KR101986437B1 - Process of membrane fouling resistance based on silver-graphene oxide compounds - Google Patents

Process of membrane fouling resistance based on silver-graphene oxide compounds Download PDF

Info

Publication number
KR101986437B1
KR101986437B1 KR1020170169617A KR20170169617A KR101986437B1 KR 101986437 B1 KR101986437 B1 KR 101986437B1 KR 1020170169617 A KR1020170169617 A KR 1020170169617A KR 20170169617 A KR20170169617 A KR 20170169617A KR 101986437 B1 KR101986437 B1 KR 101986437B1
Authority
KR
South Korea
Prior art keywords
silver
graphene oxide
solution
pvdf
oxide composite
Prior art date
Application number
KR1020170169617A
Other languages
Korean (ko)
Inventor
권지향
고관영
김민지
유영재
정혜근
Original Assignee
건국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 건국대학교 산학협력단 filed Critical 건국대학교 산학협력단
Priority to KR1020170169617A priority Critical patent/KR101986437B1/en
Application granted granted Critical
Publication of KR101986437B1 publication Critical patent/KR101986437B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0095Drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/48Antimicrobial properties

Abstract

The present invention relates to a method for reducing membrane fouling based on silver and graphene oxide. More particularly, the present invention relates to a coating method of a PVDF membrane capable of reducing fouling. The method comprises: a first step of manufacturing a silver-graphene oxide composite solution by mixing a precursor material and a graphene oxide in a solution phase; introducing the silver-graphene oxide composite solution into one side of the PVDF membrane and moving the mixed solution to the opposite side of the one side by a pressure means; and a third step of drying the PVDF membrane subjected to the second step.

Description

은 및 그래핀 산화물 기반의 막 파울링 저감방법 {Process of membrane fouling resistance based on silver-graphene oxide compounds}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a method for reducing film fouling based on silver and graphene oxide,

본 발명은 은 및 그래핀 산화물을 이용하는 막 파울링 저감방법에 대한 것으로, 보다 상세하게는 은 및 그래핀 산화물을 Dead-end filtration 방법으로 막(membrane) 표면에 코팅한 후 세척, 건조 과정을 통해 파울링을 저감할 수 있는 방법에 대한 것이다. The present invention relates to a method of reducing film fouling using silver and graphene oxide, and more particularly, to a method of reducing film fouling by using silver and graphene oxide, And a method for reducing fouling.

수처리용 분리막은 원수를 목적에 맞게 여과시키는 장치로써, 원수를 여과하는 과정에서 외부물질이 기공을 막음으로 인해 막의 성능이 저하되는 파울링 현상이 발생할 수 있다. The separation membrane for water treatment is a device for filtering the raw water according to the purpose, and in the process of filtering the raw water, a fouling phenomenon may occur in which the performance of the membrane is deteriorated due to the foreign substance blocking the pore.

상기의 파울링 현상은 주로 원수 내에 용존 유기물질이 다량으로 함유되어 있을수록 빈번하게 발생할 수 있으며, 물속에서 죽은 생물체의 분해, 또는 생물의 의해 합성된 분자로부터 생성되는 용존 유기분자 물질의 농도가 높아질수록 파울링 현상은 심화될 수 있다. 이러한 용존 유기 물질에 의한 파울링 현상을 저감하기 위하여 종래에는 물리 화학적으로 오염물질을 제거하는 다양한 기술들이 개발되어 왔으며, 일례로 분리막을 PEG, PVA, 그리고 PVDF와 같은 친수성 물질로 코팅하거나, 외부에서 추가로 장치를 설치하여 미세기포, 혹은 초음파를 직접 분리막에 조사하여 기공을 막는 유기물질을 세척하는 기술, 분리막 코팅물질에 유기 물질의 부착을 방해하는 첨가제를 넣는 기술들이 있다. 그러나 코팅물질을 기반으로 구성되어 막의 기공 폐색을 일으키거나, 막의 표면을 물리적으로 접촉하여 막의 내구성을 저하시키는 문제를 발생시켜 왔으며, 이와는 별도로 단순히 파울링 저감만을 목적으로 하고 있어, 플럭스 개선과 같은 복합적인 효과를 확보하는데는 미흡하였다. The above-mentioned fouling phenomenon occurs more frequently as a large amount of dissolved organic material is contained in the raw water, and the concentration of the dissolved organic molecular material generated from molecules decomposed dead in water or synthesized by living organisms becomes high The fouling phenomenon can be intensified. In order to reduce the fouling phenomenon caused by such dissolved organic materials, various techniques for removing contaminants by physicochemically have been developed. For example, the separator may be coated with a hydrophilic material such as PEG, PVA, PVDF, In addition, there are techniques to clean organic materials that block pores by irradiating fine bubbles or ultrasonic waves directly to the separation membrane by installing a device, and techniques for adding additives that hinder the attachment of organic materials to the separation membrane coating material. However, it has been found that it is based on a coating material, which causes pore clogging of the film or physically contacts the surface of the film to lower the durability of the film. In addition, It is insufficient to secure the effect.

또한, 외부에서 미세기포 혹은 초음파를 직접 분리막에 조사하여 세척하는 기술은 수처리 분리막 외에 미세기포 또는 초음파를 발생시키는 부속장치가 더 필요하여 공간 및 비용면에서 손실이 발생할 수 있으며, 미세기포나 초음파가 닿지 않는 부분은 여전히 오염물질이 존재하는 단점이 있다. In addition, the technique of irradiating the micro bubbles or ultrasonic waves directly from the outside to the separation membrane and cleaning the micro bubbles or ultrasonic waves may cause loss of space and cost, and the micro bubbles or ultrasonic waves The untouched part still has the disadvantage of the presence of contaminants.

나아가 이러한 수처리용 파울링 저감 분리막으로 예를 들어 대한민국 등록특허 10-1738732호에 개시되어 있는 고분자물질에 무기첨가제를 넣는 기술은 과염소산염계 물질을 다공성 고분자막에 첨가하여 표면의 거칠기가 감소하고, 친수성이 향상되며, 세공크기가 균일한 장점에도 불구하고 여전히 친수성 물질로 분리막을 코팅하는 기존의 개념에서 크게 벗어나지 못하며, 원활한 여과를 방해하고 플럭스를 떨어뜨리는 기공에 존재하는 오염물질을 제거하는 근본적인 해결방법이 될 수 없다는 단점이 있다.Further, for example, a technique of adding an inorganic additive to a polymer substance disclosed in Korean Patent No. 10-1738732 as a water reducing fouling reduction membrane is a method in which a perchlorate-based material is added to a porous polymer membrane to decrease the surface roughness, Despite the advantages of uniform pore size, it is still far from the conventional concept of coating a membrane with a hydrophilic material. It is a fundamental solution to prevent contaminants in the pores that interfere with smooth filtration and reduce flux. There is a disadvantage that it can not be done.

본 발명은 상술한 문제점을 해결하기 위하여 안출된 것으로, 간단하고 손쉬운 Dead-end filtration 방법으로 PVDF 막에 은-그래핀 산화물 복합체를 코팅하는 방법을 제공하는 것을 목적으로 한다. SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a method of coating a silver-graphene oxide composite on a PVDF membrane by a simple and easy dead-end filtration method.

또한, 본 발명은 막 파울링 저감에 효과적인 은-그래핀 산화물 복합체가 코팅된 PVDF 막을 제공하는 것을 목적으로 한다. It is also an object of the present invention to provide a PVDF film coated with a silver-graphene oxide composite which is effective for reducing film fouling.

상기의 문제점을 해결하기 위한 본 발명은 은 전구체 물질과 그래핀 산화물을 용액상으로 혼합하여 은-그래핀 산화물 복합체 용액을 제조하는 1단계; PVDF 막의 일측면에 상기 은-그래핀 산화물 복합체 용액을 유입시켜, 압력수단에 의해 상기 일측면의 반대측면으로 상기 혼합된 용액을 이동시키는 2단계; 및 상기 2단계를 수행한 PVDF 막을 건조시키는 3단계를 포함하는 것을 특징으로 하는 PVDF 막의 코팅방법을 제공한다. According to an aspect of the present invention, there is provided a silver-graphene oxide composite solution comprising: a silver precursor material; Introducing the silver-graphene oxide composite solution into one side of the PVDF film and moving the mixed solution to the opposite side of the one side by a pressure means; And a third step of drying the PVDF film obtained by the two steps.

본 발명은 Dead-end filtration의 간단한 방법으로 일측에 은-그래핀 산화물 복합체가 코팅된 PVDF 막의 제조가 가능하며, 공정의 간편성 및 비용면에서의 경제적이라는 이점이 있다. The present invention is advantageous in that it is possible to manufacture a PVDF membrane coated with a silver-graphene oxide composite on one side by a simple method of dead-end filtration, and is economical in process simplicity and cost.

또한, 본 발명은 코팅된 은-그래핀 산화물 복합체에 의해 유기 및 무기물에 대한 접착력이 억제되고 막의 친수화가 가능하고 표면거칠기가 감소되며, 항균성을 가지므로 막 파울링 저감에 효과가 있다. In addition, the present invention is effective in reducing film fouling by suppressing the adhesion to organic and inorganic materials by coated silver-graphene oxide composite, enabling the film to be hydrophilic, reducing surface roughness, and having antibacterial properties.

도 1는 본 발명에 따라 제조예에서 제조된 은-그래핀 산화물 복합체의 HR-TEM 사진(a, b)과 입경에 따른 입자 개수의 관계(c)를 나타낸 것이고,
도 2은 본 발명에 따라 제조예에서 제조된 은-그래핀 산화물 복합체의 FT-IR 사진을 나타낸 것이고,
도 3은 본 발명에 따라 은-그래핀 산화물 복합체의 투입량과 PVDF에 코팅되는 은-그래핀 산화물 복합체의 양을 나타낸 것이고,
도 4는 본 발명에 따라 실시예 1에서 제조된 PVDF 막의 SEM 사진과 에너지분산형 분광분석법(EDS) 결과를 나타낸 것이고,
도 5는 본 발명에 따라 실시예 1 내지 3 및 비교예에서 제조된 PVDF 막의 수투과량을 나타낸 것이고,
도 6는 본 발명에 따라 실시예 1 내지 3 및 비교예에서 제조된 PVDF 막의 필터 시간에 따른 수투과량을 나타낸 것이고,
도 7은 본 발명에 따라 실시예 1 내지 3 및 비교예에서 제조된 PVDF 막의 파울링비와 유수회복율을 나타낸 것이고,
도 8은 본 발명에 따라 실시예 1 내지 3 및 비교예에서 제조된 PVDF 막의 세포생사율 및 활성산소생성율을 나타낸 것이다.
FIG. 1 shows HR-TEM photographs (a, b) of the silver-graphene oxide composite prepared in the production example according to the present invention and the relationship (c)
FIG. 2 is a FT-IR photograph of the silver-graphene oxide composite prepared in Preparation Example according to the present invention,
Figure 3 shows the input amount of the silver-graphene oxide composite and the amount of silver-graphene oxide composite coated on PVDF according to the present invention,
4 is a SEM photograph of the PVDF film prepared in Example 1 and energy dispersive spectroscopy (EDS) results according to the present invention,
5 shows the water permeation amounts of the PVDF membranes prepared in Examples 1 to 3 and Comparative Example according to the present invention,
6 shows the water permeation amount of the PVDF membrane prepared in Examples 1 to 3 and Comparative Example according to the filter time according to the present invention,
7 shows the fouling ratio and the water recovery rate of the PVDF membranes prepared in Examples 1 to 3 and Comparative Example according to the present invention,
FIG. 8 shows cell viability and active oxygen production rates of PVDF membranes prepared in Examples 1 to 3 and Comparative Example according to the present invention.

본 발명은 은 및 그래핀 산화물을 Dead-end filtration 방법으로 막(membrane) 표면에 코팅한 후 세척, 건조 과정을 통해 파울링을 저감할 수 있는 방법에 대한 것이다. The present invention relates to a method capable of reducing fouling through washing and drying processes after silver and graphene oxides are coated on a membrane surface by a dead-end filtration method.

이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Prior to this, terms and words used in the present specification and claims should not be construed as limited to ordinary or dictionary terms, and the inventor should appropriately interpret the concepts of the terms appropriately It should be interpreted in accordance with the meaning and concept consistent with the technical idea of the present invention based on the principle that it can be defined.

따라서, 본 명세서에 기재된 실시 예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시 예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들은 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.Therefore, the embodiments described in the present specification and the configurations shown in the drawings are only the most preferred embodiments of the present invention, and not all of the technical ideas of the present invention are described. Therefore, It should be understood that various equivalents and modifications may be present.

이하 본 발명에 따른 은 및 그래핀 산화물 기반의 막 파울링 저감방법을 단계별로 구체적으로 살펴보면 다음과 같다,Hereinafter, a method of reducing film fouling based on silver and graphene oxides according to the present invention will be described in detail.

먼저, 은 전구체 물질과 그래핀 산화물을 용액상으로 혼합하여 은-그래핀 산화물 복합체 용액을 제조한다.First, silver precursor material and graphene oxide are mixed in a solution phase to prepare a silver-graphene oxide composite solution.

상기 은-그래핀 산화물 복합체는 당 분야에서 일반적으로 사용되는 것으로 특별히 한정하지는 않으며, 시판되는 제품을 사용하여 직접 반응시켜 얻어진 것을 사용할 수 있다.The silver-graphene oxide composite is generally used in the art and is not particularly limited, and those obtained by direct reaction using commercially available products can be used.

일례로 본 발명은 그래핀 산화물 현탁액, 폴리비닐피롤리돈 용액 및 α-D-글루코오즈의 혼합 용액에, 암모니아 수용액과 질산은 용액을 혼합하여 제조된 은-암모니아 용액을 첨가한 후 반응시켜 은-그래핀 산화물 복합체를 제조하였다.For example, the present invention relates to a silver-ammonia solution prepared by mixing an aqueous ammonia solution and a silver nitrate solution into a mixed solution of a graphene oxide suspension, a polyvinylpyrrolidone solution and an? -D-glucoside, Graphene oxide complexes were prepared.

상기 은-그래핀 산화물 복합체는 항균성을 고려하면 입경이 작은 것이 유리하며, 구체적으로 은의 평균 입경이 15 내지 90 nm인 것이 바람직하다.It is preferable that the silver-graphene oxide composite has a smaller particle diameter in consideration of antibacterial properties, and more specifically, an average particle diameter of silver is preferably 15 to 90 nm.

다음으로, PVDF 막의 일측면에 상기 은-그래핀 산화물 복합체 용액을 유입시켜, 압력수단에 의해 상기 일측면의 반대측면으로 상기 혼합된 용액을 이동시킨다.Next, the silver-graphene oxide composite solution is introduced into one side of the PVDF membrane, and the mixed solution is moved to the opposite side of the one side by the pressure means.

본 발명은 Dead-end filtration 방법 구체적으로 여과되는 시료를 여제 표면에 직각인 방향으로 흐르게 하는 방법을 이용하여 PVDF 막의 일측면에 은-그래핀 산화물 복합체를 코팅시킨다.The present invention coating a silver-graphene oxide composite on one side of a PVDF membrane using a dead-end filtration method, specifically flowing a sample to be filtered in a direction perpendicular to the surface of the filter.

이 때, 은-그래핀 산화물 복합체 용액은 제조된 PVDF 막에 코팅된 은-그래핀 산화물 복합체의 양이 단위 미터 제곱당 0.16855 mg 이하가 되도록 사용하는 것이 바람직하다. 상기 은-그래핀 산화물 복합체의 양은 흡광도 측정을 통해 코팅되지 않고 표면 세척을 통해 탈리된 은-그래핀 산화물의 양을 측정한 뒤, 코팅을 위해 투입한 총량에서 그 값을 제외하여 산출된 것으로, 상기 범위를 초과하는 경우에는 PVDF 막에 부착이 되지 않는 결과를 보인다. 이는 곧 막이 수용할 수 있는 은-그래핀 산화물의 최대량으로 볼 수 있다.At this time, it is preferable to use the silver-graphene oxide complex solution so that the amount of the silver-graphene oxide complex coated on the PVDF film produced is 0.16855 mg or less per square meter of the unit. The amount of the silver-graphene oxide composite was calculated by measuring the amount of silver-graphene oxide that was not coated through absorption measurement but desorbed through surface cleaning, and then subtracting the amount of silver-graphene oxide from the total amount added for coating. If it exceeds the above range, the result is not attached to the PVDF film. This can be seen as the maximum amount of silver-graphene oxide the film can accommodate.

상기 압력 수단은 당 분야에서 일반적으로 사용되는 것으로 특별히 한정하지는 않으며, 구체적으로 질소, 아르곤 등과 같은 비활성 기체가 사용될 수 있다. 압력은 은-그래핀 산화물 복합체의 코팅량, 코팅에 사용되는 은-그래핀 산화물 복합체 분산액의 양, 및 코팅에 사용되는 여과 시스템 등을 고려하면 20 내지 35 kPa 범위인 것이 바람직하다.The pressure means is generally used in the art and is not particularly limited. Specifically, an inert gas such as nitrogen, argon, or the like may be used. The pressure is preferably in the range of 20 to 35 kPa considering the coating amount of silver-graphene oxide composite, the amount of silver-graphene oxide composite dispersion used for coating, and the filtration system used for coating.

다음으로 상기 Dead-end filtration 법을 수행한 PVDF 막을 건조시킨다.Next, the PVDF membrane subjected to the dead-end filtration method is dried.

건조는 당 분야에서 일반적으로 사용되는 방법으로 오븐을 이용하여 수행되며, 막의 재질과 내열성을 고려하여 50 내지 60 ℃의 저온에서 건조하는 것이 바람직하다.Drying is carried out using an oven in a method commonly used in the art, and drying is preferably carried out at a low temperature of 50 to 60 DEG C in consideration of the material and heat resistance of the membrane.

상기 건조 전에 코팅되지 않은 은-그래핀 산화물 복합체를 제거하기 위한 세척 과정이 추가로 포함될 수 있으며, 이때 세척은 탈이온수를 사용하는 것이 바람직하다.A washing process for removing the uncoated silver-graphene oxide complex may be further included, and it is preferable to use deionized water for washing.

이상과 같은 제조방법으로 일측면에 은-그래핀 산화물 복합체가 코팅된 PVDF 막은 그래핀 산화물에 의해 유기 및 무기물질에 대한 접착을 억제시킬 수 있으며, 막의 표면거칠기를 감소시켜 파울링 저항성을 높이고, 그래핀 산화물의 친수성 작용기(하이드록실기, 카르보닐기, 에폭사이드기)에 의해 막 친수화가 가능하다. 또한, 은 나노입자에 의해 항균성을 가질 수 있다.The PVDF film coated with silver-graphene oxide composite on one side by the above-described manufacturing method can suppress the adhesion to organic and inorganic materials by graphene oxide, reduce the surface roughness of the film to increase the fouling resistance, The hydrophilic functional groups (hydroxyl group, carbonyl group, epoxide group) of the graphene oxide can be used to make the membrane hydrophilic. In addition, silver nanoparticles can have antimicrobial properties.

본 발명 방법으로 제조된 은-그래핀 산화물 복합체가 코팅된 PVDF 막은 접촉각이 88.4°이하이고, 평균 기공도가 55% 이상이며, 평균 기공크기가 216 nm 이다.The silver-graphene oxide composite coated PVDF film prepared by the method of the present invention has a contact angle of 88.4 DEG or less, an average porosity of 55% or more, and an average pore size of 216 nm.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 범주 및 기술사상 범위내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the inventions. , And it is natural that such variations and modifications fall within the scope of the appended claims.

제조예Manufacturing example : 은-: Silver - 그래핀Grapina 산화물 복합체 제조 Oxide complex production

증류수에 그래핀 산화물 현탁액(50ml, 0.5mg/ml)을 넣고 교반하면서, 폴리비닐피롤리돈 용액(10ml, 4mg/ml, 분자량 ~29000, 알드리치사)과, α-D-글루코오즈(800mg, 96%, 알드리치사)를 추가하였다. A solution of polyvinylpyrrolidone (10 ml, 4 mg / ml, molecular weight ~ 29000, Aldrich) and α-D-glucoside (800 mg, 96%, Aldrich).

다음으로 45℃에서 상기 용액에 은-암모니아 용액 (10ml)를 추가하였다. 이때, 상기 은-암모니아 용액은 2중량% 암모니아 수용액(28.0-30.0%, NH3, 알드리치사)에 질산은 용액(20mg/ml, ≥99.0%, 알드리치사)을 혼합하여 은-암모니아 용액을 제조하였다.Next, a silver-ammonia solution (10 ml) was added to the solution at 45 占 폚. At this time, the silver-ammonia solution was prepared by mixing silver nitrate solution (20 mg / ml,? 99.0%, Aldrich) with 2 wt% ammonia aqueous solution (28.0-30.0%, NH 3 , Aldrich) .

이후에 7분 동안 반응을 수행한 후, 10000rpm 속도로 10분 동안 원심분리하고, 수세척한 후, 80℃에서 하루 동안 건조하여 은-그래핀 산화물 복합체를 제조하였다.Thereafter, the reaction was performed for 7 minutes, centrifuged at 10000 rpm for 10 minutes, washed with water, and dried at 80 DEG C for one day to prepare a silver-graphene oxide composite.

상기 제조된 은-그래핀 산화물 복합체는 도 1의 high-resolution transmission electronmicroscopy (HR-TEM, Tecnai 20, FEI, USA)와 도 2의 Fourier transform infrared spectroscopy (FT-IR, NICOLET iS10, Thermo Fisher Scientific, USA)을 이용하여 그 구조를 확인하였다. 또한, 입자의 직경당 입자 개수를 확인하였다.The silver-graphene oxide composite prepared above was subjected to high-resolution transmission electron microscopy (HR-TEM, Tecnai 20, FEI, USA) of FIG. 1 and Fourier transform infrared spectroscopy (FT- IR, NICOLET iS10, Thermo Fisher Scientific, USA). In addition, the number of particles per diameter of the particles was confirmed.

실시예Example 1: 은- 1: silver- 그래핀Grapina 산화물 복합체가 코팅된  Oxide composite is coated PVDFPVDF  membrane

상기 제조예에서 얻어진 은-그래핀 복합체 용액을 2시간동안 초음파를 조사하여 분산시킨 용액(10ml)을 dead-end filtration 방법을 이용하여 PVDF막(기공크기 0.22 μm, 표면적 33.18 cm2)상에 필터하는 공정을 수행하였다.The solution (10 ml) in which the silver-graphene complex solution obtained in the Preparation Example was dispersed by irradiation with ultrasonic waves for 2 hours was filtered on a PVDF membrane (pore size 0.22 μm, surface area 33.18 cm 2 ) using a dead- .

이때, 압력은 20 kPa으로 수행하였고, 이후에 탈이온수로 세척하고, 수세한 후 40℃에서 1시간동안 건조하여 은-그래핀 산화물 복합체 0.01mg이 코팅된 PVDF 막을 제조하였다. At this time, the pressure was 20 kPa, followed by washing with deionized water, washing with water, and drying at 40 ° C for 1 hour to prepare a PVDF membrane coated with 0.01 mg silver-graphene oxide composite.

하기 도 3은 은-그래핀 산화물 복합체의 투입량과 PVDF에 코팅되는 은-그래핀 산화물 복합체의 양을 나타낸 것으로, 흡광도 측정을 통한 계산에 의해 은-그래핀 산화물 복합체의 양은 단위 미터 제곱당 0.16855 mg 이하인 것이 바람직함을 확인하였다.FIG. 3 shows the input amount of the silver-graphene oxide composite and the amount of the silver-graphene oxide composite coated on the PVDF. The amount of the silver-graphene oxide complex is 0.16855 mg per square meter Or less.

도 4는 은-그래핀 산화물 복합체가 코팅된 PVDF 막의 field emission scanning electron microscopy (FE-SEM, S-4200, HITACHI, Japan)과 energy dispersive spectroscopy (EDS, 에너지분산형 분광분석법)를 나타낸 것으로, 코팅된 PVDF막의 기공은 나노크기이고, PVDF 막 상에 은-그래핀 산화물 복합체가 결합되어 있으며, 은이 분사되어 있음을 확인할 수 있었다.FIG. 4 shows field emission scanning electron microscopy (FE-SEM, S-4200, HITACHI, Japan) and energy dispersive spectroscopy (EDS) of a PVDF film coated with a silver- The pores of the PVDF membrane were nano - sized, and silver - graphene oxide complex was bonded on the PVDF membrane. It was confirmed that silver was sprayed.

실시예Example 2: 은- 2: silver- 그래핀Grapina 산화물 복합체가 코팅된  Oxide composite is coated PVDFPVDF  membrane

상기 실시예 1과 동일하게 실시하되, 은-그래핀 복합체 용액을 2시간 동안 초음파를 조사하여 분산시킨 용액(10ml)을 사용하여 은-그래핀 산화물 복합체 0.05mg이 코팅된 PVDF 막을 제조하였다. A PVDF membrane coated with 0.05 mg of a silver-graphene oxide composite was prepared in the same manner as in Example 1 except that a solution (10 ml) in which silver-graphene composite solution was dispersed by ultrasonic irradiation for 2 hours was used.

실시예Example 3: 은- 3: silver- 그래핀Grapina 산화물 복합체가 코팅된  Oxide composite is coated PVDFPVDF  membrane

상기 실시예 1과 동일하게 실시하되, 은-그래핀 복합체 용액을 2시간 동안 초음파를 조사하여 분산시킨 용액(10ml)을 사용하여 은-그래핀 산화물 복합체 0.3mg이 코팅된 PVDF 막을 제조하였다. A PVDF membrane coated with 0.3 mg of a silver-graphene oxide composite was prepared in the same manner as in Example 1 except that a solution (10 ml) in which a silver-graphene composite solution was dispersed by ultrasonic irradiation for 2 hours was used.

비교예Comparative Example

PVDF막(기공크기 0.22 μm, 표면적 33.18 cm2)PVDF membrane (pore size 0.22 μm, surface area 33.18 cm 2 )

상기 실시예 1 및 비교예에서 제조된 PVDF 막의 물성을 하기의 방법으로 측정하고 그 결과를 하기 표 1에 나타내었다.The physical properties of the PVDF membrane prepared in Example 1 and Comparative Example were measured by the following methods, and the results are shown in Table 1 below.

[측정방법][How to measure]

1.수접촉각: Pendant Drop Tensiometer(CA, DSA100, KRUSS, Germany)을 이용하여 측정함1. Water contact angle: Measured using a Pendant Drop Tensiometer (CA, DSA100, KRUSS, Germany)

2.기공도: 중량 방법 (gravimetric method) 을 이용하여 측정함2. Porosity: Measured using the gravimetric method.

3.평균기공크기: Guerout-Elford-Ferry 식을 이용하여 측정함3. Average pore size: Measured using Guerout-Elford-Ferry equation

4.표면적: 10μm×10μm 크기의 막을 atomic force microscope (AFM, XE-100, ParkSystems, Korea)을 이용하여 측정함4. Surface area: A 10 μm × 10 μm membrane was measured using an atomic force microscope (AFM, XE-100, ParkSystems, Korea).

5.표면거칠기: 10μm×10μm 크기의 막을 atomic force microscope (AFM, XE-100, ParkSystems, Korea)을 이용하여 측정함5. Surface roughness: A 10 μm × 10 μm film was measured using an atomic force microscope (AFM, XE-100, ParkSystems, Korea).

구분division 수접촉각 (°)Water contact angle (°) 기공도 (%)Porosity (%) 평균기공크기
(㎛)
Average pore size
(탆)
표면적
(㎛2)
Surface area
(탆 2 )
표면거칠기(㎚)Surface roughness (nm)
RaRa RqRq 실시예 1Example 1 88.40±0.6088.40 ± 0.60 55.26±0.2955.26 ± 0.29 0.2168±0.00080.2168 ± 0.0008 163.4±0.9163.4 ± 0.9 176.7±0.2176.7 ± 0.2 231.7±5.0231.7 ± 5.0 실시예 2Example 2 86.60±0.1086.60 + - 0.10 58.66±0.5058.66 + - 0.50 0.2041±0.00210.2041 ± 0.0021 158.7±4.1158.7 ± 4.1 186.3±0.2186.3 ± 0.2 250.9±0.8250.9 ± 0.8 비교예 Comparative Example 89.45±0.0589.45 ± 0.05 56.33±0.5156.33 + - 0.51 0.2147±0.00150.2147 ± 0.0015 188.8±5.9188.8 ± 5.9 203.5±10.3203.5 ± 10.3 263.8±9.7263.8 ± 9.7 Ra: 평균 표면거칠기임
Rq: 자승 평균 평방근 (root-mean-square)임
Ra: Average surface roughness
Rq is the root-mean-square.

또한, 도 5는 본 발명에 따라 실시예 1 내지 3 및 비교예에서 제조된 PVDF 막의 수투과량을 나타낸 것으로, 정수와 원수를 이용하여 측정하였다. FIG. 5 shows water permeation amounts of the PVDF membranes prepared in Examples 1 to 3 and Comparative Examples according to the present invention, and the permeation amounts were measured using purified water and raw water.

상기 원수는 구리 하수처리시설에서 채취한 폐수에, Bacillus subtilis (KCTC 1028, Korea)을 추가하였다. 초기 원수에 Tryptic Soy Agar (TSA)는 6.2×106 CFUml-1이 되도록 하였다.The raw water was added to the wastewater collected at the copper sewage treatment plant, Bacillus subtilis (KCTC 1028, Korea). Tryptic Soy Agar (TSA) was 6.2 × 10 6 CFUm -1 in the initial raw water.

도 5에서 (Jw,1)은 정수의 투과량이고 (Jw,0)는 초기 원수의 투과량으로, 비교예에 비해 실시예 1 내지 3은 (Jw,0)의 수투과량이 우수하다는 것을 확인할 수 있었다.In FIG. 5, (Jw, 1) is the permeation constant and (Jw, 0) is the permeation amount of the initial raw water, and Examples 1 to 3 are superior to the Comparative Example in water permeation amount of (Jw, 0) .

또한, 도 6은 본 발명에 따라 실시예 1 내지 3 및 비교예에서 제조된 PVDF 막의 필터 시간에 따른 수투과량을 나타낸 것이다. 도 6에서 막을 이용한 필터 시간이 경과한 후에도 비교예에 비해 실시예 1 내지 3이 수투과율이 우수하다는 것을 확인할 수 있었다.6 shows water permeation amounts of the PVDF membranes prepared in Examples 1 to 3 and Comparative Example according to the filter time according to the present invention. In FIG. 6, it can be seen that Examples 1 to 3 are superior in water permeability to the Comparative Examples even after the filter time using the membrane has elapsed.

또한, 도 7은 본 발명에 따라 실시예 1 내지 3 및 비교예에서 제조된 PVDF 막의 파울링비와 유수회복율을 나타낸 것이고, 세포생사율 및 활성산소생성율을 나타낸 것으로 비교예에 비해 실시예 1 내지 3이 우수하다는 것을 확인할 수 있었다.7 shows the fouling ratio and the water recovery rate of the PVDF membranes prepared in Examples 1 to 3 and Comparative Examples according to the present invention and shows the cell viability and the production rate of active oxygen in Examples 1 to 3 Was superior.

이상에서는 본 발명의 실시예를 중심으로 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 기술자의 수준에서 다양한 변경이나 변형을 가할 수 있다. 이러한 변경과 변형은 본 발명이 제공하는 기술 사상의 범위를 벗어나지 않는 한 본 발명에 속한다고 할 수 있다. 따라서 본 발명의 권리범위는 이하에 기재되는 청구범위에 의해 판단되어야 할 것이다.Although the preferred embodiments of the present invention have been disclosed for illustrative purposes, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed in the accompanying claims. These changes and modifications may be made without departing from the scope of the present invention. Accordingly, the scope of the present invention should be determined by the following claims.

Claims (5)

은 전구체 물질과 그래핀 산화물을 용액상으로 혼합하여, 은의 평균 입경이 15 내지 90 nm인 은-그래핀 산화물 복합체 용액을 제조하는 1단계;
PVDF 막의 일측면에 상기 은-그래핀 산화물 복합체 용액을 유입시키고 상기 은-그래핀 산화물 복합체 용액을 PVDF 막에 직각인 방향으로 흐르게 하는 dead-end filtration에 의해 20kPa의 압력으로 상기 일측면의 반대측면으로 상기 은-그래핀 산화물 복합체 용액을 이동시켜, 단위 미터 제곱당 0.16855mg 이하의 은-그래핀 산화물 복합체가 코팅된 PVDF 막을 제조하는 2단계; 및
상기 2단계를 수행한 PVDF 막을 세척한 후 40℃에서 건조시켜 접촉각이 88.4°이하이고, 평균 기공도가 55% 이상이며, 평균 기공크기가 216nm 인 PVDF 막을 제조하는 3단계를 포함하는 PVDF 막의 코팅방법.
Preparing silver -graphene oxide composite solution having an average particle size of silver of 15 to 90 nm by mixing the precursor material and graphene oxide in a solution phase;
Graphene oxide complex solution was introduced into one side of the PVDF membrane and the solution was passed through the opposite side of the PVDF membrane at a pressure of 20 kPa by dead-end filtration, in which the silver- Graphene oxide complex solution to prepare a PVDF film coated with silver-graphene oxide composite of not more than 0.16855 mg per square meter ; And
The PVDF film obtained by the above two steps was washed and then dried at 40 ° C to prepare a PVDF film having a contact angle of 88.4 ° or less, an average porosity of 55% or more, and an average pore size of 216 nm. Way.
삭제delete 삭제delete 삭제delete 삭제delete
KR1020170169617A 2017-12-11 2017-12-11 Process of membrane fouling resistance based on silver-graphene oxide compounds KR101986437B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170169617A KR101986437B1 (en) 2017-12-11 2017-12-11 Process of membrane fouling resistance based on silver-graphene oxide compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170169617A KR101986437B1 (en) 2017-12-11 2017-12-11 Process of membrane fouling resistance based on silver-graphene oxide compounds

Publications (1)

Publication Number Publication Date
KR101986437B1 true KR101986437B1 (en) 2019-06-05

Family

ID=66845176

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170169617A KR101986437B1 (en) 2017-12-11 2017-12-11 Process of membrane fouling resistance based on silver-graphene oxide compounds

Country Status (1)

Country Link
KR (1) KR101986437B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020248017A1 (en) * 2019-06-12 2020-12-17 Newsouth Innovations Pty Limited Filtration membrane and method of production thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140065854A (en) * 2012-11-22 2014-05-30 한남대학교 산학협력단 Fabrication method of composite membrane by pressurized-coating
KR20150071910A (en) * 2013-12-19 2015-06-29 한양대학교 산학협력단 Polymer composite membrane for olefin separation containing graphene and facilitated olefin transporting membrane containing using the same
CN105214511A (en) * 2015-09-18 2016-01-06 浙江工商大学 A kind of Nano Silver/Graphene/Kynoar hybrid membranes and preparation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140065854A (en) * 2012-11-22 2014-05-30 한남대학교 산학협력단 Fabrication method of composite membrane by pressurized-coating
KR20150071910A (en) * 2013-12-19 2015-06-29 한양대학교 산학협력단 Polymer composite membrane for olefin separation containing graphene and facilitated olefin transporting membrane containing using the same
CN105214511A (en) * 2015-09-18 2016-01-06 浙江工商大学 A kind of Nano Silver/Graphene/Kynoar hybrid membranes and preparation method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Adel Soroush et al., "Surface modification of thin film composite forward osmosis membrane by silver-decorated graphene-oxide nanosheets", Environmental Science Nano, Vol.2, pp.395-405(2015.07.10)* *
Yi Han et al., "Ultrathin Graphene Nanofiltration Membrane for Water Purification", Adv. Funct. Materials, Vol.23, pp.3693-3700(2013.02.26)* *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020248017A1 (en) * 2019-06-12 2020-12-17 Newsouth Innovations Pty Limited Filtration membrane and method of production thereof
CN114144253A (en) * 2019-06-12 2022-03-04 新南创新私人有限公司 Filter membrane and method for producing same

Similar Documents

Publication Publication Date Title
Koushkbaghi et al. Aminated-Fe3O4 nanoparticles filled chitosan/PVA/PES dual layers nanofibrous membrane for the removal of Cr (VI) and Pb (II) ions from aqueous solutions in adsorption and membrane processes
Zhu et al. Improving the hydrophilic and antifouling properties of polyvinylidene fluoride membrane by incorporation of novel nanohybrid GO@ SiO2 particles
Fang et al. Internal pore decoration with polydopamine nanoparticle on polymeric ultrafiltration membrane for enhanced heavy metal removal
Ji et al. Microstructure and performance of zwitterionic polymeric nanoparticle/polyamide thin-film nanocomposite membranes for salts/organics separation
Zhong et al. Graphene oxide modified membrane for highly efficient wastewater treatment by dynamic combination of nanofiltration and catalysis
Liang et al. Membranes with selective laminar nanochannels of modified reduced graphene oxide for water purification
Bi et al. Graphene quantum dots engineered nanofiltration membrane for ultrafast molecular separation
Wu et al. Bio-inspired GO-Ag/PVDF/F127 membrane with improved anti-fouling for natural organic matter (NOM) resistance
Zhao et al. A novel type of polyelectrolyte complex/MWCNT hybrid nanofiltration membranes for water softening
Wu et al. Optimizing polyamide thin film composite membrane covalently bonded with modified mesoporous silica nanoparticles
Zhao et al. High pervaporation dehydration performance of the composite membrane with an ultrathin alginate/poly (acrylic acid)–Fe3O4 active layer
WO2016011124A1 (en) Porous graphene based composite membranes for nanofiltration, desalination, and pervaporation
Moslehyani et al. Effect of HNTs modification in nanocomposite membrane enhancement for bacterial removal by cross-flow ultrafiltration system
Mirzaei et al. Fabrication of magnetic field induced mixed matrix membranes containing GO/Fe3O4 nanohybrids with enhanced antifouling properties for wastewater treatment applications
Das et al. High flux and adsorption based non-functionalized hexagonal boron nitride lamellar membrane for ultrafast water purification
CN108993165B (en) Layered inorganic material organic solvent nanofiltration composite membrane and preparation method thereof
Eghbalazar et al. High-Performance Thin-Film nanocomposite forward osmosis membranes modified with Poly (dopamine) coated UiO66-(COOH) 2
Zheng et al. Surface modification of PVDF membrane by CNC/Cu-MOF-74 for enhancing antifouling property
KR101986437B1 (en) Process of membrane fouling resistance based on silver-graphene oxide compounds
Thakur et al. Highly robust laser-induced graphene (LIG) ultrafiltration membrane with a stable microporous structure
Vafaei et al. Covalent organic frameworks modified with TA embedded in the membrane to improve the separation of heavy metals in the FO
Ayyaru et al. Novel sulfonated rGOHfO2/PVDF hybrid nanocomposite ultrafiltration membrane towards direct potable reuse water production
Hosseinzadeh et al. Magnetic graphene oxide functionalized with crystalline nanocellulose and zwitterionic polymers to achieve UF nanocomposite membranes of advanced performance
Yu et al. Synthesis of Ag–SiO2–APTES Nanocomposites by blending poly (Vinylidene Fluoride) Membrane with potential applications on dye wastewater treatment
El-Sayed et al. Mixed matrix membrane comprising functionalized sulfonated activated carbon from tea waste biomass for enhanced hydrophilicity and antifouling properties

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant