAGAACCAGGAGTATCTGGATGAC (28) TAATACGACTCACTATAGGGAGA ACCAGGAGTATCTGGATGAC (28) Nc14Nc14 T7-Nc14-FT7-Nc14-F TAATACGACTCACTATAGGGAGACTCCTGGACAGTCCGCTAG (29) TAATACGACTCACTATAGGGAGA CTCCTGGACAGTCCGCTAG (29) rNc14-RrNCl4-R GAATCAGTTGACGGTAAACGG (30)GAATCAGTTGACGGTAAACGG (30) rNc14-FrNc14-F CTCCTGGACAGTCCGCTAG (31)CTCCTGGACAGTCCGCTAG (31) T7-Nc14-RT7-Nc14-R TAATACGACTCACTATAGGGAGAATCAGTTGACGGTAAACGG (32) TAATACGACTCACTATAGGGA GAATCAGTTGACGGTAAACGG (32) Nc17Nc17 T7-Nc17-FT7-Nc17-F TAATACGACTCACTATAGGGAGAGCTTGATGGGCTTATCTCC (33) TAATACGACTCACTATAGGGAG AGCTTGATGGGCTTATCTCC (33) rNc17-RrNc17-R GCAATGCGATTTCCACGG (34)GCAATGCGATTTCCACGG (34) rNc17-FrNc17-F AGCTTGATGGGCTTATCTCC (35)AGCTTGATGGGCTTATCTCC (35) T7-Nc17-RT7-Nc17-R TAATACGACTCACTATAGGGAGAGCAATGCGATTTCCACGG (36) TAATACGACTCACTATAGGGAGA GCAATGCGATTTCCACGG (36) TOM40TOM40 T7-Tom40-FT7-Tom40-F TAATACGACTCACTATAGGGAGACAGATTTCTCATGTCTCTTC (37) TAATACGACTCACTATAGGGAGA CAGATTTCTCATGTCTCTTC (37) rTom40-RrTom40-R TGATTGTTATCTACACATCC (38)TGATTGTTATCTACACATCC (38) rTom40-FrTom40-F CAGATTTCTCATGTCTCTTC (39)CAGATTTCTCATGTCTCTTC (39) T7-Tom40-RT7-Tom40-R TAATACGACTCACTATAGGGAGATGATTGTTATCTACACATCC (40) TAATACGACTCACTATAGGGAGA TGATTGTTATCTACACATCC (40) Nar1Nar1 T7-Nar1-FT7-Nar1-F TAATACGACTCACTATAGGGAGACATCTTATGTCAAAAATATTC (41) TAATACGACTCACTATAGGGAGA CATCTTATGTCAAAAATATTC (41) rNar1-RrNar1-R CAAATGTATATTTCGCATAC (42)CAAATGTATATTTCGCATAC (42) rNar1-FrNar1-F CATCTTATGTCAAAAATATTC (43)CATCTTATGTCAAAAATATTC (43) T7-Nar1-RT7-Nar1-R TAATACGACTCACTATAGGGAGACAAATGTATATTTCGCATAC (44) TAATACGACTCACTATAGGGAGA CAAATGTATATTTCGCATAC (44) FNR1FNR1 T7-FNR1-FT7-FNR1-F TAATACGACTCACTATAGGGAGATGTTCCTGGTGATAGTATTG (45) TAATACGACTCACTATAGGGAGA TGTTCCTGGTGATAGTATTG (45) rFNR1-RrFNRl-R CATCTTCTTGATTTCTAAATC (46)CATCTTCTTGATTTCTAAATC (46) rFNR1-FrFNR1-F TGTTCCTGGTGATAGTATTG (47)TGTTCCTGGTGATAGTATTG (47) T7-FNR1-RT7-FNR1-R TAATACGACTCACTATAGGGAGACATCTTCTTGATTTCTAAATC (48) TAATACGACTCACTATAGGGAGA CATCTTCTTGATTTCTAAATC (48) FNR2FNR2 T7-FNR2-FT7-FNR2-F TAATACGACTCACTATAGGGAGATGGACAGTTTTGATTTCG (49) TAATACGACTCACTATAGGGAG ATGGACAGTTTTGATTTCG (49) rFNR2-RrFNR2-R GCGCTTCGGTAGTAAAATG (50)GCGCTTCGGTAGTAAAATG (50) rFNR2-FrFNR2-F ATGGACAGTTTTGATTTCG (51)ATGGACAGTTTGATTTCG (51) T7-FNR2-RT7-FNR2-R TAATACGACTCACTATAGGGAGAGCGCTTCGGTAGTAAAATG (52) TAATACGACTCACTATAGGGAGA GCGCTTCGGTAGTAAAATG (52)

PCR 클로닝 방법은 앞서 언급된 방법과 동일하게 진행하였다. 클로닝 후 3' 말단의 서열에 상응하는 제한효소를 처리하여 플라스미드 DNA를 선형화 시킨 후에 T7 RiboMAX Express RNAi system(Promega, 미국)을 이용하여 제조사의 방법에 따라 T7 reaction compounds를 혼합반응하여 dsRNA를 합성하였다.
The PCR cloning method was carried out in the same manner as described above. After cloning, the plasmid DNA was linearized by treating the restriction enzyme corresponding to the 3 'terminal sequence, and T7 reaction compounds were mixed and reacted according to the manufacturer's method using a T7 RiboMAX Express RNAi system (Promega, USA) to synthesize dsRNA .

6. 노제마 접종과 dsRNA 섭식 시험6. Inoculation with ngerze and dsRNA feeding test

24시간 이내 우화한 꿀벌을 케이지 당 20마리씩 옮기고 3일 동안 적응시킨 후에, 마리 당 5.0x104개의 정제된 노제마 세라내를 접종하였으며, 접종 한 다음날부터 32㎍/㎖ 농도의 dsRNA와 50% 수크로스를 섞어 매일 공급하였다. 케이지는 1회용으로 제작하였다. dsRNA의 처리는 단일 처리방법과 상호 시너지효과를 검정하기 위하여 2개 이상의 조합으로 처리하는 방법을 사용하였다. 상대비교를 위한 대조구로는 노제마 접종구 그리고 무처리구를 이용하였다. dsRNA의 처리효과는 접종 후 14일째의 포자증식률과 꿀벌의 생존율을 비교, 검정하였다. 꿀벌의 생존율은 매일 관찰 기록하며 14~20일까지 조사하였고, 포자증식률은 접종 후 14일째의 살아있는 꿀벌의 중장을 적출하여 포자수를 계수하였으며, 1반복 당 꿀벌 20마리를 이용하고 총 3회 반복을 수행하였다.
Within 24 hours, 20 bees were transferred per cage, and after 3 days of adaptation, they were inoculated with 5.0 × 10 4 purified norejmaseras per flask. After the inoculation day, 32 μg / ml dsRNA and 50% The cross was mixed daily. The cage was made for single use. The treatment of dsRNA was performed using a single treatment method and a combination treatment of two or more to test mutual synergy. As a control group, noge - ma inoculation group and non - treatment group were used. The treatment effect of dsRNA was examined by comparing the spore multiplication rate and the survival rate of bees at 14 days after inoculation. The survival rate of bees was examined every day and recorded from 14 to 20 days. The spore multiplication rate was calculated by counting the number of spores by extracting the live bees from the live bees on the 14th day after inoculation. Respectively.

7. 정량을 위한 Quantitative real-time PCR7. Quantitative real-time PCR for quantification

실시간 정량 PCR(quantitative real-time PCR; qRT-PCR)을 위해 노제마 접종 및 dsRNA가 처리된 최소 3마리 이상의 꿀벌 중장을 적출한 후에 SV Total RNA Isolation System(Promega)을 이용하여 총 RNA를 추출하였다. 그 후 100㎍으로 정량한 RNA를 주형으로 하고, Hyperscript RT premix(Gene all, 한국)를 이용하여 cDNA를 합성하였다. 합성조건은 55℃ 45분, 92℃ 5분 후 얼음 위에서 5분 정치하여 합성하였다. 상기 합성된 cDNA를 qRT-PCR의 주형으로 사용하였다. 각 목적 유전자 특이적인 프라이머를 이용하였으며, 비교 대조구로는 항존 유전자인 β-튜불린 유전자를 사용하였다(표 4). PCR 조건은 95℃ 2분 1회 후, 95℃ 5초, 53℃ 10초 그리고 72℃ 15초의 조건으로 40회를 반복수행 한 후, Delta Delta CT의 방법으로 대조 유전자와 목적 유전자의 발현양을 상대비교하였다.
At least three bees inoculated with Noge and dsRNA were extracted for quantitative real-time PCR (qRT-PCR) and total RNA was extracted using SV Total RNA Isolation System (Promega) . Then, cDNA was synthesized using Hyperscript RT premix (Gene all, Korea) using RNA quantified as 100 μg as a template. Synthesis conditions were as follows: 55 ℃ for 45 min, 92 ℃ for 5 min, and ice for 5 min. The synthesized cDNA was used as a template for qRT-PCR. Each target gene-specific primer was used, and the antisense gene, β-tubulin gene, was used as a comparative control (Table 4). The PCR conditions were 95 ° C for 2 minutes, 95 ° C for 5 seconds, 53 ° C for 10 seconds, and 72 ° C for 15 seconds. After repeated 40 cycles, the expression level of the control gene and the target gene was measured by Delta Delta CT Relative comparison.

qRT-PCR용 프라이머qRT-PCR primers 유전자gene 프라이머primer 염기서열(5'→3')The base sequence (5 '- > 3') 꿀벌
actin
bee
actin
FF AGGAATGGAAGCTTGCGGTA (서열번호 53)AGGAATGGAAGCTTGCGGTA (SEQ ID NO: 53)
RR AATTTTCATGGTGGATGGTGC (서열번호 54)AATTTTCATGGTGGATGGTGC (SEQ ID NO: 54) β-tubulinβ-tubulin FF AGAACCAGGAACGATGGAGA (서열번호 55)AGAACCAGGAACGATGGAGA (SEQ ID NO: 55) RR TCCTTGCAAACAATCTGCAC (서열번호 56)TCCTTGCAAACAATCTGCAC (SEQ ID NO: 56) TOM40TOM40 FF CATTACTAGCTTAAATACGTACACC (서열번호 57)CATTACTAGCTTAAATACGTACACC (SEQ ID NO: 57) RR CATGTGGGTACCTCTTATTCTAA (서열번호 58)CATGTGGGTACCTCTTATTCTAA (SEQ ID NO: 58) FNR1FNR1 FF AAAGACCAACTATACAGGTTCTTA (서열번호 59)AAAGACCAACTATACAGGTTCTTA (SEQ ID NO: 59) RR GAACAAAGTAGACCAATACTATCAC (서열번호 60)GAACAAAGTAGACCAATACTATCAC (SEQ ID NO: 60) FNR2FNR2 FF ACTTTGTCACCGTCTCTCTTG (서열번호 61)ACTTTGTCACCGTCTCTCTTG (SEQ ID NO: 61) RR CTGGGAAGTGTAATACCAGTAC (서열번호 62)CTGGGAAGTGTAATACCAGTAC (SEQ ID NO: 62) Nar1Nar1 FF ACTGAAAGATGTCCCTTTAACA (서열번호 63)ACTGAAAGATGTCCCTTTAACA (SEQ ID NO: 63) RR GTGCTTTCCTCATAAACACTATC (서열번호 64)GTGCTTTCCTCATAAACACTATC (SEQ ID NO: 64)

8. dsRNA-키토산 나노복합체의 제작8. Fabrication of dsRNA-chitosan nanocomposite

50mM 황산나트륨용액 100㎕에 32㎍의 dsRNA를 희석한 후 동량의 키토산 용액(0.02% 키토산/아세트산나트륨 버퍼, pH 4.5)을 처리하고 55℃에서 1분간 정치시켜 복합체를 형성시켰다. 그 후 30초간 볼텍스(vortex mixer)로 섞어준 후 10분간 13,000rpm에서 원심분리를 통해 dsRNA-키토산 나노복합체(dsRNA-chitosan nanocomplex)를 침전시키고, 상층액을 제거한 후 1㎖의 50% 수크로스에 재부유하여 실험에 이용하였다.
32 쨉 g of dsRNA was diluted in 100 쨉 l of a 50 mM sodium sulfate solution and treated with an equal amount of a chitosan solution (0.02% chitosan / sodium acetate buffer, pH 4.5) and allowed to stand at 55 째 C for 1 minute to form a complex. After that, the mixture was mixed with a vortex mixer for 30 seconds. Then, the dsRNA-chitosan nanocomplex was precipitated by centrifugation at 13,000 rpm for 10 minutes, and the supernatant was removed. Then, 1 ml of 50% It was resuspended and used for the experiment.

9. dsRNA-키토산 나노복합체 적용 시험9. Application test of dsRNA-chitosan nanocomposite

꿀벌에 대한 키토산의 안전성 평가를 위하여 키토산복합체를 형성시키고 50% 수크로스에 섞어서 1일, 2일, 3일에 한번씩 꿀벌에 처리한 후, 15일간의 생존율을 관찰하였다. dsRNA-키토산 나노복합체는 노제마의 접종 후 1일, 2일 또는 3일에 한번 씩 처리하여 노제마의 포자증식률과 꿀벌의 생존율을 비교 관찰하였다. 대조구로는 노제마 접종구 및 dsRNA-키토산 나노복합체와 동일한 횟수로 dsRNA만을 처리한 것을 이용하였다.
To evaluate the safety of chitosan against bees, chitosan complex was formed and mixed with 50% sucrose for 1 day, 2 days, and 3 days, and the survival rate was observed for 15 days. The dsRNA-chitosan nanocomposites were treated once a day, two days, or three days after inoculation with Nogema, and the survival rate of bees was compared with that of Nogema. As a control, dsRNA alone treated with the same number of times as the Nosema inoculum and the dsRNA-chitosan nanocomposite was used.

실시예 1. 노제마 세라내의 방제를 위한 RNAi의 적용Example 1: Application of RNAi for control in Nyeme macera

1-1. 노제마의 유전자 침묵을 위한 유전자의 선발1-1. Selection of genes for gene silencing in Nogema

① 미토콘드리아와 노제마 미토솜 관련 유전자의 상동성 분석① Analysis of homology of mitochondrial and nemematomosomes related genes

미토콘드리아는 진핵생물에서 에너지 대사를 담당기관으로 생물체의 대사에 있어 필수적인 역할을 수행하는 세포 내 소기관이다. 같은 진핵생물인 노제마의 경우에는 미토콘드리아 대신 유사기능을 수행하는 미토솜(mitosome)이 존재하며 본 발명에서는 미토솜 관련 유전자의 기능 억제를 통해 노제마의 증식을 억제할 수 있을 것으로 기대하고, 그 관련 유전자의 탐색 및 꿀벌에서 유사 유전자와의 상동성을 비교 분석하였다.Mitochondria are energy-metabolizing organisms in eukaryotes and are intracellular organelles that play an essential role in the metabolism of organisms. In the case of the same eukaryote, Nogema, there is mitosome which performs a similar function instead of mitochondria. In the present invention, it is expected that the suppression of the growth of Nogema by inhibiting the function of the mitosome-related gene is expected, And the homology with similar genes in bees.

노제마 세라내의 전체 유전자 정보(Cornman RS et al., 2009, Plos Pathogens, 5(6):e1000466)를 바탕으로 하여 미토콘드리아 유래기관이라고 알려진 Fe-S cluster 단백질의 집합체인 미토솜 관련 유전자로 추정되는 20개의 후보유전자를 선발하였다. 선발된 유전자들에 대해 서양종 꿀벌과 동양종 꿀벌(A. ceranae)에 유사기능을 하는 유전자들에 대해 아미노산 수준의 분석을 진행하였다. 그 결과, 꿀벌의 미토콘드리아 유전자와 단백질 상동성이 가장 낮은 TOM40(Translocase of the outer membrane 40), FNR1(Ferredoxin NADP+ reductase 1), FNR2, 및 Nar1(nuclear architecture related 1)의 4개 유전자를 최종 선발할 수 있었다(표 5). 최종 선발된 4개 유전자의 정확한 기능은 현재까지 보고되고 있지 않으나, 유추되고 있는 기능은 다음과 같다. TOM40은 미토콘드리아의 외막으로부터 단백질들을 미토콘드리아의 내부로 이동시키기 위한 통로로 작용하며, TOM 복합체의 핵심요소로 작용한다. FNR1과 FNR2는 페레독신에 의한 NADP+를 환원시키는 플라빈(flavin) 단백질로, 전자전달 및 생체 이물질의 분해작용에 관여한다. Nar1은 cytosolic과 nuclear Fe-S 단백질 생합성의 중간매개체로 작용할 것으로 여겨지고 있다. 상기 4개의 유전자는 모두 미토솜의 Fe-S cluster 성숙(maturation)과 연관 있을 것으로 추정되어지고 있다.Based on the total genomic information in Nogemasaera (Cornman RS et al., 2009, Plos Pathogens, 5 (6): e1000466), it is assumed that a mitochondrial-related gene, a collection of Fe-S cluster proteins known as mitochondria- Twenty candidate genes were selected. Amino acid levels were analyzed for genes that have similar functions to the western bees and oriental bees ( A. ceranae ). As a result, four genes, TOM40 (Translocase of the outer membrane 40), FNR1 (Ferredoxin NADP + reductase 1), FNR2, and Nar1 (nuclear architecture related 1), which have the lowest protein homology with the mitochondrial gene of bees (Table 5). The exact function of the four genes finally selected has not been reported so far, but the functions that are inferred are as follows. TOM40 acts as a pathway for the transport of proteins from the mitochondrial outer membrane into the interior of the mitochondria and serves as a key component of the TOM complex. FNR1 and FNR2 are flavin proteins that reduce NADP + by ferredoxin. They are involved in the degradation of electron transport and biological substances. Nar1 is thought to act as an intermediate mediator of cytosolic and nuclear Fe-S protein biosynthesis. All four of these genes are presumed to be related to the Fe-S cluster maturation of mitosome.

RNAi 기술을 통한 노제마병 방제 방법에 관한 유럽등록특허 제2427180호에 보고된 TOM70, Nc14, Nc17의 유전자는 상대비교를 위한 대조구로 함께 선발하였다. TOM70은 TOM40과 함께 TOM 복합체의 구성 중 하나이며, Nc14와 Nc17은 숙주로부터 에너지를 운송하는 ATP/ADP transporter로서의 역할을 하는 것으로 추정되고 있으며 미토솜 관련 유전자는 아니다.The genes for TOM70, Nc14 and Nc17 reported in European Patent No. 2427180 on the method for controlling Noregera horses through RNAi technology were selected together as a control for relative comparison. TOM70 is one of the components of the TOM complex with TOM40, and Nc14 and Nc17 are presumed to act as ATP / ADP transporters that transfer energy from the host and are not mitosome related genes.

미토솜 관련 dsRNA 표적 유전자The mitosome-related dsRNA target gene 유전자gene 서양종 꿀벌과
아미노산 상동성
Wyoming
Amino acid homology
추정 기능Estimation function
TOM40TOM40 24%24% The mitochondrial import channel binds to non-native protein and prevents their aggregationThe mitochondrial import channel binds to non-native proteins and prevents their aggregation 미토솜 유전자Mitosome gene FNR1FNR1 24%24% Pyridine nucleotide-driven electron transport in mitosome. Providing short electron for formation of Fe/S clusterPyridine nucleotide-driven electron transport in mitosome. Providing short electron for formation of Fe / S cluster FNR2FNR2 33%33% Nar1Nar1 24%24% Critical Fe/S cytosolic proteins.
The[Fe-Fe]hydrogenase like Nar1 links early and late steps of biogenesis
Critical Fe / S cytosolic proteins.
The [Fe-Fe] hydrogenase like Nar1 links early and late steps of biogenesis
TOM70TOM70 ·· The mitochondrial import receptor:
Tom70 recognizes precursors of membrane proteins with internal targeting signals
The mitochondrial import receptor:
Tom70 recognizes precursors of membrane proteins with internal targeting signals
Nc14Nc14 ·· ATP/ADP transporter:
A type of nucleotide transporter which is used for import ATP from their eukaryotic host cell
ATP / ADP transporter:
A type of nucleotide transporter which is used for import ATP from their eukaryotic host cell
비-미토솜 유전자Non-mitosome gene
Nc17Nc17 ··

② 국내에서 분리한 노제마 세라내의 동정② Identification in Noge Maserah separated from domestic

꿀벌에 감염되는 노제마는 2종으로, 국내 노제마병에 감염된 꿀벌로부터 분리된 노제마의 시험균주로서의 동정을 위하여 노제마의 게노믹 DNA를 주형으로 하고, 표 1의 프라이머를 이용하여 다중 PCR을 수행하였다. 노제마의 종 동정을 위한 표적 부분은 16S rRNA(=SSU rRNA)로, 노제마 아피스(N. apis)의 경우 약 220bp, 노제마 세라내(N. ceranae)의 경우 약 140bp 크기의 PCR 산물이 생성된다. 본 발명의 PCR 수행결과 약 140bp 크기에서 PCR 산물의 밴드가 확인되어 분리한 노제마의 종은 노제마 세라내인 것으로 동정되었다(도 1).
In order to identify the strain as a test strain of nemema isolated from a honeybee infected with domestic nematode disease, two types of nematode infected with bees were used, and multiple PCR was performed using the genome DNA of Nemema as a template and the primers shown in Table 1. The target part for the identification of the nematode species is 16S rRNA (SSU rRNA), which is about 220 bp in the case of N. apis and about 140 bp in the case of N. ceranae do. As a result of the PCR of the present invention, the band of the PCR product was confirmed at a size of about 140 bp, and thus the isolated species of Nogema was identified as Nogemaceae (Fig. 1).

③ 노제마 세라내의 목적 유전자 서열 확인③ Identification of target gene sequence in Nogemaseera

대조군을 포함하여 최종 선발된 7가지 유전자에 대하여 노제마 게노믹 DNA를 주형으로 하여 각 유전자에 대해 특이적인 표 2의 프라이머를 이용하여 PCR을 수행한 결과, 대조군 유전자인 Nc17, Nc14, TOM70의 예상 크기인 약 1.3Kb, 1.7Kb, 1.2Kb에서 각각 밴드가 확인되었고, 목적 유전자인 TOM40, FNR1, FNR2 및 Nar1의 예상 위치인 약 1Kb, 1.3Kb, 1.7Kb 및 1.2Kb에서 각각 밴드가 확인되었다(도 2). 이들 PCR 산물들을 클로닝하고 그 염기서열을 분석한 결과, 기 보고된 서열과 약 99% 이상의 높은 상동성을 가짐으로써 목적 유전자를 국내 분리주에서 최종 확인하였다(표 6).PCR was performed using the primers of Table 2, which are specific for each gene, using the nemesis genomic DNA as the template for the seven genes finally selected including the control group. As a result, the predicted values of the control genes Nc17, Nc14 and TOM70 Bands were confirmed at about 1.3 Kb, 1.7 Kb, and 1.2 Kb, respectively, and bands were confirmed at about 1 Kb, 1.3 Kb, 1.7 Kb, and 1.2 Kb, which are predicted positions of the target genes TOM40, FNR1, FNR2 and Nar1 2). These PCR products were cloned and their nucleotide sequences were analyzed. As a result, the desired gene was confirmed in domestic isolates by having high homology of about 99% or more with the previously reported sequence (Table 6).

국내 분리 노제마의 표적 미토솜 유전자의 염기서열 분석Sequence analysis of target mitochomal gene of Korean isolate Najema 유전자gene 다른 뉴클레오티드 수
(nt)
Number of other nucleotides
(nt)
분리된 노제마의
상보적 서열(bp)
Separated Nezama
The complementary sequence (bp)
기 보고된 노제마 게놈 서열과 서열 유사도The reported Nogema genome sequence and sequence similarity
TOM40TOM40 88 846846 99.1 %99.1% FNR1FNR1 66 11341134 99.6%99.6% FNR2FNR2 55 15031503 99.7%99.7% Nar1Nar1 88 12481248 99.3%99.3%

④ dsRNA의 제작부위 선정④ Selection of dsRNA production site

확보된 dsRNA 표적 후보 유전자의 염기서열 분석결과를 바탕으로, 꿀벌의 유전자와 상동성이 낮고 20 염기이상 연속되게 일치하는 서열이 없는 부분을 dsRNA 제작 부위로 결정하였다. 이는 dsRNA가 세포 내에서 다이서(Dicer)에 의해 21bp 정도의 siRNA로 절단되므로, 꿀벌 유전자의 상보적인 mRNA 분해의 가능성을 배재하기 위함이다. 또한 dsRNA를 이용한 RNAi의 경우 100bp 이하의 짧은 dsRNA에서보다 500bp 이상의 긴 dsRNA에서 지속성과 효과적인 유전자 간섭을 보인다는 보고에 따라, dsRNA의 길이를 약 600-750bp의 길이로 결정하였다. 미포자충류는 원핵생물과 같이 거의 모든 인트론과 IGS(intergenic space)가 결여되어 있어 역전사 PCR은 수행하지 않았다.
Based on the nucleotide sequence analysis results of the candidate dsRNA target genes, the dsRNA production site was determined to be a region having no homology to the bee 's gene and no consecutive sequence more than 20 bases in sequence. This is to exclude the possibility of complementary mRNA degradation of the bee gene since the dsRNA is cleaved into siRNA of about 21 bp by Dicer in the cell. The length of the dsRNA was determined to be about 600-750 bp, according to reports that RNAi using dsRNA exhibits persistence and effective gene interference in long dsRNAs longer than 500 bp than in shorter dsRNAs of less than 100 bp. The protozoa lacked almost all introns and IGS (intergenic space) like prokaryotes and did not carry out reverse transcription PCR.

⑤ dsRNA의 제작⑤ Production of dsRNA

도 3과 같이 대조군과 목적 유전자내 염기서열의 dsRNA 목적 부위의 앞 또는 뒤에 T7 프로모터 서열을 가지도록 PCR 증폭하고 클로닝한 후 선형화시키고, T7 프로모터에 의해 상보적인 가닥의 RNA가 합성되게 함으로서 dsRNA를 제작하였으며, 각 유전자에 대해 예상된 크기의 dsRNA를 확인하였다(도 4).
As shown in FIG. 3, dsRNA was prepared by PCR amplification and cloning followed by linearization, and T7 promoter to synthesize complementary strand RNAs, so as to have a T7 promoter sequence before or after the target region of the dsRNA in the control group and the target gene in the target gene , And the expected size of the dsRNA was confirmed for each gene (Figure 4).

1-2. dsRNA에 의한 유전자 침묵 검정1-2. Gene silencing assay by dsRNA

① dsRNA의 노제마 포자증식 억제효과 ① Inhibitory effect of dsRNA on Norepinephosphatidia

노제마 포자증식 억제효과에 대한 기 보고에서는 TOM70, Nc14, Nc17의 3가지 dsRNA를 동시에 처리할 경우에 효과가 가장 높았다는 결과에 따라, 이들 3가지의 dsRNA를 동시 처리한 결과를 대조구로 하여 노제마의 포자 증식율과 꿀벌의 생존율을 확인하였다. 노제마 접종 후 10-14일째에 높은 수준의 꿀벌 감염이 일어나므로, 접종 후 14일째에 살아있는 꿀벌에서 중장을 적출하여 노제마 포자를 계수하여 증식률을 비교 검정하였다. 그 결과 FNR1과 FNR2에 대한 dsRNA의 개별 처리구에서 가장 낮은 노제마 포자 생산율이 관찰되었으며, dsRNA를 처리하지 않은 노제마 접종구 대비 각각 62와 67%의 감소율을 보였으며, TOM40과 Nar1에 대한 dsRNA 처리구 또한 40% 정도의 감소율을 보여, 선발된 4개의 유전자 모두 노제마 포자의 증식을 효과적으로 억제함을 확인하였다(도 5). 대조구인 TOM70/Nc14/Nc17의 효과와 비교하였을 때에도 FNR1과 FNR2는 각각 25% 및 30% 더 낮은 포자 생산율을 보였다.The results of the simultaneous treatment of the three dsRNAs of TOM70, Nc14 and Nc17 showed that they were the most effective at the same time, And the survival rate of honeybee. Since bee infections occurred at 10-14 days after the injection of Noge, the medium was extracted from live bees on the 14th day after inoculation, and the growth rate of Nogema spores was counted. As a result, the lowest production of nematode sporozoa was observed in the individual treatments of dsRNA for FNR1 and FNR2, and the reduction rate was 62% and 67%, respectively, compared to the nodame inoculation without dsRNA treatment, and the dsRNA treatment for TOM40 and Nar1 In addition, it showed a decrease rate of about 40%, and it was confirmed that the four genes selected effectively inhibited the proliferation of N. japonica (Fig. 5). Compared with the control TOM70 / Nc14 / Nc17, FNR1 and FNR2 showed spore production rates of 25% and 30% lower, respectively.

노제마에 감염된 꿀벌의 dsRNA 처리에 따른 생존율 변화를 관찰하기 위하여 dsRNA를 처리하지 않은 노제마 접종구와의 생존율을 비교하였다. 그 결과 FNR1과 FNR2의 처리구에서 매우 높은 수준의 생존율 향상을 보이며, 노제마 무접종 대조구와 비슷한 수준의 생존율이 관찰되었다(도 5). 반면 Nar1 처리구에서는 dsRNA 처리구 중 상대적으로 가장 낮은 생존율을 보이는 것으로 확인되었다.
In order to observe the survival rate of bees infected with Nogema from dsRNA treatment, we compared the survival rates of the nematode inoculated with dsRNA. As a result, the survival rate of FNR1 and FNR2 increased significantly, and the survival rate was similar to that of the control (Fig. 5). On the other hand, Nar1 treatment showed the lowest survival rate among dsRNA treatments.

