KR101984623B1 - Vitamin D Binding Using Triazolidione-based Compound and Detection of Quantitative Determination of Vitamin D Using Fluorescence Supported Silica Nanoparticles - Google Patents

Vitamin D Binding Using Triazolidione-based Compound and Detection of Quantitative Determination of Vitamin D Using Fluorescence Supported Silica Nanoparticles Download PDF

Info

Publication number
KR101984623B1
KR101984623B1 KR1020170058984A KR20170058984A KR101984623B1 KR 101984623 B1 KR101984623 B1 KR 101984623B1 KR 1020170058984 A KR1020170058984 A KR 1020170058984A KR 20170058984 A KR20170058984 A KR 20170058984A KR 101984623 B1 KR101984623 B1 KR 101984623B1
Authority
KR
South Korea
Prior art keywords
vitamin
fluorescent
silica nanoparticles
fluorescence
silica
Prior art date
Application number
KR1020170058984A
Other languages
Korean (ko)
Other versions
KR20180124452A (en
Inventor
이상명
안태욱
이남훈
이대원
김성수
Original Assignee
강원대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강원대학교산학협력단 filed Critical 강원대학교산학협력단
Priority to KR1020170058984A priority Critical patent/KR101984623B1/en
Publication of KR20180124452A publication Critical patent/KR20180124452A/en
Application granted granted Critical
Publication of KR101984623B1 publication Critical patent/KR101984623B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/82Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving vitamins or their receptors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54346Nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54353Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals with ligand attached to the carrier via a chemical coupling agent
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/544Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being organic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label

Abstract

본 발명은 기존의 단백질을 이용한 비타민 D의 표지자가 아닌 수용액에서 사용가능한 화학물질 프로브인 트리아졸디온 기반 화합물을 이용하여 비타민 D를 고정함과 더불어, 형광이 담지된 실리나 나노입자를 이용하여 비타민 D를 낮은 농도에서도 정량 검출이 가능한 트리아졸디온 기반 화합물을 이용한 비타민 D결합 및 형광이 담지된 실리카 나노입자를 이용한 비타민 D의 정량 검출 방법에 관한 것이다. 본 발명은 트리아졸디온 유도체를 포함하는 비타민 D고정용 화학 프로브를 제공한다.The present invention relates to a method for immobilizing vitamin D by using a triazole dione-based compound, which is a chemical probe that can be used in an aqueous solution that is not a marker of vitamin D using existing proteins, D based on a triazole dione-based compound capable of quantitative detection even at a low concentration, and a method for detecting quantitative determination of vitamin D using fluorescence-supported silica nanoparticles. The present invention provides a chemical probe for fixing vitamin D comprising a triazole dione derivative.

Description

트리아졸디온 기반 화합물을 이용한 비타민 D결합 및 형광이 담지된 실리카 나노입자를 이용한 비타민 D의 정량 검출 방법{Vitamin D Binding Using Triazolidione-based Compound and Detection of Quantitative Determination of Vitamin D Using Fluorescence Supported Silica Nanoparticles}TECHNICAL FIELD The present invention relates to a method for detecting quantitative determination of vitamin D by using vitamin D binding and fluorescence-supported silica nanoparticles using a triazolidione-based compound (Vitamin D Binding Using Triazolidione-based Compounds and Detection of Quantitative Determination of Vitamin D Using Fluorescence Supported Silica Nanoparticles)

본 발명은 트리아졸디온 기반 화합물을 이용한 비타민 D결합 및 형광이 담지된 실리카 나노입자를 이용한 비타민 D의 정량 검출 방법에 관한 것으로, 더욱 상세하게는 기존의 단백질을 이용한 비타민 D의 표지자가 아닌 수용액에서 사용가능한 화학물질 프로브인 트리아졸디온 기반 화합물을 이용하여 비타민 D를 고정함과 더불어, 형광이 담지된 실리나 나노입자를 이용하여 비타민 D를 낮은 농도에서도 정량 검출이 가능한 트리아졸디온 기반 화합물을 이용한 비타민 D결합 및 형광이 담지된 실리카 나노입자를 이용한 비타민 D의 정량 검출 방법에 관한 것이다.The present invention relates to a method for detecting quantitative determination of vitamin D by using vitamin D binding and fluorescence supported silica nanoparticles using a triazolidione-based compound, and more particularly, Based on a triazol dione-based compound, which is a usable chemical probe, it is possible to immobilize vitamin D and to use a triazole dione-based compound capable of quantitatively detecting vitamin D at low concentrations using fluorescence-loaded silica nanoparticles The present invention relates to a method for detecting quantitative determination of vitamin D using vitamin D binding and fluorescence supported silica nanoparticles.

비타민 D는 주로 태양광 노출에 의하여 피부에서 생산되거나 식이요법에 의한 섭취(주로 계란 노른자, 생선기름 및 식물)로부터 공급되는 지용성 스테로이드의 전구물질이다. 이러한 비타민 D는 생물학적으로 약리작용을 하지 않고 생물학적으로 활성화된 1,25-디하이드록시비타민 D(1,25-dihydrowyvitamin D)가 되기 위해서는 간과 신장에서 반드시 두 개의 수산기와 결합되어야 한다. 이러한 비타민 D의 주요한 두가지 형태는 비타민 D3(cholecalciferol)과 비타민 D2(ergocalciferol)이다. 이중 비타민 D3의 경우 채내 합성이 가능하지만 비타민 D2의 경우 채내 합성이 불가능하여 음식물로 섭취하여야 한다.Vitamin D is a precursor to lipid soluble steroids that are produced mainly by sun exposure or from dietary intake (mainly egg yolk, fish oil and plants). These vitamin Ds must be bound to two hydroxyl groups in the liver and kidney in order to be biologically active 1,25-dihydrowyvitamin D without biologically pharmacological action. The two main forms of vitamin D are vitamin D3 (cholecalciferol) and vitamin D2 (ergocalciferol). In the case of vitamin D3, it can be synthesized intramolecularly, but vitamin D2 can not be synthesized.

비타민 D는 주로 칼슘과 인의 대사를 좌우하며, 부족시 칼슘과 인의 열액내 농도가 충분하지 못하여 뼈에 축적되지 못함으로써 골격이 약해지고, 결국 몸에 부하되는 압력을 견디지 못하여 뼈가 휘거나 부러질 수 있다. 즉 뼈의 양은 정상이지만 뼈의 밀도가 감소된 상태가 되어 뼈가 연화되고 부러지기 쉬운 상태가 된다. 이러한 증상을 구루병, 골연화증으로 부르고 있으며. 폐경기 여성들에게 주로 발생하는 골다공증과는 달리 전연령에서 발생할 수 있다.Vitamin D is mainly responsible for the metabolism of calcium and phosphorus. When it is deficient, calcium and phosphorus are not accumulated enough in the heat fluid to accumulate in the bone, so the skeleton weakens. As a result, the bone can not bend or break have. In other words, the amount of bone is normal, but the density of the bone is reduced, and the bone becomes soft and fragile. These symptoms are called rickets and osteomalacia. Unlike osteoporosis, which occurs mainly in postmenopausal women, it can occur in all ages.

인체내에서 비타민 D3와 D2는 혈장의 비타민 D 결합 단백질(vitamin D bonding protein)과 결합하고 간으로 이동하여 25(OH)D3를 형성하여 수산화 된다. 이러한 25(OH)D는 인체에서 비타민 D의 주된 저장형태이므로 전반적인 비타민 D의 상태를 분석하기 위해서는 25(OH)D의 양을 측정하고 있다. 이러한 인체의 혈액내 비타민 D 농도의 빠르고 정확한 측정은 비타민 D의 결핍과 관련된 다양한 노인성 질환의 현장 진단에 있어 필수적으로 확보되어야 하는 기술이다. In the human body, vitamin D3 and D2 bind to the plasma vitamin D binding protein and migrate to the liver, forming 25 (OH) D3 and hydroxylated. Since 25 (OH) D is the main storage form of vitamin D in the human body, 25 (OH) D is being measured to analyze the overall state of vitamin D. This rapid and accurate measurement of vitamin D concentration in the human body is a necessary technique for on-site diagnosis of various geriatric diseases associated with vitamin D deficiency.

