KR101977122B1 - Nano mold and method of fabricating thereof - Google Patents

Nano mold and method of fabricating thereof Download PDF

Info

Publication number
KR101977122B1
KR101977122B1 KR1020170064083A KR20170064083A KR101977122B1 KR 101977122 B1 KR101977122 B1 KR 101977122B1 KR 1020170064083 A KR1020170064083 A KR 1020170064083A KR 20170064083 A KR20170064083 A KR 20170064083A KR 101977122 B1 KR101977122 B1 KR 101977122B1
Authority
KR
South Korea
Prior art keywords
nano
mold
silicon wafer
layer
electroplating
Prior art date
Application number
KR1020170064083A
Other languages
Korean (ko)
Other versions
KR20180128679A (en
Inventor
이병주
임부택
배희경
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020170064083A priority Critical patent/KR101977122B1/en
Publication of KR20180128679A publication Critical patent/KR20180128679A/en
Application granted granted Critical
Publication of KR101977122B1 publication Critical patent/KR101977122B1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/168Finishing the coated layer, e.g. drying, baking, soaking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition

Abstract

본 발명은 나노몰드 제조방법에 관한 것으로, 실리콘 웨이퍼 위에 BARC와 감광막을 도포 후 포토리소그래피 공정으로 감광막 패턴을 형성하는 단계; 전체표면 상부에 금속층을 증착하여 전기도금 씨드층을 형성하는 단계; 상기 전기도금 씨드층 상에 전기도금층을 형성하는 단계; 및 상기 BARC과 감광막 패턴을 제거하여 실리콘 웨이퍼를 분리하는 단계;를 포함하는 것을 특징으로 한다.The present invention relates to a method of manufacturing a nano-mold, comprising: forming a photoresist pattern by photolithography after BARC and a photoresist are coated on a silicon wafer; Depositing a metal layer over the entire surface to form an electroplating seed layer; Forming an electroplating layer on the electroplated seed layer; And separating the silicon wafer by removing the photoresist pattern and the BARC.

Description

나노몰드 및 그 제조방법{NANO MOLD AND METHOD OF FABRICATING THEREOF}NANO MOLD AND METHOD OF FABRICATING THEREOF FIELD OF THE INVENTION [0001]

본 발명은 나노몰드 및 그 제조방법에 관한 것으로, 더욱 상세하게는 반도체 공정으로 용이하게 제조하는 나노몰드 및 그 제조방법에 관한 것이다.The present invention relates to a nano-mold and a method of manufacturing the same, and more particularly, to a nano-mold easily manufactured by a semiconductor process and a method of manufacturing the same.

기존의 나노 임프린트용 몰드는 경질의 쿼츠(quartz), 유리, 연질의 폴리머 중에서 어느 한 가지 만을 재질로 하여 패턴과 함께 일체형으로 제작되는 것이 일반적이다. Conventional molds for nanoimprinting are generally made of one piece made of hard quartz, glass, or soft polymer, and formed integrally with the pattern.

그러나 쿼츠나 유리를 이용하는 나노 임프린트용 몰드는 리소그래피(lithography) 공정 후에 건식 식각 공정을 통해 제작되기 때문에, 제작이 난해한 문제점을 가지고 있다. 또한, 쿼츠나 유리로 제작된 몰드는 경질로 되어 있기 때문에 롤투롤 프린팅의 롤(roll) 표면에 부착이 불가하여 응용에 제한이 있다. 그리고, 패턴이 각인되는 기판의 표면에 굴곡이 있을 경우 불균일한 몰드-기판간의 접촉 때문에, 임프린트가 균일하게 되지 않을 뿐만 아니라, 임프린트에 사용되는 몰드에 손상이 발생되는 단점이 있다. However, since the mold for nanoimprint using quartz or glass is manufactured through the dry etching process after the lithography process, it is difficult to manufacture the mold. In addition, since the mold made of quartz or glass is hard, it can not be adhered to the roll surface of the roll-to-roll printing, and its application is limited. If there is a curvature on the surface of the substrate on which the pattern is impressed, there is a disadvantage that the imprint is not made uniform due to non-uniform contact between the mold and the substrate, and the mold used for the imprint is damaged.

상기와 같은 문제점을 해결하기 위한 본 발명의 목적은 반도체 공정으로 용이하게 제조할 수 있는 나노몰드 및 그 제조방법을 제공하는 데 있다. An object of the present invention is to provide a nano mold which can be easily manufactured by a semiconductor process and a method of manufacturing the same.

또한, 본 발명의 다른 목적은 균일한 나노패턴과 일정한 두께로 유연하게 한 나노몰드 및 그 제조방법을 제공하는 데 있다. Another object of the present invention is to provide a nano mold having a uniform nano pattern and a predetermined thickness and a method of manufacturing the same.

상기와 같은 목적을 달성하기 위한 본 발명의 나노몰드 제조방법은 실리콘 웨이퍼 위에 BARC와 감광막을 도포 후 포토리소그래피 공정으로 감광막 패턴을 형성하는 단계; 전체표면 상부에 금속층을 증착하여 전기도금 씨드층을 형성하는 단계; 상기 전기도금 씨드층 상에 전기도금층을 형성하는 단계; 및 상기 BARC과 감광막 패턴을 제거하여 실리콘 웨이퍼를 분리하는 단계;를 포함하는 것을 특징으로 한다.According to another aspect of the present invention, there is provided a method of manufacturing a nano-mold including: forming a photoresist pattern by photolithography after BARC and a photoresist are coated on a silicon wafer; Depositing a metal layer over the entire surface to form an electroplating seed layer; Forming an electroplating layer on the electroplated seed layer; And separating the silicon wafer by removing the photoresist pattern and the BARC.

상기 BARC를 도포한 후 경화시키는 단계를 더 포함하는 것을 특징으로 한다. 상기 금속층은 TiN, Ti, Ni중 어느 하나로 형성하는 것을 특징으로 한다.Coating the BARC and then curing the coating. And the metal layer is formed of any one of TiN, Ti, and Ni.

상기 금속층은 15℃~100℃ 온도에서 E-beam 또는 스퍼터링 방법으로 50nm~500nm 두께로 증착하는 것을 특징으로 한다.The metal layer is deposited at a temperature ranging from 15 ° C to 100 ° C by E-beam or sputtering to a thickness of 50nm to 500nm.

상기 전기도금층은 Ni를 50um~300um 두께로 형성하는 것을 특징으로 한다.The electroplating layer is characterized in that Ni is formed to a thickness of 50 [mu] m to 300 [mu] m.

상기 전기도금층을 형성하는 단계 이후에 실리콘 웨이퍼 크기를 사용 용도에 맞게 다이싱하는 단계를 더 포함하는 것을 특징으로 한다.Further comprising the step of dicing the silicon wafer size to suit the intended use after the step of forming the electroplating layer.

상기 나노몰드는 100nm~1㎛ 크기의 나노패턴이 균일하게 배열된 유연성 있는 50um~300um 두께의 금속 박막 형태로 형성하는 것을 특징으로 한다.The nano-mold is characterized by being formed as a metal thin film having a thickness of 50 to 300 袖 m which is uniformly arranged with nano-patterns having a size of 100 nm to 1 탆.

이상과 같이, 본 발명에 따르면 균일한 나노패턴과 일정한 두께의 유연한 나노몰드를 반도체 공정으로 용이하게 제조할 수 있다. As described above, according to the present invention, a flexible nano-mold having a uniform nano pattern and a constant thickness can be easily manufactured by a semiconductor process.

또한, 본 발명에 따르면 탄성력을 유지하면서 낭창낭창한 나노몰드를 롤 표면에 부착할 수 있어 각종 유기계열 보호필름에 롤투롤 프린팅으로 먼지 및 빗방울 제거가 용이하고 지문이 생성되지 않는 필름을 제작할 수 있다.According to the present invention, it is possible to attach a nano-mold with lid lining while maintaining an elastic force to a roll surface, thereby making it possible to easily remove dust and raindrops from various organic type protective films by roll-to-roll printing, .

도 1a 내지 도 1d는 본 발명의 일실시예에 따른 나노몰드 제조공정을 나타낸 단면도이다.
도 2는 본 발명의 실시예에 따른 나노몰드의 사용예를 나타낸 도면이다.
1A to 1D are cross-sectional views illustrating a nano-mold manufacturing process according to an embodiment of the present invention.
2 is a view showing an example of using a nano-mold according to an embodiment of the present invention.

아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시 예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시 예에 한정되지 않는다. Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings, which will be readily apparent to those skilled in the art. The present invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein.

그러면 본 발명의 일실시예에 따른 나노몰드의 제조방법에 대하여 설명한다.A method of manufacturing a nano-mold according to an embodiment of the present invention will now be described.

도 1a 내지 도 1d는 본 발명의 일실시예에 따른 나노몰드 제조공정을 나타낸 단면도이다. 1A to 1D are cross-sectional views illustrating a nano-mold manufacturing process according to an embodiment of the present invention.

먼저, 도 1a를 참조하면 실리콘 웨이퍼(10) 위에 반사 방지막인 BARC(Bottom Anti-Reflective Coating, 20)를 도포 후 경화(Soft bake)시킨 다음, 감광막을 도포하고 포토리소그래피 공정을 통하여 감광막 패턴(30)을 형성한다. 1A, BARC (Bottom Anti-Reflective Coating) 20, which is an antireflection film, is coated on a silicon wafer 10 and then soft bake is performed. Then, a photoresist film is coated and photolithography process is performed ).

여기서, 상기 BARC(20)는 반도체 소자의 패턴의 크기가 작아짐에 따라 노광 공정이 진행되는 동안 반사율이 최소 1% 미만으로 유지되어야 균일한 패턴 형성 가능하기에 사용하는 물질층으로 PR과 같은 유기화합물 계열을 사용할 수 있다. Here, the BARC 20 is a material layer that can be used to form a uniform pattern when the reflectance of the BARC 20 is maintained at a minimum of less than 1% during the exposure process as the pattern size of the semiconductor device is reduced. Series can be used.

그리고, 상기 감광막 패턴(30)은 원형, 사각형, 뾰족한 형상이고, 이에 한정하지 않으며, ArF 스케너(scanner), KrF 스케너, I-line 스테퍼(stepper) 등을 이용하여 형성한다. 이때, KrF 감광막(PR)의 경우 통상 200nm 이상 패터닝이 가능하다.The photoresist pattern 30 is formed in a circular shape, a square shape, and a sharp shape, and is not limited thereto, and may be formed using an ArF scanner, a KrF scanner, or an I-line stepper. At this time, in the case of the KrF photosensitive film PR, patterning of 200 nm or more is generally possible.

이어서, 도 1b를 참조하면 전체표면 상부에 금속층을 증착하여 전기도금 씨드층(40)을 형성한다. 이때, 상기 금속층은 감광막 패턴(30)이 열에 의하여 변질되는 것을 방지하기 위하여 15℃~100℃ 범위에서 E-beam 또는 스퍼터링 방법으로 증착한다. Next, referring to FIG. 1B, a metal layer is deposited on the entire surface to form an electroplating seed layer 40. At this time, the metal layer is deposited by E-beam or sputtering at a temperature of 15 ° C to 100 ° C to prevent the photoresist pattern 30 from being altered by heat.

여기서, 상기 금속층은 TiN, Ti을 형성하고, 바람직하게는 Ni을 형성하며, 이에 한정하지 않고 나노몰드의 경도를 향상시키기 위한 금속이면 단일층이든 복합층 모두 가능하다. 이때, 상기 금속층은 50nm~500nm 두께로 형성하며, 이에 한정하지 않고 패턴간 거리에 따라 두께를 적절히 설정할 수 있다. Here, the metal layer forms TiN, Ti, preferably Ni, but not limited thereto, and may be a single layer or a multiple layer if the metal is a metal for improving the hardness of the nano-mold. At this time, the metal layer is formed to a thickness of 50 nm to 500 nm, but it is not limited to this, and the thickness can be appropriately set according to the distance between the patterns.

다음으로, 도 1c를 참조하면 전기도금 씨드층(40) 상에 전기도금층(50)을 형성한다. 이때, 도금시 광택제가 포함된 도금액을 사용하여 전기도금층(50) 표면을 편평하게 유지할 수 있다.Next, referring to FIG. 1C, an electroplating layer 50 is formed on the electroplating seed layer 40. At this time, the surface of the electroplating layer 50 can be kept flat by using a plating solution containing a polishing agent during plating.

여기서, 상기 전기도금층(50)은 금속층을 50um~300um 두께로 형성하고, 바람직하게는 Ni를 100um~200um 두께로 형성하며, 이에 한정하지 않고 탄성력을 유지하면서 낭창 낭창하여 외부 굴곡을 따라갈 수 있는 두께면 가능하다.Here, the electroplating layer 50 is formed to have a thickness of 50 to 300 micrometers and a thickness of 100 to 200 micrometers. Preferably, the electroplating layer 50 has a thickness that is lighter and lighter, It is possible.

마지막으로, 도 1d를 참조하면 실리콘 웨이퍼(10) 크기를 사용 용도에 맞게 다이싱(Dicing) 공정으로 자른 후에 BARC(20)과 감광막 패턴(30)을 신나 또는 아세톤 용액에 넣어 제거하여 실리콘 웨이퍼(10)를 분리하여 음각 나노몰드(100)를 제작할 수 있다. 이때, 상기 나노몰드(100)는 100nm~1㎛ 크기의 나노패턴이 균일하게 배열된 유연성 있는 50um~300um 두께의 금속 박막 형태로 형성할 수 있다.1D, the size of the silicon wafer 10 is cut by a dicing process according to the intended use, and then the BARC 20 and the photoresist pattern 30 are removed by a thinner or an acetone solution to remove the silicon wafer 10 10 can be separated to fabricate the engraved nano mold 100. At this time, the nanomold 100 may be formed as a flexible metal thin film of 50 um to 300 um thick with nano patterns of 100 nm to 1 μm uniformly arranged.

도 2는 본 발명의 실시예에 따른 나노몰드의 사용예를 나타낸 도면이다.2 is a view showing an example of using a nano-mold according to an embodiment of the present invention.

도 2를 참조하면, 롤(60) 표면에 본 발명에서 제작한 탄성력을 유지하면서 낭창낭창한 음각 나노몰드(100)를 부착하여 볼록한 나노형상 표면을 가진 각종 유기계열 보호필름을 롤투롤 프린팅을 할 수 있다. 이렇게 프린팅한 볼록한 나노형상 표면을 가진 유기계열 보호필름은 먼지 및 빗방울 제거가 용이하고 지문이 생성되지 않는 용도에 사용할 수 있다.2, various kinds of organic type protective films having convex nano-shaped surfaces are attached to the surface of the roll 60 by attaching the negative nano mold 100 which is lighter and lighter while maintaining the elastic force produced by the present invention, . The organic protective film having a convex nano-shaped surface printed in this manner can be used in applications where it is easy to remove dust and raindrops, and fingerprints are not generated.

이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, It belongs to the scope of right.

10: 실리콘 웨이퍼 20: BARC
30: 감광막 패턴 40: 전기도금 씨드층
50: 전기도금층 60: 롤
100: 나노몰드
10: Silicon wafer 20: BARC
30: Photoresist pattern 40: Electroplating seed layer
50: electroplating layer 60: roll
100: Nano mold

Claims (8)

실리콘 웨이퍼 위에 BARC를 도포한 후 경화시키고 감광막을 도포하는 단계;
포토리소그래피 공정으로 감광막 패턴을 형성하는 단계;
전체표면 상부에 TiN, Ti, Ni중 어느 하나의 금속층을 15℃~100℃ 온도에서 E-beam 또는 스퍼터링 방법으로 50nm~500nm 두께로 증착하여 전기도금 씨드층을 형성하는 단계;
상기 전기도금 씨드층 상에 전기도금층인 Ni를 50um~300um 두께로 형성하는 단계; 및
상기 BARC과 감광막 패턴을 신나 또는 아세톤 용액에 넣어 제거하여 실리콘 웨이퍼를 분리하는 단계;를 포함하는 것을 특징으로 하는 나노몰드 제조방법.
Applying a BARC onto a silicon wafer, curing and applying a photoresist;
Forming a photoresist pattern by a photolithography process;
Depositing a metal layer of TiN, Ti, or Ni on the entire surface at a temperature of 15 ° C to 100 ° C to a thickness of 50 nm to 500 nm by E-beam or sputtering to form an electroplating seed layer;
Forming an electroplating layer of Ni on the electroplating seed layer to a thickness of 50 to 300 탆; And
And removing the silicon wafer by removing the BARC and the photoresist pattern through a thinner or an acetone solution to remove the silicon wafer.
삭제delete 삭제delete 삭제delete 삭제delete 제1항에 있어서,
상기 전기도금층을 형성하는 단계 이후에 실리콘 웨이퍼 크기를 사용 용도에 맞게 다이싱하는 단계를 더 포함하는 것을 특징으로 하는 나노몰드 제조방법.
The method according to claim 1,
Wherein the step of forming the electroplating layer further comprises the step of dicing the silicon wafer to an intended use.
제1항에 있어서,
상기 나노몰드는 100nm~1㎛ 크기의 나노패턴이 균일하게 배열된 유연성 있는 50um~300um 두께의 금속 박막 형태로 형성하는 것을 특징으로 하는 나노몰드 제조방법.
The method according to claim 1,
Wherein the nanomold is formed as a metal thin film having a thickness of 50 to 300 mu m which is uniformly arranged with nano patterns of 100 nm to 1 mu m in size.
상기 제1항, 제6항, 제7항 중 어느 한 항의 제조방법으로 제조된 것을 특징으로 하는 나노몰드.
A nano mold produced by the method of any one of claims 1, 6, and 7.
KR1020170064083A 2017-05-24 2017-05-24 Nano mold and method of fabricating thereof KR101977122B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170064083A KR101977122B1 (en) 2017-05-24 2017-05-24 Nano mold and method of fabricating thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170064083A KR101977122B1 (en) 2017-05-24 2017-05-24 Nano mold and method of fabricating thereof

Publications (2)

Publication Number Publication Date
KR20180128679A KR20180128679A (en) 2018-12-04
KR101977122B1 true KR101977122B1 (en) 2019-05-10

Family

ID=64669036

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170064083A KR101977122B1 (en) 2017-05-24 2017-05-24 Nano mold and method of fabricating thereof

Country Status (1)

Country Link
KR (1) KR101977122B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210004721A (en) * 2019-07-05 2021-01-13 한국과학기술원 Solid micro nozzle array, method for manufacturing the same and dehumidifier comprising the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013046005A (en) * 2011-08-26 2013-03-04 Renesas Electronics Corp Semiconductor device manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100674207B1 (en) * 2004-08-31 2007-01-24 주식회사 나모텍 Method for manufacturing stamper for the light guide plate use
WO2006138505A1 (en) * 2005-06-16 2006-12-28 Advanced Technology Materials, Inc. Dense fluid compositions for removal of hardened photoresist, post-etch residue and/or bottom anti-reflective coating layers
KR100922505B1 (en) * 2007-12-07 2009-10-21 한국과학기술원 METHOD FOR MANUFACTURING STAMP HAVING FLEXIBILITY THEREOF USING Ni ELECTROPLATING SOLUTION
SG162633A1 (en) * 2008-12-22 2010-07-29 Helios Applied Systems Pte Ltd Integrated system for manufacture of sub-micron 3d structures using 2-d photon lithography and nanoimprinting and process thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013046005A (en) * 2011-08-26 2013-03-04 Renesas Electronics Corp Semiconductor device manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210004721A (en) * 2019-07-05 2021-01-13 한국과학기술원 Solid micro nozzle array, method for manufacturing the same and dehumidifier comprising the same
KR102250441B1 (en) * 2019-07-05 2021-05-11 한국과학기술원 Solid micro nozzle array, method for manufacturing the same and dehumidifier comprising the same

Also Published As

Publication number Publication date
KR20180128679A (en) 2018-12-04

Similar Documents

Publication Publication Date Title
KR101691157B1 (en) Method of manufacturing stamp for nanoimprint
JP4940884B2 (en) Method for producing pattern forming body
JP6725097B2 (en) Film mask, manufacturing method thereof, pattern forming method using the same, and pattern formed using the same
JP4473233B2 (en) Soft mold, manufacturing method thereof, and patterning method using the same
JP5761320B2 (en) Manufacturing method of stamp for micro contact printing
US20090092791A1 (en) Mold, mold production process, processing apparatus, and processing method
KR20090003601A (en) Flexible photomask and method for manufacturing the same
JP2010158805A (en) Method of manufacturing mold for photo imprinting
US20070257396A1 (en) Device and method of forming nanoimprinted structures
KR101977122B1 (en) Nano mold and method of fabricating thereof
JP7060836B2 (en) Imprint mold manufacturing method
TWI592741B (en) Photomask and method of manufacturing photomask
KR100918850B1 (en) Method for forming nano-patterns using nano imprint lithography and lift-off process
KR100744550B1 (en) Si3N4 stamp for nano-imprint, and fabrication method of Si3N4 stamp
KR20140038309A (en) Metal-embedded photomask and manufacturering method thereof
CN105378562B (en) Stamp and its manufacturing device and method with printing mould structure
JP4889316B2 (en) A manufacturing method of a three-dimensional structure, a three-dimensional structure, an optical element, a stencil mask, a manufacturing method of a finely processed product, and a manufacturing method of a fine pattern molded product.
JP5428449B2 (en) Method for producing master plate for producing stamp for micro contact printing, and master plate for producing stamp for micro contact printing
JP6972581B2 (en) Imprint mold and imprint mold manufacturing method
JP6015140B2 (en) Nanoimprint mold and manufacturing method thereof
JP7338308B2 (en) Substrate for imprint mold, imprint mold, and manufacturing method thereof
JP2019145578A (en) Blank backing material, imprint mold, manufacturing method of imprint mold and imprint method
KR101345750B1 (en) Method for manufacturing nano electronic device
JP7192409B2 (en) Substrate for imprint mold, imprint mold, and manufacturing method thereof
JP2018098470A (en) Pattern forming method and production method of replica mold

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right