② dsRNA 처리에 따른 유전자 발현 수준② gene expression level by dsRNA treatment

dsRNA 처리가 각각의 유전자 발현에 미치는 영향을 조사하기 위하여 qRT-PCR을 수행하였다. 유전자 발현양은 delta-delta CT의 계산법을 이용하였으며, 항존 유전자인 β-튜불린과 각각의 유전자의 상대비교를 통해 노제마 접종구와 각각의 dsRNA 처리구와의 유전자 발현 수준을 분석하였다(도 6). 동일한 농도의 dsRNA를 처리했음에도 불구하고 유전자 발현억제 수준은 각각의 유전자마다 차이가 있었으나, 모든 목적 유전자의 발현이 억제되는 것을 확인할 수 있었다. 이러한 결과는 제작된 dsRNA가 각 목적 유전자의 발현억제를 위한 RNAi 도구로서 적합한 것을 확인시켜주며, 또한 dsRNA의 처리에 의한 포자생성율의 감소와 꿀벌의 생존율 향상이 유전자 발현 억제 결과임을 제시해 주는 결과였다.
qRT-PCR was performed to investigate the effect of dsRNA treatment on the expression of each gene. The expression level of the gene was analyzed by using the delta-delta CT calculation method, and the gene expression level of each of the dsRNA-treated seeds and the Neze-inoculated seeds was analyzed by comparing the antisense gene, β-tubulin and the respective genes (FIG. Despite the treatment of dsRNA at the same concentration, the level of gene expression inhibition was different for each gene, but the expression of all the target genes was inhibited. These results confirm that the prepared dsRNA is suitable as an RNAi tool for the suppression of expression of each target gene, and that reduction of spore production by dsRNA treatment and improvement of survival rate of bees are results of gene expression inhibition.

③ dsRNA 조합에 따른 상승효과 검정③ Synergy test according to dsRNA combination

2개 이상의 dsRNA의 혼합처리가 같은 농도의 단일 처리보다 효과적이라는 기 보고 결과에 따라, 선발된 dsRNA의 조합에 따른 상승효과를 분석하였다. 단일 dsRNA의 처리와 동일한 농도로 2개, 3개 그리고 4개의 혼합에 따른 포자 증식률을 확인하였다. 2개의 조합에서는 TOM40/FNR1이 dsRNA를 처리하지 않은 노제마 접종구 대비 약 56% 감소된 포자생성율을 보였으며(도 7a), 3개의 조합에서는 TOM40/FNR1/FNR2의 조합이 50%에 가까운 가장 높은 포자생성 억제율을 보였고(도 7b), 4가지의 dsRNA 조합 처리에서는 TOM40/FNR1/FNR2/Nar1의 조합이 52%의 포자생성 억제율을 보였으며, 기 보고된 TOM70/Nc14/Nc17에 비해서는 높은 포자생성 억제율을 보이는 것으로 확인되었다(도 7c).Synergistic effects of selected dsRNA combinations were analyzed according to the reported results that the mixing treatment of two or more dsRNAs was more effective than the single treatment at the same concentration. We confirmed the spore multiplication rate by mixing 2, 3 and 4 at the same concentration as the treatment of single dsRNA. In the two combinations, TOM40 / FNR1 showed a spore formation rate of about 56% lower than that of the non-dsRNA-treated seeds (Fig. 7a), and the combination of TOM40 / FNR1 / FNR2 (Fig. 7B). In the four dsRNA combination treatments, the combination of TOM40 / FNR1 / FNR2 / Nar1 showed a 52% inhibition of spore formation and was higher than that of the previously reported TOM70 / Nc14 / Nc17 (Fig. 7C).

상기 결과에서 노제마 접종구와 대비하여 모든 처리구에서 일정 수준의 포자증식 감소를 확인할 수 있었다. 하지만 FNR1과 FNR2를 단독으로 처리했을 때의 노제마 감소율이 60%이상인 것으로 볼 때, dsRNA의 혼합에 따른 상승효과는 크지 않은 것으로 최종 확인되었다.From the above results, it was confirmed that the spore proliferation was reduced to a certain level in all treatments compared to the noge shrimp. However, when the FNR1 and FNR2 were treated alone, the degree of reduction of N. jejuni was more than 60%, confirming that the synergistic effect of mixing of dsRNA was not large.

꿀벌의 생존율 분석 결과에서도 dsRNA 조합 처리에 따른 상승효과는 크게 나타나지 않았으나, 모든 처리구에서 노제마 접종 대조구 대비 20-40%의 생존율 향상 효과를 보였다(도 8). 3개의 조합에 따른 꿀벌의 생존율에서는 TOM40/FNR1/FNR2 처리구를 제외한 모든 조합에서 높은 생존율 향상을 보였으며, 3개의 dsRNA를 혼합 처리한 경우 포자증식률 억제 효과는 크게 상승되지 않은 반면, 생존율 결과에서는 높은 향상 효과를 관찰할 수 있었다. 4개의 dsRNA 혼합 처리 시 꿀벌의 생존율은 노제마 접종구 대비 35% 이상 높은 것으로 확인되었고, 기 보고된 Tom70/Nc14/Nc17 조합과 유의성 있는 차이는 발견되지 않았으며, 기 보고된 유전자 및 본 발명에서 선발된 유전자의 dsRNA의 모두를 혼합처리한 경우에도 상승효과는 관찰할 수 없었다.The results of the analysis of the survival rate of bees showed that the synergistic effect of the dsRNA combination treatment was not significant, but the survival rate was improved by 20-40% in all the treatments compared to the control group of Nogame (FIG. 8). The survival rate of bees by three combinations showed a high survival rate in all combinations except for TOM40 / FNR1 / FNR2 treatment. In the case of mixed treatment of three dsRNAs, the effect of suppressing spore multiplication was not significantly increased, but the survival rate was higher Improvement effect can be observed. The survival rate of the bees in the four dsRNA mixed treatments was found to be higher than that of the Noge ma inoculum by 35% or more, and no significant difference was found between the previously reported Tom70 / Nc14 / Nc17 combinations. Even when all of the selected dsRNAs were mixed, no synergistic effect was observed.

이상의 결과로부터 미토솜 관련 유전자들의 노제마에 대한 증식억제 효과를 확인할 수 있었으며, 본 발명에서 새롭게 선발된 TOM40, FNR1, FNR2 및 Nar1이 모두 RNAi에 유용함을 확인하였다. 특히, 기 보고의 결과와는 달리 FNR의 경우 단일 처리만으로도 가장 우수한 결과를 보여 FNR이 RNAi에 특히 유용함을 확인하였다. 선발된 유전자는 모두 미토솜 관련 단백질을 발현시키는 유전자이며, 그로 인해 1-2개 유전자의 억제효과 만으로도 일정수준 이상의 포자증식 억제와 꿀벌의 생존율의 향상에 영향을 준 것으로 여겨졌다. 본 발명에서는 같은 기관에 관련된 유전자의 발현 억제를 위한 목적으로 dsRNA를 제작하고 처리하여 노제마 증식억제에 대한 일정수준 이상의 효과는 관찰할 수 있었으나, 이들 간의 상승효과는 확인할 수 없었다. 이는 같은 기관에 대한 RNA 간섭을 위해 여러 유전자를 목적으로 설정하였기 때문에 그 효과에 있어 한계가 있는 것으로 판단되었다. 노제마의 발아, 병원성 그리고 숙주로부터의 에너지 의존에 관여하는 다른 종류의 유전자를 또 다른 dsRNA의 목적 유전자로 설정하게 된다면 본 발명에서 선발된 dsRNA와 함께 상승효과를 기대할 수도 있을 것이다.
From the above results, it was confirmed that the mitochondrial-related genes were inhibited to proliferate to N. jema, and that TOM40, FNR1, FNR2 and Nar1 newly selected in the present invention were all useful for RNAi. In particular, unlike the results of previous reports, FNR showed the best results with only single treatment, confirming that FNR is particularly useful for RNAi. All of the selected genes are genes that express mitosome-related proteins. Therefore, it was considered that the inhibitory effect of only one or two genes influenced the suppression of spore growth and the improvement of survival rate of bees. In the present invention, dsRNA was prepared and treated for the purpose of inhibiting the expression of the gene related to the same organs, and the effect of inhibiting the proliferation of Najema could be observed, but the synergistic effect between them could not be confirmed. It was judged that there are limitations to the effect because several genes were set for the purpose of RNA interference to the same organ. If a different kind of gene involved in the germination, pathogenicity and energy dependence from the host is selected as the target gene of another dsRNA, a synergistic effect with the dsRNA selected in the present invention may be expected.

실시예 2. dsRNA-키토산 나노복합체Example 2. Preparation of dsRNA-chitosan nanocomposite

dsRNA의 꿀벌 생체 내에서의 안정성과 세포내 전달성의 향상을 위하여 키토산(chitosan)을 이용한 dsRNA-키토산 나노복합체를 제작하고 그 효과를 검정하였다.
To improve the stability and intracellular transport of dsRNA in vivo, dsRNA-chitosan nanocomposite with chitosan was prepared and its effect was tested.

2-1. dsRNA-키토산 나노복합체의 제작2-1. Fabrication of dsRNA-chitosan nanocomposite

① dsRNA-키토산 나노복합체의 제작을 위한 dsRNA의 농도 결정① Determination of the concentration of dsRNA for production of dsRNA-chitosan nanocomposite

dsRNA와 키토산의 나노복합체 형성을 위해서는 정전기적 상호작용(electrostatic interaction)을 위한 상호 양적 균형이 필요하며, 그에 따라 최적 dsRNA의 양을 결정하였다. 기 보고 결과를 바탕으로 dsRNA 20㎍, 32㎍, 그리고 45㎍의 양으로 나노복합체를 형성하고 복합체가 형성되지 않은 dsRNA의 양을 비교하였다(Zhang et al., 2010, Insect Molecular Biology 19(5):683-693). 그 결과 20㎍의 dsRNA를 사용한 경우에는 초기양의 35%가, 32㎍의 dsRNA를 사용한 경우에는 18%가, 45㎍의 dsRNA를 사용한 경우에는 36%가 잔존하는 것으로 확인되었다. 따라서 dsRNA 32㎍의 농도로 dsRNA-키토산 나노복합체를 제작하였다.
For the nanocomposite formation of dsRNA and chitosan, a mutual quantitative balance for electrostatic interaction was required and the amount of optimal dsRNA was determined accordingly. Based on the reported results, the amount of dsRNA was determined by forming dsRNA in the amount of 20 μg, 32 μg, and 45 μg, and comparing the amount of uncomplexed dsRNA (Zhang et al., 2010, Insect Molecular Biology 19 (5) : 683-693). As a result, it was confirmed that when 20 μg of dsRNA was used, 35% of the initial amount, 18% of 32 μg of dsRNA, and 36% of 45 μg of dsRNA remained. Thus, dsRNA-chitosan nanocomposites were prepared at a concentration of 32 μg of dsRNA.

② dsRNA-키토산 나노복합체의 확인② Identification of dsRNA-chitosan nanocomposite

dsRNA-키토산 나노복합체의 효과검정을 위한 dsRNA로는 노제마 증식 억제에 있어 가장 우수한 효과를 보인 FNR2를 이용하였으며, 제작된 키토산 복합체의 성공적인 형성을 광학현미경으로 관찰할 수 있었다(도 9).
As the dsRNA for the dsRNA-chitosan nanocomposite effect assay, FNR2, which showed the most excellent effect in inhibiting the growth of Nogema, was used, and successful formation of the prepared chitosan complex could be observed with an optical microscope (FIG. 9).

③ dsRNA-키토산 나노복합체의 꿀벌에 대한 안전성③ Safety of dsRNA-chitosan nanocomposite against bees

dsRNA-키토산 나노복합체의 효과 검정에 앞서 꿀벌에 대한 안전성(safety)을 검정하기 위하여 노제마의 접종 없이 dsRNA-키토산 나노복합체만을 1일, 2일, 3일 간격으로 처리하였다. 그 결과, dsRNA 무처리구 대비 최대 약 10% 정도의 생존율 감소가 관찰되었으나, 2일 이상의 간격으로 처리 시에는 꿀벌의 생존에 크게 영향을 주지 않는 것으로 나타났다(도 10).
In order to test the safety of honey bees prior to testing for dsRNA-chitosan nanocomposite, only dsRNA-chitosan nanocomposites were treated at 1 day, 2 days, and 3 days intervals without inoculation of nematode. As a result, the survival rate was decreased by about 10% at maximum compared to the dsRNA-free treatment but the treatment did not significantly affect the survival of bees at intervals of more than 2 days (FIG. 10).

2-2. dsRNA-키토산 나노복합체의 효과검정2-2. Effectiveness of dsRNA-chitosan nanocomposite

① dsRNA-키토산 나노복합체의 처리 간격에 따른 노제마의 포자 생산율① Spore production rate of nemema according to treatment interval of dsRNA-chitosan nanocomposite

노제마 접종 후 14일째의 포자수를 계수하였을 때, 1일 및 2일 간격으로 섭식시킨 경우에는 dsRNA-키토산 나노복합체와 dsRNA 모두 약 60% 이상의 포자증식 감소율을 보였으며, 키토산 나노복합체 형성에 따른 유의할 만한 차이는 없었다(도 11a). 그러나 3일 섭식간격에서는 dsRNA-키토산 나노복합체가 dsRNA 보다 30% 이상 높은 포자증식 억제효과를 보여주었다. 이러한 결과는 2일 이하의 dsRNA를 섭식시킨 경우에는 dsRNA의 안정성이나 전달성에 있어 문제가 되지 않을 정도로 충분한 양의 dsRNA가 섭식되어졌음을 의미하는 것으로, 3일 이상의 간격으로 dsRNA를 처리하는 경우에는 dsRNA의 안정성 또는 전달성에 문제가 있으며, 이러한 문제점을 dsRNA-키토산 나노복합체 형성을 통해 해결가능함을 의미하는 결과였다.
The number of spores collected on day 14 after the injection of Nogema showed that the dsRNA-chitosan nanocomposite and dsRNA decreased the spore multiplication rate by more than 60% when fed at 1 day and 2 days intervals. (Fig. 11A). However, at the 3-day feeding interval, the dsRNA-chitosan nanocomposite showed a spore proliferation inhibitory effect more than 30% higher than the dsRNA. These results indicate that when dsRNA was fed for 2 days or less, a sufficient amount of dsRNA was fed so that the stability and transportability of the dsRNA would not be a problem. If the dsRNA is treated at intervals of 3 days or more, the dsRNA , And that this problem can be solved through formation of dsRNA-chitosan nanocomposite.

② dsRNA-키토산 나노복합체의 처리 간격에 따른 꿀벌의 생존율② Survival rate of bees according to treatment interval of dsRNA-chitosan nanocomposite

dsRNA-키토산 나노복합체의 효과를 꿀벌의 생존율을 통해 조사한 결과, dsRNA-키토산 나노복합체를 3일 간격으로 제공한 실험 구에서는 동일 간격의 dsRNA-키토산 나노복합체를 형성하지 않은 dsRNA 처리구보다 약 20%의 향상된 생존율을 보였다. 그러나 포자생산율에서와 유사하게 dsRNA-키토산 나노복합체를 1일 또는 2일 간격으로 섭식시킨 경우와는 유의있는 차이를 확인할 수 없었다(도 11b).The effect of dsRNA-chitosan nanocomposite was investigated through the survival rate of bees. As a result, the dsRNA-chitosan nanocomposite provided at 3-day intervals showed about 20% of the dsRNA-chitosan nanocomposite- And improved survival rate. However, similar to spore production rate, no significant difference was observed between dsRNA-chitosan nanocomposites fed at 1 or 2 days intervals (FIG. 11B).

dsRNA의 생체 내 처리에는 몇 가지 단점이 있는 데 그 중 가장 큰 문제점은 세포내로 전달하는 동안 핵산의 불안정성(unstability)이다. 따라서 핵산 그 자체로 병해충 방제제로의 적용을 위해서는 고농도의 dsRNA 투여가 필요되며, 이는 고가인 dsRNA를 이용한 병해충의 방제가 매우 비경제적일 수 있음을 간접적으로 시사해준다. 그러므로 약학 분야에서는 RNAi의 효과적인 세포내 흡수(uptake)와 전달의 안정성을 높이기 위해서 Liposome, PEG-conjugation과 같은 나노복합체의 개발이 진행되고 있으며, 본 발명에서도 dsRNA-키토산 나노복합체를 RNAi에 적용한 결과 dsRNA의 안정성 향상을 확인할 수 있었다. 또한, 2일 이하의 처리 간격 효율과 3일 간격으로 처리한 효율에서 유의있는 차이가 나타나지 않음으로써, 키토산 나노복합체를 형성시킬 경우 전체 처리횟수 및 처리량을 줄여 경제적인 dsRNA 처리가 가능할 수 있을 것으로 기대되었다.There are several disadvantages to the in vivo treatment of dsRNA, the biggest problem being the unstability of the nucleic acid during delivery into the cell. Therefore, high-concentration dsRNA administration is required for the application of the nucleic acid itself as a pest control agent, which indirectly suggests that controlling the pest using expensive dsRNA may be very economical. Therefore, in the field of pharmacy, nanocomposites such as liposome and PEG-conjugation have been developed in order to increase the effective uptake and stability of RNAi. In the present invention, dsRNA-chitosan nanocomposite is applied to RNAi, And the improvement of stability was confirmed. In addition, there is no significant difference in the efficiency of treatment interval of 2 days or less and the treatment efficiency in 3 days interval, and it is expected that economical dsRNA treatment can be performed by reducing the total treatment frequency and throughput when chitosan nanocomposite is formed .

<110> Chungbuk National University Industry-Academic Cooperation Foundation <120> Composition for controlling honeybee Nosema disease comprising dsRNA as effective component and uses thereof <130> PN17335 <160> 64 <170> KopatentIn 2.0 <210> 1 <211> 668 <212> RNA <213> Nosema ceranae <400> 1 uguuccuggu gauaguauug gucuacuuug uucaaauaau gauuugcuug uuaaugaaau 60 guuaaguuua cuagaaaugu cuggugauac auuauuauau auugagcaaa uuggaaaaac 120 gggguuucaa uucgaaggau cuuugcguga cuuuuucaag uauauuuuug auuuuacuuc 180 auugccuaaa aaagcauggc uuauggauau uucuaaaacc ucuaaaaaua agcaugauau 240 ugaauaucug uguucuaaag aaggaguaaa agauuauuua agcaucauua agaacuggaa 300 uaaugugcuu gacauuauau auacauuuca auguaaacca aguuuagagg aucuuauuau 360 gaauugucaa acaauuaagc caagauauua uucacuuacu aaccacguaa augaaaaaug 420 ugaaauuuua guagcaauua uuaaaaaagg cgauagauau ggacauguuu ccaauuucau 480 agauaugcaa aauuauaaua auuuaaagau cugucacaga ccgaguaaau uauuuagauu 540 aaauuuuugu aaaaaagugu uggguauuug uacuggaacu ggcauugcuc cauuuuuuuc 600 guuuuugaaa aauaaagaag acgaucaaua uaucaaacua auauauggau uuagaaauca 660 agaagaug 668 <210> 2 <211> 746 <212> RNA <213> Nosema ceranae <400> 2 auggacaguu uugauuucga aaaaauauua gauauugaua ugauuauauu uguauguucg 60 acucauggga augguucuga accuuuuaac augacuaaau uuuggaaauu uuugcgcaaa 120 aaaaaucugc cuacaaauuu uuuacaacac uuaaauuuug cuguauuugg ccuuggggau 180 ucgucuuaua aaucuuuuaa uuuuuguucu aaaaaguugu auaauugccu uuuaaaacac 240 ggagcuaaac cucugauaag aaaggguaau ggagauagcc aagacaaaga aggauuuaug 300 ggcgaauuua agacauggau aaaagaucua uauuauauau uaccgcauua caaacuacaa 360 aaugcuaaaa auuuugcaag uuguaaaaau gauuuauaca gugcgucaau aaaugauauu 420 aagauauuaa caccuuacaa uuacauuuau ccuauuuuag aaauaaaauu ugauauagau 480 auagaaaauu uugaaaucgg ugauugucua gcgguuuauc cugaaaauua uaauuacgag 540 gaguuuguaa gauauaauaa cauaaaggac aauaccuugg uuaaauauau uaaaaaauau 600 ugugauuuua auucuauucc ucaaauuuau uuuuuucuac aacuuucgcu uaucacagau 660 accauugcug aggaauaucg ugagaaaugu aaagaaauuu aucuaaauua cgaucuguac 720 uaugauuaca uuuuacuacc gaagcg 746 <210> 3 <211> 575 <212> RNA <213> Nosema ceranae <400> 3 cagauuucuc augucucuuc uaugggcgca gauuucgaca uaaaacagac auacgccacg 60 uucugcuuua acaaucuuuu gcuacaaacg agcauagacc aagacaaaau auuuagaaua 120 agagguaccc acauguuuaa aaaucuacuu acuaaauucc auacaguaau ugguagaagu 180 aaagauaucu uuacacaaau agagguagac auaaaaaaua aauacaauaa uauguguaua 240 aaaaugauac agccagcuau uaaaggugcu ucauguauau acguggguaa uuauaugcag 300 cagcuaggag uaauuagucu ugguggggag auuauuaaag cugaugagua cauuggacua 360 ucuuuuguag ggagauauga agggauuggu ucuauuucua cuauaucacu ucagcaguuu 420 aauacacugu cuauagauua uuacaagaca uugucuucua uuugugacgu agguauuaaa 480 auaucaacug auagggaaaa aucaguuaau uauggauuag gaguuaaacu gcacaguaaa 540 aaaggagaaa uuaucggaug uguagauaac aauca 575 <210> 4 <211> 737 <212> RNA <213> Nosema ceranae <400> 4 cugaauguua caagcagaug ggaaauaaaa aaaaauuucu uaaagauuua gcacuuuaug 60 aaacauuugc uaauaauaaa gaaguccaag augaaauuau gcagacuguu aaggaaauuu 120 gugaagaaga agugagugag uuuauugaac aagaaggcuu aaaaauuaau aaagaagaug 180 ugcuaagagg acuuguuuca auaaaaaaua uaaaugagau uuaugaugca uuuggaggua 240 aaucuaagaa guuuaaauuu ucuaaugaug aaaaggaagu guuaaaucuu cuuaaugcca 300 uuauuuuaca ccuaaaagga aaaaaagaag aggcaauucu uuuauuagaa aaaucuacuu 360 auaaauacag uaucuuguau agagcauauu uucuuacauu gaagaaugaa uauacuucau 420 cugcauugcc uuuagaugac gagauuacua cgcuuuacuu guauucuaag auuuuuaaag 480 auaaaucuga uacuuaccuu aaaucugcua uagauaaauc aguagaucua ccuauugaac 540 agaaagacuu ucuguacgua gaucuucuug uauuuuacau uucuaaaaag gauguugaaa 600 aaguuaauga aacaauuaau aauuuaaaag agacucuuac ucccacuuua uuggaacuua 660 uuggagaaua uuauuuaaaa aguggaaauc acucuaaaau guuagaucua uuaucuaguc 720 auccagauac uccuggu 737 <210> 5 <211> 664 <212> RNA <213> Nosema ceranae <400> 5 caucuuaugu caaaaauauu cuguaugaua guguuuauga ggaaagcacg agagacaaaa 60 uaauaauaag ugacuguccu aggacuguuu cauauauuga aaggcaagca caccauuuaa 120 uugaauauuu aucuguuacu ucuacacaac aacaagccau aaagcuacuu gcucaggggc 180 gaaguauaag ugucauacag ugcuaugaua aauuuuuaga gaauagcgau gauguuuuaa 240 cuaccuauga uuuuuauaaa augauuuugg aucuaggauu uuuacagcau aauuuuauua 300 aaggaaccug ugagaaaugg gagaagugua cuauuggaua ucauuaugga uauuuagaac 360 acauauuaaa uaagaagaac aauuauuuaa caaaaaauga uaguauaaaa auauuuaaca 420 guaaaaauga ggagguaagg uuaaauggaa aaagaaaauu aaauauuaac acaguuacau 480 uaaauaaaau uaauauaccu gagauagauu auaaauauaa aaauggagug uuuacauaua 540 cacagaucaa aaauaauaag aaaaaaaaau auuuaagaau auugggucua gaaccucuuc 600 uuaauuuuau uaaggaaagu aaacauaaag aauuagaaua ugauguaugc gaaauauaca 660 uuug 664 <210> 6 <211> 670 <212> RNA <213> Nosema ceranae <400> 6 cuccuggaca guccgcuaga uuugucccuu uauuuuaugu uggaucuaau uuggcuuuac 60 uucuuucagg aaugauaaau uauuuuuaua guguaaguaa aucuaaaaug ucguauguug 120 cggccgaaag auuuuuuaau ggauuuuuuu gucugagugg aauucucugu gcuguaauuu 180 aucuucuaaa aaaauauuua gaaaauaaug uuacuaguaa accaauguuu guuagaaaga 240 cuuuuacuaa aaagaagagu aaagugaagg uuggauuugu ugauggacuu auugagauga 300 guaaaucuaa acuacuguug aauaugucau uagucguauu auuuuaugcu guuucuacga 360 auauuauuga gucagcuuau aaaucugcuu uagcugucgg ugcuaaugaa acuggugagg 420 caaaaucuac cuaugcuuca auuuauacau caauugaaca aucuggaguu gcugucauug 480 ucaugauuuu gcuacuuacc ccuuuuccaa ggcuuauuaa aacaaaagga uggauuacaa 540 uagccauucu auguccuauu auuacuuuuu uuucugcuuu ugguacuuuu guauuagcuu 600 auuuaaacuu cccaauuaca aacaaagagg auaauauauu ugauauuuac cguuuaccgu 660 caacugauuc 670 <210> 7 <211> 632 <212> RNA <213> Nosema ceranae <400> 7 agcuugaugg gcuuaucucc uuuuuuauau auguacagug aguggauaag uacuuuaugu 60 uacaucuuau cggaguugug gaguacucua guaguugguu uugcuuuaua ugcguuagcc 120 aaucaugcuu guacagaaga ugaaaugaaa gaaauuguuc cuaauuuuuc cacaaucacc 180 gccauuucaa ugauuauuuc uguagcuuuu auuuauauaa aagaugaauu agcaaauaua 240 cuuccugcag guuugcauga uaaaauugac gguaguaguu uguuuuuuuu gaucuugucu 300 uuuguaacua cauuaauuua cuuuuuaaaa aguuauauuc cucuuaaaac uaaagaaaua 360 aaggaaacua uaaauaaaga agaagacaaa acgacauccu cguuugaucu uuuacaaucc 420 aaauuuuuaa gaaauaugug ugcagcggca uuaaucuaug cuauuaaugc aggauuuauu 480 gauauguccu uaaaaaauuc uuuaucuacg ggaagcagaa uuaauaauau gccuccgaaa 540 gauuauucuc aaaaauauuu aguaacaacu uccuuaacga uuagugcugu aucauuauuu 600 uauaacuuug uaauccgugg aaaucgcauu gc 632 <210> 8 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 gcatgtcttt gacgtactat g 21 <210> 9 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 cgttaaagtg tagataagat gtt 23 <210> 10 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 gacttagtag ccgtctctc 19 <210> 11 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 atgaaaaagt aaacaagtca gaattc 26 <210> 12 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 ccgcttgatt tattaattat aaacc 25 <210> 13 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 aatgtcattc aaatacaaat gtttg 25 <210> 14 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 tttaaaacac tgcatcttat aaattc 26 <210> 15 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 agcaaaatta ttaaaattat aac 23 <210> 16 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 atttaattaa ctacagaatt gttag 25 <210> 17 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 aataaccgta aatatctcat ctgtc 25 <210> 18 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 18 taaagaaacg ctatttttat gaaac 25 <210> 19 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 19 atcgatttaa atattcctat ttg 23 <210> 20 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 20 acttttttta gtgttaatca tgtc 24 <210> 21 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 21 aatgagaaaa ttctgtatat gaacac 26 <210> 22 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 22 ttttaaataa tcataaaagt tgtgtag 27 <210> 23 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 23 agaattcctt acttatttac atacac 26 <210> 24 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 24 atttattact tgtttaattt atgaag 26 <210> 25 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 25 taatacgact cactataggg agactgaatg ttacaagcag atggg 45 <210> 26 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 26 accaggagta tctggatgac 20 <210> 27 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 27 ctgaatgtta caagcagatg gg 22 <210> 28 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 28 taatacgact cactataggg agaaccagga gtatctggat gac 43 <210> 29 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 29 taatacgact cactataggg agactcctgg acagtccgct ag 42 <210> 30 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 30 gaatcagttg acggtaaacg g 21 <210> 31 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 31 ctcctggaca gtccgctag 19 <210> 32 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 32 taatacgact cactataggg agaatcagtt gacggtaaac gg 42 <210> 33 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 33 taatacgact cactataggg agagcttgat gggcttatct cc 42 <210> 34 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 34 gcaatgcgat ttccacgg 18 <210> 35 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 35 agcttgatgg gcttatctcc 20 <210> 36 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 36 taatacgact cactataggg agagcaatgc gatttccacg g 41 <210> 37 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 37 taatacgact cactataggg agacagattt ctcatgtctc ttc 43 <210> 38 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 38 tgattgttat ctacacatcc 20 <210> 39 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 39 cagatttctc atgtctcttc 20 <210> 40 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 40 taatacgact cactataggg agatgattgt tatctacaca tcc 43 <210> 41 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 41 taatacgact cactataggg agacatctta tgtcaaaaat attc 44 <210> 42 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 42 caaatgtata tttcgcatac 20 <210> 43 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 43 catcttatgt caaaaatatt c 21 <210> 44 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 44 taatacgact cactataggg agacaaatgt atatttcgca tac 43 <210> 45 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 45 taatacgact cactataggg agatgttcct ggtgatagta ttg 43 <210> 46 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 46 catcttcttg atttctaaat c 21 <210> 47 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 47 tgttcctggt gatagtattg 20 <210> 48 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 48 taatacgact cactataggg agacatcttc ttgatttcta aatc 44 <210> 49 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 49 taatacgact cactataggg agatggacag ttttgatttc g 41 <210> 50 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 50 gcgcttcggt agtaaaatg 19 <210> 51 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 51 atggacagtt ttgatttcg 19 <210> 52 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 52 taatacgact cactataggg agagcgcttc ggtagtaaaa tg 42 <210> 53 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 53 aggaatggaa gcttgcggta 20 <210> 54 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 54 aattttcatg gtggatggtg c 21 <210> 55 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 55 agaaccagga acgatggaga 20 <210> 56 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 56 tccttgcaaa caatctgcac 20 <210> 57 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 57 cattactagc ttaaatacgt acacc 25 <210> 58 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 58 catgtgggta cctcttattc taa 23 <210> 59 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 59 aaagaccaac tatacaggtt ctta 24 <210> 60 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 60 gaacaaagta gaccaatact atcac 25 <210> 61 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 61 actttgtcac cgtctctctt g 21 <210> 62 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 62 ctgggaagtg taataccagt ac 22 <210> 63 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 63 actgaaagat gtccctttaa ca 22 <210> 64 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 64 gtgctttcct cataaacact atc 23 <110> Chungbuk National University Industry-Academic Cooperation Foundation <120> Composition for controlling honeybee Nosema          dsRNA as effective component and uses thereof <130> PN17335 <160> 64 <170> Kopatentin 2.0 <210> 1 <211> 668 <212> RNA <213> Nosema ceranae <400> 1 uguuccuggu gauaguauug gucuacuuug uucaaauaau gauuugcuug uuaaugaaau 60 guuaaguuua cuagaaaugu cuggugauac auuauuauau auugagcaaa uuggaaaaac 120 gggguuucaa uucgaaggau cuuugcguga cuuuuucaag uauauuuuug auuuuacuuc 180 auagccuaaa aaagcauggc uuauggauau uucuaaaacc ucuaaaaaua agcaugauau 240 ugaauaucug uguucuaaag aaggaguaaa agauuauuua agcaucauua agaacuggaa 300 uaaugugcuu gacauuauau auacauuuca auguaaacca aguuuagagg aucuuauuau 360 gaauugucaa acaauuaagc caagauauua uucacuuacu aaccacguaa augaaaaaug 420 ugaaauuuua guagcaauua uuaaaaaagg cgauagauau ggacauguuu ccaauuucau 480 agauaugcaa aauuauaaua auuuaaagau cugucacaga ccgaguaaau uauuuagauu 540 aaauuuuugu aaaaaagugu uggguauuug uacuggaacu ggcauugcuc cauuuuuuuc 600 guuuuugaaa aauaaagaag acgaucaaua uaucaaacua auauauggau uuagaaauca 660 agaagaug 668 <210> 2 <211> 746 <212> RNA <213> Nosema ceranae <400> 2 auggacaguu uugauuucga aaaaauauua gauauugaua ugauuauauu uguauguucg 60 acucauggga augguucuga accuuuuaac augacuaaau uuuggaaauu uuugcgcaaa 120 aaaaaucugc cuacaaauuu uuuacaacac uuaaauuuug cuguauuugg ccuuggggau 180 ucgucuuaua aaucuuuuaa uuuuuguucu aaaaaguugu auaauugccu uuuaaaacac 240 ggagcuaaac cucugauaag aaaggguaau ggagauagcc aagacaaaga aggauuuaug 300 ggcgaauuua agacauggau aaaagaucua uauuauauau uaccgcauua caaacuacaa 360 aaugcuaaaa auuuugcaag uuguaaaaau gauuuauaca gugcgucaau aaaugauauu 420 aagauauuaa caccuuacaa uuacauuuau ccuauuuuag aaauaaaauu ugauauagau 480 auagaaaauu uugaaaucgg ugauugucua gcgguuuauc cugaaaauua uaauuacgag 540 gaguuuguaa gauauaauaa cauaaaggac aauaccuugg uuaaauauau uaaaaaauau 600 ugugauuuua auucuauucc ucaaauuuau uuuuuucuac aacuuucgcu uaucacagau 660 accauugcug aggaauaucg ugagaaaugu aaagaaauuu aucuaaauua cgaucuguac 720 uaugauuaca uuuuacuacc gaagcg 746 <210> 3 <211> 575 <212> RNA <213> Nosema ceranae <400> 3 cagauuucuc augucucuuc uaugggcgca gauuucgaca uaaaacagac auacgccacg 60 uucugcuuua acaaucuuuu gcuacaaacg agcauagacc aagacaaaau auuuagaaua 120 agagguaccc acauguuuaa aaaucuacuu acuaaauucc auacaguaau ugguagaagu 180 aaagauaucu uuacacaaau agagguagac auaaaaaaua aauacaauaa uauguguaua 240 aaaaugauac agccagcuau uaaaggugcu ucauguauau acguggguaa uuauaugcag 300 cagcuaggag uaauuagucu ugguggggag auuauuaaag cugaugagua cauuggacua 360 ucuuuuguag ggagauauga agggauuggu ucuauuucua cuauaucacu ucagcaguuu 420 auacacugu cuauagauua uuacaagaca uugucucua uuugugacgu agguauuaaa 480 auaucaacug auagggaaaa aucaguuaau uauggauuag gaguuaaacu gcacaguaaa 540 aaaggagaaa uuaucggaug uguagauaac aauca 575 <210> 4 <211> 737 <212> RNA <213> Nosema ceranae <400> 4 cugaauguua caagcagaug ggaaauaaaa aaaaauuucu uaaagauuua gcacuuuaug 60 aaacauuugc uaauaauaaa gaaguccaag augaaauuau gcagacuguu aaggaaauuu 120 gugaagaaga agugagugag uuuauugaac aagaaggcuu aaaaauuaau aaagaagaug 180 ugcuaagagg acuuguuuca auaaaaaaua uaaaugagau uuaugaugca uuuggaggua 240 aaucuaagaa guuuaaauuu ucuaaugaug aaaaggaagu guuaaauuu cuuaaugcca 300 uuauuuuaca ccuaaaagga aaaaaagaag aggcaauucu uuuauuagaa aaaucuacuu 360 auaaauacag uaucuuguau agagcauauu uucuuacauu gaagaaugaa uauacuucau 420 cugcauugcc uuuagaugac gagauuacua cgcuuuacuu guauucuaag auuuuuaaag 480 auaaaucuga uacuuaccuu aaaucugcua uagauaaauc aguagaucua ccuauugaac 540 agaaagacuu ucuguacgua gaucuucuug uauuuuacau uucuaaaaag gauguugaaa 600 aaguuaauga aacaauuaau aauuuaaaag agacucuuac ucccacuuua uuggaacuua 660 uuggagaaua uuauuuaaaa aguggaaauc acucuaaaau guuagaucua uuaucuaguc 720 auccagauac uccuggu 737 <210> 5 <211> 664 <212> RNA <213> Nosema ceranae <400> 5 caucuuaugu caaaaauauu cuguaugaua guguuuauga ggaaagcacg agagacaaaa 60 uaauaauaag ugacuguccu aggacuguuu cauauauuga aaggcaagca caccauuuaa 120 uugaauauuu aucuguuacu ucuacacaac aacaagccau aaagcuacuu gcucaggggc 180 gaaguauaag ugucauacag ugcuaugaua aauuuuuaga gaauagcgau gauguuuuaa 240 cuaccuauga uuuuuauaaa augauuuugg aucuaggauu uuuacagcau aauuuuauua 300 aaggaaccug ugagaaaugg gagaagugua cuauuggaua ucauuaugga uauuuagaac 360 acauauuaaa uaagaagaac aauuauuuaa caaaaaauga uaguauaaaa auauuuaaca 420 guaaaaauga ggagguaagg uuaaauggaa aaagaaaauu aaauauuaac acaguuacau 480 uaaauaaaau uaauauaccu gagauagauu auaaauauaa aaauggagug uuuacauaua 540 cacagaucaa aaauaauaag aaaaaaaaau auuuaagaau auugggucua gaaccucuuc 600 uuaauuuuau uaaggaaagu aaacauaaag aauuagaaua ugauguaugc gaaauauaca 660 uuug 664 <210> 6 <211> 670 <212> RNA <213> Nosema ceranae <400> 6 cuccuggaca guccgcuaga uuugucccuu uauuuuaugu uggaucuaau uuggcuuuac 60 uucuuucagg aaugauaaau uauuuuuaua guguaaguaa aucuaaaaug ucguauguug 120 cggccgaaag auuuuuuaau ggauuuuuuu gucugagugg aauucucugu gcuguaauuu 180 aucauauaua gaaaauaaug uuacuaguaa accaauguuu guuagaaaga 240 cuuuuacuaa aaagaagagu aaagugaagg uuggauuugu ugauggacuu auugagauga 300 guaaaucuaa acuacuguug aauaugucau uagucguauu auuuuaugcu guuucuacga 360 auauuauuga gucagcuuau aaaucugcuu uagcugucgg ugcuaaugaa acuggugagg 420 caaaaucuac cuaugcuuca auuuauacau caauugaaca aucuggaguu gcugucauug 480 ucaugauuuu gcuacuuacc ccuuuuccaa ggcuuauuaa aacaaaagga uggauuacaa 540 uagccauucu auguccuauu auuacuuuuu uuucugcuuu ugguacuuuu guauuagcuu 600 auuuaaacuu cccaauuaca aacaaagagg auaauauauu ugauauuuac cguuuaccgu 660 caacugauuc 670 <210> 7 <211> 632 <212> RNA <213> Nosema ceranae <400> 7 agcuugaugg gcuuaucucc uuuuuuauau auguacagug aguggauaag uacuuuaugu 60 uacaucuuau cggaguugug gaguacucua guaguugguu uugcuuuaua ugcguuagcc 120 aaucaugcuu guacagaaga ugaaaugaaa gaaauuguuc cuaauuuuuc cacaaucacc 180 gccauuucaa ugauuauuuc uguagcuuuu auuuauauaa aagaugaauu agcaaauaua 240 cuuccugcag guuugcauga uaaaauugac gguaguaguu uguuuuuuuu gaucuugucu 300 uuuguaacua cauuaauuua cuuuuuaaaa aguuauauuc cucuuaaaac uaaagaaaua 360 aaggaaacua uaaauaaaga agaagacaaa acgacauccu cguuugaucu uuuacaaucc 420 aaauuuuuaa gaaauaugug ugcagcggca uuaaucuaug cuauuaaugc aggauuuauu 480 gauauguccu uaaaaaauuc uuuaucuacg ggaagcagaa uuaauaauau gccuccgaaa 540 gauuauucuc aaaaauauuu aguaacaacu uccuuaacga uuagugcugu aucauuauuu 600 uauaacuuug uaauccgugg aaaucgcauu gc 632 <210> 8 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 gcatgtcttt gacgtactat g 21 <210> 9 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 cgttaaagtg tagataagat gtt 23 <210> 10 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 gacttagtag ccgtctctc 19 <210> 11 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 atgaaaaagt aaacaagtca gaattc 26 <210> 12 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 ccgcttgatt tattaattat aaacc 25 <210> 13 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 aatgtcattc aaatacaaat gtttg 25 <210> 14 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 tttaaaacac tgcatcttat aaattc 26 <210> 15 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 agcaaaatta ttaaaattat aac 23 <210> 16 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 atttaattaa ctacagaatt gttag 25 <210> 17 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 aataaccgta aatatctcat ctgtc 25 <210> 18 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 18 taaagaaacg ctatttttat gaaac 25 <210> 19 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 19 atcgatttaa atattcctat ttg 23 <210> 20 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 20 acttttttta gtgttaatca tgtc 24 <210> 21 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 21 aatgagaaaa ttctgtatat gaacac 26 <210> 22 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 22 ttttaaataa tcataaaagt tgtgtag 27 <210> 23 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 23 agaattcctt acttatttac atacac 26 <210> 24 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 24 atttattact tgtttaattt atgaag 26 <210> 25 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 25 taatacgact cactataggg agactgaatg ttacaagcag atggg 45 <210> 26 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 26 accaggagta tctggatgac 20 <210> 27 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 27 ctgaatgtta caagcagatg gg 22 <210> 28 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 28 taatacgact cactataggg agaaccagga gtatctggat gac 43 <210> 29 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 29 taatacgact cactataggg agactcctgg acagtccgct ag 42 <210> 30 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 30 gaatcagttg acggtaaacg g 21 <210> 31 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 31 ctcctggaca gtccgctag 19 <210> 32 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 32 taatacgact cactataggg agaatcagtt gacggtaaac gg 42 <210> 33 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 33 taatacgact cactataggg agagcttgat gggcttatct cc 42 <210> 34 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 34 gcaatgcgat ttccacgg 18 <210> 35 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 35 agcttgatgg gcttatctcc 20 <210> 36 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 36 taatacgact cactataggg agagcaatgc gatttccacg g 41 <210> 37 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 37 taatacgact cactataggg agacagattt ctcatgtctc ttc 43 <210> 38 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 38 tgattgttat ctacacatcc 20 <210> 39 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 39 cagatttctc atgtctcttc 20 <210> 40 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 40 taatacgact cactataggg agatgattgt tatctacaca tcc 43 <210> 41 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 41 taatacgact cactataggg agacatctta tgtcaaaaat attc 44 <210> 42 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 42 caaatgtata tttcgcatac 20 <210> 43 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 43 catcttatgt caaaaatatt c 21 <210> 44 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 44 taatacgact cactataggg agacaaatgt atatttcgca tac 43 <210> 45 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 45 taatacgact cactataggg agatgttcct ggtgatagta ttg 43 <210> 46 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 46 catcttcttg atttctaaat c 21 <210> 47 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 47 tgttcctggt gatagtattg 20 <210> 48 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 48 taatacgact cactataggg agacatcttc ttgatttcta aatc 44 <210> 49 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 49 taatacgact cactataggg agatggacag ttttgatttc g 41 <210> 50 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 50 gcgcttcggt agtaaaatg 19 <210> 51 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 51 atggacagtt ttgatttcg 19 <210> 52 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 52 taatacgact cactataggg agagcgcttc ggtagtaaaa tg 42 <210> 53 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 53 aggaatggaa gcttgcggta 20 <210> 54 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 54 aattttcatg gtggatggtg c 21 <210> 55 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 55 agaaccagga acgatggaga 20 <210> 56 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 56 tccttgcaaa caatctgcac 20 <210> 57 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 57 cattactagc ttaaatacgt acacc 25 <210> 58 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 58 catgtgggta cctcttattc taa 23 <210> 59 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 59 aaagaccaac tatacaggtt ctta 24 <210> 60 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 60 gaacaaagta gaccaatact atcac 25 <210> 61 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 61 actttgtcac cgtctctctt g 21 <210> 62 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 62 ctgggaagtg taataccagt ac 22 <210> 63 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 63 actgaaagat gtccctttaa ca 22 <210> 64 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 64 gtgctttcct cataaacact atc 23

Claims (6)

노제마 세라내(Nosema ceranae)의 FNR1(Ferredoxin NADP+ reductase 1) 또는 FNR2 유전자의 발현을 억제하는 dsRNA를 유효성분으로 포함하는 꿀벌 노제마병 방제용 조성물로서,
상기 FNR1 또는 FNR2 유전자의 발현을 억제하는 dsRNA는 각각 서열번호 1 또는 서열번호 2의 염기서열로 이루어진 것이며,
상기 dsRNA는 키토산이 결합된 복합체 형태인 것을 특징으로 하는 꿀벌 노제마병 방제용 조성물.
The present invention relates to a composition for controlling a honeybee sickle-bloom, which comprises, as an active ingredient, dsRNA which inhibits the expression of FNR1 (Ferredoxin NADP + reductase 1) or FNR2 gene of Nosema ceranae,
The dsRNA that inhibits the expression of the FNR1 or FNR2 gene comprises the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 2,
Wherein the dsRNA is in the form of a complex with chitosan bound thereto.
제1항에 있어서, TOM40(translocase of the outer membrane 40), TOM70, Nar1(nuclear architecture related 1), Nc14 및 Nc17 유전자의 발현을 억제하는 각각의 dsRNA를 추가로 포함하는 것을 특징으로 하는, 꿀벌 노제마병 방제용 조성물로서,
상기 TOM40, TOM70, Nar1, Nc14 및 Nc17 유전자의 발현을 억제하는 각각의 dsRNA는 각각 서열번호 3 내지 7의 염기서열로 이루어진 것을 특징으로 하는 꿀벌 노제마병 방제용 조성물.
2. The method according to claim 1, further comprising a respective dsRNA which inhibits the expression of TOM40 (translocase of the outer membrane 40), TOM70, Nar1 (nuclear architecture related 1), Nc14 and Nc17 genes. A composition for controlling a toad disease,
Wherein each of the dsRNAs that inhibit the expression of the TOM40, TOM70, Nar1, Nc14, and Nc17 genes comprises the nucleotide sequence of SEQ ID NOS: 3 to 7, respectively.
삭제delete 삭제delete 삭제delete 제1항 또는 제2항의 꿀벌 노제마병 방제용 조성물을 정상 꿀벌 또는 노제마병 의심 꿀벌에 처리하는 단계를 포함하는, 꿀벌 노제마병의 방제 방법.A method for controlling a bee's sickle-neck disease, comprising the step of treating the bee's sickle's fever prevention composition according to claim 1 or 2 to a normal bee or a skeptic bee.
KR1020170114838A 2017-09-08 2017-09-08 Composition for controlling honeybee Nosema disease comprising dsRNA as effective component and uses thereof KR101989930B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170114838A KR101989930B1 (en) 2017-09-08 2017-09-08 Composition for controlling honeybee Nosema disease comprising dsRNA as effective component and uses thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170114838A KR101989930B1 (en) 2017-09-08 2017-09-08 Composition for controlling honeybee Nosema disease comprising dsRNA as effective component and uses thereof

Publications (2)

Publication Number Publication Date
KR20190027991A KR20190027991A (en) 2019-03-18
KR101989930B1 true KR101989930B1 (en) 2019-06-17

Family

ID=65949111

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170114838A KR101989930B1 (en) 2017-09-08 2017-09-08 Composition for controlling honeybee Nosema disease comprising dsRNA as effective component and uses thereof

Country Status (1)

Country Link
KR (1) KR101989930B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140371298A1 (en) * 2009-05-05 2014-12-18 Beeologics Inc. Prevention and treatment of nosema disease in bees

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090097582A (en) * 2008-03-12 2009-09-16 한양대학교 산학협력단 Nanoparticles for therapeutic gene delivery and method for preparing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140371298A1 (en) * 2009-05-05 2014-12-18 Beeologics Inc. Prevention and treatment of nosema disease in bees

Also Published As

Publication number Publication date
KR20190027991A (en) 2019-03-18

Similar Documents

Publication Publication Date Title
US20230026506A1 (en) Engineered microbial population
Viterbo et al. The 18mer peptaibols from Trichoderma virens elicit plant defence responses
Xu et al. Enhanced control of cucumber wilt disease by Bacillus amyloliquefaciens SQR9 by altering the regulation of its DegU phosphorylation
EP2959779B1 (en) Biocontrol of phyto-parasitic nematodes using paecilomyces
Zhang et al. Trichoderma brevicrassum strain TC967 with capacities of diminishing cucumber disease caused by Rhizoctonia solani and promoting plant growth
EP2698379A1 (en) Insect-combating preparation and method based on rnai technology
EP2427180B1 (en) Prevention and treatment of nosema disease in bees
Jin et al. The acid trehalase, ATM1, contributes to the in vivo growth and virulence of the entomopathogenic fungus, Metarhizium acridum
Chen et al. Genes involved in Beauveria bassiana infection to Galleria mellonella
CN113106108B (en) Double-stranded nucleic acid Dicer-1 dsRNA (double-stranded ribonucleic acid) for enhancing biocontrol bacterium and termite killing effect
KR101773825B1 (en) Composition for controlling plant disease comprising Bacillus amyloliquefaciens strain producing iturin as effective component and uses thereof
Kaverinathan et al. Role of melanin in Colletotrichum falcatum pathogenesis causing sugarcane red rot
Kim et al. Increased survival of the honey bee Apis mellifera infected with the microsporidian Nosema ceranae by effective gene silencing
JIANG et al. The influence of Bt-transgenic maize pollen on the bacterial diversity in the midgut of Chinese honeybees, Apis cerana cerana
KR101989930B1 (en) Composition for controlling honeybee Nosema disease comprising dsRNA as effective component and uses thereof
CN107805643B (en) siRNA-DNA nano system for targeted inhibition of salmonella drug-resistant efflux pump gene acrA and preparation method thereof
US20230405130A1 (en) Compositions and methods for modifying bacterial gene expression
US10308954B2 (en) Method for the control of nematodes in plants
Mendonça et al. Tracking new insights into antifungal and anti-mycotoxigenic properties of a biofilm forming Pediococcus pentosaceus strain isolated from grain silage
KR101948036B1 (en) Pochonia sp. 60 strain having antifungal activity against nosema disease pathogen and uses thereof
US11944102B2 (en) Method for controlling pest infestations
CN116426541B (en) Target gene segment, dsRNA and nano pesticide composition for preventing and treating verticillium wilt of crops
Martin The Effects of Polypore Mushroom Mycelia and Sawdust Extract Treatments on Deformed Wing Virus Levels in Apis mellifera
EP2173879A1 (en) Mutually suppressive gene/inhibitor combinations for non-antibiotic selection of recombinant strains
Mosen et al. An RNA interference (RNAi) target with potential to control Dothistroma needle blight

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
GRNT Written decision to grant
X701 Decision to grant (after re-examination)