기존의 비타민 D를 검출하는 선행연구들은 특정 단백질 표지자(Protein probe)나 계면활성제를 이용하여 비타민 D를 분리 및 검출하고 있었다. 하지만 이러한 단백질 또는 계면활성제를 이용한 비타민 D의 분리 및 검출은 유기용매상에서 진행되기 때문에 유기용매의 세출/분리과정 중에서 고정화된 비타민 D가 유실되어 검출의 정확성에 문제를 가지고 있었다. Previous studies to detect existing vitamin D have been conducted to isolate and detect vitamin D using specific protein markers or surfactants. However, since the separation and detection of vitamin D using these proteins or surfactants proceed in the organic solvent, immobilized vitamin D is lost during the dissolution / separation process of the organic solvent, which has a problem in the accuracy of detection.

전술한 문제를 해결하기 위하여, 본 발명은 기존의 단백질 표지자가 아닌 수용액에서 사용가능한 화학 표지자 물질인 트리아졸디온 기반 화합물을 이용하여 비타민 D를 고정함과 더불어, 형광이 담지된 실리나 나노입자를 이용하여 비타민 D를 낮은 농도에서도 정량 검출이 가능한 트리아졸디온 기반 화합물을 이용한 비타민 D결합 및 형광이 담지된 실리카 나노입자를 이용한 비타민 D의 정량 검출 방법을 제공하고자 한다.In order to solve the above-mentioned problems, the present invention relates to a method for immobilizing vitamin D by using a triazolidione-based compound, which is a chemical marker substance that can be used in an aqueous solution which is not a conventional protein marker, The present invention provides a method for detecting quantitative determination of vitamin D by using vitamin D binding and fluorescence supported silica nanoparticles using a triazole dione based compound capable of quantitatively detecting vitamin D at a low concentration.

상술한 문제를 해결하기 위해, 제1양태에 의한 본 발명은 트리아졸디온 유도체를 포함하는 비타민 D고정용 화학 프로브를 제공한다.In order to solve the above-mentioned problems, the present invention according to the first aspect provides a chemical probe for fixing vitamin D comprising a triazole dione derivative.

상기 트리아졸디온 유도체는 4-페닐-1,2,4-트리아졸-3,5디온(4-phenyl-1,2,4-triazole-3,5-dione, PTAD)일 수 있다.The triazole dione derivative may be 4-phenyl-1,2,4-triazole-3,5-dione (PTAD).

제2양태에 의한 본 발명은, 상기 비타민 D고정용 화학프로브를 통해 정량적 검출을 위한 형광이 담지된 실리카 나노입자를 제공한다.The present invention according to the second aspect provides the fluorescence-supported silica nanoparticles for quantitative detection through the above-mentioned vitamin D fixing chemical probe.

상기 실리카 나노입자는 형광물질이 추가로 담지될 수 있다.The silica nanoparticles may further carry a fluorescent substance.

상기 실리카 나노입자는, (a) 형광 실리카 나노입자 중간체를 형성하는 단계; (b) 링커와 계면활성제를 이용하여 하기 화학식 1로 표시되는 표면 개질을 진행하는 단계를 포함하는 방법으로 제조되며, Wherein the silica nanoparticles comprise: (a) forming a fluorescent silica nanoparticle intermediate; (b) conducting a surface modification represented by the following formula (1) using a linker and a surfactant,

<화학식 1>&Lt; Formula 1 >

Figure 112017045040173-pat00001
Figure 112017045040173-pat00001

(단, 상기 화학식에서 n = 10 ~ 15 KDa 임); 상기 단계 (a)는 하기 단계를 포함하는 방법으로 제조될 수 있다.(In the above formula, n = 10 to 15 KDa); The step (a) may be produced by a method including the following steps.

(a-1) 용매에 형광물질 및 형광물질 전처리제를 첨가한 후 교반하는 단계; (a-2) 상기 단계 (a-1)에서 얻어진 용액을 실리카 전구체 및 촉매를 포함하는 용액과 혼합하여 교반 후 세척하는 단계.(a-1) adding a fluorescent substance and a fluorescent substance precursor to a solvent and stirring the mixture; (a-2) mixing the solution obtained in the step (a-1) with a solution containing a silica precursor and a catalyst, stirring and washing.

또한 제3양태에 의한 본 발명은 상기 실리카 나노입자를 이용한 비타민 D의 정량검출 방법을 제공한다.The present invention according to the third aspect provides a method for quantitatively detecting vitamin D using the above-mentioned silica nanoparticles.

본 발명에 의한 트리아졸디온 기반 화합물을 이용한 비타민 D결합 및 형광이 담지된 실리카 나노입자를 이용한 비타민 D의 정량 검출 방법은 낮은 농도에서도 정확하게 비타민 D의 정량검출이 가능하여 비타민 D의 결핍과 관련된 다양한 노인성 질환의 현장 진단에 유용하게 사용될 수 있다.The method for detecting the quantitative determination of vitamin D by using the triazine dione-based compound of the present invention using the vitamin D-binding and fluorescence-supported silica nanoparticles enables accurate detection of the vitamin D even at a low concentration, It can be used for field diagnosis of geriatric diseases.

도 1은 본 발명의 일 실시예에 의한 비타민 D고정용 화학 프로브를 이용한 비타민 D의 고정반응의 모식도이다.
도 2는 본 발명의 일 실시예에 의한 실리카 나노입자를 이용하여 샌드위치 기법을 통하여 형광물질 및 화학프로브를 담지하는 모식도이다.
도 3은 본 발명의 일 실시예에 의한 화학프로브와 비타민 D의 콘쥬게이션에 따른 HPLC 분석결과를 나타낸 그래프이다.
도 4는 본 발명의 일 실시예에 의한 수용액상 반응에서 화학프로브와 비타민 D의 콘쥬게이션에 따른 HPLC 분석결과를 나타낸 그래프이다.
도 5는 본 발명의 일 실시예에 의한 비타민 D의 검출응답 테스트 결과그래프이다.
도 6은 본 발명의 일 실시예에 의한 형광 전구체의 주입시점에 따른 형광패턴 및 실리카에 포함되지 않은 형광 전구체에 의한 형광세기의 변화는 나타낸 그래프이다.
도 7은 본 발명의 일 실시예에 의한 보관온도에 따른 크기 및 형광세기의 변화를 나타낸 그래프이다.
FIG. 1 is a schematic view of a fixing reaction of vitamin D using a chemical probe for fixing vitamin D according to an embodiment of the present invention.
FIG. 2 is a schematic view showing a method of carrying a fluorescent substance and a chemical probe through a sandwich technique using silica nanoparticles according to an embodiment of the present invention.
3 is a graph showing the results of HPLC analysis according to conjugation of a chemical probe and vitamin D according to an embodiment of the present invention.
4 is a graph showing the results of HPLC analysis according to conjugation of a chemical probe and vitamin D in an aqueous liquid phase reaction according to an embodiment of the present invention.
FIG. 5 is a graph showing a detection response test result of vitamin D according to an embodiment of the present invention. FIG.
FIG. 6 is a graph showing changes in fluorescence intensity due to a fluorescence pattern and a fluorescent precursor not contained in silica according to an injection timing of a fluorescent precursor according to an embodiment of the present invention.
FIG. 7 is a graph showing changes in size and fluorescence intensity according to an embodiment of the present invention.

이하에서는 본 발명의 바람직한 실시예를 상세하게 설명한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐리게 할 수 있다고 판단되는 경우 그 상세한 설명을 생략하기로 한다. 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한, 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다.Hereinafter, preferred embodiments of the present invention will be described in detail. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. Throughout the specification, when an element is referred to as " including " an element, it means that it can include other elements, not excluding other elements, unless specifically stated otherwise.

제1양태에 의한 본 발명은 본 발명은 트리아졸디온 유도체를 포함하는 비타민 D고정용 화학 프로브에 관한 것이다. The present invention according to the first aspect relates to a chemical probe for fixing vitamin D comprising a triazole dione derivative.

기존의 비타민 D검출 방법에서는 단백질 프로브나 계면활성제를 이용하여 비타민 D를 고정하였으며, 유기용매를 이용하여 검출을 진행하므로, 유기용매의 세척 및 분리과정에서 단백질과 결합된 비타민 D의 일부가 유실되는 문제점을 가지고 있었다. 하지만 본 발명에서는 트리아졸디온 유도체를 이용하여 비타민 D를 고정함에 따라 수용액상에서 검출이 가능하며, 이에 따라 비타민 D의 유실량을 최소한으로 억제하여 정확한 정량 분석이 가능하도록 하였다. 이때 사용되는 트리아졸디온 유도체는 비타민 D를 고정할 수 있는 유도체라면 제한없이 사용가능하지만, 바람직 하게는 4-페닐-1,2,4-트리아졸-3,5디온(4-phenyl-1,2,4-triazole-3,5-dione, PTAD)를 사용할 수 있다. 또한 상기 4-페닐-1,2,4-트리아졸-3,5디온은 비타민 D를 직접 고정하는 것도 가능하지만 도1에 나타난 바와 같이, 1,3-다이브로모-5,5-다이메틸히덴토인(1,3-dibromo-5,5dimethyihydantoin)을 이용하여 활성화 한 다음, 딜스알더(Diels-Alder)반응을 이용하여 비타민 D를 고정하는 것이 더욱 바람직하다.In the conventional vitamin D detection method, vitamin D is immobilized using a protein probe or a surfactant. Since the detection is carried out using an organic solvent, a portion of the vitamin D bound to the protein is lost during washing and separation of the organic solvent I had a problem. However, in the present invention, it is possible to detect vitamin D in an aqueous solution by immobilizing vitamin D using a triazole dione derivative. Thus, accurate quantitative analysis is possible by minimizing the amount of vitamin D lost. The triazole dione derivative used herein is not particularly limited as long as it is a derivative capable of fixing vitamin D, but preferably 4-phenyl-1,2,4-triazole- 2,4-triazole-3,5-dione, PTAD). The 4-phenyl-1,2,4-triazole-3,5-dione can also directly fix vitamin D, but as shown in Figure 1, 1,3-dibromo-5,5- It is more preferable to activate vitamin D by using a 1,3-dibromo-5,5 dimethyihydantoin, and then fix the vitamin D using a Diels-Alder reaction.

최종적으로 샌드위치 어세이 (Sandwich assay)를 통한 비타민 D정량 검출을 위해 자성나노입자에 고정화 하는 방법이 필요하며 수용액 상에서도 입자 안정성 및 균일한 분산을 위해 PEG 및 Biotin으로 개질된 다이벤조사이크로옥틴 (Dibenzocycloooctyne, DBCO)를 이용하여 클릭반응 (Click reaction)을 통한 PTAD-비타민 D고정용 프로브와 결합한다. Finally, a method for immobilization of magnetic nanoparticles is required for the detection of vitamin D in a sandwich assay. For the purpose of particle stability and uniform dispersion in aqueous solution, PEG and Biotin modified Dibenzocycloooctyne , DBCO) to bind PTAD-vitamin D immobilized probe through a click reaction.

또한 제2양태에 의한 본 발명은 상기 비타민 D가 고정된 화학프로브의 정량적 검출을 위해 형광이 담지된 실리카 나노입자에 관한 것이다. 상기 비타민 D가 고정된 화학프로브의 경우 단독으로 검출에 사용할 수 없으므로, 상기 비타민 D가 고정된 화학프로브를 표면이 카르복실기로 개질된 자성나노입자에 결합한 다음, 형광이 담지된 실리카 나노입자를 이용하여 샌드위치 기법을 통하여 비타민 D의 정량검출에 사용할 수 있다(도 2). The present invention according to the second aspect also relates to a fluorescence-supported silica nanoparticle for the quantitative detection of the vitamin D immobilized chemical probe. In the case of the above-mentioned vitamin D-immobilized chemical probe, it can not be used for detection alone. Therefore, the vitamin D-immobilized chemical probe is bound to the magnetic nanoparticle modified with a carboxyl group on the surface thereof, And can be used for the quantitative detection of vitamin D through the sandwich technique (FIG. 2).

상기 실리카 나노입자는 형광물질이 추가로 담지된 것으로 표면 개질제에 의해 표면이 개질되어 수용액에서 고분산성을 가지며 형광물질이 도입되어 광 조사에 의해 여기 상태(excitation state)가 되었다가 기저 상태(ground state)로 돌아가면서 흡수한 에너지를 특정 파장의 빛으로 방출하는 형광 특성을 가진다.The silica nanoparticles are additionally supported on the surface of the silica nanoparticles by surface modification with a surface modifier and have a high dispersibility in the aqueous solution. The silica nanoparticles are introduced into the excitation state by light irradiation, ) And emits the absorbed energy into light of a specific wavelength.

상기 형광 실리카 나노입자는, 표면에 작용기(functional group)를 가지고 형광물질이 도입된 형광 실리카 나노입자 중간체를 형성하고, 링커(linker)와 계면활성제를 이용하여 제조된 표면 개질제를 형성한 후, 상기 형광 실리카 나노입자 중간체의 표면을 상기 표면 개질제로 개질하여 제조될 수 있다. 또한 상기 표면 작용기는 원하는 목표물질에 따라 다양한 작용기가 사용될 수 있지만, 본 발명의 비타민 D를 검출하기 위하여 비타민 D고정용 화학프로브인 트리아졸디온 유도체를 사용하는 것이 바람직하다.The fluorescent silica nanoparticles may be prepared by forming a fluorescent silica nanoparticle intermediate having a functional group on its surface with a fluorescent substance introduced thereinto, forming a surface modifier using a linker and a surfactant, And modifying the surface of the fluorescent silica nanoparticle intermediate with the surface modifier. In addition, various functional groups may be used for the surface functional group depending on a desired target substance, but it is preferable to use a triazol dione derivative as a chemical probe for fixing vitamin D in order to detect vitamin D of the present invention.

상기 표면 개질제는 링커와 계면활성제를 이용하여 제조되는데, 상기 링커는 계면활성제가 형광 실리카 나노입자의 표면을 코팅할 수 있도록 형광 실리카 나노입자 중간체와 계면활성제 사이를 가교하는 역할을 하는 것으로서, 계면활성제와 결합된 형태를 가지며, 형광 실리카 나노입자 중간체 표면의 작용기와 반응할 수 있는 작용기를 가진다. 예를 들면, 형광 실리카 나노입자 중간체 표면의 작용기가 아민기인 경우, 상기 링커는 글루타알데하이드(glutaraldehyde) 등과 같이 알데하이드기가 포함된 링커일 수 있다.The surface modifier is prepared by using a linker and a surfactant. The linker bridges between the fluorescent silica nanoparticle intermediate and the surfactant so that the surfactant can coat the surface of the fluorescent silica nanoparticle. And has a functional group capable of reacting with the functional group on the surface of the fluorescent silica nanoparticle intermediate. For example, when the functional group on the surface of the fluorescent silica nanoparticle intermediate is an amine group, the linker may be a linker containing an aldehyde group such as glutaraldehyde.

상기 계면활성제는 본 발명에 따른 형광 실리카 나노입자의 표면에 코팅되어 상기 형광 실리카 나노입자가 수용액에서 응집되지 않고 높은 분산성을 갖도록 하는 것으로서, 바람직하게는, 음이온성 계면활성제 또는 비이온성 계면활성제일 수 있으며, 구체적으로, 폴리비닐피롤리돈(PVP: Polyvinylpyrrolidone), 폴리아크릴산, 폴리이민, 설포 숙신산, 알킬포스페이트, 폴리옥시에틸렌 지방에테르, 폴리옥시에틸렌 페닐에테르, DBS(Dodecyl benzene sulfonate), 지방산아민 에테르 폴리옥시에틸렌, 소비탄 지방산 에스터, 폴리옥시에틸렌 소비탄 지방산 에스터, 지방 에테르 함유 폴리옥시에틸렌, 방향족 에테르 함유 폴리옥시에틸렌 및 폴리에틸렌글리콜 에스터 등을 그 예로서 들 수 있다.The surfactant is coated on the surface of the fluorescent silica nanoparticles according to the present invention so that the fluorescent silica nanoparticles do not aggregate in the aqueous solution and have a high dispersibility. Preferably, the surfactant is an anionic surfactant or a nonionic surfactant Specific examples thereof include polyvinylpyrrolidone (PVP), polyacrylic acid, polyimine, sulfosuccinic acid, alkylphosphate, polyoxyethylene fatty ether, polyoxyethylene phenyl ether, DBS (Dodecyl benzene sulfonate) Ether polyoxyethylene, consumptane fatty acid ester, polyoxyethylene succinic acid fatty acid ester, fatty ether-containing polyoxyethylene, aromatic ether-containing polyoxyethylene and polyethylene glycol ester, and the like.

본 발명에서 사용되는 표면 개질제의 구체적인 예로서는, 하기 화학식 1로 표시되며, 히알루론산을 반응시켜 제조된 표면 개질제를 들 수 있다.Specific examples of the surface modifier used in the present invention include a surface modifier represented by the following formula (1), which is prepared by reacting hyaluronic acid.

<화학식 1>&Lt; Formula 1 >

Figure 112017045040173-pat00002
Figure 112017045040173-pat00002

(단, 상기 화학식에서 n = 10 ~ 15 KDa 임)(Provided that n = 10 to 15 KDa in the above formula)

또한, 본 발명에 따른 형광 실리카 나노입자에 도입되는 상기 형광물질은 공지의 형태를 용도에 따라 적절히 선택하여 사용할 수 있는데, 상기 형광물질의 예로서, 알렉사 플루오르(Alexa fluor, AF) 350, 405, 430, 488, 500, 514, 633, 647, 660, 680, 700, cy3, cy5, cy7, 루피(Rubpy)(tris(2,2-bipyridyl)ruthenium(Ⅱ)) FITC(fluoresein Isothiocyanate), 로다민 6G(rhodamine 6G), 로다민 B(rhodamine B), TAMRA(6-carboxytetramethyl-rhodamine), 텍사스 레드(Texas Red), DAPI(4,6-diamidino-2-phenylindole) 및 Coumarin 등을 들 수 있다. 그 중에서도, 본 발명에서 사용하는 형광물질은 근적외선(near infrared, NIR)을 발광하는 것이 바람직한데, 이는 근적외선은 생체 투과도가 높아서 생체 이미징(imaging) 에 적합하기 때문이다.The fluorescent material to be introduced into the fluorescent silica nanoparticles according to the present invention can be appropriately selected in accordance with the intended use of the fluorescent material. Examples of the fluorescent material include Alexa fluor (AF) 350, 405, 4, 6, 680, 700, cy3, cy5, cy7, Rubpy (tris (2,2-bipyridyl) ruthenium (II)) FITC (fluoresein isothiocyanate), Rhodamine 6G (rhodamine 6G), rhodamine B, TAMRA (6-carboxytetramethyl-rhodamine), Texas Red, DAPI (4,6-diamidino-2-phenylindole) and Coumarin. In particular, the fluorescent material used in the present invention preferably emits near infrared (NIR) light because near infrared rays have high bio-transparency and are suitable for biological imaging.

실리카 나노입자에 도입되는 형광물질의 함량과 관련하여, 통상 나노입자는 일반 염료 분자보다 형광 신호가 강하기 때문에 농도를 낮추는 것이 가능하긴 하지만, 형광 실리카 나노입자 하나 당 2 ~ 500개의 형광분자를 함유한 형광 실리카 나노입자가 바람직한데, 이는 형광물질의 함량이 나노입자 하나 당 2개 미만이면 형광성이 저하되고, 500개를 초과하면 나노입자의 크기가 너무 커지기 때문에 본 발명의 용도에 부합하지 않기 때문이다.Regarding the content of the fluorescent material to be introduced into the silica nanoparticles, it is usually possible to lower the concentration of the nanoparticles because the fluorescence signal is stronger than that of the ordinary dye molecules. However, since the fluorescent nanoparticles contain 2 to 500 fluorescent molecules per fluorescent nanoparticle Fluorescent silica nanoparticles are preferable because the fluorescence is lowered when the content of the fluorescent substance is less than 2 per one nanoparticle and the size of the nanoparticles is larger than 500, .

나아가, 상기 형광 실리카 나노입자는 표면에 도입된 알데히드기, 아민기, 수산기, 티올기 등의 작용기를 매개로 생체분자(biomolecue)를 포함한 유용한 다른 분자를 형광 실리카 나노입자에 콘쥬게이션(conjugation) 시킬 수 있다. 이때, 형광 실리카 나노입자에 컨쥬게이션 시키는 분자는 특별히 제한되지 않으나, 생체분자와 특이적으로 결합할 수 있는 물질인 것이 바람직하며, 예를 들면, 비타민A, 비타민B, 비타민C, 비타민D, 비타민E, 비타민K, 항체, 항원, RNA, DNA, PNA, 합텐(hapten), 아비딘(avidin), 스트렙타비딘(streptavidin), 뉴트라비딘(neutravidin), 프로테인 A, 프로테인 G, 렉틴(lectin), 셀렉틴(selectin), C14, I125, P32 및 S35 등의 방사선 동위원소 표지 물질 등이다.Further, the fluorescent silica nanoparticles can be conjugated to fluorescent nanoparticles with other useful molecules, including biomolecules, via functional groups such as aldehyde groups, amine groups, hydroxyl groups, and thiol groups introduced on the surface have. At this time, the molecules to be conjugated to the fluorescent silica nanoparticles are not particularly limited, but it is preferable that the molecule is capable of specifically binding to biomolecules. For example, the molecule is conjugated to fluorescent nanoparticles such as vitamin A, vitamin B, vitamin C, vitamin D, vitamin E, vitamin K, antibody, antigen, RNA, DNA, PNA, hapten, avidin, streptavidin, neutravidin, protein A, protein G, lectin, (selectin), C 14 , I 125 , P 32, and S 35 .

한편, 상기 형광 실리카 나노입자는 그 직경이 50 ~ 500nm 인 것이 바람직하다. 직경이 50nm 미만이면 나노입자가 지나치게 작아서 다루기 힘들어지고, 다른 유용한 분자를 컨쥬게이션 시키는 것이 용이하지 않으며, 직경이 500nm를 초과하면 형광 실리카 나노입자를 멤브레인 타입 진단 키트 또는 생체 시스템에 사용하기에 과도한 크기를 가진다는 문제점이 발생한다.On the other hand, the fluorescent silica nanoparticles preferably have a diameter of 50 to 500 nm. If the diameter is less than 50 nm, the nanoparticles are too small to be handled and it is not easy to conjugate other useful molecules, and if the diameter exceeds 500 nm, the fluorescent silica nanoparticles can be used in membrane type diagnostic kits or in biological systems There is a problem that it has.

상기에서 상세히 설명한 본 발명에 따른 형광 실리카 나노입자는 형광물질이 도입되고 항체 등의 분자가 접합되어 있을 뿐만 아니라, 수용액 내에서 고분산성을 나타내기 때문에, 생체분자의 검출 및 생체분자의 영상화에 효과적으로 사용될 수 있다.The fluorescent silica nanoparticles according to the present invention described above in detail are not only bonded with fluorescent molecules and molecules such as antibodies, but also exhibit high dispersibility in an aqueous solution. Therefore, the fluorescent nanoparticles of the present invention can be effectively used for detection of biomolecules and imaging of biomolecules Can be used.

보다 구체적으로, 본 발명에 따른 형광 실리카 나노입자는 형광 현미경을 이용한 영상 진단 프로브(조영제), 바이오칩, 바이오센서 등의 생물의학적 분야에 널리 유용하게 사용될 수 있다.More specifically, the fluorescent silica nanoparticles according to the present invention can be widely used in biomedical fields such as imaging probes (contrast agents), biochips, and biosensors using fluorescence microscopy.

예를 들어, 항체가 접합된 본 발명에 따른 형광 실리카 나노입자는, ELISA(enzyme-linked immunosorbentassay), 방사능면역분석, 면역침전, 샌드위치 분석, 유세포 분석(flow cytometry) 등의 면역분석(immunoassay) 또는 면역염색(immunostaining)의 용도로 유용하게 사용될 수 있다. 한편, 본 발명에 따른 형광 실리카 나노입자는 적절한 담체에 담지되어 윤활제, 습윤제, 유화제, 보존제 등과 함께 조성물을 이루어 사용되는 것이 바람직하다. 여기서, 상기 담체는 약학적으로 허용되는 담체인 것이 바람직하며, 구체적으로, 물, 이온 교환 수지, 알루미나, 알루미늄 스테아레이트, 레시틴, 혈청 단백질, 각종 완충물질, 마그네슘 트리실리케이트, 폴리비닐피롤리돈, 셀룰로즈계 기질, 폴리에틸렌 글리콜, 나트륨 카르복시메틸 셀룰로즈, 폴리아릴레이트, 왁스, 폴리에틸렌 글리콜 등을 들 수 있다. For example, the antibody-conjugated fluorescent silica nanoparticles according to the present invention can be used for immunoassay such as enzyme-linked immunosorbent assay (ELISA), radioimmunoassay, immunoprecipitation, sandwich assay, flow cytometry, or the like And can be usefully used for immunostaining. Meanwhile, the fluorescent silica nanoparticles according to the present invention are preferably carried on a suitable carrier and used as a composition together with a lubricant, a wetting agent, an emulsifier, a preservative, and the like. The carrier is preferably a pharmacologically acceptable carrier. Specific examples of the carrier include water, an ion exchange resin, alumina, aluminum stearate, lecithin, serum proteins, various buffer substances, magnesium trisilicate, polyvinylpyrrolidone, Cellulose type substrate, polyethylene glycol, sodium carboxymethyl cellulose, polyarylate, wax, polyethylene glycol and the like.

다음으로, 본 발명에 따른 수용액에서 고분산성을 가지는 형광물질이 도입된 형광 실리카 나노입자의 제조방법에 대해 설명한다.Next, a method for producing fluorescent silica nanoparticles into which a fluorescent substance having high dispersibility is introduced in an aqueous solution according to the present invention will be described.

본 발명에 따른 수용액에서 고분산성을 가지는 형광물질이 도입된 형광 실리카 나노입자의 제조방법은, (a) 형광 실리카 나노입자 중간체를 형성하는 단계; 및 (b) 링커와 계면활성제를 이용하여 형광실리카 나노입자의 표면 개질을 진행하는 단계를 포함하며, 이하에서 상기 각 단계에 대해 상세히 설명한다.The method for preparing a fluorescent silica nanoparticle into which a fluorescent substance having high dispersibility is introduced in an aqueous solution according to the present invention comprises the steps of: (a) forming a fluorescent silica nanoparticle intermediate; And (b) advancing the surface modification of the fluorescent silica nanoparticles using a linker and a surfactant. Each of the above steps will be described in detail below.

본 제조방법의 단계 (a)에서는 형광 실리카 나노입자 중간체를 형성하는 단계로서 그 구체적인 수행 조건은 특별히 한정되지 않으며, 아래와 같은 방법으로 수행되는 것을 일례로 들 수 있다.In the step (a) of the present production method, the fluorescent silica nanoparticle intermediate is formed, and the specific conditions for the preparation are not particularly limited, and examples thereof may be performed by the following method.

즉, 상기 단계 (a)는, (a-1) 용매에 형광물질 및 형광물질 전처리제를 첨가한 후 교반하는 단계; (a-2) 상기 단계(a-1)에서 얻어진 용액을 실리카 전구체 및 촉매를 포함하는 용액과 혼합하여 교반 후 세척하는 단계를 포함하여 수행될 수 있다.That is, the step (a) comprises the steps of: (a-1) adding a fluorescent substance and a fluorescent substance pretreatment agent to a solvent and stirring the mixture; (a-2) mixing the solution obtained in the step (a-1) with a solution containing a silica precursor and a catalyst, stirring and washing.

구체적으로, 상기 단계 (a-1)는 형광물질과 형광물질 전처리제를 혼합하여 반응시킴으로써 실리카 나노입자에 도입될 형광물질을 개질하는 단계이다.Specifically, the step (a-1) is a step of modifying the fluorescent material to be introduced into the silica nanoparticles by mixing and reacting the fluorescent substance and the fluorescent substance precursor.

이때, 상기 용매는 디메틸설폭사이드(DMSO), 디메틸포름아미드(DMF), 에틸 아세테이트, 테트라 하이드로퓨란(THF), 에틸아세테이트, 아세톤, 아세토니트릴 등의 극성 유기 용매인 것이 바람직하며, 상기 형광물질은 상기에서 이미 설명한 바와 같이 알렉사 플루오르(Alexa fluor, AF) 등을 사용할 수 있다. At this time, the solvent is preferably a polar organic solvent such as dimethylsulfoxide (DMSO), dimethylformamide (DMF), ethyl acetate, tetrahydrofuran (THF), ethyl acetate, acetone, acetonitrile, As described above, Alexa fluor (AF) or the like may be used.

또한 상기 형광물질 전처리제는 3-아미노프로필트리메톡시실란, 3-아미노프로필트리에톡시실란, N-메틸-3-아미노프로필트리메톡시실란, N-메틸-3-아미노프로필트리에톡시실란, N-(2-아미노에틸)-3-아미노프로필트리메톡시실란, N-(2-아미노에틸)-3-아미노프로필트리에톡시실란, 4-아미노사이클로트리메톡시실란, 4-아미노사이클로트리에톡시실란, p-아미노페닐트리메톡시실란 및 p-아미노페닐트리에톡시실란으로 이루어진 군에서 선택되는 하나 이상일 수 있으며 바람직하게는 3-아미노프로필트리메톡시실란(APTMS)을 사용할 수 있다.Also, the fluorescent substance pretreatment agent may be at least one selected from the group consisting of 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-methyl-3-aminopropyltrimethoxysilane, , N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyltriethoxysilane, 4-aminocyclotrimethoxysilane, Aminophenyltrimethoxysilane, p-aminophenyltrimethoxysilane, p-aminophenyltriethoxysilane, and preferably 3-aminopropyltrimethoxysilane (APTMS) can be used .

상기 단계 (a-2)는 단계 (a-1)에서 얻어진 개질된 형광물질과 실리카 전구체를 적절한 촉매의 존재 하에 적절한 용매에서 혼합하여 실리카 전구체의 클러스터로의 결합, 가수분해 및 축합반응을 통한 겔화 반응에 의해 형광물질이 도입된 실리카 나노입자 중간체를 합성하는 단계이다.In the step (a-2), the modified fluorescent substance obtained in the step (a-1) and the silica precursor are mixed in an appropriate solvent in the presence of a suitable catalyst to form a gel precursor, And synthesizing a silica nanoparticle intermediate into which a fluorescent substance is introduced by a reaction.

이때, 상기 용매는 특별히 제한되지 않으나, 바람직하게는, 실리카 전구체의 가수 분해 반응을 진행시키는 역할을 하는 탈이온수(D.I. water) 등의 물과, 물 및 실리카 전구체를 균질하게 혼합시켜 가수 분해 반응을 진행시킬 수 있는 알코올의 혼합 용매를 사용한다. 상기 혼합용매에서 물과 알코올의 혼합비는 특별히 제한되지 않고, 당업자가 적절히 선택할 수 있다.In this case, the solvent is not particularly limited, but it is preferable to mix the water such as deionized water (DI water), which plays a role of promoting the hydrolysis reaction of the silica precursor, and the silica and the silica precursor homogeneously, A mixed solvent of an alcohol that can be advanced is used. In the mixed solvent, the mixing ratio of water and alcohol is not particularly limited and may be suitably selected by those skilled in the art.

또한, 상기 실리카 전구체는 테트라메톡시 실란(tetramethoxy silane, TMOS), 테트라에톡시실란(tetraethoxysilane, TEOS) 또는 그 혼합물 등의 공지의 알콕시 실란을 사용하는 것이 바람직하다.The silica precursor is preferably a known alkoxysilane such as tetramethoxy silane (TMOS), tetraethoxysilane (TEOS) or a mixture thereof.

한편, 본 단계 (a-2)는 상기 가수 분해 반응을 촉진시키기 위해 촉매하에서 진행되는 것이 바람직한데, 상기 촉매는 염산, 아세트산 등의 산성 촉매 또는 염화암모늄, 염화칼륨 등의 염기성 촉매 등에서 적절히 선택하여 사용할 수 있다.The catalyst may be appropriately selected from acidic catalysts such as hydrochloric acid, acetic acid and the like, or basic catalysts such as ammonium chloride and potassium chloride, etc., and used in the step (a-2) to promote the hydrolysis reaction. .

본 제조방법의 단계 (b)에서는 링커와 계면활성제를 이용하여 표면 개질제를 형성하는 단계로서 초순수, 증류수, PBS(phosphate-buffered saline), 에탄올, 메탄올, 프로판올, 부탄올 등의 각종 알코올, 아세트산(acetic acid) 또는 포름산(formic acid), NaHCO3 완충용액 등의 수계 용매에, 상기에서 상세히 설명한 바 있는 링커와 계면활성제를 첨가하여 반응시킴으로써 표면 개질제를 제조할 수 있다.In step (b) of the present production method, the step of forming a surface modifier using a linker and a surfactant may be carried out using various kinds of alcohols such as ultrapure water, distilled water, phosphate-buffered saline, ethanol, methanol, propanol, The surface modifier may be prepared by reacting the linker and the surfactant described above in detail in an aqueous solvent such as an acid, formic acid or NaHCO3 buffer solution.

구체적으로, 단계 (b)는 상기 단계 (a)에서 얻어진 표면에 표면 개질제를 첨가하여 교반하여 반응시킴으로써 이루어지는데, 본 단계에서는 형광실리카 나노입자 중간체 표면의 작용기가 링커에서 유래하는 표면 개질제의 작용기와 반응함으로써, 표면 개질제, 더욱 엄밀하게는 표면 개질제 내에서도 계면활성제로부터 유래하는 부분에 의해 형광 실리카 나노입자 중간체가 코팅되어 최종적으로 형광 실리카 나노입자가 제조된다.Specifically, the step (b) is carried out by adding a surface modifier to the surface obtained in step (a) and reacting with stirring. In this step, the functional group on the surface of the fluorescent silica nanoparticle intermediate is reacted with the functional group of the surface modifier derived from the linker By the reaction, the fluorescent silica nanoparticle intermediate is coated with the surface modifier, more specifically, the portion derived from the surfactant even in the surface modifier, to finally produce the fluorescent silica nanoparticle.

상기 형광 실리카 나노입자는 표면 개질제에 의해 코팅됨으로써 전체 제타 전위(Zeta potential)가 -5 ~ -50mV이하의 범위로 제어됨으로써 수용액 내에서 나노입자 간의 엉김 현상이 발생하는 일 없이 높은 분산성을 유지할 수 있다. 상기 제타 전위의 제어는 본 단계에서 사용되는 표면 개질제의 함량을 적절히 조절함으로써 이루어질 수 있으며, 이와 같이 표면 개질제의 함량 조절에 의한 형광 실리카 나노입자의 제타 전위 제어는 당업자가 과도한 시행착오 없이 용이하게 수행할 수 있다.The fluorescent silica nanoparticles are coated with a surface modifier so that the total zeta potential is controlled to be in the range of -5 to -50 mV or less so that the dispersion properties can be maintained without causing entanglement of the nanoparticles in the aqueous solution have. The control of the zeta potential can be performed by appropriately adjusting the content of the surface modifier used in the present step. The control of the zeta potential of the fluorescent silica nanoparticles by controlling the content of the surface modifier can be easily carried out without undue trial and error can do.

한편, 본 발명에 따른 형광 실리카 나노입자의 제조방법은 상기 단계 (b)를 수행한 후에, (c) 상기 단계 (b)에서 표면 개질된 형광 실리카 나노입자의 표면에 비타민 D고정용 화학프로브를 도입하는 단계를 추가로 수행할 수 있다. 본 단계는 도입하고자 하는 비타민 D고정용 화학프로브를 이용해 형광 실리카 나노입자의 표면을 처리함으로써 수행되는데, 그 구체적인 실행 방법은 특별히 제한되지 아니하고 공지의 방법에 의해 행할 수 있다. The method for producing fluorescent silica nanoparticles according to the present invention is characterized in that after performing the step (b), (c) a chemical probe for fixing vitamin D is applied on the surface of the fluorescent silica nanoparticle surface-modified in the step (b) Can be carried out. This step is carried out by treating the surface of the fluorescent silica nanoparticles using a chemical probe for fixing vitamin D to be introduced, and the specific method of carrying out the method is not particularly limited and can be carried out by a known method.

또한, 본 발명에 따른 형광 실리카 나노입자의 제조방법은, (d) 상기 단계 (c)에서 형성된 형광 실리카 나노입자의 표면에 존재하는 비타민 D고정용 화학프로브를 통해 생체분자(biomolecue)를 포함한 유용한 다른 분자를 형광 실리카 나노입자에 콘쥬게이션(conjugation)시키는 단계를 더 포함할 수 있다.In addition, the method for producing fluorescent silica nanoparticles according to the present invention may further comprise: (d) a step of immobilizing a fluorescent dye on the surface of the fluorescent silica nanoparticles formed in step (c) And further conjugating the other molecule to the fluorescent silica nanoparticles.

본 발명에 따른 형광 실리카 나노입자에 컨쥬게이션 시키는 분자는 특별히 제한되지 않으나, 생체분자와 특이적으로 결합할 수 있는 물질인 것이 바람직하며, 예를 들면, 비타민A, 비타민B, 비타민C, 비타민D, 비타민E, 비타민 K, 항체, 항원, RNA, DNA, PNA, 합텐(hapten), 아비딘(avidin), 스트렙타비딘(streptavidin), 뉴트라비딘(neutravidin), 프로테인 A, 프로테인 G, 렉틴(lectin), 셀렉틴(selectin), 방사선 동위원소 표지 물질 등이다.The molecule to be conjugated to the fluorescent silica nanoparticles according to the present invention is not particularly limited, but is preferably a substance capable of specifically binding to a biomolecule. Examples thereof include vitamin A, vitamin B, vitamin C, vitamin D , Vitamin E, vitamin K, antibody, antigen, RNA, DNA, PNA, hapten, avidin, streptavidin, neutravidin, protein A, protein G, lectin, , Selectin, and radioisotope labeling substances.

본 단계에서는 접합하고자 하는 분자에 대응하여 상기 단계 (b)에서 도입된 작용기를 매개로 컨쥬게이션을 수행하게 되며, 이때, 형광 실리콘 나노입자의 작용기에 생체분자를 컨쥬게이션 시키는 구체적인 수행 방법은 공지된 기법을 이용하여 당업자가 용이하게 실시할 수 있다. 예를 들어, 표면에 알데히드기를 가지는 형광 실리카 나노입자의 경우에는 알데히드기에 의해 항체와 같은 단백질과 접합이 가능하고, 아민기를 가지는 형광 실리카 나노입자는 무수 숙신산(succinic anhydride) 등으로 아민기를 카르복실기로 전환시킨 후, 이를 EDC(dicyclohexylcarbodiimide)와 반응시켜 아민기를 함유한 생체분자와 컨쥬게이션 시킬 수 있다.In this step, conjugation is carried out via the functional group introduced in the step (b) corresponding to the molecule to be conjugated, and a specific method of conjugating the biomolecule to the functional group of the fluorescent silicon nanoparticle is known Technique by a person skilled in the art. For example, in the case of fluorescent silica nanoparticles having an aldehyde group on their surface, they can be conjugated with an antibody-like protein by an aldehyde group. Fluorescent silica nanoparticles having an amine group can be converted into carboxyl groups by succinic anhydride or the like. , Which can then be conjugated with a biomolecule containing an amine group by reacting with EDC (dicyclohexylcarbodiimide).

다음으로, 본 발명은 상기 형광 실리카 나노입자를 이용한 비타민 D 검출방법에 대해 설명한다. Next, the present invention explains a vitamin D detection method using the fluorescent silica nanoparticles.

본 발명에 따른 형광 실리카 나노입자를 이용한 비타민 D 검출방법은, (a) 분자가 접합된 형광 실리카 나노입자를 준비하는 단계; (b) 상기 형광 실리카 나노입자를 검출 대상 물질(비타민 D)을 포함하는 시료에 투입하여 반응시킨 후 광을 조사하는 단계; 및 (c) 상기 시료로부터 형광을 측정하는 단계를 포함한다.The method for detecting vitamin D using fluorescent silica nanoparticles according to the present invention comprises the steps of: (a) preparing fluorescence silica nanoparticles to which molecules are bonded; (b) injecting the fluorescent silica nanoparticles into a sample containing a detection target substance (vitamin D), reacting and irradiating light; And (c) measuring fluorescence from the sample.

상기 (a) 단계는 위에서 상세하게 설명한 제조방법에 따라 형광 실리카 나노입자를 제조함으로써 수행될 수 있다. 상기 (b) 단계에서는 실리카 나노입자에 포함된 형광물질의 흡광 영역에 해당하는 파장의 광을 조사한다. 상기 (c) 단계에서는 시료와 반응한 형광물질로부터 발산되는 형광을 형광 현미경 등을 통해 검출한다.The step (a) may be performed by preparing the fluorescent silica nanoparticles according to the manufacturing method described in detail above. In the step (b), light having a wavelength corresponding to the light absorbing region of the fluorescent material contained in the silica nanoparticles is irradiated. In the step (c), fluorescence emitted from the fluorescent material reacted with the sample is detected through a fluorescence microscope or the like.

이하 실시예를 통하여 본 발명을 더욱 자세히 설명한다.The present invention will be described in more detail with reference to the following examples.

실시예 1Example 1

유기용매(아크릴로니트릴, acrylonitrile, ACN)상에서 1,3-다이브로모-5,5-다이메틸히덴토인(1,3-dibromo-5,5dimethyihydantoin)을 이용하여 PEG chain이 결합된 4-페닐-1,2,4-트리아졸-3,5디온(4-phenyl-1,2,4-triazole-3,5-dione, PTAD)을 활성화 시킨 다음, 비타민 D와 딜스알더(Diels-Alder)반응을 수행하였다. 이후 HPLC분석을 통해 비타민 D와 PTAD간의 결합을 확인하였다. Phenyl-4-methoxyphenyl-PEG chain coupled with 1,3-dibromo-5, 5-dimethyihydantoin on an organic solvent (acrylonitrile, acrylonitrile, ACN) After activation of 4-phenyl-1,2,4-triazole-3,5-dione (PTAD), vitamin D and Diels-Alder reaction Respectively. Thereafter, the binding between vitamin D and PTAD was confirmed by HPLC analysis.

도 3에 나타난 바와 같이, HPLC 분석 상에서 30분 대에 나타나는 비타민 D의 고유 머무름 피크가 사라지는 것을 확인할 수 있었으며, 이에 따라 효과적인 컨쥬게이션이 진행되고 있는 것을 확인하였다.As shown in FIG. 3, it was confirmed by HPLC analysis that the intrinsic retention peak of vitamin D at 30 minutes disappears, confirming that effective conjugation is proceeding.

실시예 2Example 2

상기 실시예 1은 유기용매상에서 진행되었지만 비타민 D의 검출 정확도를 높이고 검출과정에서 비파괴적인 특성을 부여하기 위하여 수용액상에서의 실험을 실시하였다. ACN과 물을 50:50의 부피비율로 혼합하여 사용한 것을 제외하고 실시예 1과 동일하게 실시하였다.The above Example 1 was carried out in an organic solvent, but experiments were conducted in an aqueous solution in order to increase the detection accuracy of vitamin D and impart non-destructive properties in the detection process. ACN and water were mixed at a volume ratio of 50:50.

도 4에 나타난 바와 같이, 비타민 D의 고유피크가 1분이내의 반응시간에서도 사라지는 것을 확인할 수 있었으며, 이는 수용액에 가까운 환경에서도 비타민 D의 컨쥬게이션이 가능하며, 검출 또한 가능한 것을 확인할 수 있었다.As shown in Fig. 4, it was confirmed that the intrinsic peak of vitamin D disappeared even within a reaction time of 1 minute, which indicates that conjugation of vitamin D is possible even in an environment close to an aqueous solution, and detection is also possible.

실시예 3Example 3

상기 PTAD기반의 프로브를 이용하여 마그네틱 비드와 결합한 다음, 본 특허에서 개발한 실리카 나노입자를 이용하여 비타민 D의 검출응답 테스트를 수행하였다. 도 5에 나타난 바와 같이, 목표 D농도(0.01~0.1㎍/mL)에서 안정적인 선형응답 특성을 나타내었다.The PTAD-based probe was combined with magnetic beads, and the detection response test of vitamin D was performed using the silica nanoparticles developed in this patent. As shown in FIG. 5, stable linear response characteristics were exhibited at the target D concentration (0.01 to 0.1 μg / mL).

실시예 4Example 4

상기 PTAD기반 프로브의 선형응답특성을 보다 개선하기 위하여 형광유도체(AF647, Invitrogen)의 형광 응답 세기를 향상시킬 필요가 있으므로 최적화된 형광유도체를 합성을 위한 실험을 실시하였다.In order to improve the linear response characteristics of the PTAD-based probe, it is necessary to improve the fluorescence response of the fluorescent derivative (AF647, Invitrogen). Therefore, an experiment for synthesizing the optimized fluorescent derivative was carried out.

기존의 AF647의 형광 효율 증대를 위하여 형광 유도체의 주입시점을 단계적으로 변화시켜 각 주입시점에 따른 형광의 변화를 측정하였다. 이를 통하여 형광유도체(AF647)이 실리카 입자의 외측에 분포하도록 유도하였다.In order to increase the fluorescence efficiency of the existing AF647, the change of fluorescence according to each injection time was measured by changing the injection timing of the fluorescent derivative step by step. Through this, the fluorescent derivative (AF647) was induced to distribute to the outside of the silica particles.

형광유도체의 주입시점을 10분 간격으로 변경하며 주입한 결과 도 6에 나타난 바와 같이, 형광유도체의 주입시점이 늦어질수록 형광신호가 높아지며, 약 60분에서 최대 형광이 발생하는 것을 확인할 수 있었다. 최종적으로 주입시점이 늦어짐에 따라, 적은양의 형광전구체로도 높은 형광의 세기를 확인할 수 있었으며, 이전보다 효과적인 형광유도체의 합성이 가능할 것으로 판단되었다. As shown in FIG. 6, when the injection time of the fluorescent derivative was changed at intervals of 10 minutes, the fluorescence signal increased as the injection time of the fluorescent derivative was delayed, and it was confirmed that the maximum fluorescence occurred at about 60 minutes. As the final injection timing was delayed, the intensity of high fluorescence could be confirmed even with a small amount of fluorescent precursor, and it was considered that the synthesis of a fluorescent derivative more effective than before was possible.

실시예 5Example 5

상기 실시예 4의 방법으로 합성한 형광유도체의 안정성을 확인하기 위하여 온도(4℃, 25℃)에 따른 형광의 변화를 관측하였다. 도 7에 나타난 바와 같이 두 개의 온도조건에서 모두 형광의 크기 및 입자의 크기변화가 거의 없음을 확인할 수 있었으며, 실제 제품 적용시에도 안정성의 문제는 발생하지 않을 것으로 판단되었다.In order to confirm the stability of the fluorescent derivative synthesized by the method of Example 4, the change of fluorescence according to the temperature (4 ° C, 25 ° C) was observed. As shown in FIG. 7, it was confirmed that the fluorescence intensity and the particle size were hardly changed in both temperature conditions, and the stability problem would not occur even when the product was actually applied.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.While the present invention has been particularly shown and described with reference to specific embodiments thereof, those skilled in the art will appreciate that such specific embodiments are merely preferred embodiments and that the scope of the present invention is not limited thereto will be. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

Claims (6)

트리아졸디온 유도체를 포함하는 비타민 D고정용 화학프로브의 정량적 검출을 위한 실리카 나노입자.Silica nanoparticles for quantitative detection of vitamin D immobilized chemical probes containing triazolidione derivatives. 제 1항에 있어서,
상기 트리아졸디온 유도체는 4-페닐-1,2,4-트리아졸-3,5디온(4-phenyl-1,2,4-triazole-3,5-dione, PTAD)인 실리카 나노입자.
The method according to claim 1,
The triazole dione derivative is 4-phenyl-1,2,4-triazole-3,5-dione (PTAD).
삭제delete 제1항에 있어서,
상기 실리카 나노입자는 형광물질이 추가로 담지된 실리카 나노입자.
The method according to claim 1,
Wherein the silica nanoparticle further comprises a fluorescent substance.
제4항에 있어서,
상기 실리카 나노입자는,
(a) 형광 실리카 나노입자 중간체를 형성하는 단계; 및
(b) 링커와 계면활성제를 이용하여 하기 화학식 1로 표시되는 표면 개질을 진행하는 단계를 포함하는 방법으로 제조되며;
<화학식 1>
Figure 112017045040173-pat00003

(단, 상기 화학식에서 n = 10 ~ 15 KDa 임)
상기 단계 (a)는 하기 단계를 포함하는 방법으로 제조되는 실리카 나노입자:
(a-1) 용매에 형광물질 및 형광물질 전처리제를 첨가한 후 교반하는 단계;
(a-2) 상기 단계 (a-1)에서 얻어진 용액을 실리카 전구체 및 촉매를 포함하는 용액과 혼합하여 교반 후 세척하는 단계.
5. The method of claim 4,
The silica nano-
(a) forming a fluorescent silica nanoparticle intermediate; And
(b) conducting a surface modification represented by the following formula (1) using a linker and a surfactant;
&Lt; Formula 1 >
Figure 112017045040173-pat00003

(Provided that n = 10 to 15 KDa in the above formula)
Wherein step (a) comprises: preparing a silica nanoparticle prepared by a method comprising the steps of:
(a-1) adding a fluorescent substance and a fluorescent substance precursor to a solvent and stirring the mixture;
(a-2) mixing the solution obtained in the step (a-1) with a solution containing a silica precursor and a catalyst, stirring and washing.
제1항의 실리카 나노입자를 이용한 비타민 D의 정량검출 방법.A method for detecting quantitative determination of vitamin D using the silica nanoparticles of claim 1.
KR1020170058984A 2017-05-12 2017-05-12 Vitamin D Binding Using Triazolidione-based Compound and Detection of Quantitative Determination of Vitamin D Using Fluorescence Supported Silica Nanoparticles KR101984623B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170058984A KR101984623B1 (en) 2017-05-12 2017-05-12 Vitamin D Binding Using Triazolidione-based Compound and Detection of Quantitative Determination of Vitamin D Using Fluorescence Supported Silica Nanoparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170058984A KR101984623B1 (en) 2017-05-12 2017-05-12 Vitamin D Binding Using Triazolidione-based Compound and Detection of Quantitative Determination of Vitamin D Using Fluorescence Supported Silica Nanoparticles

Publications (2)

Publication Number Publication Date
KR20180124452A KR20180124452A (en) 2018-11-21
KR101984623B1 true KR101984623B1 (en) 2019-05-31

Family

ID=64602199

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170058984A KR101984623B1 (en) 2017-05-12 2017-05-12 Vitamin D Binding Using Triazolidione-based Compound and Detection of Quantitative Determination of Vitamin D Using Fluorescence Supported Silica Nanoparticles

Country Status (1)

Country Link
KR (1) KR101984623B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160061848A1 (en) * 2009-12-11 2016-03-03 Quest Diagnostics Investments Incorporated Mass spectrometry of steroidal compounds in multiplexed patient samples

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160061848A1 (en) * 2009-12-11 2016-03-03 Quest Diagnostics Investments Incorporated Mass spectrometry of steroidal compounds in multiplexed patient samples

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J Lab Med Qual Assur., 2012, Vol. 34, pp 69-76.
김형석 외., ‘Diels-Alder 유도체화와 Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry를 이용한 혈청 25-Hydroxyvitamin D3 및 25-Hydroxyvitamin D2의 측정’, Lab Med Online, 2012, Vol. 2, pp 188-196. 1부.*

Also Published As

Publication number Publication date
KR20180124452A (en) 2018-11-21

Similar Documents

Publication Publication Date Title
JP5356204B2 (en) Method for producing fluorescent dye compound-containing colloidal silica particles and method for determination using the same
Mahmoud et al. Advanced procedures for labeling of antibodies with quantum dots
JP6260541B2 (en) An immunoassay to reduce the effects of impurities
Generalova et al. Submicron polymer particles containing fluorescent semiconductor nanocrystals CdSe/ZnS for bioassays
JP5994890B2 (en) Analyte detection probe
Kim et al. Dual-mode fluorophore-doped nickel nitrilotriacetic acid-modified silica nanoparticles combine histidine-tagged protein purification with site-specific fluorophore labeling
Polito et al. One-step bioengineering of magnetic nanoparticles via a surface diazo transfer/azide–alkyne click reaction sequence
CN110736734A (en) cTnI homogeneous phase chemiluminescence detection kit, detection method and device
JP2022501590A (en) Luminous marker particles
CN110823873A (en) Chemiluminescence analysis method and application thereof
CN110823872A (en) Microsphere composition for chemiluminescence analysis and application thereof
Yemets et al. Quantum dot-antibody conjugates for immunofluorescence studies of biomolecules and subcellular structures
EP3531132A1 (en) Kit for measuring substance to be measured, fluorescent labeling agent, and fluorescently labeled antibody
JP2012194013A (en) Immunohistochemical staining method and reaction reagent
KR20160092406A (en) Fluorescent silica nanoparticles coated with hydrophilic macromolecule and preparing method thereof
Watanabe et al. Conjugation of quantum dots and JT95 IgM monoclonal antibody for thyroid carcinoma without abolishing the specificity and activity of the antibody
KR101984623B1 (en) Vitamin D Binding Using Triazolidione-based Compound and Detection of Quantitative Determination of Vitamin D Using Fluorescence Supported Silica Nanoparticles
EP3608669A1 (en) Fluorescent premix particles, fluorescent stain containing same, and fluorescent staining method in which these are used
KR101368076B1 (en) Surface-modified fluorescent silica nanoparticles with excellent aqeous dispersibility and preparing method thereof
KR101612094B1 (en) Composition for detecting biomarker comprising target-specific probe and detectable labeling agent-antibody composite and using method of the same
KR101053473B1 (en) Steroid Hormone Detection Kit and Method Using Quantum Dots
JP5024291B2 (en) Fluorescent semiconductor fine particles, method for producing the same, fluorescent labeling agent for biological material using the same, and bioimaging method using the same
JP2018155608A (en) Multistage fluorescent staining method using fluorescent accumulated grain composite body and fluorescent accumulated grain composite body
JP5168092B2 (en) Semiconductor nanoparticle labeling agent
KR20190121466A (en) carboxylated quantum dot-conjugate having improved antibody orientation

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant